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ON THE ASYMPTOTIC IN TIME OF SOLUTIONS OF THE BOLTZMANN
EQUATION IN THE CASE OF SOFT INTERMOLECULAR POTENTIALS

Prof. Dr.Tech.Sci. Andrei N. Firsov
Institute of Computer Science and Technology — Peter the Great Saint-Petersburg Polytechnic University, Russia
E-mail: anfirs@yandex.ru

Abstract: The work is devoted to the mathematical problems of the analysis of asymptotic time behavior of solutions of the nonstationary
Boltzmann equation. The proof of the fundamental difference between such behavior for the cases of “hard” and “soft” (in the sense of H.

Grad) potentials of intermolecular interaction is given

KEYWORDS: BOLTZMANN EQUATION, SOFT POTENTIALS, SOLUTIONS, ASYMPTOTIC IN TIME

1. Introduction

Behavior of the solutions of the Boltzmann equation

E L QF F)Flo=FyxeRLUER O

ot OX
at large values of time are considered in most serious studies of this
object. In fact, even Boltzmann expressed his thoughts on the
possibility of rapid relaxation of an arbitrary initial distribution
function to equilibrium. Many physicists now adhere to this
conclusion, although the evidence they use is often far from
mathematical perfection. The first serious analysis of these issues
was carried out by Carleman [1] as early as the 30s of the XX
century, and then only after 30 years was continued by many
researchers. A fairly complete review of the results is contained in
[2, 3]. In the aspect that interests us, their essence is that for solution
F of problem (1), an inequality of the form

N(F-F,)<Cp() (2)
is true, where N — suitable norm in the space of functions depending
on speed U and radius-vector X (so N(F) — is time dependent

function); CO — is a constant, depending possibly on the initial

distribution F (x,u);F, =F, (Ju[) — Maxwell distribution; the

behavior of functions p(t) essentially depends, on the one hand, on
the class of function spaces in which a solution is sought, and on the
other, on the properties of the collision operator Q(F, F),

characterized by assumptions about the type of intermolecular
interaction potential.

For “hard” “cut off in the corner” potentials U -~ r_k,
Kk > 5 the problem was investigated very actively; the main result is
that the function p(t) in (2) tends to zero with an infinite increase
in time t either as a power law or as an exponent, depending on the

degree of smoothness over the coordinates of the initial distribution,
the boundedness (or not) of the spatial region and the rate of

decrease Fy(X,U) at |U|,[X| —>00. The presented results are well

known [2, 3, 4, 5] (see also chapter 1 of [6]).
Since in what follows we will consider situations close to
equilibrium, then, as usual, instead of a function F, we use

f= |:M*§(|: —F,,)- Equation (1) goes over to

%+u%=L(f)+v(lu|)F(f, f), fo=f(xu)

(see, for example, [2, 3] and chapter 1 of [6]).
The result (2) in terms of a function f has the form

N(F)<N,(f,)p(t), 4
where N, —a norm that is generally different from the norm N
(the properties of a solution f generally speaking, worsen compared
with the properties of the initial function f, — see Caflich's work
[7]),and p(t) >0 att—o0.

A characteristic feature of all the results discussed above
is the uniform evolution of the solution to the equilibrium
distribution  function;
distributions are absent.

Significantly poorer is set of facts concerning the case of

in other words, “long-lived” initial

"soft" potentials U [ r™%, 2 <k <5. Here we have the results of

Caflish [7], in obtaining which it was assumed that, first, there is a
situation of the so-called "Grad box" with mirror-reflecting walls
(i.e., the class of solutions periodic in coordinates is considered),
and secondly, the initial distribution function is quite smooth and

the difference F — I, decreases (in speed) exponentially fast.

2. The case of “soft” potentials

For further research, we introduce the following
Definition. Let us call by an absolute degree of
nonequilibrium of the Cauchy problem for equation (3) the value

w=lim sup gt IN(H)/N(Ey)

where f is a solution to problem (3) corresponding to the initial

distribution fy .
The result (4) therefore means that 12 =0.

The transition to “soft” potentials and the weakening of the
conditions imposed on fo’ fundamentally change the picture of the

asymptotic behavior of the solutions of equation (3).
Theorem. In the case of power-cut potential-power

intermolecular interactions of the form U ~ I’_k , 2< k <5, for each
& > 0 and each T>0 there is an initial distribution f,eL,(xu),
such that for the corresponding solution f (X,u,t) of problem (3)

we have the inequality
OLT;[N(f)/ N(fo)] >1-¢
Here N(f) meansthenormof f in L,(x,u)-

Thus, ,u=1 and, therefore, there exist “long-living”

initial disturbances.

The core of the proof of this theorem is the properties of
the solutions of the corresponding linearized problem (designations
see in [8])
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of

E:A(f); fio = f(x,u), ©®)

where A= U< +L; L(f)=K(f)—v(ul)f.
Lemma 1. An operator A with a domain of definition
of
D(A) =< f(xut)f,u—elL,(xu)vt>0
i

generates in |_Z(x,u) a contracting semigroup of bounded linear
operators {T (t,),t>0} of the class C,. (The terminology

corresponds to that adopted in [9]; see also chapter 1 of [6]).

Proof. The operator A1 = iu% is self-adjoint on

D(AL): D(A) and, therefore (see [10], Sec. X.8), the operator IA
generates a compressive semigroup of class C, . Since under the
conditions of the theorem the operator L turns out to be bounded,
self-adjoint, dissipative, D(L)> D(A) and V¢ € D(A)

[L@<alia @]+ L-Jol: 1 =11 dxdu
for an arbitrarily small number @, then, according to the lemma

from Sec. X.8 of the book [10], the operator A:iAl+|_

generates a compressive semigroup {T(t)} of class C,, ie.
equation (4) with f, e D(A) has the only solution f e D(A):

f=T@®f; [T®O]=<1. (6)
The lemma is proved.

Lemma 2. 0 € o(A) — spectrum of A.

Proof. We shell show that A =0 is the point of the

essential spectrum of operator A, i.e. there is a bounded
noncompact sequence f < D(A), satisfying condition
n

lim (A—ZE)f, =0-
Let & >0 and & — O, monotonously decreasing; let
the numbers gn > (0 are such that v( n):gn (such /:n exist due

to the monotonic tendency to zero collision frequencies v(Ju|) at
[Uj—>o0 for “soft” & —0,

monotonously increasing). Let further Qn — limited area in Rj,

potentials; in particular

located entirely outside a sphere of radius gn centered at the origin

2
and such that I| ul|” duc<l.
Qn

Let vy (u)}

3
the domains Qn c Ru with media lying in their respective areas

sequence of functions that are finite in

Qn, and orthonormalized in L2 (u) (orthogonality can be achieved,

for example, by choosing disjoint areas () ). We put further

1 3

| x[

o (X) = 2_5(7zn)_Z exp| ———
2n

Note that V_ converges weakly to zero in Lz(u) and

_““)n (x)|2dx; ”%X—wi”‘zdxwo.

Let f =v, (U, (X). Obviously, {f } is orthonormal

sequence in L, (X,U) . Let us rate

||A( f) | < ‘ v u ag(” + | v o |+ ||a)nK(vn) |
where ”” isanormin L, (X,u). Given the choice of functions

vV ,o ,domains € and numbers £ ,&  we get
n n n n n

|ACT )| = 0,n — .

Lemma 2 is proved.
Consequence. ||T (t)” =1.
Proof. By Theorem 16.3.1. and Lemma 16.3.2 from [9]
we have
[T @)= sup |exp(td)].
dea(A)

But according to the lemma 2, 0 € o(A) and therefore,
||T(t)||21. On the other hand, by the lemma 1, ||T(t)||£1,
hence, ||T (t)" =1.

By virtue of (6), the statement of the main theorem is
valid for the linearized equation (5). The proof of the main theorem
for the nonlinear (but close to equilibrium) case is based on the
technique developed in [4, 11] and the properties of solutions of
equation (5) established above.

Comment. For a spatially homogeneous linearized
equation, the formulation of the main result will slightly change,

namely, for the semigroup T (t) =exp(tL) generated by a bounded
(for “soft” potentials) operator L, there is a presentation

4
tA
T(t)= e"dE, + > P, ,
o (L)\{0} i=0
where P.,,J are projectors on one-dimensional subspaces of additive
invariants /.

Denote the first term on the right-hand side of the last
equality by T, (t) . Then

4
f=T.)f+>ay,
j=1

Similarly, to the above, it is easy to show that ||Tl (t)" =1.
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3. Conclusions

The work is devoted to the study of the stability of
solutions of the linearized Boltzmann equation in the case of “soft”
intermolecular interaction potentials (that is, power potentials with
exponents less than 5). In this case, a fact of loss of stability of
solutions is found that is very curious from a physical point of view:
it turns out that there are initial perturbations that "live" for an
arbitrarily long time!

Recall that for “hard” potentials (exponent greater than 5)
this fact does not occur. We also note that the potential of Coulomb
interactions is “soft”.
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MODELING OF A CYLINDRICAL BODY MOTION ON
A VIBRATING SURFACE

MOZJEJIMPOBAHUE NBIKEHWS HWIMHAPUYECKOI'O TEJIA TIO
BUBPUPYIOIIEN ITOBEPXHOCTHU

Doctor of Physical and Mathematics sciences, Prof. Ibrayev A.,
Candidate of Physical and Mathematics sciences, Assoc. Prof. Bersugir M.
Eurasian National University named after L.N.Gumilev, Nur-Sultan, Kazakhstan
E-mail: ibrayev.askar@mail.ru, bersugir68@mail.ru

Abstract: The problems of continuous motion of a cylindrical body with a displaced center of mass along vibrating horizontal and

inclined surfaces are considered.

The analytical solutions of the motion equations were obtained by the method of partial discretization of nonlinear differential equations
[1] and graphs of changes in the rotation angles of a cylindrical body were constructed for various cases.

KEY WORDS: SOLID BODY, ROUGH SURFACE, AMPLITUDE, FREQUENCY, MOMENT OF INERTIA, DIFFERENTIAL

EQUATIONS
1. Introduction

Vibration processes are widespread in industrial and
technological systems. Vibrations are significant in the processes of
vibrational movement, transportation, and also used in part process
technologies. In general, the dynamics of vibrating machines and
mechanisms are widely studied. In studies of vibrational processes,
modeling plays a significant role. In this case, models of various
levels ma complexity are used. The indicated models are reduced to
the description of nonlinear differential equations system, the
analytical solutions of which present known difficulties. Therefore,
the construction of their analytical solutions is very relevant.

2. Preconditions and means for resolving the
problem

The movement of a cylindrical body occurs under the action of
gravity and the reaction of the surface applied at a point P.
Decompose the reaction into two components: vertical N and
horizontal F (Fig. 1).

Let the surface perform translational rectilinear harmonic
oscillations according to the law & = Asin(et), directed at an angle

£ to the horizontal

.‘ :

Fig.1 The movement of a cylindrical body on a vibrating horizontal
surface

Here: A, @ — amplitude and frequency of oscillations; t —time.
The inertial properties of the body are characterized by mass and
moment of inertia relative to the center of mass C. We will set the
position of the body by the x.,y. coordinates of the center of mass
in the Oxy coordinate system associated with a rough surface and
the rotation angle ¢ .

The interaction of a solid body with a surface occurs through
the action of a normal reaction N and friction force F (rolling

friction is neglected). Assume that friction obeys the Amonton-
Coulomb law:

|F|<f-N,

where f is the coefficient of sliding friction. In this paper, we
consider continuous motion, N >0.
The body is also under the influence of gravity force mg . In

relative motion, to all forces it is necessary to add the portable
inertia force:

®=m-A- o -sin(at).

Non-slip rolling of a cylindrical body with a displaced center of
mass on a horizontal surface is described by differential equations
system arising from general theorems on the motion of the center of
mass and on the change in the kinetic moment [2,3]:

mX. = F + dcosp,
1) my. =N -mg+®sin 3,

Jcp=F(R-rcosp)—Nrsing,

where m —mass of a body; X.,Yyc — coordinate of center of mass C
of the body; N — normal reaction of the surface; J. — moment of
inertia about an axis perpendicular to the surface of the body; ¢ —
body rotation angle; R— cylinder radius; r— distance from the
geometric center to the center of gravity of the body; g -
gravitational acceleration.

Consider the system of differential equations (1) together with
the initial conditions
&) t=0: o=@, @=g¢,.

For a more convenient recording, we consider positive the
direction of the rotation angle counterclockwise. The coordinates of
the center of mass C can be represented as:

3) Xc =Xp +rsing; Yo =R—-rcos g,

where Xp,Yp =R — coordinates of the center of curvature D,
r=CD.

When rolling without sliding, the instantaneous center of
velocity is at the point of contact P, i.e. v, =0, or

(4) Xp =—¢R; Yp =0.


https://www.multitran.com/m.exe?s=mass+of+a+body&l1=1&l2=2
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Using (3), (4), find:

% =—(R—rcosg)p—rsing- ¢
(5)

Yo =rsing- ¢+ reosg-¢°.

The first two of the three differential equations of the body
motion (1), taking into account (5), give the dependence of the

components of the surface reaction on @, u ¢:

N = m[g + r(singo~¢+cos (p-(j)z) —mAa?sin(at)sing,
(6)
F= —m[(R —rCosQ)p+r singo-(pz]— mAw?sin(et )cos 3.

Substituting expressions (6) into the third of the differential
equations of motion of the body (1), arrive at the equation
describing the change in the rotation angle ¢(t):

[Jc + m(R2 +r? —2Rrcos go) D+ mrsing/)(Rlb2 + 9)+
™
+mAw?sin(wt |Reos 8 - rcos(p - B)]=0

By entering the notation

m
8 f(t)= '
® ) Jc +m(R% +r2 —2Rr cos ¢

obtain equations (7) in the form
) ¢+ f(t){rsin(p(Rgb2 + g)+ A-@? - sin(t ) Reos 3 - rcos(p— /:’)]}: 0

3. Results and discussion

The last equation in its final form is not integrated. To solve
problem (9)-(2) using the method of partial discretization of
nonlinear differential equations, obtain

:——Zt i,

(10) +A- @ sin(et JReos B - reos(p(t;) - ﬂ)]}& (t-t)-

{rsm(p )(R(p +g)+

- f(ti+1){r5in‘/7(ti+1)(R‘/’(tm g)+A o -sin(at; ;)<

x [RCOSﬁ' —reos(g(t;.;)- ﬂ)]}5(t t|+1)>

where &(t) — Delta Dirac function.
The general solution of equation (10) has the expression

olt)=C, —%Z(t +t,+1)<f(ti ){I’Singo(ti )(R¢(ti ¥+ g)+
~pH-t)

g)+ A- 0 -sin(at;,; )

1)  +A-osin(at; [Reosp - reos(p
- f(ti+1){r5i”€0(ti+1>(R¢(ti+1)2 +
B [RCOSﬂ - rCOS((p(tM)— ﬂ)]} H (t t|+1)>

where

constant.
Using the initial conditions (2), we have

H(t) — Heaviside function, C, — arbitrary integration

n

3= 00 =5 6+ Flsingly IRo P+ o)+

12) +A o sin(et Reosp - reos(plt;) - ﬁ)]}H (t-t)-
- f(,+1){r5|n<p .+1)<R</7 (t.,) +g)+A o? -sin(at; ;)%

x [Reos g - reos(p(ti, ) - B)IH (t - t,)-

The general solution of equation (12) has the expression
1 n
¢(t)= Pt +C, _EZ(ti +hak f (ti ){rsm(ﬂ(ti >(R¢(ti )2 + g)+
i=1

}(t t)
= £ t0)rsing (. (R P + g)+ Ao sin(wti+1>x
x[Reos s - rcos(plt.y)— )t~ b H E—t.0)

With taking into account the initial conditions (2), the solution
of equation (13) will have the form

(13) +A- @’ -sin(at; [Roos3 — reos(gft

olt)= gt + ¢, —%Zn:(ti +t K (G ){rsin(p(ti )(R¢7(ti)2 + 9)+
-plie-1)

- f (ti+1){r5in‘/’(ti+1)(R(/’(ti+1)2 + g)+ Ao’ ~sin(a)ti+1)><

% [Roos g — ros(pt. ) At —ti.0)H (- ti.0)).

In accordance with equation (14), expressions of the rotation
angle o(t,) and the angular velocity ¢t ) of the body at times t,

will be:

(14) +A @ sin(at; JReosB - rcos(

‘/’(tl) = @oly + @p;

96)= o 3+, 6 rsingl IRoL F + 9+

+ A-@? -sin(et, Reos g — reos(plt;) - )}

olt) =ty + 00~ 2 +6)F()fsingleRo F + o)+

}(tZ tl )

R . 1 i R .
olt,)= 9o _E(tl +1,)f (tl){rsm(p tl)(Rgo 4,V + g)+ A0 ~sm(a>t1)}+

+A-0°- sm wtl)[Rcosﬂ rcos t1

+[Reos—reos(olt ) -5 ts 1)1 @ frsinglt IRo(t  + )+

+A-@? -sin(at, |Reos B — reos(et, ) - ﬂ)]}

40(t3): Dotz + @ _%(tl + tz)f (t1){r5in¢(t1)(R¢(t1)2 +9 )+
]}(ta -t)-

%(rs )t {t, )rsinglt, R, F + )+ A-o? - sinfat, )

+A-@? -sin(at, JReos B — reos(plt,) -
x[Reos g - reos(p(t,)- A)Jit: - t,)- (t4 t)f (ts)

x {rsin(p(tg)(R(/}(ta)2 + g)+ A- 0 - sin(aty)x
x[Reosp —reos(plty)- At —t,)};
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3li)= 0 56+ L)1 rsingl IRoL Y + 9+
+ A-w? - sin(at, )Reos 8 — reos(plt, ) - ﬂ)]}—
~ -1 )singlt R, + ) A sinfa )

[Reoss - reos(olty)- A - 5 1~ ) 1)

x {rsingz)(tg)(Rgb(tg)2 + g)+ A- @ -sin(wty )x

x [Reos g - reos(p(ts) - A))

Using the method of mathematical induction, construct analytical
expressions of the rotation angle go(tk) and the angular velocity

#(t,) atan arbitrary point k = 1n:

¢’(tk): Ot + 9y — %(tl +t2)f (tl){rsin¢(tl)(R¢(tl)z + g)+
]}(tk -t)-

- %izkz:(tm )1 ){rsin¢;(ti )(R¢)(ti F+ g)+
]}(tk -t)

@(u):%—g(rl+t2)f<t1){rsin¢<t1xR¢(tl)2+g)+

+A-@? - sin(et, |Reos 8 - reos(olt, ) -

+A- @ -sin(at; JReos 8 - reos(p
(15)

+A-? -sin(at, JReos 3 —reos(p(t,)- B )]}—

L k i+l t—l
20

i=2

{rsm(p )(R(p + g)+

+A-? -sin(at; Reos 5 — reos(pft; )— ﬁ)]}

Figure 2 presents graphs of changes of the rotation angle (p(t)
of a cylindrical body located on a horizontal surface. System
parameters correspond to the values: m=50kg, B=0524rad,
R=05m, ¢(0)=0175rad, ¢(0)=0.

In this case, the center of mass of the cylindrical body is offset
from the geometric center by half the radius, i.e. r=0,25m.

@(t), rad

(o), rad

Fig.2 Graphs of changes of the rotation angle ¢(t):
a)at A=01m, =3 rad/s ;b)at 4=0001xn, »=10 rad/s

From graph 2a it follows that the nature of the beating occurs
with the corresponding parameters 4 =01m, @=3 rad/s.
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Figure 2b shows a graph of changes ¢(t) at 4=0001m,
=10 rad/s . As follows from this graph, the fluctuations of the
rotation angle (p(t) obeys the harmonic law and has an established
character. It should be noted that when r <0,25m, the period of
oscillation of the rotation angle increases, when r>025m the
period decreases.

Consider the motion of a cylindrical solid with a displaced
center of mass along a vibrating inclined surface (Fig. 3).

Fig.3 The motion of a cylindrical solid on a vibrating inclined
surface

In this case, the system of differential equations (1) takes the
following form

mXc = F + ®dcosp —mgsina,

(16) myc =N +dsin #—mgcosa,

Jep=F(R-rcosg)—Nrsing.

After some transformations, from the system of differential
equations (16) obtain the values of the surface reaction components
from ¢, u ¢ inthe form

N = mr(singo p+C0SQ- gbz)— mA®® sin(et )sin 8 + mgcos e,
17
F= —m[(R —reosg)p+rsing- ¢2]— mAa?sin(et)cos 8 + mgsina.

Substituting expressions (17) into the third of the system of
differential equations of body motion (16) and introducing the
notation (8), obtain the expression for the change in the rotation
angle o(t) in time:

s) P+ f(t){rRsin(p(p2 —g[Rsina —rsin(p+ )|+ A- @ - sin(at )

x [Reos B —rcos(p— B)] =0

Similarly, by the above method, obtain an analytical solution in
the form:

o=t 00—+t 1 Rl )+ Ao

i=1

B)]-g[Rsina —rsin(p(t )+ a)]} x
=)= e eRsingh, g i#(.)+ Adsinfot. )
x [R cos —rcos(plt;,;)-

x(t-tH -t

Using the same transformations, define the expressions of the
rotation angle ¢(t,) and the angular velocity ¢(t,) of the body at

times t, in the following form

x sin(et; JReos 3 - r cos(plt; ) -
(19)

B)]-g[Rsina - rsin(p(t,,,)+ )]} x
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%(tl +1,)f (tl){rRSin¢(t1)¢’z (t)+

+ Aw?sin(at, [Rcos g - reos(p(t,)- 8)]-

k

E |+1 | 1

x {rRsingo(ti )i (t; )+ Acw?sin(et; )R cos 3 — r cos(e(t; ) - B)] -

—g[Rsina - rsin(p(t )+ a)Jt —t)},
(20)

olt )= ot + @0 —

—g[Rsina —rsin(p(t, )+ )]}t —t,)-

l\)ll—‘

36) =g -5 6 +6) ()rRoinglt )06 + Ao?sinfat, )«

x[Rcos 8 —rcos(p(t,)- B)]- g[Rsina - rsin(plt )+ o )]} -

k

;Z i+l 7 —1

i=2

x[Rcos 3 - rcos(plt;)-

rRsm(p( t, Jp2 (4, )+ Aw’sin(at; )x

)t -t).

Figure 3 shows the case when the inclination of the vibrating
surface makes an angle with the horizontal: «=0130rad, other

parameters correspond to the values indicated in the previous case.

B)]-g[Rsina —rsin(p(t; )+

(o), rad

o), rad

Fig.3 Graphs of changes of the rotation angle (p(t):
a)at A=01m, =3 rad/s;b)at 4=0001n, ©=10 rad/s

As can be seen from graph 3a, oscillations having the nature of
a beating are preserved.

As follows from graph 3b, the oscillations are harmonic, but
due to the angle of inclination of the plane, the graph has the form
of an offset.

The research results show and this is evident from the graphs.
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5. Conclusion

The problems of continuous motion of a cylindrical body with a
displaced center of mass along vibrating horizontal and inclined
surfaces are considered.

The analytical solutions of the motion equations are obtained by
the method of partial discretization of nonlinear differential
equations.

Graphs of changes of the rotation angles (p(t) of a cylindrical
body are constructed for various cases of changing the system
parameters.

In particular, changes were made to the distances of the
displacement of the center of mass from the geometric center within
r=01m mo r=04m.

It has been established that the nature of the oscillatory
processes when the center of mass of the cylindrical body is
displaced from the geometric center is significantly affected by the
amplitude and frequency of the oscillations.

It is shown that changes in the angle of inclination of the
vibrating surface do not significantly affect the rotation angle of the
body.
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APPLICATION OF PERSISTENT HOMOLOGY ON BIO-MEDICAL
DATA - A CASE STUDY
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Abstract: In this paper we introduce, analyze and apply persistent homology, one of the main algorithms of TDA, on some real data
sets from the bio-medical field. Topological data analysis (TDA) is a field which is a synergy between mathematics, data science and computer
science. The main goal of TDA is studying the shape of data using topological techniques. TDA proposes new algorithms that deal with these
problems based on tools or concepts from algebraic topology and pure mathematics. We analyze the results and give a topological
characterization of the dataset and propose to use them in future work.

Keywords: PERSISTENT HOMOLOGY, TOPOLOGICAL DATA ANALYSIS, ALGEBRAIC TOPOLOGY, DATA SCIENCE,

COMPUTATIONAL TOPOLOGY

1. Introduction

Topology is a mathematical field that studies properties of
topological spaces, such as connectedness and compactness,
invariant of continuous deformations. Algebraic topology studies
topological spaces using techniques from algebra by associating
algebraic objects such as groups with topological spaces. One of the
main tools of algebraic topology is homology. Homology is a
mathematical tool which associates sequences of algebraic objects
with topological spaces. One way to study a topological space is to
find and compute its homology groups. The motivation behind
defining homology groups was that two shapes can be distinguished
by examining their holes. For example, a disk is different from a
circle, or a disk is not a circle, because the disk is solid while the
circle has a hole through it. Homology groups are set of invariants of
a topological space. These invariants characterize the topological
space. The number of structures for some dimension k is the rank of
the k-dimensional homology group of the topological space. The
number of such structures is known as a Betti number (f;) of
dimension k.

The main idea of Topological Data Analysis is application of
these mathematical concepts on real data. Persistent homology is an
algorithm from TDA that use homology as main idea. The algorithm
computes topological features of a space.

2. Mathematical Background

The starting point is to construct a topological space from a given
dataset. We will define some necessary mathematical concepts.

Definition 1. A k-simplex is a convex hull of k + 1 affinely
independent points S = {xg, ¥y, ..., Xx} S R®. The points of S are

vertices of the simplex.

The low dimensional simplices (plural: simplices or simplexes)
have special names:

- a 0-simplex is called a vertex,
- a l-simplex is called an edge;

- a2-simplex is called a triangle:
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AN

Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex

Definition 2. Let o be a k-simplex definedon$ =
{x0, x1,, -, Xi}. A simplex T defined by T < S is a face of o and
has o as a coface. The relationship is denoted with 6 > Tand 7 <
o.

Definition 3. Let K be a set. Simplicial complex S is a collection
of subsets of K called simplices such that:

l.Forallx € K,{x} € S.
2.IftSc€S, thent €S.

Figure 2. An example of a simplicial complex

We call the sets {x} the vertices of K. Definition 3 gives a more
abstract definition of simplicial complex that can be applied to a data
where vertices will be the data points. Topological invariants of the
space, such as holes and number of connected components, can be
computed from a simplicial complex, see Figure 2. One of the key
ideas of TDA is to construct a simplicial complex from a dataset.
There are a few ways to construct such a simplicial complex [1]. In
other words simplicial complexes are high dimensional analogues of
graphs. We will explain the steps of the process.

1. Construction of a topological space from a given point cloud

The open (metric) ball of radius € >0 centered ata pointm € M,
usually denoted by B(m; ¢€) is defined by



B(m;e) ={ne€ M |d(m,n) <&}
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formation of a connected component in the simplicial complex at

O

£

€2 £3

Figure 3. An example of Vietoris-Rips filtration of a space. There are different complexes for different
values for €. Violet horizontal lines shows barcodes in dimension 0 and orange line shows barcode for

dimension 1.

Let M be a point cloud in R? and € > 0. The & —neighborhood of the
point cloud M is the set S(m; €), defined as

€>0.

S(m;€) = U B (m, ¢),

meM

It is known that every € —neighborhood is a topological space.
PH gives a summary of a sequence of such topological spaces for
different values for €. The key idea here is to see how topological
characteristics are changing and which features are the same as €
increases.

2. Construction of a simplicial complex from topological space

In our experiments we will use Vietoris-Rips complexes. For a
given point cloud M and € > 0 we construct Vietoris-Rips complex
denoted as VR(M; €). VR(M; ¢€) is defined as:

VR(M;¢) = U VR(M; ),

nz0
VR(M:¢),
= {(mo, ...,mn)ld(mimj) <gforallij €{1,2, ...,n}}

Note that VR(M; €),, is the set of all n-simplexes of the simplicial
complex. The simplicial complex constructed from the topological
space is the approximation of the topological space. Hence, every
simplicial complex is a topological space which is why we can
analyze its topological features.

3. Computing and representing homology groups

Linear algebra is used for computing homology groups of a given
simplicial complex. The k™ homology group H(S) of a simplicial
complex S is defined as abelian quotient group. The rank of the Hy,
rank(Hy(S)), is called k" Betti number of S. It gives a measure of
the number of k-dimensional holes in S. The homology groups are
computed for every simplicial complex derived from the topological
space for each &€ Thus, by increasing € we can trail elements of
homology groups of the corresponding complex VR(M; €). We can
visualize the existence of homology groups as € increases using a
persistent barcode. Persistent barcode is a topological summary of a
topological space. When an element shows at some €, we say that an
element is born and denote that € as &€pj4p. When the element
disappears at some € (it is mapped to 0), we say that the element has
died and we denote that € as €geqen- Every element is represented
with a “bar” (a line in the persistent barcode) on the interval
[ €pirth- €deatn)- For example, in Hy , this will correspond to the
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€piren and connecting that component with others in a way that they
will form a circle in €g¢4¢p, see Figure 3. If we observe the Figure 3,
we can see that the orange line is a bar which corresponds to an
element of a homology group of dimension 1, which appears near €;.
It clearly be seen that there is one circle at the last simplex. Also, we
can see that near €, there is one violet line which means that we have
one connected component which corresponds with the given simplex.

3. Diabetes datasets

For this case study we picked two diabetes datasets. First dataset
is the Miller-Reaven dataset. Reaven and Miller (1979) examined the
relationship among blood chemistry measures of glucose tolerance
and insulin in 145 non-obese adults [10]. They used the PRIM9
system to visualize the data in 3D, and discovered a peculiar pattern
that looked like a large blob with two wings in different directions.
In this dataset, the data is split up in three categories. Data from non-
diabetic patients, data from patients with diabetes classified as overt
and data from patients with diabetes classified as chemical diabetes.
Overt diabetes is the most advanced stage, characterized by elevated
fasting blood glucose concentration and classical symptoms.
Preceding overt diabetes is the latent or chemical diabetic stage, with
no symptoms of diabetes but demonstrable abnormality of oral or
intravenous glucose tolerance. There are 145 observations on the
following 6 variables:

relwt

relative weight, expressed as the ratio of actual weight to
expected weight, given the person's height, a numeric vector

glufast
fasting plasma glucose level, a numeric vector
glutest

test plasma glucose level, a measure of glucose intolerance, a
numeric vector

instest

plasma insulin during test, a measure of insulin response to oral
glucose, a numeric vector

sspg
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steady state plasma glucose, a measure of insulin resistance, a
numeric vector

group

diagnostic group, a factor with levels Normal, Chemical_Diabetic,
Overt_Diabetic.

4. Preliminary results and discussion

First, we apply persistent homology for each diabetic group of
data. For the Chemical Diabetic group the results are given in Figure
4 and for Overt_Diabetic group the results are given in Figure 5.

T T
100 150
time

200

Figure 4. Persistent barcode tor the Chemical Diabetic group

o 50 100 150 200
time

Figure 5. Persistent barcode for the Overt Diabetic group

We can see that the persistent barcodes are different. In Figure 4,
the persistent barcode has more red bars, which means that there are
more circles in the simplex constructed from the data for the
Chemical_Diabetic group. In this case, there is significant
topological difference in the simplexes which means the shape of the
data of the two groups is different. A question that arises here is
which physical or real factor makes the difference? These factors
may be crucial for better understanding the different types of
diabetes.

Next, we apply persistent homology on both the diabetic group
and the non-diabetic group. The results are given in Figure 6 and
Figure 7.

T T T
100
time

T T
150 200

Figure 6. Persistent for non-diabetic group

T T T T
100 200
time

Figure 7. Persistent for diabetic groups
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According to the barcodes in Figure 6 and Figure 7, we can
conclude that topological characteristics in the data of diabetic and
non-diabetic groups are obvious. In the second persistent barcode,
there are circles which are present most of the time.

We apply persistent homology on the second dataset which
contains data from diabetic and non-diabetic patients. This dataset is
originally from the National Institute of Diabetes and Digestive and
Kidney Diseases. The objective of the dataset is to diagnostically
predict whether or not a patient has diabetes based on certain
diagnostic measurements included in the dataset. Several constraints
were placed on the selection of these instances from a larger database.
In particular, all patients in this dataset are females at least 21 years
old and of Pima Indian heritage. The results are given in Figure 8 and
Figure 9.

T T T T T T
0 60 100
time

Figure 8. Persistent barcode for non-diabetic data

T T T
40 60 100
time

Figure 9. Persistent barcode for diabetic data

5. Further work and application in bio-medical field

The main goal is to link the differences of the topological
characterizations of the two types of diabetes to real factors.
Persistent homology, and in general, TDA, can be applied in the bio-
medical field in many areas. The application of statistics allowed
significant progress in understanding diseases. Knowing that, and the
fact that TDA gives a new way of analyzing the data, specifically,
analyzing the shape of the data, we think that TDA will be useful for
medicine. It can be used to see how one factor changes the
topological characteristics of the topological space underneath the
given data, and how it is related to a disease. If we work in three
dimensional Euclidean space, we may find some structural
deformations of a system in the body. For example, to observe the
deformations of the vasculature of some organ or tissue. In the future,
we will investigate how persistent homology can be applied to
characterize retinal and liver vasculature networks. TDA can also be
applied on big data from the healthcare field.
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Abstract: The application of a rigorous CFD method and an all-encompassing algorithmic performance optimization method
can make possible the CFD simulation of the extremely large-scale problems, which allows simulation of either larger systems, or
more detailed simulation of systems that are already simulated. The CFD code has to show both efficient one-node performance
and excellent parallel scaling. The record breaking performance on one node has been achieved before with application of the
LRnLA algorithm and making use of many core parallelism as well as the vectorization. In the current work, the algorithm is
extended for many-node parallelism. The algorithms is characterized by high parallelization degree, small number of node
communication events, and may be concisely described and programmed on the base of the previously implemented one-node
solution, which is a rare feature among the algorithms with temporal blocking in all four of the spatial and time dimensions.

Keywords: LATTICE BOLTZMANN METHOD, PARALLEL ALGORITHMS, LRNLA, CONEFOLD, CFD

1. Introduction

The mathematical modelling of fluids is used for industrial
design problems, disaster prevention, exploration for oil and gas, as
well as in the medical applications. The CFD problems are
computationally heavy, and comprise a large portion of the
supercomputer load. To make the large-scale modelling cheaper,
accessible to more scientists, and to make extreme scale modelling
possible, we develop algorithms that raise the efficiency of the
parallel implementation of the numerical schemes higher than the
memory bound limit.

Among the CFD schemes the Lattice Boltzmann Method [14]
has the advantage of high stencil locality. It is highly parallelizable,
and the speedup from using the hybrid computers is achieved by
many authors. The method has its range of stability, and there are
extensions that allow for more stability in simulation of high
Reynolds numbers. However, the extensions of the method may
complicate the simulation so that it may be comparable in amount
of computation to the Navier-Stokes discretization schemes. We
promote the other way to extend the range of possible applications:
by making the computer implementation of a simple scheme more
efficient, larger meshes may be simulated in reasonable time. This
way, the robustness of the method is gained by highly detailed
mesh..

Indeed, high performance LBM codes [1,2,6,7,8,12,13] use the
most basic variations of the method. In our work we achieved the
record breaking performance on multi-core CPU [6,10] and high-
end GPU [6,7]. These results were obtained by applying the LRnLA
algorithms [4,5] that allow traversal in both space and time to
enhance the locality of data access and take advantage of the
computer memory hierarchy to gain more calculation performance.
The approach of space-time decomposition of the problem has been
used in LBM codes by other authors to conceal data copy in parallel
simulation [13] and to overcome some of the memory bottlenecks
[8]. In CFD LRnLA algorithms are also applied for the RKDG
method [3].

In this paper we extend our previous algorithm to make the
multi-node simulation possible.

2. Methods

In LBM [14], the simulation domain is split into NxxNyxNz
cubic cells. In each cell, the probability distribution function is
known for a set of discrete velocities Tﬂ . The specific method is
denoted by a word like D3Q19, where the first number is the
dimensionality of the model and the second number is the number
of velocities. Discrete velocities are chosen as vectors that point
from the center of the cell to the centers of its neighbors, and a zero
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velocity. In D3Q27, there is a set of vectors that point to each cell in
a 3x3x3 cube. In D3Q19, the longest vectors of D3Q27 are pruned.

For each velocity the update rule for its Distribution Function
(DF) is split into two sub-steps: the streaming step
S &g b +a) <z (7o) and the collision step
after: S <« f g = — S Y)/7i0jk=-1,01
while 7 2 + /2 + #2 < 3for D3Q19.

Streaming copies the fi from cell with coordinates rog to the
cell with the relative position 7, =7 o+ C 4 4
7# = (Z,/, #). The collision operates with the DF in the same
cell. The expression for the equilibrium DF #,; % s taken as
the most commonly used second-order polynomial in z =
i Sa g IZa S [14] to make the
performance comparison easier, but any expression that operates on
the data inside one LBM cell may be used in the current
implementation.

Fig. 1 ConeFold algorithm in 2D1T and 1D1T

For the implementation, we start from our previous work
documented in [10]. The reader may refer to the texts for
information of algorithm construction, data structure, details on the
vectorization method. These are summarized below.

2.1 ConeFold

The algorithm operates recursively on a Z-curve array, which is
a cube with linear size of N=2"®ak ‘\yhere MaxRank is an integer
number. Between the synchronization steps in time t=0 and t=N the
dependency graph is subdivided recursively (Fig. 1) until an
elementary update of one cell.

The procedure is implemented with recursive templates in C++.
There are special cases for the inside of the domain, left and right
boundaries, the decomposition in 1D1T is shown in Fig. 2 [11]. For
2D1T and 3D1T the treatment of all corners is necessary, and the
coding similar to a direct product, since the description of ConeFold
may be split by coordinates. For example, in 3D1T at x=N, y=N,
z=0 the code is XXI.

In 1D1T case, at maximal rank, two ConeFold should be
executed: X and I. Each of them will recursively call ConeFolds of
smaller rank (Fig. 2). In 3D1T, after XXX, three ConeFolds may be
executed in parallel (XXI, X1X, IXX), as well as the next three (11X,
IX1,XI1). The last one is I11.
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Fig. 2 ConeFold decomposition and codes near the boundaries in 1D1T

2.2 Streaming algorithm

The smallest ConeFold is an LRnLA cell. Its base is one data
structure cell. Two of the streaming algorithms allow for only one
LBM node to be put in this structure: EsoTwist [1] and the special
swap algorithm used in our previous work [10]. Here we have
implemented EsoTwist for further comparison of the methods. In
EsoTwist, in the LRnLA cell the data that is saved is put in place of
the data that was read for its execution. This prevents data race
condition when parallelism is implemented with stepwise
algorithms. In ConeFold, this advantage is not used. However, at
smaller scales, this may lead to better data locality.
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Fig. 3 Implementation of ConeTur with vectorized ConeFold

2.3 AVX vectorization

The AVX2/AV X512 vectorization is implemented by putting 8
float/double values into each DF in a cell. At the same time, the size
of the domain is doubled in each direction.

To return to 1D1T illustration, let the vector length be equal to
2, not 8. These two values are from cells ix and 2N-ix-1 in the
domain. It may be visualized as if the 2N cell domain is ‘folded’,
the ends are ‘glued’ and we get a ‘ring’ of cells. First N cells are in
the natural order, the next N cells are mirrored. The LBM scheme is
also mirrored. The ConeFold is executed on a cube of N cells,
which contain the vectors of natural and mirrored data. This way,
the calculation inside the domain with scalars for the N size domain
and the calculation in the with vectors for the 2N domain are
indistinguishable. The mirroring is implemented only by
introducing {1,-1} constant vectors into the numerical scheme. At X
and | ConeFold, the mirrored and natural domains are linked by the
vector shuffle operations. This is generalized to 3D, where the
vector length is 8, the domain size is 2Nx2Nx2N, and some areas
are mirrored by several axes.

This kind of implementation of periodic boundary with
wavefront blocking is also suggested in [9].

3. Multi-node parallelism

In the current work we explore the ability to make a many-node
implementation of the code.

There is a certain issue with multi-node parallelism of the 3D1T
ConeFold, especially prominent when the number of nodes is high.
Let us consider a simulation domain, made up of BxxByxBz cubes.
The cubes may be passed to different nodes, and each node would
start the ConeFold with MaxRank, treating the cube as a base. The
maximal degree of parallelism can be estimated as a number of
cubes on the 3D diagonal cross-section of the domain.

On the other hand, other types of space-time traversal
algorithms allow more parallelism, such as diamond tiling [15] or
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ConeTur [4, 5], or earlier version of the LRnLA algorithms. In
2D1T subdivision, which we choose for the demonstration since it
can illustrate some complexity of higher dimensions by using 3D
shapes, the tiling is obtained with octahedra and two types of
tetrahedra. In our work, the ConeFold is favoured since it is simpler
for the programmer to write and for the compiler to optimize, and
produces a clean and comprehensible code due to the use of the
common recursive C++ templates. The number templates types is
equal to 3°, due to the fact that the special treatment is required for
the boundary of the domain. If ConeTur is used, in 3D1T there are
2° types of shapes, and each shape has to be specified in the
variants that describe each of the 3°-1 boundary types.

The use of ‘folding’ of the domain which has already helped
with vectorization and application of the periodic boundaries can be
used in this case as well, for the purpose of simplifying the
implementation of ConeTur.

In 2DAT illustration (Fig. 3), which is easily generalized to
3DIT, let us take the area of 2x2 cubes K, and fold them to make
a vectorized cube Ky,. If only the first ConeFold XX is executed on
Ky, it is equivalent to the execution of the 2D1T pyramid on the
Koo base. The data from Ky is returned to the main array. Then 2x2
cubes Koy, are folded into Ky, and ConeFold IX is executed on it.
This fills in the tetrahedron between the pyramids in the X
direction. The same is performed in the Y axis, and then for Kyy. At
this point every cell is updated up to the synchronization instant.

Thus, ConeTur is executed by ‘refolding’ of the ConeFold. The
synchronization between nodes, in case the pyramids and the
tetrahedra are distributed between different nodes, is performed 2P
times per N time steps.

4. Performance analysis

We have implemented the described algorithm, namely, the
‘unfolding’ and ‘folding’ the data cubes. On one node, in the
BxxByxBz cubes domain, one vectorized cube is formed,
processed, and unfolded repeatedly to update all cubes on the node.
At the boundary, in case there is a part of domain that is processed
by another node, the necessary amount of data is sent by MPI.
Otherwise, the one-node domain is treated as periodic.

The important metric for the performance analysis is the
slowdown due to the vector copy operations. Thus, we have tested
the code with and without the °‘refolding’ introduction and
compared the results on different processors.

The test was performed on one node with N=256, BxxBxxBx =
2x2x2, D3Q19. The performance is compared with the previously
published results [10]. Since the results do not differ much, we
conclude that the data copy, which is introduced with the new
algorithm, does no significant impact on the performance.
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Fig. 4 Performance comparison against the previous solution
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5. Conclusion

We have introduced the extension of the vectorized ConeFold
algorithm for the supercomputer fluid simulation with the Lattice
Boltzmann Method. The ConeTur algorithm, that has been difficult
to implement in 3D1T before, has been implemented by reshuffling
the data structure in the code based on ConeFold. This solution
leads to a comprehensible code for fluid simulation, where the
space-time decomposition is used for 3 levels of parallelism:
vectorization, multi-core and multi-node.

We see that the introduction of the ‘refolding’ algorithm has not
presented significant slowdown. The current results are even higher
than the reported ones, which is probably due to small optimization
of the code and compiler options.

The introduced algorithm may be applied to other
hydrodynamic schemes with cube stencil, and for similar schemes
of other numerical methods.

The work is supported by the Russian Science Foundation
(project #18-71-10004).
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MATEMATHYECKASA MOJEJIb _
CUCTEMbI AHAJIMTUKHU NOBEJEHHW S IIOJIb30OBATEJIEU
JJIS1 OBJIAYHBIX CEPBUC IPOBAUJIEPOB

MATHEMATICAL MODEL FOR CLOUD PROVIDERS’
USER BEHAVIORAL ANALYTICS SYSTEM’S
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Abstract: In this work presented mathematical model of user behavior analytical system for cloud service providers. User behavioral
analysis systems include three main components: methods, data and threat detection scenarios. The work describes these components, as
well as their application to a potential UEBA class system. The data is taken from the logs of cloud service provider. The novelty of the
presented architecture is described in the methods for obtaining the necessary data. Methods for analysis use advanced analytics to study
users, data: profiles, interests, public groups, publications, comments, and other parameters from the model of unsupervised learning model,
the k-means method, remote functions, random forests, in-depth study, artificial intelligence. Moreover, artificial intelligence has become
more commonly used in recent years by many vendors. Threat detection scenarios are a subjective component and are defined by the
customer of the system. This work presents scenarios for detecting information security threats.

KEYWORDS: USER BEHAVORIAL ANALYTICAL SYSTEM, THREAT, SIEM, VULNERABILITIES, CLOUD, SERVICE,
CYBERSECURITY.

1. BeedeHue. Cucmembvl kKaacca UEBA rapaHTupoBaTh 3aIMIICHHOCTD TaKUX arpuOyTOB
HHPOPMAIIMOHHOW  0€30MacHOCTH, KaK KOH(HUICHIHMAIBHOCTS,

LEJOCTHOCTh M JIOCTYNHOCTh. Eciu paHee, KOpPIOpaTHBHYIO CETh
MOYKHO OBUIO 00ECIeYHTh CTaHAAPTHHIMU HHCTPYMEHTAMH, TAKUMHU
Kak (paliepBoi, aHTHBHUPYCHOE IporpaMMHOe obecnedeHue,
cuctembl kinacca SIEM, mpokcu-cepBep, TO ceidac HacTymaer
HEOOXOJMMOCTh NMPUMCHEHHS AHATUTHYECCKAX HHCTPYMEHTOB IS
obOecrieueHnss 0€30MMaCHOCTH KOMITaHHH, W TeM Ooyiee 00JIaYyHBIX
cepBucoB. OIHUM W3 aHATUTHYECKUX HHCTPYMEHTOB SIBISAETCS
cucrema kitacca UEBA (user entity and behavioral analytics).

Pucku wuHpOpMAIMOHHOW 0€30MacHOCTH Al OOJaYHBIX
CEPBHC-TIPOBAIJIEPOB — CXOXH C PHCKAMU JJIsI KOPHOPAaTHBHBIX
cereil, W OTJIMYAIOTCSI OTACIBbHBIMH BHIaMH yrpo3. B paGore [1]
MPEACTaBICHB TPUMEPHl CIICHAPUEB OOHAPYKEHHS YIrpo3 It
00JTaYHBIX CEPBUC-TIPOBANICPOB.

B nmamnHoe Bpems craHOBATCA BCE Oojiee MOMYISPHBIMU
yCIyrn OOJIauHBIX CepBHC-TIpoBaiiiepoB. MHOTHE OpraHU3alUN
MIPEANOYNTAIOT MONB30BaThCSl CTOPOHHUMH TIPHIOKCHUSIMH, HE
pa3BHBas MapK TEXHONOTUH y cebs1. CepBHCH], MPEIOCTaBIsICMbIE B
obJlakax, MOTyT OBITH pa3iIM4HBIE, OT YCIYT JOKYMEHTO000pOTa 10
npenocTaBieHns] (HUHAHCOBBIX ycIyr. COOTBETCTBEHHO, BOIIPOCHI
obecricueHrss WH(POPMAIIMOHHOW OE30MaCHOCTH MOTYT  OBITh
pa3nMYHBIE IO CTENEeHH KPUTHYHOCTH, HO IIpU OJTOM 0Oe3
OTpaHMYCHUS] OOIIHOCTH MOXKHO CUHTATh HAJIWYHNE WHCTPYMEHTOB
10 00eCTIeYeHHI0 3aIINIIEHHOCTH 001aK0B 0053aTETbHBIM.

Jlnst mpemocTaBiIeHusT KaueCTBEHHBIX CEPBHUCOB OOIadHOMY
MpoBaiiiepy HEOOXOAWMA IIOCTOSHHO pPAa3BUBAIOIMIAsICA CHCTEMa
ynpaBieHHus: WH(OOPMAIMOHHOH 0e30MacHOCTH, IO3BOJIIONIAs

TABJIUIIA 1. Cuenapuu 0GHapyKEHUs yTpo3.

OOHapyXeHrne KOMIPOMETAIIUI Pemenne UEBA omnpeznenser cutyannu, Koraa y4éTHbIE TaHHBIE OBUTH YKPaICHBI

Y4€THOM 3arucu HCIOJIBb3YIOTCS. KEM-TO HHBIM. BBISBIEHNE NCIIONB30BaHMsl YUETHON 3aITUCH WU
370yNOTpeOIeH s yIETHOH 3alIMCH OHH U3 IPUMEPOB JAHHOTO CIICHAPHSL.

OO6HapyxeHue Pemenne xnacca UEBA ncnonb3yercst ai1st 0OHapy»KeHHsI CETEBBIX YCTPOMCTB,

CKOMITPOMETHPOBAHHOTO KOHEYHOT'O KOTOpBIE OBLIH CKOMIIPOMETHPOBAHEI, 3apaXkeHb! 310BpeaHbMHy [10

ycTpoicTBa JIEMOHCTPUPYIOLINE NOI03PUTENIbHOE NOBEACHHUE.

OOHapy)XeHHE YTEUKH JaHHBIX UEBA Taroke UCTIONb3yeTCs TS BRIBICHHS YTEUKU TaHHBIX. HeaBTOpH30BaHHAs

WY LeTIEHANTPABIIEHHAs yTeuKa JaHHBIX MOKET CITyYHUThCS JIaKe B IEHCTBUAX
aBTOPU30BAHHOTO MOJIb30BaTENA. B pesynbrare, JaHHBIH clieHapHii cOKYCUPOBaH
Ha ONpe/eNIEHHH TaKOrO THIa aKTUBHOCTH, KOTOpas He00XO0JMMa JJIsl BBISBIICHUS
CKOMITPOMETUMPOBAHHBIX YYETHBIX 3aIIMCEH M KOHEUHBIX YCTPOMCTB.

Hcnonb30Banue 3710HAMEPEHHO Uncrpymentst UEBA MoryT GbITh HCIIONIB30BAHbI IS BBIBJICHHS T10JIb30BaTeNCH
BHYTPEHHET0 J0CTYIa, BKIIoYas (1 paGOTHHKY U JOBEPEHHBIC TPETHHU JIMIIA), 30YIOTPEONISIOMNX CBOMMH
TPHBUIIETUPOBAHHBIE JOCTYIIBI MPHUBUIIETHSMH JOCTYMa, KOTOPBIE BO MHOTHX CITy4asX CBA3aHbI C 3I0HAMEPEHHBIM

cobObitreM. [IpiMepsI TUIIOB aKTUBHOCTH C MPEBBIIICHUEM MIPUBIICTHIA HIIH
HEaBTOPU30BAHHOTO JIOCTYIIA K JAHHBIM (K IPUMEpPY, MOJIyYeHHE A0CTyma K 6a3ze
JIAHHBIX C TIEPCOHATBbHON HH(OpMaIHeit) Hin B Cilydae 370ynoTpeOIeHuUs
CHCTEMHBIMHU PUBHUJIETUSAMH (K TIPUMEPY, CO3aHIEe HOBOM MOJIb30BATEIHCKOM
Y4€THOM 3amucy WK IPUCBalBaHUE JOIOJIHUTEIbHBIX IPUBUIIETHH B pa3pes
TOJIUTHKH O€3011aCHOCTH).

[IpenocTaBieHue 1ONOJIHUTEIHHON Texuosnorun UEBA u3yuaroT MHOTO HH(OpMAIMU KacaTelbHO MOJIb30BaTENeH ’
HHPOPMAIIIH U KOHTEKCTA IS CYIIHOCTEH B OPTaHU3aLlUK B TIOPSIKE JUISl ONPEACIICHIS aHOMAIIHA, CBSI3aHHBIX C
HCCIIeIOBAHUS yrposamu. OTa HH(GOpPMAIIHs HCIOIb3YEeTCSl aHAITUTHKAMU, BHIITOIHSSI COPTHPOBKY

MPEAYNPEKACHUI U paccieOBaHHEM WHIMICHTOB. ECIM aHaTMTHK MOA03peBacT,
YTO KOHEYHAsl CTAHIMs ObLIa CKOMIIPOMETHPOBAHA, HATIPUMEP, OH MOXKET
ucnons30Bath pemenne UEBA i nonydeHus HHGOPMAIHHU O TIOJIb30BATEIX
JTAaHHOW paboyell CcTaHLUH, UX PEryIPHOE MOBEICHUE U AaXKe POJIb KOHEUHON
CTaHIIMK B CETH.
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Pa3paboTka OTIeNBHBIX CLIEHAPHEB

Bennopret UEBA yacTo ynmoMuHAIOT ClieHapUH, T1I€ UX PEILIEHHS UCTIONIB3YIOTCS B
BHJIE, OTJIMYAIOLIEMCS OT OPUI'MHAILHOTO HA3HAYEHNUS, HAUMHAs ¢ OOHAPYKCHUS
MOILICHHUYECTBA 10 TPEKUHIa HAPKOTUKOB B OPraHU3aLUsX 3APABOOXPAHCHUS.
CBoiicTBO COOMPATh OT/IENBHBIC AaHHBIE M CO3aBaTh THIIMYHBIC MOJIEIN
MAalIMHHOTO 00yYeHUs I TeX CIEHApPHEeB JOCTATOYHO BAKHOE.

2. IIpumep ucnoawv3zoeaHus cucmemst UEBA

IIyukr CLD.12.45 cranmapra ISO/IEC 27017 [2]
ompenenseT BO3MOXHOCTH IpoBaiiepa, KOTOpPBIE MO3BOJSIOT
KJIMEHTY NPOBOANUTH MOHUTOPHMHI aKTHBHOCTH B 0OJIaYHOM cpene.
Takum 00pa3oM HPENOCTABISAETCS BO3MOXKHOCTH HCIIOJIb30BAHUS
AQHAJIMTHYECKUX MHCTPYMEHTOB. B KkauyecTBe TECTOBOro cTeHIa B
obnauHoM cepBHc-TipoBaiinepe Qazcloud ucmosp3oBanack cucrema
kinacca UEBA nipoussoautens IBM Qradar.

CormacHo [3], ocuoBy cucremsr UEBA cocraBisitor
CIIeHapHuu OOHApyXeHHs yrpo3, Hanboiee KPUTHYHBIE U 3HAYNMBIE
s mo0oi  opraHmzauuu. Jna  ompexpeneHus yrpos, Obutn
HCIIONB30BaHbl, B IIEPBYI0 OuYepelb, CTAHIAPTHBIC CLCHAPHU:
oOHapyXeHHEe KOMIIPOMETAIlNH YYETHBIX 3alHCei MOIb30BaTeNeH,
OOHapy)KeHHE CKOMIIPOMETHPOBAHHOTO KOHEYHOrO YCTpOIicTBa,
oOHapyKeHHe YTEUKH JIaHHBIX, HCHOJIb30BaHUE

HECAaHKI[MOHUPOBAaHHOTO  BHYTPEHHErO  JOCTyIa,  BKJIIOYas
MIPUBWICTUPOBAHHBIE JOCTYIIBI, MPEIOCTaBICHNUE NOMOIHUTEIBHOMN
uHpOpPMAIMM M KOHTEKCTa mis wuccienoBanus. Kpome Toro,
JOJDKHBI ~ MCTOJB30BAaThCsl  cHeNU(UYHBIE  CHEHAPUU  YIPoO3,
CBOWCTBEHHBIE KOHKPETHOMY 00Ja4yHOMY MpOBaiiepy.

IIpu TecTHpOBaHMH HCHOJIB3YEMOH CHCTEMBI BO3HUKIIA
crepyromas 3agada. Jnsg Kakgoro Mojb3oBaTels B HAacTpoikax
COCTABIIETCA IOPOr peiTuHra, NpH MNPEBBILICHUU KOTOPOTO,
(uKcupyeTcsi COOBITHE aHOMAIBHOTO ITOBE/ICHNUS, HECBOHCTBCHHOE
HOPMAaJbHOMY IOBEACHUIO. MoJenb, HCIONb3yeMass B CHCTEME,
cxoska ¢ paboroii [4].

PeliTuHr  mosp3oBaTens  COCTaBIAETCS HAa  OCHOBE
BKJIFOUCHHBIX, HACTPOCHHBIX MpaBUIIaxX JIETEKTUPOBAHUS
AQHOMAJIbHOTO IIOBEJCHUS IIONb30BaTeNsd, KOTOPBIX B CHUCTEME
HACUYMTHIBaCTCS mopsaka 157. B Tabmuiie mpeacTaBiicHbI paBHiia ¢
HanOOJBIINM KOJIMYECTBOM 3a()MKCHPOBAHHBIX CPaOaTHIBAHHUH.

TABJIMIIA 2. TIpaBuna 1eTeKTUPOBaHUS AHOMAJIBHOIO TIOBE/ICHHUS.

ITonxiaroueHue noab30BaTeIIs B HETUIIUYHOE
BpEMsI CYyTOK

IMocie oGy4aromero nepuoia GbUI0 YCTaHOBIIEHA, YTO CTAHAPTHHIE Yachl
MOAKIIIOYEHHs IoJib3oBaTeneit ¢ 9-00 xo 19-00.

CoenuHEHHE C 3I0BPEIHBIMH BeO-caiiTaMu

Jloru mpoKcH-cepBepa, yKa3blBAOLIUE Ha MONBITKH COSANHCHUS C
3JI0BpEeTHBIMH BeO-caliTaMu

TloBbIIcHHE paB MOJIb30BATEIA WU I'PYHIILI
110JIb30BaTCIIsA

[Ipenocrasnenne 3anucy (aiios, BMECTE YTECHHSI.

B TtectoBoii cpene mms 100 momb3oBareneil B paMKax
oOydJaromero mepuoAa ObUT BbICTaBIeH mopor B 20 0Oasios.
COOTBETCTBEHHO, COTTIACHO HACTPOWKAM, TIPH MPEBBINICHUH
YKa3aHHOTO IOpora, CHCTeMa oOmoBemana o0 HWHIHICHTaxX
KnOep0Oe30acHOCTH AJIs KaXKJI0ro monb3oBaTersd. [Ipu BHeApeHuu
CHCTEMBl B TNPOAYKTUBHYIO CpeAy JUIl KPYIHOrO OOJaYyHOTro
CepBHC-TIpOBaiiiepa  paccmarpuBaemasi — CHCTeMa  OKa3ajach
HeapdektnBHa. Cucrema UBA monmyumna pans  aHanmuza o
obpaboTkn mopsnka 23000 moxp3oBareneil. COOTBETCTBEHHO IS
YKa3aHHOTO TIIOpora peWTHHra mnomb3oBarens B 20 OawioB 3a
mepuon ¢ 29 wioHd mo 25 ceHtsaOps 2019 rToma ObuIO
creHepupoBano 37 733 448 cpabarbiBaHuii mpaBwir, U 3265
COOBITHH TIPEBBIMICHNS yKa3aHHOTO 1opora. COOTBETCTBEHHO,
BO3HHUKAIOT CJIOKHOCTH MpU 00paboTKe Takoro KOJIMYEeCTBa
MHIUJICHTOB, IPH 3TOM JUIsl TaKMX MOJIb30BaTeleil HeoOX0quMO
HPOBOJUTH 00y4alOIHe KypChl, HOBBIIATh HX OCBEJOMIEHHOCTS.

Wnest pa3nenuTh Nmoib30BaTeNeil Ha OTAEIbHBIC TPYIIIBI O
THUITY TIOBEJICHHSI — €CTECTBEHHA, OJTHAKO pa3JenuTh nopsaka 23000
00JTaYHBIX MTOJIb30BATENCH CTAHOBHUTCS TPYIOEMKOH 3a1adei.

3. IocmaHoeka 3adaqu

OcHOBHOI1 3aaueit 715 M000# CHCTEMbI aHATUTHKH
MOBEJICHHUS [OJIb30BATENEH, SBIISIETCS CO3JaHNEe MaTEeMaTH4YECKON
MOJIEITH, CIIOCOOHOIT penaTh KOMIUIEKC HEOOXOANMBIX 3a/a4, IPH
3TOM T'eHepHpYys KaK MOYKHO MEHBIIIE JIOXKHBIX CpabaThIBaHHUM.

Tpennaraercs UCIOIb30BaHUE MOJEIH IS aHAJIN3a
MOBEJICHUS MOJIb30BaTENeH U MOACUETa PEUTUHTA MOJIb30BaTEINEH.
Jlns naHHOM Monenu OyAeT mocraBieHa 3afada u30exarhb
resepanuuu 60J'I]>HJOFO KOJIMYECTBA MHIHUJACHTOB, HA KOTOPLIC
(du3rYecKr HEBO3MOXHO cpearnpoBath. TakiuM oOpazom
TpeacTaBisieT naTepec norydenne cucteMsl UEBA, koTopas
MO3BOJISIET I'MOKYI0 HACTPOWKY PEHTHHIOB TI0JIb30BATEIICH.

Mmeromuecs: Moaenn MaIIMHHOTO 00y4eHHs B CHCTEME —
9TO MOJIEJIN Ha OCHOBE HPHBA3KH I10JIb30BaTEIIsI K JIOKATLHOMY ip
aJpecy; COeIMHEHHBIX CETEBBIX IOPTOB B JIOKAIBHOU CETH;
OOHapy>KEHHBIX MMPOLIECCOB B onepanuoHHoi ciucreme Windows
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wimm Linux; mpoBeiéHHOTO BpeMeHH B Gpays3epe Ha Hepabouux
caiiTax; COOBITUSX NPHIIOKEHHUS; COSMHEHUH C PUCKOBAaHHBIMH
BEO-TIPHIIOKEHUSMH.

4. Mode/ b noMeHYua/abHOU cucmembsl
kaacca UEBA

B pesynbTare aHanmu3a HCIoNb30BaHusA cucteMsl UBA
Qradar ¥ ToToBBIX IA0JIOHOB MOJIENEH TIpe/IaraeTcs Iist
HOTeHIMaIbHON cructeMsl kitacca UEBA mcnons3oBanne ananora
petituara DJIO [5] mist olleHKH TOBEAEHHS TTOIH30BATEIS
obagHOTO cepBuC-TipoBaiiaepa. Pelituar DJI0, KOTOPBII
UCTIOJIB3YeTCs B IIaXMaTHBIX copeBHOBaHMAX. PopMmyna pedTHHra
JUTSL OLICHKH TTOBEICHHS TT0JIb30BATEIICH:
BBIYHCILIETCS MaTEMaTUUECKOE OXKHMIaHUE KOJIMYeCTBa OaioB
pelTHHra, KOTOPOE TMOJIYYHUT I0JIb30BaTeNb 3a AeHb N B CpaBHEHUH
¢ nmpensiaymuM qHéM N-1 cormacHo cienytomeit Gopmyse:

Ey = RN—Rng '
1+10 400

rae Ey — MaTeMaTHYeCcKOe OKUIaHHEe KOJMUYECTBa OAIIOB, KOTOPOE
HaOepéT monp30BaTelNh 3a AeHb N B CpaBHEHHUH C PEHTHHIOM
0’KH/IaeMOT0 MOBECHU MT0JIb30BaTeNs B JaHHOH rpymie, rae Ry
— pEeHTHHT Tob30BaTtes 3a 1eHb N.

HoBblii pelTHHT TIOIB30BaTENsI CYUTAETCS 1O hopMyIie
Ry = Ry1 +K* (Sy — En),
rae K - 3nauenue kotoporo paBHo 10 1751 ONBITHBIX M10JIb30BaTENEH
(petitunr 2400 u BoIe), 20— 1151 NOJAB30BATENCH C PEHTHHIOM
MeHbIire, yeM 2400 u 40 — 1 HOBBIX MOJIB30BaTeNeH (mepBbie 30
JIHEH ¢ MOMeHTa peructpauuu). Kak u Bo Bcex Moaemnsx,
IpeAIoaraolyxX cIy4aiHyIo IepeMeHHY0, CHCTEMa OLIEHKH D10
ysI3BUMa K M30UpaTeIbHBIM IIapaM 1 HEMPEICTaBUTEILHBIM
MOMYJISIHSM, YTO JeJIaeT MOJIENIb HETOUHOM. YKka3aHHbIe K-
(hakTOpHI HE OKOHYATENBHBIE, B paMKax OyIyIINX TECTUPOBAHUI
MOJIEJI MOT'YT U3MEHHTHCSI, aHATIOTUYHO [6]


https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B6%D0%B8%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5
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Application Settings

Risk threshold | Static v
Static risk threshold [>= 1]
20

Generate an offense for high risk users
UBA can open a usemame type offense for users above the risk threshold.

Value

The number of offenses that can be generated based on the threshold value you entered: 0.

Decay risk by this factor per hour [0.01 - 0.99998]

0.5

Date range for user detail graphs [1 - 7 Days]
5

Duration of investigation status [1 - 10000 Hours]

24

User inactivity interval [5 - 120 Minutes]

15

Factor

Days

Hours

Minutes

Enter a duration in minutes that defines when a session ends. A session ends when there is no activity seen for the duration specified

Dormant accounts threshold [ >= 1 Days]
14

Enter the number of days that users are inactive before they are considered dormant

Days

Search assets for username, when username is not available on event or flow data
Important: Required for flow-based rules. Enabling this setting can affect UBA and QRadar performance.

4 . Display country/region flags for IP addresses

Puc. 1 Hacmporuixu UBA IBM Qradar

Enabled: No

Model Definition General Settings

Define a new model by choosing a template o by creating your own custom AQL query.

Select a template (optional) -

Custom AQL query @

Define the query that is used to populats the ML model. There ars thrse parts o the query:

~The property whose valus is used to build the model.

- The AQL function that is applied to the field. The model aggregates multiple events over a specific time period.
- Afilter component that can be used 1o restrict the scope of the model to specific data.

Property * @
Function * @

Select a function -

AQL search filter @

Summary: This models the [Funetion] of the field [Property] for users each hour.

Puc. 2 Cozoanue cobcmeennoii mooenu

5. 3akawyeHue

IIpennosxena Mozaens mojcyéra pedTHHTa HOBEICHUS
TOJIb30BaTeNe, KOTOpast MOKET OBITh IIPHIMEHNMA JUIS
0O0JIBIIIOTO KOJIMYECTBA MOJIb30BaTeNel. JlaHHast MOIENb Tak e
N03BOJISIET Pa3AEiATh IPYIIILI I0JIb30BaTENEH COINIACHO YPOBHIM
k-takropam. Pasnenenue mosp30Bareinei o rpymiam mo3BoseT
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OBICTpEe pearupoBaTh Ha CX0KUE TUIIBI HHIHICHTOB, a TAKKE
MIPOBOJHUTH O0Y4aIOIINe, KOPPEKTUPYIOLIHE MEPOTIPUATHIA IO
MOBBIIICHUIO OCBEIOMIEHHOCTH I10JIb30BaTEICH.
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MAPPER ALGORITHM AND IT’S APPLICATIONS
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Abstract: In this paper we analyze and apply one of the main algorithms of TDA (Topological Data Analysis), Mapper, on some real data
sets. We use Mapper for visualization of a data sets, and we tend to get some insights if some key characteristics of the data are captured by
the visualization and how they are connected with human perception of the data. Also, we will discuss if the visualization can make progress

in further work.

Keywords: MAPPER ALGORITHM, TOPOLOGICAL DATA ANALYSIS, ALGEBRAIC TOPOLOGY, DATA SCIENCE,

COMPUTATIONAL TOPOLOGY

1. Introduction

Topological data analysis (TDA), is an approach for analyzing
data using techniques from topology. Extraction of an information
from the datasets which are high-dimensional, incomplete or noisy,
is a wide field for researchers and scientists in last few years. TDA
provides a general framework to analyze such data in a manner that
is insensitive to a particular metric. Beyond this, it inherits functors ,
a fundamental concept of modern mathematics, which allows it to
adapt to new mathematical tools.

Mapper algorithm was developed by Singh, M emoli, and Carlsson
in [1], and it gives a multi-resolution, low dimensional picture of
point cloud. It’s highly customizable, and has a track record of
revealing structure that some other methods, like clustering and
“projection pursuit” methods miss.

Mapper algorithm is one of the most important tools used in TDA for
data visualization. For input, it use:

-point cloud,;
- “filter function;”
-covering of a metric space;
-clustering algorithm;
- various other parameters.
Output is a Graph (or higher simplicial complex) which is tend to
capture the main topological aspects of the point cloud.
2. Mathematical preliminaries

We will introduce some mathematical concepts, in order to
construct a topological space from given dataset.

Let n> 1 be an integer, let [n] = {0, ..., n}.

An n-simplex ¢ is the convex hull of n + 1 affinely independent
vertices S = {vi},i€[n] in R¢ where d > n.

A simplex t defined by T € S is called a face.

A simplicial complex K is a finite set of simplices which meet
along faces, every one of which is in K.

Let ¢® denote the origin in R™ and ¢! the i-th standard basis vector
for R™

The standard n-simplex A" C R" is the convex hull of {e'}i€[n].
Given any subset ] € [n], let A’ be the face of A" spanned by {e}j€J.
The points of S are vertices of the simplex.

As Dbasic examples, the low dimensional
(plural:simplices or simplexes) have special names:

simplices

- a 0-simplex is called a vertex,

- a l-simplex is called edge;
- a2-simplex is called triangle
- a3-simplex is called tetrahedron,

- ad4-simplex is called a 5-cell.

N

Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex

Figure 2. Example of simplicial complex

Topological invariants of the space, such as: holes and number
of connected components, can be computed from a simplicial
complex, see Figure 2. One of the basic idea of Topological Data
Analysis is to construct a simplicial complex from a dataset, i.e. in
one hand, simplicial complexes are high dimensional analogues of
graphs, and in other hand simplicial complexes are approximation of
the topological space.

3.Mapper algorithm

The algorithm works very simple: put bin data into overlapping
bins, cluster each bin, create a graph where vertices = clusters and
two clusters are connected by an edge if they have points in common.

Mapper algorithm (implementation)

The Mapper Algorithm
Converts point cloud data into a 2D graph.
Mapper algorithm:
+  Apply filter function

Divide points into overlapping intervals

+ Cluster each interval

Clusters become nodes, and clusters witt
points in common are connected with
edges

Figure 3 Mapper algorithm — steps



Figure 4. How works the Mapper algorithm — an illustration
Next, it is given a more precise description of the algorithm.
Given: X point cloud, [X| =N,
filter function f: X — R.
Assume we can always compute inter point distances.

Let I denote the “range” of f: explicitly I = [m, M] € R where m
= minxex {f (xX)}, M = maxxex {f (X) }

Divide I into a set S of smaller intervals (of uniform length)
which overlap. Obtain two resolution controlling parameters: / the
length of the intervals, and p the percentage overlap between
successive intervals.

e  For each interval Ij € S, let X := {x : f (x) € [j}. Then the
collection of all such Xj is a covering of X.

e (2) For each Xj, perform a clustering algorithm to obtain
clusters {Xik }.

e Each cluster defines a vertex of our simplicial complex:
draw an edge between vertices whenever Xk N Xim # 0.

4. Application of the Mapper algorithm on the Tori
( two rings) dataset

In this section, we choose 3D object form of two rings (tori), see
Figure 5. It’s synthetic dataset, consisted of 2048 points. We apply
Mapper algorithm on that dataset.

In these experiments, made in mathematical software R, we use
different values of the parameters:

Figure 5. Tori

e  p=number of intervals, varying between 6 and 16,
e  p=percent of overlapping, between 20 and 80,

e  b=number of overlapping bins when clustering,
between 5 and 15.

The results from Mapper algorithm for Dvatorusi datset are given
in Figure 6, Figure 7, Figure 8 and Figure 9. Every figure corresponds
to a Mapper algorithm results for different parametars.
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Visualisation of the Mapper Graph
for Tori (Dvatorusi Dataset)
n=10, p=30, b=10

@ @

@
® @®

@@@

®

Figure 6. Mapper algorithm on Tori- 2 obtained cycles

Visualisation of the Mapper Graph
for Tori (Dvatorusi Dataset)
n=15, p=80, b=10

Figure 7. Mapper algorithm on Tori - 1 obtained cycle

Visualisation of the Mapper Graph
for Tori (Dvatorusi Dataset)
n=16, p=50, b=10

@
(19 (15
88

W
@
@
@ @®
®@
@

Figure 8. Mapper algorithm on Tori - 3 obtained cycles
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Visualisation of the Mapper Graph
for Tori (Dvatorusi Dataset)
n=15, p=80, b=12

®

®_ O
€O

600

Figure 9. Mapper algorithm on Tori - 4 obtained cycles

We can conclude that there are different graphs obtained for
different values of parameters. There is no one way of choosing
parameters of Mapper algorithm. It depends on the subject of the
research.

5. Application of the Mapper algorithm on the
Torus dataset

In this section, we choose Torus- 3D object see Figure 10 and
apply Mapper algorithm over the database.

Figure 10. Torus

In these experiments, it is interesting that Mapper graphs with
one dimensional filter, for all values of the different parameters, are
of the same form, showed in Figure 11.

Raw visualisation of
the Mapper Graph
for the Torus dataset n=10,p=50,b=10

®e
®e

Figure 11. Mapper algorithm on Torus dataset
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But, if the filter is bi-dimensional [11], the obtained Mapper
graph is of the form, showed in Figure 12.

Raw visualisation of
the Mapper Graph
for the Torus dataset
flter bidim, n=(8,8),p=40,b=8

0

%)@
@

,

Figure 12. Mapper algorithm on Torus- bi-dimensional, filter

6. Application of the Mapper algorithm on the
Diabetes dataset

In the following case, we apply Mapper algorithm on the
Diabetes dataset, consists of 145 lines, with 6 attributes in each line-
Miller-Reaven dataset. Reaven and Miller (1979) examined the
relationship among blood chemistry measures of glucose tolerance
and insulin in 145 non-obese adults [10]. They visualized the data in
3D, and discovered a peculiar pattern that looked like a large blob
with two wings in different directions. In this dataset, the data is split
up in three categories. Data from non-diabetic patients, data from
patients with diabetes classified as overt and data from patients with
diabetes classified as chemical diabetes. Overt diabetes is the most
advanced stage, characterized by elevated fasting blood glucose
concentration and classical symptoms. Preceding overt diabetes is the
latent or chemical diabetic stage, with no symptoms of diabetes but
demonstrable abnormality of oral or intravenous glucose tolerance.

Visualisation of the Mapper Graph
for Diabetes dataset
n=10, p=50, b=10

e @
@

D)

® 0 g0

® ©®

Figure 13. Mapper algorithm on Diabetes dataset (n=10)



Figure 14. Colored Mapper Graph over Diabetes dataset (from Fig.13)

Visualisation of the Mapper Graph
for Diabetes dataset
n=5, p=40, b=15

Figure 15. Mapper Graph on Diabetes data set (n=5)

Figure 16. Colored Mapper Graph on Diabetes dataset (from Fig.15)

The peculiar pattern visualized in [ 10], can be seen on Figure 14
and Figure 16. The two types of diabetes are distinguished on the
obtained graphs.

7. Discusion

Mapper algorithm is useful tool for visualization of datasets.
There are many open problems in the process of choosing parameters,
as it can be seen on the visualizations in this work. It is open research
area. In the future, we like to optimize that process. Also, we plan to
apply Mapper algorithm on bio-medical data and used it for
categorize or group observations of some diseases.
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EFFECT OF THERMAL PROPERTIES OF BOUNDARIES ON STABILITY OF
STEADY-STATE FLOW A LIQUID WITH HEAVY IMPURITY
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Abstract: The results of a solution of the problem of the stability of steady convective flow in a vertical layer with thermally insulated
boundaries and a comparison with the opposite limiting case of ideally thermally conducting boundaries are presented. Study is made of the
effect of thermal properties of boundaries on the convective flow stability in a closed vertical layer. The numerical solution of a spectral
amplitude problem for normal disturbance is presented for thermally insulated boundaries. The critical Grashof numbers are determined. A
comparison with the case of ideal conducting walls shows that there is a slight effect of thermal properties on the instability criterion.
KEYWORDS: STEADY-STATE CONVECTIVE FLOW, THERMAL PROPERTIES OF BOUNDARIES, STABILITY, LIQUID,

IMPURITY.

1. The results of studies of the stability of closed steady convective
flow liquid with heavy impurity between vertical planes [1,4] a show
that depending on the value of the Prandtl number Pr the instability is
caused by mechanisms which differ in their physical nature. At low
and moderate Prandtl number hydrodynamic disturbance leading to
the formation of steady vortices at the interface of the opposing flows
are responsible for the instability. At larger Prandtl number (Pr > 12)
the instability has a wave nature and is connected with an increase in
the convective fluxes of temperature waves.

The numerical results presented in [1,4,6] were obtained on the
assumption that temperature disturbances vanish at the boundaries of
the layer. Such boundary conditions correspond to the limiting case
when the thermal conductivity of the boundaries is much greater than
the thermal conductivity of the liquid and the solid masses bordering
on it are comparable then temperature disturbances penetrate into the
solid masses. Then the question arises of whether the relative thermal
conductivity of the boundaries affects the stability of the convective
flow the conjugate problem of stability of convective flow. It is clear
in advance that the hydrodynamic mechanism of the instability must
be little sensitive to the thermal properties of the solid masses. As for
a wave instability, since it is connected with growing temperature
waves it cloud be expected, generally speaking, that the properties of
the solid masses have a considerable effect on the critical parameters
of this instability. The results presented below, however, that the
penetration of temperature disturbances into the surrounding solid
masses has a weak effect on the conditions of formation of
instabilities of both the hydrodynamic and the wave types.

To clarify the role of the penetration of thermal disturbances on the
stability it is obviously sufficient to consider the limiting case
opposite to that which one usually has in mind, namely when the
thermal conductivity of the liquid is far larger than the thermal
conductivity of the boundaries. In this limiting case the boundary
condition of thermal insulation must be set up for temperature
disturbances.

In the following, a study is made of the effect on convective flow all
factors characterizing the added particles: the rate of particle settling
Us, the velocity and temperature relaxation times for the particles (or,
which comes to the same thing, their size, density, and heat capacity),
and the mass concentration a of the additive.

1. We consider a viscous incompressible fluid containing a cloud of
spherical nondeformable solid particles of identical radius r and
mass m. As in [2-6], we assume the liquid and impurity to be
continuous media, interpenetrating and interacting with each other,
and neglect interaction between the particles. The volume
fraction of particles is assumed to be so low that the Einstein
correction to liquid viscosity can be neglected. The density of the
particle material p; is much greater than the density of the carrier
medium p.

The displacement force acting on the particles is negligibly small,
since it is proportional to the ratio p/p;<< 1. Interaction between
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the phases as they undergo relative motion follows the Stokes law.
The equations describing the behaviour of an incompressible fluid
with an impurity of heavy solid particles have the form [2, 3]. Based
on those equations, equations were obtained [2] in the Boussinesq
approximation for the free convection of an incompressible
medium with a heavy additive:

U \Y%
a—“+(av)u = ——p+vAU—i(ap —0)+(1+a)gaT, (1)
ot P T,
ou o ~ 1,
Kp_‘_((up +us)v)’p :Z(up —U),
T @ =,a7+220 1)
ot T,
oT o 1
67;_{—((”;: +U$)V)Tp Z_Z(Tp _T)’
0
divi =0, gt“ +div(p, (@, +0.))=0,
p,=mN,7, = m __mb , :&,
6arpv Aatpy 2,
where g is the liquid velocity; T is temperature; p is pressure of the

fluid measured with respect to the hydrostatic pressure renormalized
because of the settling particles; c is the heat capacity of the fluid at
constant pressure; /3, v and y are the coefficient of volume expansion
of the fluid, its kinematic viscosity, and thermal diffusivity;
quantities with the subscript “p” refer to the particle cloud, where

up

interaction with the moving fluid measured with respect to the rate of

is the velocity acquired by the particles as a result of their

particle settling US ; C1 is the heat capacity of the particle material;

N, number of particles per unit volume; and ( , acceleration of

gravity. The quantities z; and 7, have the dimensionality of time
and are, respectively, the time required for the temperature
difference between fluid and particles to decrease by factor e and
the time required for the velocity of the particles relative to the
fluid to decrease by factor of e in comparison with its original
value.

We consider convective motion of a fluid containing an additive in
a plane layer between infinite parallel vertical surfaces, which are
constant temperatures — © and O, respectively. The particles, the
concentration of which is nonuniform, move through the fluid.
We obtain a steady-state solution of the equation, describing
plane-parallel convective motion and we used boundary conditions
Up(th) = 0, To(-h)=6, T, (h) =- 6 and the closure condition for
convective flow. We obtain the distribution of wvelocities and
temperatures of the fluid and particle cloud over a section layer.
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In the closed vertical layer between the plane x = + h plane-parallel
convective flow is established with a linear temperature profile and a
cubic velocity profile:

Ty =—X%; Ug :g(x3 —x),Ng = const,
6 @

\Y%

3
P=Y Gre(1+a)3PON"
X

V2

Here is up and uy are the vertical velocity components and the
subscript 0 indicates the steady-state solution of Eq. (1), Ga, GR, Pr
are the Galileo, Grashof and Prandtl numbers; t, and =, are now
dimensionless relaxation times; y is a unit vector directed vertically
upward.

The boundary conditions and closed flow condition are expressed by

UED =0, [uod— 0 ®)

-h

As is clear from Eqgs. (2), presence of added particles leads to
renormalization of the velocity profile of the liquid in comparison
with the case of a fluid without an additive.

We investigate the stability of the steady-state motion of a medium
containing a heavy additive as defined by Eqgs. (1). To do this, we
consider the perturbed fields of velocity, temperature, pressure and
number of particles per unit volume ug +u, To+ T, Ugg +Up, Tpo + Tp,
Po + p, and No + N, where u, u,, T, Ty, p, and N are small
perturbations. We write the equations for the perturbations in
dimension form, using the following units of measurement: distance
h, time h%v, velocity vh, pressure p1#h? and temperature ©.
Linearizing over the perturbations, we obtain from Egs. (1)

As in the case of a pure fluid [4], one can show for a medium
containing an additive that the problem of stability with respect to
spatial perturbations reduced to the corresponding problem for plane
perturbations. Plane perturbations are more dangerous in case of
vertical orientation of the layer, i.e., lower Grashof numbers are
associated with them. Consequently, it is sufficient to confine the
investigation to plane perturbations in a study of stability.

We consider plane normal perturbations

_ Oy _dy

l//( XY, Z) = ¢(X)eik(Z—Ct), T(X, Y, Z) — e(x)eik(z—ct)

(4)

ik(z—ct) ik(z—ct)

pr( XY,2)= Vpx (x)e » Upz x Yy 2)= Vpz (x)e

where v is a stream function; ¢, 6, vy and v,, are the amplitudes of
the perturbations; k is a real wave number; ¢ = ¢, + ic; is the complex
phase velocity of the perturbations (c, is the phase velocity, c; the
decrement).

Substituting Egs. (4) into Egs. (1), we obtain a system of amplitude
equations (primes denote differentiation with respect to x)

(0" —2kZg" + ko)+ ik(o” — K2k, — ¢ )+ ikup - Grs =0,

%(9”—k26)+ik8(u2 —e)-

- ‘kT‘f“’{“ B ke (v — )0 (o~ ]} =

27

a(uo _C) u. = a(uo _C) (5)
Y0 @+ikr,(u,—c) 7 A+ike(u,—c)
Boundary conditions are
X=xl:p=9¢p=60"=0. (6)

The boundary-value problem (5), (6) determines the spectrum of
characteristic perturbations and their decrements. The complex phase
velocity ¢ depends on seven independent parameters of the problem:
the Grashof, Prandtl, and Galileo numbers; the wavenumber k; the
mass concentration a of the additive; and the relaxation times 7, and
7. The limit of stability for a steady-state flow is determined from
the condition ¢; = 0.

The boundary problem (5), (6) determines the spectrum of the
characteristic disturbances an d their decrements c;. The solution of
the problem was found numerically by the Runge-Kutta-Merson
method with orthogonalization of the vector solutions by the
Gram-Schmidt method at each step of integration; the
orthogonalization was performed with respect to the maximum
vector solution in absolute value (in the given step).

Gry
-—r'/ \
5\\_¢’— -~-——__ ——
400
2
200 \
0 -1 0 1 lg Pr
Fig. 1

The principal result of the calculations is presented in Fig. 1, where
dependence of the minimum (with respect to k) critical Grashof
number Gr, on the Prandtl number Pr is shown for the
hydrodynamic (1) and wave (2) branches of instability. The
corresponding limits of stability for ideally conducting boundaries
are shown here by a dashed line for comparison. As is seen, in both
branches of instability dependences Gr,(Pr) for the two types of
boundary conditions are similar. By comparison with the case of
ideally conducting boundaries there is some decrease in the limiting
Prandtl number Pr. beginning with which the wave branch of
instability appears (extrapolation gives a value of Pr« ~ 0.96 instead
of 11.4 for the case for ideally thermally conducting boundaries). In
the limit of Pr >> Pr., as an asymptotic analysis shows, the some
limiting law Gr,, = 590(Pr)*2 occurs in both cases of boundary
conditions. The critical values of the wave number k, are also
similar for the two variants of the boundary conditions discussed.

Thus, the calculation shows that the thermal properties of the
boundaries have a weak effect on the stability of convective flow in a
vertical layer. In this sense one must emphasize the difference from
the problem of the stability of equilibrium of a horizontal layer of
liquid heated from below, where, as is known, there is a very strong
dependence of the limit of stability and the form of the disturbances
on thermal properties of the boundary solid masses.
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MATHEMATICAL AND NUMERICAL SIMULATION OF STRESSES AND
DISPLACEMENTS LOCALIZATION PROBLEMS
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Abstract: Mathematical and numerical simulation of the non-classical problems, namely problems of localization of stresses and
displacements in the elastic body, are obtained by the boundary element method. The current work examines two localization problems,
which have the following physical sense: on the middle point of the segment lying inside a body parallel to the border half plane in first case
a point force is applied, and we must find such value of the normal stress along the section of the border half plane, which will cause this
point force, while in the second case, there is given a vertical narrow deep trench outgoing of this point, and we must find such value of the
normal stress along the section of the border half plane, which will result in such a pit. By using MATLAB software, the numerical results

are obtained and corresponding graphs are constructed.

Keywords: NON-CLASSICAL PROBLEM, BOUNDARY ELEMENT METHOD, LOCALIZATION PROBLEM, HOMOGENEOUS

ISOTROPIC HALF PLANE

1. Introduction

In the present work, mathematical and numerical simulation of
the problems of localization of stresses and displacements in a
body, are gained by the boundary element method (BEM) [1]. In a
certain sense, the problem of localization of stresses in the elastic
body is the inverse problem to the delocalization problem [2]. The
localization problem is defined as follows: to change a sufficiently
uniform stressed-deformed state of a body for a sharply expressed
non-uniform stressed-deformed state (in conditions of constant
external perturbations) by changing and appropriate selection of
parameters of the medium.

In the theory of elasticity, there are a number of problems [3]-
[10] that could be called non-classical due to the fact that boundary
conditions on a part of the boundary surface or on the entire
boundary surface are either over-determined or underdetermined, or
the conditions on the boundary are connected with the conditions
inside the body (so called non-local problems).

The current article sets and solves non-classical two-
dimensional elasticity problems by using BEM, and problems of
localization of stress and displacement for a homogeneous isotropic
elastic half-plane are formulated based on them. The present paper
examines two localization problems, which have the following
physical meaning: on the middle point of the segment lying inside a
body parallel to the border half plane in first case a point force is
applied, and we must find such value of the normal stress along the
section of the border half plane, which will cause this point force
(stresses localization), while in the second case, there is given a
vertical narrow deep trench outgoing of this point, and we must find
such value of the normal stress along the section of the border half
plane, which will result in such a pit (displacements localization).

Finally, there are test examples given showing the value of
normal stress supposed to apply to the section of the half-plane
boundary to obtain the pre-given localized stress or displacement at
the midpoint of the segment inside the body. The numerical results
of these problems are obtained and presented appropriate graphs,
and mechanical and physical interpretations of the problems.

2. Formulation of problems

Let us set some non-classical static problems for homogeneous
isotropic half plane (see. Fig.1).

It is known that a homogeneous system of elastic static
equilibrium in displacements in the Cartesian system of coordinates
has the form [16]

)

{(/Hﬂ)@,x +ppu=0

(A+pp, +pav=0

29

VE E
@-2v)i+v) 7 AL+v)
elasticity modulus, and v Poissons’s ratio; A(-)=

where A= are Lamé constants, E is

(‘).xx + ()yy
Laplacian, @=divU =u, +v ; U=(uv) is the displacement

vector; (), = w (), = o) . (). = (), (), :i()

is a

Y ! 2 ! )
ox oy 1) oy*
¥
X
A2 i ol __p H By
c C
%
o C
D b
LI
" 1 2 1 * o NB

Fig. 1 Hlustration of localization problems of stresses and displacements for
elastic half plane.

2.1. Statement and solving of problem when normal stress
is applied to segment inside half plane

(a) Setting. Let us consider a non-classical problem for half
plane D (see Fig. 1), when the tangent stress along the entire
border and normal stress along boundary segment |x|>c, y=0
equal to zero. Along segment |X|<c, y=-b inside the body, the
value of normal stress o is known. So, let us find the solutions to

the system of equilibrium equations (1) satisfying the following
boundary conditions:

for | <o and y=0:
for |x|>cand y=0:
for |x|<cand y=-b: o,

o, =0,

o, =0,

R,

where P/(x) is the sufficiently smooth function given along

segment [—c; c].
We can formulate the set problem as follows: let us find the
kind of distribution of normal stress &, along section |x|<c, y =0

of the boundary of a half plane (see Fig. 1) so that the normal stress
along segment |x| <c, y=-b inside the body equals to the values of

given function P(x).
If of kind P/(x)=P-10™
(P = constant), which describes a force similar to the concentrated

we consider function
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one, then we will have the following localization problem: we must
find the kind of distribution of normal stress o along segment

AB, to obtain the concentrated force of the given value
(localization of stresses) along section AB (see Fig. 1).

(b) Solution. Let us divide segments |x/<c, y=0 and
|X|SC, y=b into N segments (elements) of the same size
2aand smaller sizes (i.e. a=c/N ). We mean that constant
normal stresses P/ act on each j ™ element of length 2a with
center (x';0) of segment |x|<c,y=0. We need to find such

values of these stresses, for which the values of the normal stresses
in middle points (x', —b) of each i™ segment with a length of 2a

along segment |x|£c, y=-b inside body will equal to the given

value of —P,(x').
Normal stress in the centre of the i ™ element lying on segment
x| <c, y=—-b will equal to following sum:

o, (X, ~b)=> AP/, i=12..N,

where for the influence coefficients A’ has the following formula

A“':—l arctan — b. —arctan
X —x'—-a

z x‘—x"+a]

|

Thus, we obtain the following system of N linear algebraic
equations with N unknown quantities P/, j=12,...,N .

N

D AP =R(x), @)

If solving (2) system in relation to unknown quantities P’ by

b(x' - x' +a)
(X' =x'+a)’ +b?

b(x' —x' —a)
(X' —x'—a)* +b?

i=12,.,N.

means of any standard method of numerical analysis (by method of
Gauss in our case), then we can assume that the set problem is

solvedand o) =P’, j=1...,N.

After solving these equations, we can express the displacements
and stresses at any point (x‘,yk) of the body by means of other
linear combination of load P'. For example, the stresses and
displacements have the following form:

o, (X, y)= iZ:KarctanlyifarctanyiJ
T4 x —x'+a’ x —x'—-a’

_ yk(xl_xl_'—ai) + yk(xi_xl_a]) :|PJ

(K —x a4y (¢ -x-al)y +(y ) |

1 N yk yk
X,y )== arctan —arctan
o, (x',y") ZH X —x —a

4= X' —x'+a’
y*(x'—x'+a') y*(x'—x’—al) ;

- 5 il o
(x‘—xl+al)z+(yk) (x'—x'—a‘)2+(y*) ’

O_W(X‘,yk):%i(yk)z{ 1

= (X —x +a’) +(y

®)

- 1 P,

i=12,..,M,, k=12,..M,.
ul(x', y") :—LZ{(l—Zv{(x' —x' —a’ Jarctan———
27 5= X' —x'-a’
k
—(x'=x +a)arctan‘y—,—na}
X' =x'+a’

(X' —x' —a’)? +(y*)

_"(:I'_V)yk In (X' _x +a,)z+(yk)z

}Pl,
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ul X‘, Ky
Oy 27 4= -x'+a’

+@-)[(x =x! —al)ln((x' —xi —al)? +(yk)2)
—(x' =x +a‘)|n((x' -x'+a')? +(y*)2)
+(L=x +a)in(L—x +a F—(L-x"—a )in(L—x'—a'} /.

LZN: Fy - ZV{arctan y—k —arctan y—k)
X' —x'-a’ X'

2.2. Statement and solving of problem when normal
displacement is applied to segment inside half plane

(a) Setting. Let us consider a non-classical problem, when
along the entire border of half plane D (see Fig. 1) the tangent
stress is equal to zero, and normal displacement u on segment

|x| <c, y=-b lying inside the body is known. Also, normal stress
along part |x| >c, y=0 of boundary is equal to zero. Thus, we

have the following boundary conditions:

when |x|<w and y=0: o, =0,
when |x>c and y=0: o, =0,
when |x<c and y=-b: u, =-U(x),

where U (x) is
segment [—c,c].

We can formulate this problem as follows: let us find the
distribution of normal stress o along part |x|<c,y=0 of the
boundary of the half plane when normal displacement along
segment|x| < ¢, y = b lying inside half plane D equals to U, (x) .

Let us consider this function of the following Kkind
U,(x)=P-10™, (P=constant), which describes clearly

expressed non-uniform normal displacement. Thus, we will have
the following localization problem: let us find the distribution of
normal stress o, along segment AB, to obtain the pit of a given

the sufficiently smooth function given along

value along segment AB (displacements localization) (see Fig. 1).
(b) Solution. Let us divide segments |x|<c,y=0 and

[X<c,y=-b into N segments (elements) with equal 2a and
smaller lengths. We mean that constant normal stresses P’ act on
each j " segment of segment |x| <c, y =0, each with the length of

2a and with centre (x’,0). We must find such values of these
stresses, for which the values of normal displacement in middle
point  (x',—h) i element with length 2a of

of each i
X <c, y=—bsegment inside the body should equal to the given
value of U (x').

Normal displacement in the centre of the i ™ element lying on
segment |x|gc, y=—b will be computed with the following

formula:
u,(x,-b)=>"B'P,  i=12..,N,
j=1

where we have the following formula for influence coefficients B' -

Bi = —{— b(l— 2v{arctan b, —arctan
27 X' —x'—-a

+@=)[(x =x’ —a)in((x' —x' —a)* +b?)
—(x' =x' +a)In((x —=x’ +a)* +b?)
+(L-x' +a)in(L-x'+a)-(L-x'—a)in(L-x’ —a)Z]}.

xi—x"+a]

Thus, the set problem is reduced to solving the following system
of linear algebraic equations (N equations with N unknown
values):
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iBupy. =U,(x), i=12..,N. @

If we solve system (4) in relation to unknown values P/, then

the set problem can be considered as solved, like the problem set in
2.1

3. Numerical simulation

By using MATLAB software, we obtained the numerical values
of the normal stresses (problem of stresses localization) and
displacements (problem of displacements localization) along
segment AB (the given normal load and normal displacement) and
distribution of normal stresses along segment A;B; (the obtained
normal stress) shown in Fig. 1 for the following data: c=1m, 2m,
3m, 4m, 15m, 18m, 20m, 30m, and b=5m, 6,5m, 8m, 10m, 15m
18m, 20m, 30m; N =120; P =10kg/cm’ . Below are graphs of

some of the obtained results. Namely, Fig. 2 shows load P,(x) and
Fig. 3, Fig. 4 shows normal displacement U (x) along AB segment
and distribution of obtained normal stress P, along AB, segment,
when ¢=1m and b =5m, 6,5m,8m,10m .

0

—#— b=5m

—%— b=6,5m

° b=8m
T —%— b=10m | |

x

—#— b=5m
- —%— b=6,5m| |

—>— b=10m

-10f

15 L L L L L L L L L
-100 -80 -60 -40 -20 0 20 40 60 80 100
X

Fig. 2 The load Po(x) along segment AB and distribution of obtained

normal stress P, = o, along segment AB,, when ¢ =1m.

[}

—#— b=5m
—¥— b=6,5m|
o b=8m
= [ —*— b=10m| |

-100 -80 -60 -40 -20 0 20 40 60 80 100

—#— b=5m
—%— b=6,5m| |

b=8m
—— b=10m

-20

-100 -80 -60 -40 -20 20 40 60 80 100

x © | fem——

Fig.3 Displacement UO(X) along segment AB and distribution of obtained

normal stress P, along segment AB,, when ¢ =1m and

E =2x10°kg/cm*, v =0.42 (technical rubber).

—#*— b=5m

—— b=6,5m

S b=8m
ST —— b=10m | |

< 10

—#— b=5m
—#— b=6,5m| |

b=8m
—%— b=10m

P
b
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-100 -80 60 -40 -20 20 40 60 80 100

o

X

Fig. 4 Displacement Un(x) along segment AB and distribution of obtained

stresses Pyy

E =2x10°kg/cm?®, v = 0.3 (steel).

Besides, represented 3D graphs of the distribution of stresses
and displacements in the body section relevant to domain
—-c<Xx<¢, -30<y<-10, when c=1m, b=30m; for steel

E =2x10°kg/cm*, v=0.3 (see Fig. 5 and Fig. 8 for stresses

localization problem, and Fig. 6 and Fig. 10 for displacements
localization problem) and technical rubber E =2x10°kg/cm’,

v=0.42 (see Fig. 9 for stresses localization problem, and Fig.7,
Fig.11 for displacements localization problem). Formula (3)
evidences that the stresses in the stress problems do not depend on
Young's modulus and Poison's ratio. As for the displacements, the
normal displacement less and tangential displacement is bigger in
steel than in technical rubber.

normal along segment AB , when c=1m and

-3
0 x 10-3 x 10
1 1
2 )
0 4 05
4 %
° 4
s 0
2 v
s 3000
/f 10 0.5
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1000 -100 1
X
2
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-8
0
1000 -100 -10
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Fig. 5 Distribution of stresses in domain —c<Xx<¢, -30<y<-10,
when ¢=1m, b=30m,
P(x)=P-10™").
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3000
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Fig. 6 Distribution of displacements for steel in domain
—-c<X<¢, -30<y<-10, when c=1m, b=30m,

E=2x10°kg/cm*, v=0.3 (in stresses for the problem, when
P(x)=P-10™").
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Fig. 7 Distribution of displacements for technical rubber in domain
—-c<x<c, -30<y<-10, when c=1m, b=30m,

E=2x10°kg/cm*, v =042 (in stresses for the problem, when
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P(x)=P-101").
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Fig. 8 Distribution of stresses in the part of the body of steel bordered by
domain -c<x<¢c, -30<y<-10, when c=1Im, b=30m,

E =2x10°kg/cm*, v =0.3 (in displacements for the problem when
P(x)=P-10"").
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Fi. 9 Distribution of stresses in the part of the body of technical rubber
bordered by domain -c<x<c, -30<y<-10, when c=1m,
b=30m, E=2x10°kg/cm*, v=0.42 (in displacements for the

problem when P,(x) = P-107"),

-10.
3000

2000

1000 -100
y

Fig. 10 Distribution of displacements in the part of the body of steel
bordered by domain —-c<x<c, -30<y<-10, when c=1m,

b=30m, E=2x10°kg/cm’, v=0.3 (in displacements for the
problem when P,(x) = P-107),

1000 -100

y X
Fig. 11 Distribution of displacements in the part of the body of technical
rubber bordered by domain —c < x<c, -30<y<-10, when c=1m,

b=30m, E=2x10°kg/cm*, v=0.42 (in displacements for the
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problem when P,(x) =P .10,

4. Conclusion

The paper sets non-classical problems, and problems of
localization of stress and displacement for a homogeneous isotropic
elastic half-plane are formulated based on them. The essence of the
problems is as follows: we must find the distribution of the normal
stress along section AB, (see Fig. 1) of the border of the half plane

so that normal stress o, or normal displacement u, along segment

AB parallel to the border of a given length distanced from the
border by b within the body should equal to the value of the given
function. If we take the kind of this function, which describes the
point-force applied to the middle point of section AB (e.g.

U,(x) =C-10"!, (C = constant)), we will obtain the problem of

localization of stresses and displacements. The set problems are
solved by BEM [1].

By using the MATLAB's software, we obtained the numerical
results and plotted the corresponding graphs showing the values of
normal stress to be applied to the part of the boundary of the half
plane to obtain the point force or displacement in the middle point
of a segment inside the body. The paper also presents 3D graphs of
distribution of stresses and displacements within the parts of the
bodies of steel and technical rubber bordered by domain .

The problems considered in the work can be used in practice,
e.g. in soils and rocks, materials that are susceptible to cracking and
faulting when sheared, as well materials used to demolish military
structures or in underground facilities.
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ABOUT NEW NONLINEAR PROPERTIES OF THE PROBLEM OF NONLINEAR
THERMAL CONDUCTIVITY
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Annotation: In this paper we are consider a problem of nonlinear heat conduction with double nonlinearity under action of a strong
absorption. For which an exact analytical solution is found, analysis of which makes it possible to reveal a number of characteristic features
of thermal processes in nonlinear media. The following nonlinear effects are established: an inertial effect of a finite velocity of propagation
of thermal disturbances, spatial heat localization and finite time effect i.e. existence of a thermal structure in a medium with strong
absorption.
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I. Introduction Au 9
In the investigation of the processes of energy transfer in high- - UmV(|VU| P= VU)
temperature environments, a number of their special properties ﬁt
should be taken into account. For example, the dependence of heat ] . . ] ) .
capacity and the coefficient of thermal conductivity on temperature, Properties of solutions, which are different of equations in

it is necessary to take into account the contribution of volume  divergence form, generalizing the results of other authors . Then
radiation to the energy balance, the processes of exo and  Jetting self-similar solution, we show asymptotic behavior of
endothermic ionization, the leakage of chemical reactions, solutions for_large time. Slow and fa_stdlffuspn cases investigated.
combustion, etc. The consideration of these factors determines the At last, we give the results of numerical experiments of the Cauchy
nonlinearity of the equation of energy transfer. Along with this, one ~ Problem.

can also take into account convective heat transfer and its influence

on the evolution of the process under the investigation. The |l Problem formulation )
intensive development of the theory of nonlinear transfer was L@t us consider the following problem about the effect of an
stimulated by studies in plasma physics [1]. Here, fundamental ~ instantaneous concentrated source of heat in an incompressible

results have recently been obtained, and a number of nonlinear nonlinear medium with a coefficient with double nonlinearity of
effects have been discovered, which determine the properties of thermal conductivity of temperature and its gradient in the presence
inertia and localization of thermal processes [1-4]. In the [6-8]  Of volume absorption of thermal energy in it, which power depends
author study the properties of solutions for the following degenerate ~ On the temperature and explicitly on the time according to the

and singular parabolic equation in non-divergence form power law. Such a non-stationary process of heat conduction is
described by the following Cauchy problem for a degenerate

quasilinear parabolic equation in not divergent form

ou p-2
-1 k H N
— U VU | u) + div(v(t)u) -b(t)u’, u(0,%) = Qud(x), (t>0,xeR") ¢,
Here, u(x, t) — temperature , m, k, p — the parameter of distribution of a concentrated heat source placed at the beginning of
the coordinate.
To investigating different qualitative properties of the solutions

. . Q . of the problem Cauchy and boundary value problem for particular
volumetric heat absorption; o -the value that determines the  value of numerical parameters devoted many works [1-9]. For

energy of the heat source at the initial moment of time; J(X)— instance in the case M=k, n=0, 0<q<1 by analyzing
Dirac’s delta function that is characterizing the initial temperature an exact solution [2] when

_p-Im(p-1)-1]

nonlinearity of the medium: b>0, b(t)u®- is the power of

q o1 , 1<m<2, p>m(p-1-1
establish the following properties of solutions: an inertial effect of a In the [10] authors study the large time behavior of nonnegative
finite velocity of propagation of thermal disturbances, spatial heat solutions to the Cauchy problem for a fast diffusion equation with
localization and finite time localization solution effect. Considered critical zero order absorption if

the problem of the effect of an instantaneous concentrated heat .
source in incompressible nonlinear medium with a power mc — (N _2)+ / N<m<l and

dependence of a coefficient of heat conduction on temperature in . 2/ N

presence of volume absorption of thermal energy, whose power q =M+ . Chunhua J., Jingxue Y. [11] study the self-

depends on temperature and explicitly on time by a power law. similar solutions for a non-divergence form equation of the form,
Jin and Yin [5] consider the doubly degenerate diffusion >1 1

Cauchy problem when k=0, where m>1, p>1. The authors obtained where N =1, p > , This equation comes from many

physical problems such as dispersal mechanisms on species
survival, plasma physics, damage mechanics, curve shortening flow
and so on, see for example [12-15]. If the initial value

the critical exponent qc = p +m _1 , namely, the solutions

are global if CI < CIC , and there exist both global and blow-up
u (X, O) = uO (X) is appropriately smooth, there are papers
solutions if > qc. In the [9] authors study global in time  in devoting to the solvability of the Cauchy problem of (1), one can

existence and nonexistence conditions are found for a solution to ~ refer to Wu-Zhao [16], Gmira[17], Yang and Zhao [18], Zhao [19],
the Cauchy problem. Exact estimates of a solution are obtained in ~ Z£hao and Yuan [20], Li and Xie [21] and the references therein for
the case of global solvability, where k=1, n=0. details.
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Let us show that with
—[k(p—2)+n+m
g PIk(p-2)+n+m )
p—1
problem (1) has a definite one. In order to show it, we consider the class of radially symmetric solutions of the equation, obtained by
following

t t
u(t,x) =w(t.|g|=r), &=[v(ydy)—x, [&[=C, (Jv(ydy)-x)"*, xeR" o
0 0
Then the unknown function w (t, r) satisfies the equation
a\Nk
or

p-2

oW

@: np1-N i(rN—le—l oW
or

w'r
ot or

Further assuming

wt,r)=a®(f®)—-r).* y=p/(p-1D, n=((pP-D/(k(p-2)+m+n-2)
©)

) —b(OW?, W(0,x)) = Uy (x).

4)

where, a (t), f (t)- are the functions to be defined, and through (n)+ , the expression of (I'l)+ = maX(O, n) is designated.
Calculating the derivatives of the function of w(t, r), we have

ow da df
— == (f@)=r") +yalt)—(f({t)=r")""
& (O a0 (0=
k |P—2
(rN—lwm—l % %) — _(7/k7/1) p-2 Wla(p—Z)k+mrN ( f (t) _ ry)(kyl_l)(p_2)+(m_1)},1+},1_1 _
or or 6

==(rkp) @ " ™ w(t,r) e C(Q)

If we choose ¥, from (6) as

(k(p_2)+m+n_1)7/1_(p_l):O,then V1=

k|P-2
Wn r1—N aﬁ(rN—l m-1 a;v_ Z_W) — _(le) p-2 WlNak(p—2)+m+n ( f (t) _ r.;/)(k(p—2)+m+n);/1—(p—1) _
r r r ™)

—{(ky) P2 Wlak(p_2)+n+m_l])/lr7[ f(t)— ry)](k(P72)+m+n)yl—1

or considering the fact that

(P-J1)
(k(p-2)+m+n-1)

(k(p_2)+m+n)71_(p_1):71 ®)
Calculating
K |P—2
Wt 0 (rN iyt W' | ow
or or or
Hkyyy) P2 @ P Y L () - )]

expression (8) may be rewritten as

) =~(k7)"Nat T () -r7) ¢
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p-2

0 ow|" " ow
wrEN 2Nt 2 Y= —(k P2, Ngk(P=2+Mm (£ (1Y — 7)1 4+
pl o o)~ k)T (f®-r")
Hikp) P 2@ 2 f () -1
k|P2
w'rN g(rN—lwm—l ﬂ @)_b(t)wq :_(k},yl)p—ZWINak(p—Z)mm(f(t)_r7)71 +(9)
or or

Hkyr) "2 @ P e —b(0)a 1 f () - r7)* ]

it =y -1

Then, through substituting the calculated expressions into equation (4) we get the following:
da df _
E(f (t)-r)" +71a(t)a(f(t)—r7)“ '

= (ky72) " Na P2 (F () = 1)+ [(Kypy) " @ 2 e (0@ I f () - T

From here we have

[_+(le)p 27/7/1Nak(p RN (1)~ 1) +[Wla(t)——[(k77/1)P 27/71 K(p-2)nem A1y

b(a’lLf () )]* =0

Now from here, to define the functions a(t), f(t), we obtain a system of nonlinear differential equations

df ~2)+nem
—Wla(t)EJrb(t)élq = ()" P (t)

(10)

da nem
o k)™ [, + N)J P2 =0
da p
+(k p-2 N ak(p 2)+n+m ZO, —

df _2)+n+m
771a(t)a_(771)pak(p 2 f (t) =b(t)a" (12)

And the equation (9) has the following general solution
1

a(t) =[c +1- (K(p—2)+n+m)(77,) " [(7, + N)E] 2" =

1
=[o+ ()" (p+ (K(p—2) + N+ m)NE] K20
k(p—2)+n+m
where ¢ is a constant of integration.
Rewrite equation (12) as

df
a b, (t) f =Db,(t) @)

Then, taking into account (11) from (12), we have
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p p-1 -1
t)=[c+ +(k(p—2)+n+m-1)Nt
B0 [+ Gy (PP N
b, () = <P+ My gy
B(0) =L ———)P?(p-+ (K(p-2)+n+M-DN]
k(p—2)+n+m
Hence the solution tending to 00 at t—>0 has the form of
a(t)=[( R )er(ps (K(p-2)+n+moN ) HE -,
k(p-2)+n+m-1
(14)
The equation (13) is a first order linear equation. It is integrated.

Its overall solution is:

()P (pe(k(p-2)nem) ‘
F) =l p-2 rnem] 0 T g i ey
k(p-2)+n+m-1 a

When ¢=0, we have

f (t) [( P )p—l( (k( 2) n m) Nt)](k(P—ZF))+n+m)p71(p+(k(p_2)+n+m)N)[f
- + —-2)+n+ 4
k(p-2)+n+m-1 P P .
t
+ [, ()
0

(Zi\l (IV(y)dy — X )1/2 _ [ f (t)](p—]_)/p

t
Iv(y)dy<oo, f(t) <oo, Vt>0
0

Theorem 1. Let in equation (1)

q= p_[k(p_2)1+”+m],uo(x) <7(0,x), xeR"
p_

where

z(t,r)=a@)(f(®)—-r").*, y=p/(p-D, n=(pP-D/(k(p-2)+n+m-1),

where the functions a(t), f(t) are defined above.
Then for problem (1), the phenomenon FSP takes place.
Theorem 2. Let into an Equation (1)

q:p—["<p—2)1+”+m],uo(x)sz(o,r),reR, f(t)<oo, t>0

p_

where

z(t,r)=a@)(f@—r"), " yr=p/(p-D, y,=(pP-1/(k(p—2) +n+m-1),

and a(t), f(t)- are the functions defined above.
Then for problem (1), the spatial localization of the solution takes place.

Fast diffusion case: K(P—2)+m+n<0
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Theorem 3. Let in the equation (1)

qg=P=ke=2)+n+m] 1, (%) < 7(0,%), xe R

p-1

where

z(tn=a(f@®+r). " y=p/(p-1D, n=(P-D/(k(p-2)+n+m-1), ao

f(t) are the functions defined above.
Then for the solution of problem (1), there is a place for the estimate.

ut,x)<z(,r),reR, t>0

The finite time of the thermal impulse is due to the influence of the volume absorption of thermal energy in considered medium.
Indeed, if we consider even the initial temperature distribution of the form u (x, 0) and then due to the volumetric absorption of heat, the

temperature of the medium will decrease by time.

The results of numerical calculations are given below.
Numerical schemes, algorithms and a set of programs for the tasks in the Python3 environment are developed, the analysis of results on

the basis of the received estimates of decisions is carried out.

At > tm volumetric heat absorption becomes the dominant factor in the energy balance, the heating wave is replaced by a cooling wave,
and the width of the heat pulse begins to decrease with time. At the moment of time, the heat pulse shrinks to a point and ceases to exist.

Visualization when using a timer:
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Parameter value: k=1.1,p=4,m=11,n=11,

Conclusion

In the considered problem, the following nonlinear effects
observed the inertial finite speed of propagation, the effect of a
spatial localization of heat, the effect of finite time of existence of a
thermal structure in a medium with absorption in the case strong
absorption. The analysis of solutions showed that this phenomenon
is peculiar only for nonlinear problems. It is find an exact solution
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to these problems based on which we analyze the properties of its
solution such as localization and finite time effect. The solution
found is in good agreement with the processes of physics.
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10.

Results of computational experiment at the initial moment of
time:

Results of the computational experiment at a finite time:

1.2
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INDUSTRIAL PROCESSES STABILITY MODELING
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Summary. A theoretical analysis of the stability of the non-equilibrium industrial processes is presented. A unified approach is proposed for
the creation of the mathematical models of the processes that allows the determination of the velocities at which the processes move to their
thermodynamic equilibriums and their use for mathematical analysis of processes velocities stability. For this purpose is used mathematical
stability theory, evolution (autonomous) equations, bifurcation theory (stable focuses, stable cycles), parameter eigenvalues and
eigenfunctions.

Keywords: stepped complex, stability theory, evolution equations, bifurcation theory, stable focuses, stable cycles, parameter eigenvalues.

Introduction

Non-equilibrium industrial systems are aggregations of physical,
chemical and biological processes. They "move" to their
thermodynamic equilibrium with a velocity that depends on the
velocities of the individual processes. Non-equilibrium industrial
systems are stable when two conditions are met:

1. The velocity of movement towards their thermodynamic
equilibrium is a constant;

2. Capable of rapidly reaching their constant velocity at deviations,
as a result of smooth change of external conditions.

The theoretical analysis of the stability of the non-equilibrium
industrial systems consists of 2 stages:

1. Creation a mathematical model of the system, allowing the
determination of the velocity at which the system moves to its

2. Mathematical analysis of system velocity stability.

The first stage is different for individual systems, while the second
stage is common to all industrial systems.

An unified approach will be proposed for the creation of a
mathematical model of the system, which permits to be obtained the
velocity of the system movement to its thermodynamic equilibrium
and mathematical analysis of the system stability.

Industrial processes kinetics

The kinetics of industrial processes depends on a set of variables. If
the velocity of the industrial process is denoted by the values of
these variables, the equation of the kinetic model of the industrial
process will have the form:

thermodynamic equilibrium;

y="f (X0 X,)- @)
This function is a mathematical structure that is retained when changed the measurement system of the variable, i.e. this mathematical
structure is invariant with respect to similar transformations [1]:

X =kx, 1=1..,n, 2)

ie. Tisa homogeneous function:

Ky = f (KXo KXo ) = (Ko K )T (X0 X))y k= (Kyyenn k). @3)

A short recording of (3) is:
fI%]=¢k] f[x]- @

The problem consists in finding a function f that satisfies equation (4). A differentiation of equation (4) concerning kl leads to:

of[x] o
Q:i f( i)' (5)
ok, ok
On the other hand
o] _of[x]ox _of[X], ©
ok, x ok X
From (5, 6) follows
%X):i]xlzalf[xi], )

where

o
' (akl jk—l ( )

The equation (7) is valid for different values of K including K, =1 (i =1.., n). Asaresult X, = X;, 1 =1,...,N and from (7)
follows:

1 o
- =, C)]
fox X
i.e.
f =cx™. (10)

When the above operations are repeated for X,,..., X, , the homogenous function f assumes the form:
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f=kx™,... X" (11)

n !
i.e. the function f is homogenous if it represents a power functions complex and as a result is invariant with respect to similarity (metric)
transformations.

The parameters K, a,,...,a, are determined by experimental data of the industrial process velocity. This allows to consider the velocity of

the industrial process Y (phase velocity) as a point in a I -dimension space, with coordinates X,..., X, (phase space). Velocity

dx; ..
projections on coordinate axes X,,..., X, are d—t' (I =1.., n) and satisfy the "evolution™ law of the industrial process:

%:alyzalkxl%x:n1 t:O, Xi =X0i; i=1,...,n, (5)

where @,,...,d, represent the ratios of variable X,..., X velocities and the industrial process velocity Y .

n

dx. ..
The components of the phase velocity d—t' (I =1,.., n) are the coordinates of the vector field at the same phase velocity and determine

the velocity of motion of the industrial process in the phase space. The points X (t)(i =1..., n) represent a curve (phase trajectory) in

the scalar phase space.
If we use the rule to differentiate a exponent function, the derivative of the velocity of the industrial process (4) over the time has the form:

dx,

%: kli[[xi (t)]aiizznl: %ai - (13)

d
From this equation is possible to be obtained stability condition d_)t/ = 0 of the industrial process:
dx,

klj[xi(t)]“iiznl: %Ofi =0, x(0)=x,, i=L...n. (14)

The solution of this set of equations allows the determination of the conditions for the stability of the industrial processes.

Mathematical Stability Theory
The velocity of the non-equilibrium industrial processes with which they "move" to their thermodynamic equilibrium is determined by the
theory of the evolution equations [2-4]. Their capable of rapidly reaching their constant velocity at deviations, as a result of smooth change
of external conditions, is determined by the theory of bifurcations [5].

Evolution equations

Let consider the industrial process velocity, which may be determined by the variables X; (i = 1,...,n). This permits to consider the state

of the process as a point in n-dimensional space with co-ordinates X; (i = 1,...,n) (a phase space).
The changing of the process velocity over the time is a vector in the n-dimensional space. Its projections on coordinate axes

dx.

— (i = 1,...,n) satisfy the "evolution" law of the process:

dt
dx; :
d—';:Xi(xl,...,xn,t), X (0)=X,, i=1..,n (15)
The evolution equations (15), for processes with laws independent of the time, are termed autonomous equations:
dx; .
d—t':Xi(xl,...,xn), X (0)=Xq, i=1..,n (16)

The components of the phase velocity Xi (i . n) are the co-ordinates of the vector field of the same phase velocity and determine the

velocity of the process in the phase space. The points X; (t)(l ,...,n) represent a curve (a phase trajectory) in the scalar phase space (field).
For simplicity of explanation consider the autonomous equation

%:X(x), X(0)=%,. )

The process is stable when the system velocity does not change over the time:
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X (x)=0, (18)

X (a)=0. (19)

It follows from (19) that the point X = @ may be considered as a stationary point (the process velocity is constant over time). If & = X, it
clear that
x(t)=a (20)
is a solution of (17), where @ is a singular point.
For simplicity will be considered the linear version of the equation (17) and its solution:

%:ﬂ,x, X(0)=x,, X=X,exp(At). (1)
It is follows from (21) that X = O is a singular point, i.e. Xy = 0 and the solution of (21) has the following features (see Fig. 1):
A<0, !Lrg x(t)=0, Vx;; (22)
A=0, X=X, VX, (23)
A>0, x=X, at t=0;
A>0, !Lrg X(t) >, VX, >0; (24)

A>0, lim X(t) > —o0, VX, <O0.

The multiformity of the solution at A > Qis not a result of its non-uniqueness, but this due to the solution instability with respect of the
small perturbation of the initial condition (X0 )

At At At

>0 A<0 =0

Fig.1. Solution of the equation (14)

The solution of the equation (14) leads to the following conclusions:

1. The solution (the process) is unstable at A >0 and the small deviations of the initial state Xy # O lead to deviations of the solution
x=0.

2. At A >0 the solution is unstable for each X, .

3. At A <0 the solution is approaching to the singular point X =0, i.e. the stationary point become a focus of attraction of the solution
(an attractor).

The linear equation (14), together with the conditions for the solution stability, are attractive because they give the basis of the kinetics
models of many important processes (evolution of the organisms, nuclear processes, chemical reactions etc.) These features in the area of the

real number (R) become more interesting in the complex area (C) where the equation (14) has the form:
dz
e Az, zeC, AeC, teR, z(0)=z, z(t)=z,exp(At). (25)

Bifurcation theory
The bifurcation theory [5] is wide applied for investigations of jump reactions of processes as responses of smooth changes of the external
conditions. For the real processes it has been developed recently as a theory of the catastrophes. Here, the bifurcation theory will be
considered in two-dimensional phase space only.

For clarity of explanation, consider that a real evolutionary process occurring in the phase plane (X, y) and the corresponding model is:

dx d
E:X(X’y’ﬂ)’ d—)t/:Y(x,y,y), x(0)=x%,, Y(0)=y,. (26)
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The process evolution in time is represented by the phase trajectory (the trajectory of the phase point) of the process
F(xy, u)=0, 27)
where X(t) and y(t) in (27) are determined from the solution of (26). Depending on the form of the relationships for X and Y in (26),
the parameter £ and the initial conditions X, and Y, various phase trajectories are possible.
The variations of the parameter £/ lead to several interesting cases of the solution of (26) shown in Fig. 2. The case shown in Fig. 2a

corresponds to a periodic process that is attenuating with the time and approaching to a focus (a stationary state point). If other value of £ is
chosen the process might be unstable and periodic (Fig.2b). The stable periodic processes (limit cycles) have closed trajectories in the phase

space (Fig.2c). The change of the initial state (yo ) of the stable processes leads to attenuating processes approaching a stable periodic state.
(Fig. 2d).

y 4 y A y y 4

x
=y
x
>

Fig. 2. Phase trajectories.

Figure 2 may be developed for more complicated cases (see Fig. 3). It is possible the existence of two limit cycles (periodic processes and
solutions,), where one of them (the internal) is stable if the initial conditions are in the entire internal area of the large cycle. The internal
cycle attracts all the solutions, while the external cycle is unstable (Fig. 3a).The variations of the parameter £/ may lead to a junction of both

cycles (Fig.3b). The junction of an unstable and a stable cycle (as these in Fig. 3a) may lead to an abnormal limit cycle (Fig. 3b). In this case
the solutions go from the initial conditions in internal area, approach the cycle and then due to small perturbations may go out of the cycle, so
the process becomes unstable. The further changes of £ may lead to a situation when the limit cycle disappear and the process becomes

unstable (Fig. 3c).

@
=2/

X X
a b C

y 4

<Y

Fig. 3. Limit cycles.

The resulted obtained here show that the bifurcation theory considers qualitatively the changes of the movement of phase point as a result of
a continuous variation of the model parameters. Parallel to the existence of stable points (focuses) there are stable cycles. They describe
stationary periodic oscillations of the systems (self-oscillations). They differ from the free oscillations (of a pendulum for example) where
the system does not interact with the environment as well as from the forced oscillations provoked by external periodic impacts.

The focuses and the limit cycles attracting the solution (the phase point) are termed attractors.

Figure 4 shows bifurcations of cycle transitions from focuses. The case (a) corresponds to a supercritical bifurcation (stable closed
trajectories), while the case (b) presents a subcritical bifurcation (unstable and closed trajectories).

Further, Fig. 4a shows the mechanism of a transition from a stable point (focus) toward a stable orbit (cycle). This type of bifurcation is
shown in Fig.5. The stages of that transition are: 1) a stable point; 2) the occurrence of a closed trajectory; 3) an increase of the closed
trajectory amplitude. This order leads to the existence of stable three-dimensional torus.
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Fig.4. Bifurcation of cycle transitions from focuses.

068

Fig. 5. Mechanism of a transition from a focus toward a cycle.

Eigenvalue problems
The presented analysis of the processes and the systems concerns its stabilities as functions of the model parameters. This requires a solution
of differential equations with parameters. It is possible that the solution of the differential equation to exist at a given point (e.g. focus), only
for a specific value of the parameter - "eigenvalue”. For example, the second-order ordinary differential equation, when the boundary
conditions are presented at two different points, can have solution for a specific value of the parameter only, i.e. this leads to eigenvalue
problems. The solution to this problem will be demonstrated in a first order linear ordinary homogeneous differential equation:

y'+[f(x)+/1g(x)]y=0, (28)
where A is a parameter and the solution must to satisfy the condition:
y(b)=ay(a), a=0. (29)
The solution of (28) is well known
y=Cexp —j(f+ﬂ,g)dx . (30)

a

The substitution of (30) in (29) shows that the condition (29) is satisfied, when A = A, only:

Inoz+‘|tz fdx

A= (31)
J' gadx
a
well known as an eigenvalue. The substitution of (31) in (30) leads to an eigenfunction. Thus, for example at f =0 and g= 1 it follows

directly:

Ina Ina(x—a
Ay=——, y=Cexp —M . (32)
a-b a-b
b
It is well demonstrated in the differential equation theory [6] that if I ng # 0 there is an infinite set of eigenvalues:

a
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,1k=,10+fk”', k=0,41+2,.... (33)

J' gdx

a
The results obtained are used [7] for the theoretical analysis of the hydrodynamics stability in systems with non-linear mass transfer.
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Abstract: In this work, firstly we opted, for the global sensitivity analysis using the first order Sobol indices of simulated by the Monte
Carlo method, to see and determine the parameters to which the stationary distribution of model GI/M/1/N with negative arrivals is
sensitive. Secondly, we used the Monte Carlo method to propagate the uncertainty of the parameters of the stationary distribution of
GI/M/1/N queuing model with negative arrivals, while estimating its statistics (expectation and variance).

Keywords: GI/M/1/N QUEUE, NEGATIVE ARRIVALS, SOBOL’S INDICES, PARAMETRIC UNCERTAINTY.

1. Introduction

The sensitivity analysis is currently receiving considerable
interest in the area of the performance evaluation of different
stochastic models. The sensitivity analysis consists on investigating
which individual input parameter drives most of the uncertainty on
the model output. In this regard, we estimate the Sobol’s indices for
global sensitivity analysis of stationary distribution in the GI/M/1/N
queueing models. Specifically, when we estimate the Sobol’s
indices, we consider the more influents parameters are uncertains.
In this case, we estimate the expectation and the variance of the
stationary distribution under the uncertainty.

Recently there has been a rapid increase in the literature on
queueing systems with negative arrivals. Queues with negative
arrivals, called G-queues, were first introduced by Gelenbe [5].
When a negative customer arrives, it immediately removes an
ordinary (positive) customer if present. Negative arrivals have been
interpreted as inhibiter and synchronization signals in neural and
high speed communication network. For example, we can use
negative arrivals to describe the signals, which are caused by the
client, cancel some proceeding. There is a lot of research on
queueing system with negative arrivals. But most of these
contributions  considered  continuous-time queueing model:
Boucherie and Boxma [6], Jain and Sigman [8], Bayer and Boxma
[2], Harrison and Pitel [9] all of them investigated the same M/G/1
model but with the different killing strategies for negative
customers; Harrison, Patel and Pitel [10] considered the M/M/1 G-
queues with breakdowns and repair; Yang [11] considered GI/M/1
model by using embedded Makov chain method.

The remainder of this paper is organized as follows. In Section
2, we introduce the necessary notations: the sensitivity analysis and
uncertainty analysis. In Section 3, we outline description of the
model and we finish by the numerical framework to illustrate the
applicability of this analysis. Concluding remarks are provided in
Section 4.

2. Sensitivity Analysis

Mathematical models always approximate the real phenomena.
The uncertainty of their input parameters described the incapacity to
envisage precisely her issues, from which the uncertainty also of the
output parameters.

Thus, the precision of the output parameters will depend on the
quality of the available information. These uncertainties often
correspond to the errors made by measuring instruments,
manufacturing processes or limited data.
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There are several types of sensitivity analysis. We satisfies in
this work on one precise method, it is the method of analysis of the
global sensitivity. This method studies the influence of the
variability of the input parameter in the output parameters. We
can’t speak about the sensitivity analysis without citing the Sobol’s
indices.

If we consider a mathematical model

™

X — Y =fX),

f: R

—

Where X = (X1 Xin )
parameters, Y is the output parameter.

is the vector of the input

The purpose of this analysis is to estimate the Sobol’s indices of
sensitivities by this formula:

o _ VIEY/X)
VY)

In general way, the compute of the first order Sobol’s indices
proves so difficult or impossible in some case, that returns to the
complexity of the function f, from which the obligation of using of
the simulation methods. The Monte Carlo method seems the
appropriate for this kind of problem.

3. Queueing Model Description

We investigate the GI/M/1/N queue with negative customers,
where N is the capacity of the system including the one who is in
service.

Assume that customer arrivals occur at discrete-time instants

Ty, where Tg = 0 customers arrive at the system according to

a renewal process with interarrival time distribution G (t)and

T,

/
mean l.f A .The service time -+ £ of each server is assumed to be
distributed exponentially with service rate Ho1es density function
is given by

s(t) = pe M1,

t>0.
Additionally, we assume that there is another kind of customers,
namely RCH, arriving in the system according to an independent

Poisson process of parameter S Let L’*‘ denote the number of
customers left in the system immediately after the kth departing
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customer. A sequence of random variables
. . T . . 06 g " " 06
Lk- k=1.2....N constitutes a Markov chain. Its
transition probabilities matrix is given by: _ns _ o4
= o
S R V I 0 0 v “
by a1 ag 0 0 0 o s, s 3 o s, 5 8
by as a;  ag 0o .. 0
oG 04
bq s (s ag 0 0
.k 03
. . . . . . 2
Bl
. . . . - . — . B - -
!‘)_\-'_1 ny—1 o Oy-—3 @Gyn—4 ... g - « N ) b
t‘)_\-'_l y—1 Ao dy_—g dy—yq4 ... g (N+1)x(N+1) e
od
8
! i
=] Ts A" y
foew L T i Lo ! T %
a; = f e lH C_-twdgm 5 5 0§
Where 0 J: Figure 1: Sobol’s indices for the M/M/1/4 model
i According to this figure, we note that the values of the highest
indices those, which correspond to the parameters u and ¢, therefore
bhi=1-— E i these two last, are more influents on the stationary distribution, and
i as the parameter ) is less influent, so it is considered deterministic
(constant).
The H2/M/1/4
4. Numerical Results Consider the H2/M/1/4 system with negative arrivals, where the
Consider this application inter-arrivals times are hyper-exponentials and the service times are
exponentials.
-_— i
flj - 4 — i3 Let the input vector parameters
fl » TngJ fl = ::I'?l._l'?g._l'?:]._l'?.;j == ::,:\1._ JLQ._IH.._ ﬁ:)l
where ri:'il =0.1,.., N is the stationnary distribution of a 04 o
such model, and b= 'ﬁl‘- BE‘- r?m; is a vector of all os 03
parameters of the model. The first order Sobol’s indices are S 42 ® g9
compute by this formula -
V(El fr?]" 0.1 0.1
Sz=k+f!} t=1...m : 'P=Ul-\ 0 0
1’ L_-'Ti)l ).1 hz I
The M/M/1/4 0.3 03
Consider the M/M/1/4 system with negative arrivals, where the
inter-arrivals times and the service times are exponentials. 0.2 0.2
< g
Let the input vector parameters = -4
01 0.1
f = :.r?l'. I'?g._ r?f'l:l = :.l iy l::'
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)‘I
0.4
0.3
‘E 0.2
0.1
0

Figure 2: Sobol's indices for the H2/M/1/4 model
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According to this figure, we note that the values of the highest

o~
indices those, which correspond to the parameters Agyit et %and

¢, therefore these two last, are more influents on the stationary

distribution, and as the parameter Ar

considered deterministic (constant).

is less influent, so it is

According to the analysis carried previously, we obtained p and
€ like the most influential parameters for each component =i, | = 0,
1..., 4 of the stationary distribution @ (u, {), and the parameter A is
considered like a deterministic parameter.

To simulate the expectation and the variance of the stationary
distribution, we present a new formula the two parameters p and {:

f=J1 T Outy,
¢ =+ ogeg
120

40

20

1 15 2 25 3 “n 200 400 600 800 1000
140
-
120 M
100 -1
80
60
40
20
a 0.6
06 08 1 12 14 0 200 400 800 BOO 1000
Simulation . . .
=(0) (1) 7(2) 7(3) w(4)
Monte Carlo
MIMILN Expectation 0.6682 | 02232 | 0.0749 | 0.0252 | 0.0083
S Variance x10=% | 46370 | 05840 | 0.5770 | 0.1840 | 0.0420

According to the analysis carried in this table, we note that a
disturbance of 10% of each input parameter involve a maximum
variance of 4.63 x 10E(-04), which proves the robustness of the
M/M/1/4 model with negative arrivals, compared to the uncertainty
inflicted in the influential parameters. In other words, a small
disturbance on the input parameters generates a small disturbance in
the output parameter.
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Abstract: The codes for error control (error-detecting and error-correcting codes) are extremely important part of the communication
systems and storage devices, ensuring reliable data transmission and storage. In this paper using simulations, we analyze an error-detecting
code. More specifically, we will be focused on the error-detecting capability of the code. Namely, using simulations we will obtain the
number of errors that the code detects for sure, as an important parameter of every error-detecting code.
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1. Introduction

When data is transmitted through or stored on some medium,
due to the noises in the medium or other external influences, there is
a possibility of errors. This means that the data received by the
recipient may not be identical to those sent through the
communication channel or data recorded on the storage. Therefore,
there is a need to check that the data is correct. Checking is done
using the codes for error control. There are two basic types of these
codes: error-correcting and error-detecting codes. While the first
ones have ability to correct up to some number of incorrectly
transmitted bits, there are slower in their work. The error-detecting
codes are faster and are in advantage in networks where errors
rarely occur. There are various error-detecting codes: from very
simple as parity bit ([1]) and repetition code ([2]) to more complex
as checksum ([3], [4]), CRC ([5], [6]), etc. In our previous work we
have also defined some error-detecting codes ([7], [8], [9]).

All error-detecting codes add redundant symbols on the input
blocks, which are later used by the receiver in order to check
whether there are errors in transmission. If the code detects that
some data is incorrectly transmitted, it asks for retransmission of
that data [10].

For every error-detecting code it is possible that there will be
errors in transmission that the code will not detect. Therefore,
before any code is implemented, it is important to know the ability
of the code to detect errors. In this regard, it is important to know up
to which number of incorrectly transmitted bits, the code will detect
the error for sure. In this paper we will analyze an error-detecting
code in the light of this parameter - the number of errors that the
code surely detects. The number of errors that the code surely
detects is the maximum number of incorrectly transmitted bits up to
which the code will surely detect the error in transmission.

2. Definition of the Error-Detecting Code

Let A and B be non-singular binary matrices of order sxs, and
let C be a binary matrix of order 1xs. The alphabet is >={0, 1, ...,
2%-1}. We choose the parameter r of the model, which should be a
non-negative integer.

Let the input block be aga;...a,;, where all symbols a; are from
the alphabet >.. Then the redundant symbols are defined using the
following equation:

V) d; = a A2 + ¥ a jBA" T2+ CEIZ A, =0, 1, 1

where n is the length of the input block, r is the model’s parameter
that is an integer which satisfies the condition 1<r<n-1. Bolded
symbols are the binary representations of the corresponding
symbols as 1xr vectors, i.e., a; is the binary representation of the
information symbol a;, i=0, 1, ..., n-1, while d; is the binary
representation of the redundant symbol d;, i=0, 1, ..., r. A, Band C
are the binary matrices that are used for coding. The operation + is
binary addition and all operations in indexes are modulo n.

After calculating the redundant symbols, the binary form of the
input block aga;...an is extended into a block aga;...a,.1dgd;...d;.
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With this is obtained the binary form of the coded block, which is
transmitted through the binary symmetric channel.

From the above definition of the model we can see that this
code always adds r+1 redundant symbol on each input block,
regardless of its length. As we can see from the constrains for the
parameter of the code r, the length of redundancy must not exceed
the length of the input block.

When the receiver receives the output block, in order to ensure
that it has a correct block, it calculates the redundant symbols using
equation (1). If the calculated symbols are identical with the
received ones, it accepts the block as correctly transmitted. In
opposite, the receiver concludes that the block is not correctly
transmitted. It that situation, the receiver asks the sender to send the
block once again. But, there is always a small chance to have errors
in transmission and at a same time the calculated by the receiver
symbols to be equal to the received redundant symbols. This means
that it is possible to have undetected errors in transmission.
Therefore, it is important to know up to which number of
incorrectly transmitted bits, the code will surely detect the error,
which is exactly the subject of this paper.

But, first let see the coding procedure in the following example.

Example: In this example we will demonstrate the coding
procedure. Let the following binary matrices of order 3x3 are used
for coding:

10 1 01 1
A=o 1 1|,B=|1 1 1|[,.c=[0 0 0]
11 1 10 1

The alphabet is >={0, 1, 2, 3,4, 5, 6, 7}.

Let suppose that the parameter of the model is r=2 and input
block aga;a,a;a,=46320 of length n=5 symbols from the alphabet is
coded. Then, the binary representations of the information symbols
are a,=[1 00], a;=[1 1 0], a,=[0 1 1], a5=[0 1 0] and a,=[0 0 O]. The
redundant symbols are calculated using (1), i.e.:

di:aiA3+ ai+1BA2+ai+zBA+ai+3B, i=0, 1, 2.

First, we obtain the matrices:

0 1 1 1 0 1 1 0 0
A =1 o 1|,BA®’=|1 1 1|,BA=]0 0 1
11 1 0 1 1 010
Now,
0 1 1
do=apA’+ a;BA%+a,BA+a;B=[100][1 0 1|+
11 1
1 0 1 100 0 1 1
[110]f1 1 1[+[011]|]0 o0 1[+[010]]|1 1 1|=
0 1 1 010 10 1
=[101]

01 1
d;=a;A3+ a,BA%+a;BA+a,B=[1 1 0] [1 0 1]+
11 1
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1 0 1 10 0 01 1
[011][1 1 1}+[010][0 0 1]+[000][1 1 1]=

01 1 010 10 1
=[011]

01 1
d,=a,A%+ a;BA%+a,BA+a,B=[0 1 1] [1 0 1]+

11 1
10 1 10 0 01 1
[010][1 1 1}+[000][0 0 1]+[100][1 1 1]:
01 1 010 10 1
=[110]

The redundant symbol d, over the alphabet X is dy=5, the
symbol d; over the alphabet % is d;=3 and the symbol d, is d,=6.
With this we obtained the coded block aga;a,aza,dqd;d,=46320536,
while the binary form is
apa;a,a3a,4d,d;d,=100110011010000101011110. This coded block
in binary form is transmitted through the binary symmetric channel.

Let suppose that the 14" information bit is incorrectly
transmitted. This means that if we denote the output block that
receiver receives with ag’a;’a,’az’a,’dy’d;’d,’, then ay’=ag, a;’=a,,
az’:az, a3,:a3, a4’:[0 1 0]75 ay, do,:do, dl,:dl‘ d2,:d2. The receiver
checks whether the block is correctly transmitted, i.e., using (1) it
calculates the redundant symbols for the received block
ap’a’ay’az’ay’.

do’=ay’A%+ a;’BA%+a,’BA+ay’B=[1 0 1]
dy’=a,’A% a,’BA%+ay’BA+a,’B=[1 0 0]
dy’=a,’A% ag’BA%+a,’BA+ay’B=[1 1 1]

Since dy=d,’ (also dy#d,’), the receiver concludes that there are
errors in transmission, i.e., the received block is not identical with
the block sent by the sender. Therefore, it demands retransmission
of the block.

3. Results from the Simulation Procedure

In this paper, using simulations we will obtain the number of
errors that the code surely detects. In the simulation process for a
given n and r, we transmit through a simulated binary symmetric
channel a large number of coded input blocks of length n over the
alphabet >.. For each i from 1 to the length of the coded input
blocks in binary form, we calculate the percentage of transmitted
coded blocks with i incorrectly transmitted bits in which the error in
transmission is not detected. The number of errors that the code
detects for sure is the largest integer v such that the percentage of
incorrectly transmitted coded blocks with i incorrectly transmitted
bits in which the error is not detected is equal to 0% for all i from 1
to v. In order to obtain reliable and accurate results, we chose the
probability of bit-error in the simulated binary-symmetric channel
such that the number of incorrectly transmitted coded blocks with i
incorrectly transmitted bits to be large number for small values of i,
i.e., values of i smaller than or equal to v.

In the coding procedure, we use the following binary matrices
A, Band C:

10 1 01 1
A=]o 1 1|,B=|1 1 1|,.c=[0 0 0]
11 1 10 1

The alphabet is >={0, 1, 2, 3, 4, 5, 6, 7}. We will consider the
cases when the parameter of the model r=2, r=3 and r=4.

Since the length of the redundancy is r+1 symbol, follows that
in the case when r=2, the length of the redundancy is 3 symbols
from the alphabet >.. Since the length of the input block must be
greater than or equal to the length of the redundancy, in this case the
length of the input block n must be greater than or equal to 3
symbols from the alphabet > (Fig. 1). Each element from the
alphabet of order 8 is presented with 3 bits in the binary
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representation. Therefore, in this case the redundancy has length 9
bits.

0,70%
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lenght of input block n

mi=1 i=3 Wi=4 WMi=5 MWi=6

Fig. 1 Percentage of undetected incorrectly transmitted coded blocks with i
incorrectly transmitted bits when input blocks have length n symbols from
the alphabet 2'in the case when the redundancy is 9 bits.

In Fig. 1 are given the percentages of incorrectly transmitted
coded blocks in the simulation process in which i<6 bits are
incorrectly transmitted and the error in transmission is not detected
in the case when the redundancy is 9 bits (r=2). The length of the
input blocks n is expressed in a number of symbols from the
alphabet .. Please note that the scaling of the y-axis is different on
the three graphs. For small values of the length of the input block n,
the percentages of undetected incorrectly transmitted blocks with i
incorrectly transmitted bits are very small. In order the results to be
visible they are separated in the first figure from Fig. 1. Since the
percentages of undetected incorrectly transmitted blocks with i
incorrectly transmitted bits increase when n increases, the scaling of
the second and third image from Fig. 1 is adjusted accordingly.

As we can see from Fig. 1, when the length of the input blocks
is n=3 symbols from %, the percentage of undetected incorrectly
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transmitted blocks with i incorrectly transmitted bit is different than
0% only for i=3. Since the code detected all incorrectly transmitted
blocks with 1 or 2 incorrectly transmitted bits, but there are blocks
with 3 incorrectly transmitted bits in which the error is not detected,
the number of errors that the code surely detects when the length of
the input blocks is n=3 symbols from . is 2. Also, in the case when
the length of the input blocks is n=4, the smallest value of i for
which the percentage of undetected incorrectly transmitted blocks
with i incorrectly transmitted bits is different than 0% is 3.
Therefore, we conclude that in this case the code surely detects also
up to 2 incorrectly transmitted bits. The same conclusion holds also
in the cases when the length of the input block n is 5 or 6 symbols
from the alphabet 3. For input blocks with length greater than or
equal to 7 symbols, the percentage of undetected incorrectly
transmitted blocks with 2 incorrectly transmitted bits is positive
(there is the orange pillar), from where follows that in this case the
code surely detects 1 incorrectly transmitted bit.

1,00%
0,80%
0,60%
0,40%
0,20%
0,00%

lenght of input block n

Hi=l mi=2 i=4 Wi=5 mi=6

12 13 14 15 16 17 18 19 20

i=3

6,00%
5,00%
4,00%
3,00%
2,00%
1,00%
0,00%

10 11

lenght of input block n

Hi=l Wi=2 Wi=3 mi=4 Wi{=5 Wi=6

14,00%
12,00%
10,00%
8,00%
6,00%
4,00%
2,00%
0,00%

24 28 32 36 40 44 48 52 56 60 64 68 72

lenght of input block n

Hi=l Wmi=2 mi=3 mi=4 Wi=5 Wi=6

Fig. 2 Percentage of undetected incorrectly transmitted coded blocks with i
incorrectly transmitted bits when input blocks have length n symbols from
the alphabet Y'in the case when the redundancy is 12 bits.
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The results when r=3 are given in Fig. 2. In this case the length
of the redundancy is 4 symbols from the alphabet > (i.e., 12 bits in
the binary representation). Therefore, in this case the length of the
input block must be greater than or equal to 4 symbols from }..
From Fig. 2, we can see that in the case when the redundancy is 12
bits, the code surely detects up to 4 incorrectly transmitted bits
when the length of the input block is 4 or 5 symbols from X. When
the input block has length 6 symbols, the code surely detects up to 3
incorrectly transmitted bits, while when the input block has length 7
symbols, the code surely detects up to 2 incorrectly transmitted bits.
When the input block has length greater than or equal to 8 symbols,
the code surely detects 1 incorrectly transmitted bit.
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Fig. 3 Percentage of undetected incorrectly transmitted coded blocks with i
incorrectly transmitted bits when input blocks have length n symbols from
the alphabet 2 'in the case when the redundancy is 15 bits

Similarly, when the parameter r=4, the redundancy is 5 symbols
from X (i.e., 15 bits in the binary representation) and the length of
the input blocks n>5 (Fig. 3). When the length of the input block is
5 symbols, the code surely detects up to 5 incorrectly transmitted
bits, while when the length of the input block is 6 symbols, the code
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surely detects up to 4 incorrectly transmitted bits. For input blocks
with length 7 or 8 symbols, the code surely detects up to 2
incorrectly transmitted bits. When the length of the input block is
greater than 8 symbols, the code detects for sure 1 incorrectly
transmitted bit.

OoORLrNWkhUIO

I I BBl ol
3 4 5 6 7 8 9and

more

number of errors that the
code surely detects

length of input block n

M 9 bits redundancy 12 bits redundancy

15 bits redundancy

Fig. 4 Number of incorrectly transmitted bits that the code surely detects
when the length of the input blocks is n symbols from the alphabet }'and the
redundancy is 9, 12 and 15 bits.

In Fig. 4 and Fig. 5 are presented the numbers of incorrectly
transmitted bits that the code surely detects when the redundancy is
9, 12 and 15 bits. On x-axis in Fig. 4 is given the length of the input
block, on y-axis is given the number of errors that the code surely
detects, while the color of each pillar represents the length of the
redundancy.

From Fig. 4 we can see that when the length of the input
block is fixed, if longer redundancy is added to the input blocks,
then the number of incorrectly transmitted bits that the code
detected for sure is greater or at least equal to the number of
surely detected incorrectly transmitted bits when a shorter
redundancy is added. This is expected result since longer
redundancy means that each information symbol is controlled by
more redundant symbols.

code surely detects
O B, N W & U1 O

9 bits 12 bits 15 bits

number of errors that the

redundancy redundancy redundancy

H3 E4 m5 m6 m7 EH8 H9and more

Fig. 5 Number of incorrectly transmitted bits that the code surely detects
when the length of the input blocks is n symbols from the alphabet }'and the
redundancy is 9, 12 and 15 bits.

On Fig. 5 on x-axis is given the length of the redundancy, while
the length of the input blocks n is represented with the color of the
pillars. As we can see from Fig. 5, regardless of the length of the
redundancy, when the length of the input block increases and
the length of the redundancy is fixed, the number of errors that
the code surely detects decreases or remains the same.

As we can see from Fig. 4 and Fig. 5, the best result from
the aspect of the number of errors that the code surely detects is
achieved when the length of the input blocks is 5 symbols from
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the alphabet X and the redundancy has length 15 bits. This
means that from the aspect of the number of errors that the code
surely detects, it is best to divide the input message into blocks
of length 5 symbols from X and to code these blocks such that
the redundancy is 15 bits (i.e., to choose the parameter r in the
model to be 4). In this case the code will detect for sure every
incorrectly transmitted coded block with up to 5 incorrectly
transmitted bits.

4, Conclusion

The results for the number of errors that the code surely detects
when the given binary matrices A, B of order 3x3 and zero matrix C
of order 1x3 are used for coding are the following:

In the case when the redundancy has length 9 bits, the code
surely detects up to 2 incorrectly transmitted bits when the length of
the input block is smaller than or equal to 6 symbols from .. For
input blocks with length greater than or equal to 7 symbols, the
code surely detects 1 incorrectly transmitted bit.

When the redundancy is 12 bits, the code surely detects up to 4
incorrectly transmitted bits when the length of the input block is 4
or 5 symbols from the alphabet >, up to 3 incorrectly transmitted
bits when the input block has length 6 symbols, up to 2 incorrectly
transmitted bits when the input block has length 7 symbols and 1
incorrectly transmitted bit when the input block has length greater
than or equal to 8 symbols.

When the redundancy has length 15 bits, the code surely detects
up to 5 incorrectly transmitted bits when the length of the input
block is 5 symbols, up to 4 incorrectly transmitted bits when the
length of the input block is 6 symbols, up to 2 incorrectly
transmitted bits when the length of the input blocks is 7 or 8
symbols. The code surely detects 1 incorrectly transmitted bit when
the length of the input block is greater than or equal to 9 symbols.

When the length of the input blocks is fixed, the number of
errors the code surely detects does not decrease with increasing
redundancy length. If the length of the redundancy is fixed, then
when the length of the input block increases, the number of errors
that the code surely detects decreases or remains the same.

In order to achieve largest number of surely detected incorrectly
transmitted bits, the input message should be divided into blocks of
length 5 symbols and each block to be coded separately such that
the parameter of the model is r=4.
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Abstract: In this paper, a computer simulation of a new technology of thick-sheet rolling, including rolling in rolls with a relief surface
followed by rolling on rolls with a smooth barrel to the desired size. The analysis of effective plastic deformation, hydrostatic pressure and
temperature field was carried out according to the results of modeling. According to the results of the analysis of effective strain, maximum of
processing in the first pass receives the ridge area, but after the second pass observed alignment distribution of this parameter over the cross
section. The study of the temperature field showed that the greatest temperature difference in the cross section occurs when rolling in relief
rolls, in the future when rolling in smooth rolls due to the increase in the contact surface area, this difference decreases. Analysis of
hydrostatic pressure showed the presence of both compressive and tensile stresses in the deformation zone. Such distribution is caused by the
presence of a relief surface after 1 pass in the further alignment of the strip profile, which occurs both in the longitudinal and transverse

directions.
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1. Introduction

Obtaining high-quality products, i.e. products that fully meet the
needs of the consumer, realizing the greatest economic effect and
having the highest technical, economic and operational indicators,
in metallurgical and machine-building production is mainly
associated with the development of new technological processes.
Thus, one of the primary and most urgent tasks of metallurgical
production is to obtain high-quality cast billets, as well as the
modernization of existing and development of new technological
schemes of rolling capable of providing the study of the cast
structure, a high level of mechanical properties and performance of
the finished product. Currently, the use of technological processes
of rolling with the use of classical tools and existing deformation
schemes do not fully provide the required level of mechanical and

operational properties due to the uneven distribution of the degree
of deformation in the metal volume. Therefore, a promising
direction to improve the quality of finished products is the
development of new deformation schemes, including those
implementing intensive shear or alternating deformation in the
entire volume of the processed metal.

For introduction into production, a new technological scheme
for rolling thick-sheet blanks was proposed, which implements
intensive shear deformation without significant changes in the
geometric parameters of the original workpiece. This technological
scheme includes rolling in rolls with a relief surface followed by
rolling of relief blank in rolls with a smooth barrel to the desired
size. The technological scheme is presented in figure 1.

b

a) rolling in rolls with a relief surface; b) alignment and subsequent rolling in rolls with a smooth barrel
Fig. 1 Scheme of rolling according to the proposed technology

The surface of the relief rolls is made in the form of annular
grooves forming projections and depressions of trapezoidal shape
along the entire length of the roll barrel and located at an angle of
90° degrees to the rolling axis [1]. At rolling in rolls with a relief
surface there is an introduction of trapezoidal segments of
protrusions in the workpiece and due to features of the form there is
a displacement of a part of metal in deepening of hollows. As a
result, the intensification of shear deformation along the section of
the workpiece is carried out with the formation of alternating
protrusions and depressions on the surface of the workpiece in the
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form of trapezoidal segments. During the subsequent rolling of the
workpiece in smooth rolls, conditions are created to ensure the
alternating flow of metal when alignment the surface of the roll
with the preservation of the original geometry of the workpiece.

The purpose of this work is to study the influence of the
proposed deformation scheme on the stress-strain state of the metal
and the distribution of the temperature field over the cross-section
of the workpiece.
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2. Computer model of process

The use of only theoretical methods of analysis of technological
processes can not be effective for a number of reasons. To
implement an objective and more accurate analysis, in addition to
theoretical calculations, it is necessary to resort to new innovative
technologies. One of the most effective technologies productive in
the development and research of materials processing pressure is
computer modeling. One of the most productive and popular is the
Simufact Forming software package - a specialized software
package designed to simulate the processes of metal forming.

Based on previous studies [2], when modeling a new
technological scheme of rolling, including rolling in relief rolls, it
was decided to use relief rolls with an unequal ratio of the
protrusion to the cavity, providing the same values of the roll gap at
different points (figure 2a). The use of such rolls allows to
implement a simple shift scheme, which most favorably affects the
preservation of the original dimensions of the workpiece than the
use of rolls with an equal ratio of the protrusion to the cavity (figure
2b), where in addition to the shift is carried out and compression on
the inclined sections of the rolls.

b)

a) unequal ratio of the protrusion to the cavity; b) equal ratio of the protrusion to the cavity.
Fig. 2 Variants of ratio of the protrusion to the cavity

When constructing the geometry of relief rolls for modeling, the
following dimensions were adopted:

- diameter of the proposed roll-embossed surface for the clamps
is 200 mm;

- barrel length 380 mm (these values correspond to the
geometric dimensions of rolls for existing laboratory mill DUO
200);

- depth of the depression is equal to the height of the protrusion
is 10 mm.

- bevel groove on the projections and depressions is 45°.

The design of the gap in the relief rolls is shown in figure 3. The
total gap between the two opposite cavities of the roll was 20 mm.

Smooth rolls were made with geometric dimensions: the diameter
of the barrel rolls is 200 mm, barrel length is 380 mm.

After importing the geometry files into the Simufact Forming, a
computer model was obtained (figure 4) consisting of 3 consecutive
rolling stands: the first stand with relief rolls, where the workpiece
undergoes shaping and shear deformation, the second and third -
with rolls with a smooth barrel. The second and third stands serve to
align the relief shape of the workpiece obtained in the first pass to
its original geometric shape (flat form), while the alternating
deformation is realized in the metal, contributing to a more
intensive study of the original metal structure.

H

Fig. 3 Gap design in relief rolls

The following technological parameters in computer modeling
of the process were used:

Rolling was carried out at room temperature (20°C);

The temperature of the workpiece before rolling was 1000°C;

The thermal conductivity coefficient was 7000 W /(m?-°C) ;

The Siebel friction model (the contact stress exceeds the yield
strength);

Friction coefficient was 0.7;

The rolling speed was 1.25 rad/s.

The initial blank is a thick sheet of rectangular shape with
dimensions h x b x | = 10 x 140 x 200 mm. Material for the
workpiece the steel AISI 1015 was selected.
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Fig. 4 Model of rolling process by new technology

3. Simulation results

The whole rolling process can be divided into three main stages.
At the first stage, the preheated to the temperature of rolling
beginning the workpiece is fed into the roll gap of the proposed
design and a single compression in the first pass is carried out until
the cavity of the rolls is completely filled with metal (figure 5a).
After rolling in the 1st stand on the workpiece surface the
alternating protrusions and depressions in the form of trapezoidal
segments are formed. This stage is characterized mainly by shear
deformation, but there is also a high-altitude deformation at the
junction of the projections, contributing to the capture of the
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workpiece. In order to align the surface of the profiled workpiece
after rolling in relief rolls, it is rolled in stands equipped with rolls
with a smooth barrel (figure 5b-c) (second and third stage). In this

A\

b)

-

In the study of any metal forming process, the key step before
laboratory or industrial testing is the study of the stress-strain state
(SSS). It will allow to reveal distribution of stresses and strains in
the considered process, and also to define their critical values that
will give the chance to check the working tool on durability.

Effective plastic strain shows the intensity of the workpiece
throughout its cross-section. This parameter also allows you to track
the degree of accumulated deformation, which is cumulative. When
studying the strain state, it is necessary not only to provide a high
level of equivalent strain required for the formation of a fine-
grained structure, but also a uniform distribution of this parameter
over the section of the workpiece.

At the first stage (figure 6a) deformation develops during
rolling in the deformation center in relief rolls. From the results
obtained, it was revealed that the maximum value of effective
plastic strain is concentrated at the junction of the roll ridges and is
0.4. Also, the cross-section of the workpiece is observed shear
deformation, its value is in the range of 0.25-0.35. The difference in
equivalent strain values was 62.5 %. At the second stage (alignment
of the workpiece in smooth rolls) there is a further increase in the

JdhdexinBHan nnacTMyeckas AedoprHaums

AdhdhexTHBHa NnacTHyeckas gedopraps

Addpexiuanan nnactuyeckan aedopuaips

Fig. 5 Stages of the rolling process

case the conditions are created to ensure the alternating flow of
metal when alignment the metal surface when rolling in smooth
rolls with the preservation of the original shape of the workpiece.

c)

equivalent deformation (figure 6b). There is also a cross-section
alignment of the deformation, as evidenced by a decrease in the
difference in the values of the equivalent deformation to 50 %.
From the results at stage 3, it can be said about the uniform
distribution of accumulated deformation (figure 6c). The difference
in equivalent strain values is less than 20 %.

Also, in the SSS study, it is very useful to study the temperature
conditions of the process, since the change in the temperature of the
deformed metal significantly affects the energy-power parameters
of deformation.

Figure 7a shows the temperature distribution on the surface and
in the cross section of the workpiece when rolling in relief rolls. In
the center of deformation during the process there is an increase in
temperature to 1070°C, which improves the plastic properties of the
workpiece. In other parts of the workpiece is maintained uniform
temperature distribution. According to the laws of thermodynamics,
the cooling of the surface layers is faster than the internal, so the
temperature of the end parts of the workpiece has decreased to
970°C.

el TR BN B A

Fig. 6 Effective plastic strain of the workpiece by passes
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Fig. 7 Temperature distribution at each stage of rolling

In the second stage (figure 7b), most of the surface cools to
temperatures of 950°C and only in the deformation center the
temperature reaches 1040°C. At the third stage of rolling (figure
7b), almost the entire surface of the workpiece, in addition to the
deformation center, cools to 920°C. On the cross section, the
temperature difference of the workpiece layers can be clearly
observed.

Another important component in the SSS study is hydrostatic
pressure. Hydrostatic pressure shows the intensity of compressive
and tensile stresses across the workpiece section, i.e. the value of
the stress can take both positive and negative values. By analyzing
this parameter, it is possible to identify those zones that are exposed
to tensile stresses, i.e. are the most dangerous from the point of
view of defects. From the results obtained, it can be concluded that
at the first stage of rolling (figure 8a) at the point of contact of the
roll with the workpiece, the hydrostatic pressure fluctuates between
-150+-100 MPa. The compressive nature of stresses is due to the
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fact that in addition to shear deformation in the place of formation
of ridges and troughs, a certain proportion of high-altitude
deformation occurs. In the undeformed zone of the workpiece, a
pressure value within 3050 MPa is observed. The tension of the
central layers of the workpiece remained unchanged.

At the second stage (figure 8b) in the process of the workpiece
alignment on smooth rolls in the zone of the deformation center, a
hydrostatic pressure within -350+-300 MPa is created. In places the
top of the ridge there are tensile stresses.

In the center of deformation at the secondary alignment of the
workpiece on smooth rolls (figure 8c), the value of hydrostatic
pressure reaches -450+-500 MPa. The cross-section of the
workpiece clearly shows the accumulation of compressive stress at
the base (origin) of the ridges, this is due to the occurrence of
backpressure during the lateral flow of the metal (there is a collision
of the lateral flows of the metal flow during the alignment of the
ridges). The voltage in this area reaches 130 MPa.
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Fig. 8 Hydrostatic pressure distribution

Conclusions

In this paper, a computer simulation of a new technology of
thick-sheet rolling, including rolling in rolls with a relief surface
followed by rolling on rolls with a smooth barrel to the desired size.
The analysis of effective plastic deformation, hydrostatic pressure
and temperature field was carried out according to the results of
modeling. According to the results of the analysis of effective strain,
maximum of processing in the first pass receives the ridge area, but
after the second pass observed alignment distribution of this
parameter over the cross section. The study of the temperature field
showed that the greatest temperature difference in the cross section
occurs when rolling in relief rolls, in the future when rolling in
smooth rolls due to the increase in the contact surface area, this
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difference decreases. Analysis of hydrostatic pressure showed the
presence of both compressive and tensile stresses in the deformation
zone. Such distribution is caused by the presence of a relief surface
after 1 pass in the further alignment of the strip profile, which
occurs both in the longitudinal and transverse directions.
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Abstract: A multiparameter metamodel of the eddy current probe with the volumetric excitation structure is constructed. As variable
parameters of the metamodel, the spatial coordinates of the testing zone, the radii of the excitation coils and the height of their location
above the testing object were used. Due to the use of hybrid construction of multiple neural networks using decomposition of the search
space, an acceptable metamodel ’s error of the eddy current probe with volumetric excitation structure is obtained.
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1. Introduction

Some difficulties associated with the non-uniform sensitivity of
the probe in the testing zone are characteristic for the defectometry
problems solution by the eddy current method. The non-uniform
sensitivity is due to the exponential eddy currents density
distribution (ECDD) in the testing object (TO) and is inherent in
any type of excitation coils, so their using in this case is not
effective. In defectometry the best sensitivity characteristic in the
testing zone is considered to be uniform, the so-called P-shaped. In
this case, the effect of the dependence of the probe sensitivity to the
location of the defect in the testing zone is reduced. Thus, there is a
need to create eddy current probes (ECP) with uniform sensitivity,
and, consequently, the uniform ECDD in the TO zone. One of the
ways to solve this kind of problem is the optimal surrogate
synthesis of the excitation system (ES) of ECP. Using parametric
non-linear synthesis, a sectioned excitation coil system is created
and takes into account the shape, electrophysical parameters of the
TO and a priori given uniform sensitivity characteristic.

In [1] the problem of the linear synthesis of ECP with a given
structure of the excitation field in the TO zone is considered. In
addition, since the linear values of the ECDD were obtained with
the help of linear synthesis, the practical implementation of such
ECP’s is complicated. The cases, when the given field structure is
obtained with non-linear parameters of the probe are not considered
in these work.

The non-linear synthesis problem was solved in [2]. The
problem solution for the optimal placement of the section coils and
their geometric dimensions provided the fixed value of the
excitation current density in them is obtained. The structural-
parametric synthesis method of the source of the electromagnetic
field [3] allows us to solve the problem of choosing the structure of
the ES ECP. However, the presence of a conductive medium and
the speed effect, i.e. at motionless ECP relatively TO is not taken
into account.

2. Background and means to solve the problem

A number of works by the authors of [4-6] are devoted to
solving the problems of the non-linear, in the general case, synthesis
of non-coaxial circular EDP’s with a planar ES structure. A
characteristic feature of a planar ES structure is the presence of M
coils of radii r, (k =1...M) with their uniform Ar = const or non-
uniform Ar =var arrangement, which are at the same height z,
above the TO [7] and switched on counter or consensually “across
the field” (Fig. 1). For such task the synthesis parameters are three
variables J=f(x, y,r): spatial coordinates x, y of the testing zone

and the radii of the excitation coil sections r.
Moreover, the obtained ES of planar design with a uniform or

un- uniform arrangement of coils provides a value of the reduced
error in the uniform of the ECDD in the testing zone from 9 to
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11 %, which is not an entirely acceptable result, and leaves the
desire to further improve the structure of the ES [4-8].
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Fig. 1 Variants of the arrangement of the coil sections of the surface ECP
with a planar ES structure: a) uniform Ar = const; b) un-uniform Ar = var;
MC - measuring coil

3. The solution to the problem

As a result, there is a need to study probes with a volumetric
structure of ES, both of a homogeneous and heterogeneous structure

(Fig. 2).

The arrangement of coils of surface ECP’s of a volumetric ES
can be either uniform when Ar = const, z; =z, = const, or non-
uniform Ar = const, z; # zk (Fig. 3).

In contrast to the planar structure of the ES, the number of
parameters of the synthesis problem increases, i.e. the height of the
coils above TO z, is added J=f (X, y, r,zo) . As in the simpler case
of the planar design of the probe, one cannot do without the ECP
metamodel J=f (x, y,r, zo), which significantly reduces the

calculation time and it becomes possible to solve the synthesis
problem.
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Fig. 2 Volumetric structures of ES ECP: )a) homogeneous; b) heterogeneous
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Fig. 3 Arrangement of sections of coils of surface ECP’s of a volumetric
homogeneous structure ES: a) uniform Ar = const, z; =z, = const; b) un-
uniform Ar = const, z1 # zk
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The aim of the work is constructing a multiparameter hybrid
RBF-metamodel of eddy current probes with volumetric
homogeneous excitation structure.

On the basis of a mathematical model of a moving surface ECP,
which was obtained analytically by solving the direct problem of
electrodynamics in the form of Maxwell’s differential equations [6],
a neural network metamodel that takes into account the change in

four parameters simultaneously J=f(x, y,r, z)) was constructed.

The metamodel for the moving structure of the ES ECP in the form
of ampere-coils located at different heights above the TO (Fig. 3)
with the following initial data: TO thickness d = 10 mm; excitation
current frequency f=>5KkHz; electrophysical parameters of the
material TO o= 3,745-107 Sm/m, =1, the speed of the probe
relative to TO 5 =(40,0,0) m/s was constructed. Variable model

parameters are: spatial coordinates of the testing zone x=-
45..45mm; y=0..35mm; the radii of the «coils ES
r =2 ... 15 mm; their height above TO z,=2 ... 5 mm.

Next, the construction of a metamodel of a moving surface ECP
in accordance with the algorithm proposed in [6, 7] is performed. It
is advisable to approximate the multidimensional response surface
using the heuristic method based on artificial neural networks. This
method has some significant advantages in comparison with to
well-known methods [9]. An RBF-neural network with a Gaussian
activation function as a multidimensional approximator was used.
However, unlike the simpler case of an optimization problem with
three variables, a number of difficulties arise in this case. Firstly,
the response surface has a complex topography, which imposes
certain limitations associated with the need to use a big data array in
the procedure of training a neural network. Secondly, there is a big
range of ECDD values in the range of radius changes. This is
especially true for the region beyond the ES, which entails an un-
uniform distribution of the ECDD values at the points of the
experiment plan (Fig. 4), which necessitates the decomposition of
the search space. All this greatly complicates the constructing of a
multiparameter metamodel and it is almost impossible to implement
it on the simplest, so-called single RBF-neural networks.

Scatterplot of J_plan against J_plan; categorized by Subset
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beyond the ES

The decomposition along the height of the probe and along the
radius manages to partially level a number of these difficulties. The
decomposition along the height of the probe above the TO is
performed into three subregions: I, (2<z<3 mm),
I, 3<z<4mm), Ill,(4<z<5mm). The decomposition along
the radius of the coil turns is performed into six subregions:
I, (2<r<3mm), II, (3 <r<5mm), I, (5<r<8mm),
IV, (8<r<10mm), V,(10<r<12mm), VI, (12 <r <15 mm).
Additionally, if necessary, the radius of the search space is further
divided into two subregions - directly under the turns of the coil
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sections and beyond them. In order to construct the metamodel as
accurately as possible, the number of points of the experiment plan
at which the eddy current density is calculated is set different for the
area under the turns of the coil sections and beyond them. Thus, it is
possible to simplify the architecture of a single RBF-neural network
and achieve a certain balance between the accuracy of the
construction of the metamodel and the number of points in the
experiment plan of the Nigining. In this case, not classical methods of
experiment planning are wused, but computer methods of
homogeneous filling with search points of hyperspace, namely,
points of the Sobol’s LP.-sequence &, &, ..., &, [10]. So, for
example, for the subregion Iz, and all subregions along the radius
I, - VI, where such LP_-sequences as &, &, &, & in the region
immediately under the coil sections, and &, &, &, & realized
beyond it. Those, we have the arrangement of points of the LP.-
sequence in a multifactorial space, respectively, in the x and y
coordinates of the testing zone, in the radius r of the excitation coils
and the height of their location above the TO z, (Fig. 5). The
number of points for each subregion is set individually depending
on the size of the excitation coil and, accordingly, the size of the
region under it. Accounting the symmetry of the ECDD concerning
to the coordinate axes also influences the choice of the number of
points, i.e. for a moving probe they are specified for | and Il
quadrants. For example, for I, - 11, the size of the testing area
directly under the coil is x =- 17...17 mm; y = 0...13.5 mm. For the
most accurate description of the behavior of the response surface,
the number of points for the training sample was chosen
Niraining = 1749 (Fig. 6), while beyond the region - Niraining = 1198.

3D Scatterplot of r against x and y; categorized by Subset and Subset
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Acceptable accuracy of the metamodel was obtained using
hybrid neural network construction. This implies the construction of
several cascades of neural networks with subsequent additional
application at each committees cascade (Fig. 7) [6]. As a function
of activation of neurons in a hidden layer of an RBF-network the
Gauss function is used. Then the output of the neural network is
formed by a linear combination of the outputs of the neurons of the
hidden layer and is described by the formula:

2 2 2 2
j(x,y,r,z):zm:vwexp (X_Cxi) +(y_CYi) -:(r_cri) +(Z_Czi) ,

i1 a;

where m is the number of neurons in the hidden layer; w; is the

weighting coefficient of the output neuron with the i-th neuron of
the hidden layer; c;, Cyi, Cri, C4 are coordinates of the center of the i-
th neuron; a; - the width of the i-th neuron.
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Fig. 7 Hybrid construction of a neural network metamodel

For the network’s committee only networks with the
productivity of the training, testing, and controlling samples of
more than 90 % are used. The number of cascades is determined by
the obtained value of the mean absolute percentage error MAPE, %.
The best models were selected according to a combination of
objective statistical indicators [10] and a subjective assessment of
dispersion diagrams and histograms of residues.

Table 1 shows the obtained values of MAPE, % at the stage of
training and reconstitution of neural networks for several
decomposition subregions.

4. Results and discussion

Verification of the metamodel was carried out by checking the
correctness of reconstitution of the response surface in all
subregions on the sample, which has a bigger number of points than
during training, i.e. Nyeconstitution > Niraining: 10 illustrate this, Fig. 8
shows the dispersion diagrams of the values of the
multidimensional approximation function for one of the I,-1lI;
subregions at the stages of training the neural network and its
reconstitution.
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Scatterplot of J_plan_ogr against J_1+J_2+J_3+J_4+J_5; categorized by Subset
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The adequacy of the obtained metamodel was evaluated
according to the statistical F-criterion based on the following
indicators: the sum squares of the regression and residues ones; the
average square of the regression and residuals at a significance
level of 5% [10]. The information content of the constructed
metamodel is controlled by the coefficient of determination.

Table 1: Values of MAPE,% of the obtained multi-parameter hybrid neural
network metamodel of ECP for several decomposition subregions.

Decomposition Niraining/ MAPE,%
subregions Nreconstitution stage stage
training reconstitution
1,-111; (beyond coil) 1198/2186 16,72 21,17
1,-11T; (under coil) 1749/3680 19,09 21,31
11-1 (under coil) 900/1250 4,35 6,22

Thus, due to the use of hybrid construction of multiple neural
networks using decomposition of the search space, an acceptable
error in the metamodel of the volumetric structure of the ES EDP is
obtained.
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MODELING AND SIMULATIONS OF AN UPPER LIMB EXOSKELETON
DESIGNED FOR REHABILITATION AND TRAINING
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Abstract: The work presents a study of an upper limb exoskeleton designed for rehabilitation and training. While in the first stages of
rehabilitation, when the patient is unable to move alone, the exoskeleton must be rigid, in the next stages it should be able to respond to any
movement made by the patient. The key feature here is transparency: the robot must be able to “hide” if the patient is able to make the
movement without assistance. The aim of the work is to identify and evaluate an appropriate solution of the upper limb exoskeleton that
provides transparency and natural safety on the one hand, and force impact and performance on the other. In the paper, the mechanical
model of the exoskeleton was shown. The mechanical structure is similar to the structure of the human arm. Through the kinematic model,
the direct and inverse tasks of kinematics are solved using the Octave matrix software. The upper limb exoskeleton is designed as a haptic
device that can perform tasks in virtual reality. Simulations of the interaction force between the patient and the exoskeleton were conducted
also using the Octave software. Here, an assessment of the interaction force was made as a result of the exoskeleton passive impedance and
the active control of the exoskeleton. Finally, conclusions and development recommendations are given.

Keywords: EXOSKELETON, REHABILITATION, PASSIVE IMPEDANCE, INTERACTION FORCE, SIMULATIONS

1. Introduction

The exoskeleton must be capable of both: to generate a high
level of forces to sustain, assist, and/or to perturb the motor
capabilities of the patient; and without perturbing to follow human
movements which have large velocity and acceleration peaks, thus
requiring a high level of dynamic interaction [1], [2].

As soon as the patient has recovered a minimal amount of motor
capacity [3], [4], shared control of movement must be possible.
Therefore, one key feature that rehabilitation exoskeletons have to
exhibit is transparency: the robot must be able to “hide” if the
patient is able to make the movement without assistance [5]. The
forces that must be overcome when moving the robot are produced
by mechanical impedance of the robot including inertia, friction and
stiffness. Gravity forces must be added to these forces as well.

There are two main approaches to reduce the device impedance:
the active and the passive approaches. A more feasible way is to use
active control. This compensation can take the form of the model
feedforward [6] or feedback control [7]. The passive approach
which is independent of the servo-responses provides increased
safety and maintains the transparency.

Various approaches are known to implement passive
impedance. All of them require the use of a passive or natural
compliant element. The so-called “serial elastic actuation” [8], [9] is
the most well-known approach to realize passive compliance. The
values of the high impedance are limited to the values of the elastic
link stiffness.

One of the most common approaches to implement natural
compliance is the usage of pneumatic artificial muscles (PAM),
[10]. Compared to other actuation systems, high power/weight and
power/volume ratios allow pneumatic muscles to be a good solution
for lightweight actuation design.

The aim of the work is to reveal the results of modelling and
simulation of an upper limb exoskeleton for rehabilitation and
training that ensures transparency and natural safety on the one
hand and force impact and performance on the other.
of

2. Mechanical structure and actuation

exoskeleton arm

One way to achieve the design goal is to build an exoskeleton
developing the passive approach. This means having extremely
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light attachments to the limbs, and putting all the heavy exoskeleton
components on the torso or the ground. Thus an exoskeleton with
light segments was developed. The exoskeleton mechanical
structure (Fig.1a) consists of two arms L and R, each consisting of
four movable segments 1, 2, 3, 4. The two arms are mounted on a
rigid structure that is fixed to the base behind the operator's back as
shown in Fig.1.

All segments of the arm are made of aluminium, they have
adjustable length, thus allowing quick and easy adjustment
according to the user’s size. Each arm has four active joints J1, J2,
J3 and J4 resembling the natural motion of the human arm from
shoulder to elbow. A CAD view of the exoskeleton prototype is
shown in Fig. 1 b). The summed masses of the four main segments
of the arm calculated from the CAD program are M1=0.302kg,
M2=0.303kg, M3=0.271kg and M4=0.122kg. The lengths of the
exoskeleton arm and forearm in the initial setup are L1=0.286 m
and L2=0.370 m respectively. The exoskeleton is designed so, that
it covers the requirements of “Activities of daily living” (ADLs) as
they have been assessed in [11]. The ranges of exoskeleton joints
are: J1(110°), J2(120°), J3(150°), J4(135°).

P —

:\ - (‘)‘Ez,x —..—..\,_—4!2

RJI ilL

a) b)

Fig. 1 Exoskeleton arms: a) mechanical structure; b) CAD view of the
prototype.

The actuation system of exoskeleton arm should have the
following advantages: excellent power/weight ratio with inherent
safety, natural compliance, low cost. Self-made braided pneumatic
muscle actuators (PMA) are used to achieve these advantages. The
muscles are used not only singly, but also in parallel groups as
bundles [12]. Joint motion/torque on the exoskeleton arm is
achieved by antagonistic actions through cables and pulleys, driven
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by the pneumatic bundles. All actuators are mounted on the exo-
shell on the operator’s back. A selection of bundles with different
number of muscles for every joint is performed to ensure nominal
torques in the joints.

3. Mechanical model of exoskeleton arm

The mechanical model of the exoskeleton arm was build up,
according to the kinematics scheme shown in Fig. 1. The kinematics
structure includes 4 rotation joints with h = 4 DoF. Independent
parameters for evaluation are the rotations in the four joints gy, 0y,
gs and g4, corresponding to the four basic motions of the upper
limb: shoulder abduction/adduction, shoulder flexion/extension,
elbow flexion and shoulder med./Iat. rotation.

1) q:[qlv--rth
The coordinates of the end-effector (EE) are presented by the
vector

) X=[Xg... X, .v<6

Jacobian matrix is built using the Octave Software,

I [%}
oq
The direct task of kinematics is solved regarding positions and
velocities. Assuming that the operator hand is connected to a point
EE (end effector), we will further consider exoskeleton positions
only, and we will accept the operating space as 3 dimensional (v=3).

The vector of end-effector coordinates (2) will be (3 x 1)
dimensional, and Jacobian (4) will be (3x4) dimensional.

®

Using the pseudoinverse of the Jacobian [J +] in the Octave
Software and an iterative procedure using small position deflection
on the selected path, inverse kinematics is solved and the
corresponding angles and velocities of the joint are found:

@ 4=0X

Denote by

(5) Q= [Ql:---:Qh]T
the (h x 1) vector of the generalized torques in the joints in the basic
chain corresponding to the generalized parameters (1) and by

© F=[F.F,FJ
the (3 x 1) vector of the external forces applied at the end effector
and corresponding to the coordinates (2) of the end effector. The
link between the external forces (6) and the effective generalized
torques (5) can be defined according to the principle of virtual work
as follows
-
@ Q=JF
In virtual reality tasks, the vector of the external forces (6)
represents the desired force on the end effector, when the user is in
contact with a virtual surface.

The gravity of exoskeleton links and the gravity of human arm
influences on the behaviour of the end-effector. The (4 x 1) vector

(8) G :[le---rG4]T

61

is the vector of gravity torques, generated at the exoskeleton joints.
Its components are determined by the mass of the links and their
centre of mass positions in the base frame.

4. Interaction “patient— exoskeleton” as a result of
the exoskeleton passive impedance

If a rehabilitation robot is completely transparent, the
interaction force initiated by the patient between him and robot is
zero. The subject of the present simulations is to evaluate the
interaction force between the patient and the exoskeleton as a result
of the exoskeleton passive impedance. As rehabilitation robotics,
especially upper limb robotics, operate at high torques at low
velocity, the interaction force includes mainly gravitational forces,
elastic forces and frictional forces.

An experiment has been conducted on the influence of
gravitational forces on the end effector motion in a curvilinear path,
such as a circle, in the OXY plane. (Fig. 2a). At the points of the
circular trajectory, the inverse kinematics problem (4) is solved by
the Octave Software and the corresponding joint angles are found.
For each point in the procedure, the joints torques (8) generated by
the gravitational forces are calculated. From these torques, the
inverse solution of (7) is made and the equivalent force of EE (6) is
calculated. Fig. 2 a) depict graphically the change of this force, and
Fig. 2 (b) shows the change of its components along the axes of the
Cartesian coordinate system OXYZ.

FIN]

a) b)

Fig. 2 Gravitational influence in guiding the end effector in a circle with
radius 0.18 m: (a) change in the interaction force; (b) modification of the
components of the interaction force.

Fig. 3 shows the results of a similar experiment when the arm is
in a different configuration and the end effector moves in a circle
with smaller radius. Fig. 3 a) depict graphically the change of end
effector force, and Fig. 3 (b) shows the change of its components
along the axes of the Cartesian coordinate system OXYZ. Joint
moments as a result of arm gravity are shown in Fig.3 c).

¥ [m]
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b)

Fig. 3 Gravitational influence in guiding the end effector in a circle with
radius 0.05 m: (a) change in the interaction force; (b) modification of the
components of the interaction force; (c) joint moments as a result of arm
gravity.

©)

In motion initiated by the patient to maintain the end effector
trajectory, in cases without feedback or without mechanical model
compensation, the force exerted by the patient depends on the
configuration of the arm. As can be seen from the graphs, in some
configurations this force is limited in size. In other configurations
and special positions, the interaction forces are multiplied several
times. Ensuring transparency in these situations can be achieved
through active control, by changing the exoskeleton arm
configuration, by changing contact points, and more.

At the initial moment of “patient - exoskeleton” contact, the
interaction force is mainly the result of elastic displacement. The
exoskeleton passive elasticity is determined by the compliance of
the pneumatic drive. For selected design parameters such as:
number of muscles in each bundle m = 7, wheel radius r = 0.04 [m],
maximum feed pressure of 600 kPa, joints compliances reache
values B;j = 0.031 [rad / Nm], i =1, ..., 4, [12].

The exoskeleton compliance in Cartesian space represents a
function of the joint compliance and joint positions, involved in
Jacobian J:

_ T
) B= JBpJ
Above, B represents a (3x3) symmetric matrix of end effector
linear compliance and By, represents (4x4) diagonal matrix of joint
compliance.

The end effector compliance (11) is calculated for the specified
values of joint compliances in the four joint By;. The calculations
are consistent with changing situations in the four joints of the arm
respectively in 0, 55%.30% 30° in the range of joint motions. The
results are shown in Fig. 4 using a compliance ellipsoid. The
experiment shows that there are large differences between
compliance at different points, as well as between compliance in
different directions from a given point. Transparency is directly
dependent on the type of compliance represented by compliance
ellipsoid with a certain shape.

Fig.4. End effector passive compliance at workspace points.
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5. Interaction “patient— exoskeleton” as a result of
active control

The passive impedance of the pneumatic actuation takes care of
the initial response in order to provide security and ensure the
transparency but the active impedance creates a subsequent
response that is generated by the position feedback and feed-
forward compensations.

An open-loop impedance controller with feedforward gravity
compensation is selected [2]. This type of force control is called
open-loop because there is no force feedback from the device to the
controller to regulate the force output of the exoskeleton end
effector as it is illustrated by the control block diagram in Fig. 5.

Virtual Engine in the controller on Fig. 5 according to reference
impedance value Ky generates a desired force command F4 used to
calculate force command in the exoskeleton joints. A software
block G(q) is introduced in order to take into consideration the
effects of the exoskeleton weight. Generalized torques in the joints
as joint force commands are given by the following equation

_ 1T _
(10) AQ=JTF, +G(g) - Q,

Forces that human exerts on the exoskeleton end effector Qy
represent a physical, not control input to the device.

Q Exoskeleton. ||
joint control

Fig.5. Block scheme of impedance control with feedforward gravity
compensation.

In the next experiment, a simulation is made for the case where
the patient leads the hand in a circle as shown in Fig. 3, and the
exoskeleton assures transparency with active control. The force
commands to the joint according to (10) are formed only by the
gravitational compensation command (8) AQ = G, as shown in Fig.
3c). In this case the desired force of the end effector is zero (Qq =
0). In each position, the compensated arm deviates as a result of
gravitation and pneumatic actuator passive compliance. In a series
of points on the trajectory elastic deviation in the joints Aq = B,AQ,
and the corresponding deviation of the end effector AX=JAq are
calculated. Fig. 6a) shows the end effector trajectory after elastic
deviations as result of gravity. When the patient is leading the hand,
he applies force Q, = J'F, to the end effector, which according to
(10) changes the joint torques. As a result, the elastic exoskeleton
arm deviates further.

The task of the impedance controller shown in Fig. 5 is to
provide transparency with low stiffness K, to reduces errors in joint
torque in order to reset the interaction force Fy. Due to low sensor
resolution or other factors as a result of active control, the patient-
initiated force may be different from 0. The magnitude of this force
is determined by the passive impedance of the exoskeleton. In the
experiment, the elastic deviation of the end effector at trajectory
points was calculated when a setpoint of the interaction force F,= [-
5, -5, -5]'N was chosen. In Fig. 6b) arm deviations are shown as
result of the set interaction force. In Fig. 7a) components of the EE
deviation vector dXa dYa dZa are shown as a result of the set
interaction force. The joint moments nd as a result of set interaction
force are shown in Fig.7 b). The results obtained show the
relationship between the deviations from the desired trajectory and
the uncompensated interaction force as a result of the elasticity of
the exoskeleton arm.
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a) b)

Fig. 6. Deviations as a result of: a) gravity and b) as a result of
interaction force.
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Fig. 7. Motion parameters along the selected trajectory: a) components of
the EE deviation vector dX, dY, dZ as a result of the set interaction force; b)
joint moments as a result of interaction force.

The calculated values of the EE deviations determine the
transparency as a result of passive compliance. Of course, this
transparency depends on the amount of passive compliance and the
speed and accuracy of active control. The experiment was
conducted for a minimum value of passive compliance. By
controlling the pressure of the pneumatic actuators, the passive
compliance in the joints can be increased, thus increasing the
transparency and safety of the interaction.

6. Conclusion

The work presents a study of an upper limb exoskeleton
designed for rehabilitation and training. The aim of the work is to
identify and evaluate an appropriate solution of upper limb
exoskeleton that provides transparency and natural safety on the one
hand and force impact and performance on the other.

In the paper, the choice of a mechanical structure is shown to be
equivalent to the structure of the human arm. A mechanical model
of the exoskeleton arm was built. Through the kinematic model
direct and inverse tasks of kinematics are solved using the Octave
matrix software.

The upper limb exoskeleton is designed as a haptic device that
can perform tasks in virtual reality. Simulations of interaction force
between patient and exoskeleton are conducted using the Octave
software. Here an assessment of the interaction force as a result of
the exoskeleton passive impedance and as a result of exoskeleton
active control is made.

It has been shown that for this arm structure the transparency in
some positions and directions is higher than in others. Ensuring
transparency in the extreme and singular positions can be achieved
through active control, by changing the exoskeleton arm
configuration, by changing the contact points “patient -
exoskeleton”, etc. We can also select structure of the arm with more
degrees of mobility and wide working area than the human arm.
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Abstract: The article proposes an approach to the formation of optimal investment portfolios according to the criteria of profitability
and risk based on the predicted returns of assets obtained using fractal econometric models. It has been hypothesized that this method allows
you to create more profitable and low-risk portfolios than in the optimization of historical returns. To test the approach and test the
hypothesis, an attempt was made to form various portfolio options from the shares of two Russian issuers. The results obtained allow us to
conclude that the proposed approach is promising, and further research is needed.
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1. Introduction

The most important way to generate income in a market
economy is investing, which implies the rejection of current
consumption in order to profit in the future. At present, the greatest
interest in the Russian financial sector is caused not by investing in
bank deposits (this tool is characterized by a practically single
probability of the risk of loss of funds due to the comparability, or
even exceeding, of inflation rates offered by banks on deposit
interest rates), but investing in the IT sector, venture capital
investment and the formation of investment portfolios on stock
exchanges. Now, it is more important not just to generate income,
but to guarantee it in conditions of instability along with hedging
financial risks. An important role is played by the development of
innovative methods of portfolio formation that can provide a more
accurate forecast of the financial result.

Despite its considerable age, the most widely accepted theory of
the optimal investment portfolio is authored by G. Markowitz,
based on maximizing the return on investment while minimizing
risk [2]. The risk is usually expressed by the standard deviation of
return. The optimization problem is solved, and the portfolio
structure is selected in such a way as to ensure the best values of its
indicators calculated based on historical returns on assets. It is
assumed that in the future the probabilistic characteristics of the
price of these assets (mathematical expectation, standard deviation)
will remain unchanged, prices will behave in a similar way.

However, investors are not interested in past returns, but in the
future. In practice, a portfolio optimized by historical price values
will be optimal if the future yield dynamics is a constant. Of course,
in real life, in an unstable economy, dynamically changing market
conditions, financial crises, such a premise is not feasible. We
suggested that if we extrapolate the price series of assets included in
the portfolio and calculate the target function not by historical
returns, but by forecast , then the resulting portfolios should have
more attractive characteristics (higher profitability with less risk)
than when applying the classical model of average dispersion.

There are many methods for forecasting the dynamics of the
rates of financial instruments. According to some authors, the most
adequate mathematical apparatus for studying the complex behavior
of financial indicators was developed based on fractal theory
[5],[9]. There are extensions of widely used econometric models
(such as linear ARIMA, non-linear GARCH) that consider the
fractal properties of market time series. Researches have shown
higher efficiency of such models compared to classical ones [6]. In
this paper, we decided to predict the returns of financial instruments
that make up the portfolio, apply the ARFIMA long memory model.

INCOME, STANDARD DEVIATION, FINANCIAL
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INSTRUMENT, FRACTAL

Thus, the purpose of this study is to test the hypothesis that the
formation of an investment portfolio based on forecasted returns
using fractal models can improve the characteristics of the portfolio
in comparison with the approach to calculating the characteristics of
historical returns only. To achieve the goal, the following tasks
were set: to carry out a literature review on the research topic,
describe the input data and the research methodology, make the
necessary calculations, analyze the results and outline the directions
for further work.

The problem of applying and developing the theory of portfolio
investment has been dealt with by many researchers. So, in the
work of E. Gubanova and a group of authors proposed a
methodology for the formation of the most effective portfolio of
securities, considering the current situation on the market
(aggressive, passive or balanced) [4]. The models of W. Sharp and
J. Tobin are used, which are a development and alternative to the
classical model of G. Markowitz. I. Agarysheva et al. proposed an
original methodology for selecting the instruments included in the
portfolio [1]. Article by B. Aouni et al. discusses approaches to
optimizing the portfolio according to several criteria different from
average profitability and variance [2]. Moreover, in all the studied
works, portfolios are invariably formed according to the historical
profitability of the instruments.

The use of fractal analysis to predict financial time series is not
paid much attention to by researchers. G. Caporale [3],
S. Zhelyazkova [8], P. Simonov and R. Garafutdinov [6] and others
dealt with this problem. Their researches show that financial series
have a long memory and can be well described by various fractal
modifications of econometric models. In article [6], on a large data
set, the advantages of such models over classical forecasts in
accuracy are demonstrated.

2. The solution to the problem

We describe the input data and state the research methodology.
It was decided to consider the dynamics of asset prices from
January 2008 to February 2019. Since the portfolio, as a rule, is
formed in order to generate income for a sufficiently long time, the
annual return on asset R, calculated by formula (1) and the annual
standard deviation were taken as optimized characteristics of the
portfolio.

€y R, =

where P, is the closing price of the asset at the beginning of the
month of a certain year, P, — the closing price of the asset at the
beginning of the month of the previous year.
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The initial sample of instruments included ordinary shares of 51
issuers traded on the Moscow Exchange from the list of securities
for customers with a standard risk level. Of these, two instruments
with a rather low level of correlation of annual returns (0.309) were
selected as the base for portfolio formation: ordinary shares of PJSC
“Aeroflot — Russian Airlines” (ticker AFLT) and PJSC “Acron”
(ticker AKRN).

The mathematical formulation of the investment portfolio
optimization problem is described in many works, for example, in
[1]. Optimized variables are the shares of assets in the portfolio.
Additional limitation: the sum of shares must be equal to one. In the
framework of this study, we will perform optimization according to
three criteriaz  maximizing profitability; risk minimization;
maximizing the profitability to risk ratio. Since it is necessary to
compare the portfolios obtained in the new and classical ways, we
will form portfolios in two ways. In the first case, the objective
function is calculated based on the average annual return on assets
(to calculate the average annual return on an asset and estimate its
standard deviation, annual returns for 2009-2018 are used, only 10
values). In the second case, according to the predicted annual
returns in 2019 (the annual return on the asset is forecasted, and the
standard deviation is estimated by several historical annual returns
her with the addition of predicted returns, only 11 values). The
criteria for comparing the portfolios obtained by both methods are
the actual annual portfolio return in 2019 and the standard deviation
of its annual return calculated from the series of historical annual
asset returns with the actual added in 2019.

To model predicted returns, it is necessary to use not annual
historical returns, but monthly ones, since at least several tens of
values are required to identify the parameters of the ARFIMA
model. Monthly returns are calculated similarly to annual ones by
formula (1) — with the only difference being that the interval
between prices Py and P, is not a year, but a month. To switch from
monthly returns to annual Ry, the formula is used:

12
@ R,=> (1+R,)-1-
i=1
where Ry is the monthly yield of the asset, i — the serial number of
the month. Table 1 shows the obtained annual returns (E(R,) is the
average annual return of the asset, o, — the standard deviation of the
annual return).

Table 1: Historical annual returns on portfolio assets.

all the conditions, the models with the lowest values of the BIC
were selected. Table 2 presents the characteristics of the constructed
models (n is the length of the interval on which the model was
trained, that is, the number of monthly returns in a row).

Table 2: ARFIMA Forecast Models the return on each asset in the portfolio.

AFLT AKRN
ARFIMA(1, -0.007408, 1) ARFIMA(0, -0.068203, 2)
n =100 n =103
BIC = -151.71 BIC =-180.49

Figure 1 shows the graphs of the monthly returns of both
instruments from February 2008 to February 2019, as well as their
forecast from March 2018 to February 2019.

0,37
0,27
0,17
0,07

0,03

PR
!J ' e AFLT (forecast)
===AKRN (forecast)

-0,13
-0,23
-0,33
-0,43

Fig. 1 Actual and forecast graphs of monthly asset returns.

3. Results and discussion

As you can see, forecasts tend to the mathematical expectation
of instrument returns and very weakly model their volatility. In the
framework of this study, the most interesting are the characteristics
of the portfolio, the structure of which is optimized based on these
forecasts.

As an optimizer, the Solver tool in Microsoft Excel was used.
Optimization method was GRG Nonlinear. Before each start of the
optimization process, the values of the variables were set to 0.5. Six
portfolios with various objective functions were formed, the results
are summarized in table 3 (R, is annual portfolio historical return,
oph — standard deviation of historical portfolio annual return, R, —
annual portfolio return forecast, o, — standard deviation of portfolio
annual forecast, Ry — annual portfolio return actual, o, — standard
deviation of annual portfolio return, taking into account the actual).

Year AFLT AKRN - . . .
Table 3: Characteristics of portfolios formed in various ways.
2009 -0.7574 0.7541 Portfolio | Target function | Share Share Portfolio
2010 14916 1.5806 number AFLT | AKRN characteristics
2011 0.3767 0.4044 Rer = -0.0461
2012 -0.3513 0.0022 0 _ 05 05 | oy=06191
2013 0.0660 0.0170 Rot / gy = -0.0744
2014 0.4870 -0.1886 Rpr = -0.2226
2015 -0.5333 1.0235 1 Rph — max 1 0 oyt = 0.8896
2016 0.4668 0.5613 Ryt / o = -0.2502
2017 2.1952 -0.0402 Ryt = 0.0352
2018 -0.2266 0.1776 2 oph — Min 0.27 0.73 opt = 0.5789
E(R)) 0.3215 0.2784 Rot / o = 0.0607
oy 0.9216 0.6572 Rpr = 0.0140
3 Ron / oph — max 0.33 0.67 op = 0.5824
The methodology for using ARFIMA(p,d,q) models is Rpt / o = 0.0240
described in [6]. The fractional differentiation operator d is Rpr = 0.1305
calculated through the Hurst exponent of the time series. To assess 4 Rpp — Max 0 1 opt = 0.6251
the fractal dimension of the series and the Hurst indicator, it was Rpi / opr = 0.2087
decided to use the so-called dimension of the minimum coverage, Ry = 0.0364
since only a few dozen observations are required to calculate it 5 Gpp — MiN 027 0.73 | 0,=0.5788
sufficiently accurately [7]. In order to obtain adequate models Rot / oy = 0.0628
suitable for forecasting, that is, satisfying the distribution normality Ryr = 0.1305
Lilliefors test) and the lack of autocorrelation of residues (according 6 Rop / Gpp — max 0 1 o = 0.6251
to the Ljung-Box test) and the significance of the coefficients (at Rot / o = 0.2087

least half of the coefficients should be significant at the 5% level),
etc. It was necessary to change the length of the training interval,
cutting off the values from the front. Among the models satisfying
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As you can see, the parameters of portfolios that are optimized
according to historical and forecast data differ. A balanced
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portfolio, which includes equally shares of both issuers (portfolio
0), is expected to have mediocre characteristics: negative return
(-5%) and high volatility (62%). However, portfolio 1, maximizing
historical profitability, in practice turned out to be even more
unprofitable and risky. Portfolio 4, which maximizes projected
returns, showed returns 35% higher and volatility 26% lower.
Portfolios that minimize historical and forecast risks (2 and 5) are
practically the same (portfolio 5 has slightly better parameters, and
the coincidence of its structure with the structure of portfolio 2 is
due to rounding). This is because the series of asset returns for
estimating the forecast standard deviation differ from the series of
historical returns by adding a single forecast value. However, as you
can see, even this single value slightly improves portfolio
parameters. Portfolio 6, which maximizes the forecast profitability
to risk ratio, showed 12% greater profitability and 4% greater
volatility than portfolio 3, which can also be considered an
improvement in performance.

It turned out that the hypothesis that the use of fractal models
for forecasting returns and the formation of investment portfolios
based on projected returns allows us to improve the characteristics
of portfolios is not rejected. The only experiment conducted showed
that the parameters of the portfolio, at least, do not deteriorate.
Therefore, we can talk about a new method of forming investment
portfolios as a possible application of a fractal approach to
forecasting financial series. In any case, start its discussion.
Moreover, the technique used in this study has several limitations.
Firstly, the classic, simplest method of forming optimal portfolios,
proposed by G. Markowitz, was applied. As part of the first testing
of our methodology, this approach is justified, but it would be more
interesting to try more advanced portfolio models with other
performance criteria (for example, the risk measure can be
expressed by the VaR indicator). Secondly, the choice of securities
for inclusion in the portfolio was carried out arbitrarily and their
number was only two, while a well portfolio with well-diversified
risk can contain up to a dozen instruments. Such a primitive
approach to the selection of assets led to the fact that the portfolios
turned out to be quite low-yield and high-risk. In addition, the
optimizer in some cases completely preferred to leave the only asset
in the portfolio, which does not even allow talking about portfolio
investment. Thirdly, ARFIMA linear models were used to predict
returns, while no predictive analysis of the fractal properties of the
price series of the selected assets was made and no conclusion was
made on the appropriateness of using such models to predict these
series. All these limitations indicate that it makes sense to continue
the study of our proposed method of forming portfolios, to develop
an idea that at this stage exists almost in the form of a concept.

4. Conclusion

Thus, in our opinion, the proven approach to portfolio formation
looks promising and deserves attention. Modeling the expected
dynamics of portfolio returns using modern mathematical methods
instead of using the simplest expected value as predicted returns
allows us to more adequately describe real market processes and, as
a result, to create more profitable and less risky portfolios. The
directions of future research, due to the shortcomings of the
methodology used, may be the following:

» application of a more sensible methodology for choosing
financial instruments to form the portfolio base, increasing the
number of assets in the portfolio;

» performing a prediction analysis of the series and the use of
other, more suitable predictive models (for example, fractal
modifications of the GARCH);

« use of more advanced portfolio models and non-classical
indicators of its effectiveness.
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Abstract: The possibility of assessing of the temperature stability of the hardening phases of dispersion-hardened alloys with the help of
polytherms of electrical resistance is experimentally confirmed. For alloys compositions of which belong to the quasi-binary Cu - Ni,Si cross
section of the state diagram of the Cu - Ni - Si system, a procedure has been developed for calculating of the content of elements dissolved in
the phase, based on copper, using data on temperature dependences of the electrical resistivity on temperature, presented in the form of
regression equations. In the future, it is possible to use the developed model to assess the temperature stability of dispersed phases in alloys
of more complex systems (for example, such as Cu - (Ni - Si) - (Fe - Cr - C)).

KEYWORDS: HARDENING PHASES, POLYTHERMS OF ELECTRICAL RESISTANCE, REGRESSION EQUATIONS

1. Introduction

Dispersion-hardening bronzes are among the best hardened
conductive alloys (for example, heat- and electrically conductive
ones) [1, 2]. However, the upper temperature limit at which such
materials retain acceptable mechanical and conductive properties is
restricted by the stability of inclusions of the hardening phase.
Therefore, when developing new dispersion hardening alloys which
are capable to maintain acceptable characteristics of performance at
elevated temperatures, the problem of a fairly simple and effective
assessment of the temperature stability of the hardening phases with
respect to dissolution in the base remains relevant. Temperature
dependencies of the content of dissolved elements in the base can
serve as one of the indicators of such stability.

Preliminary studies [3] established interconnection between the
configurations of solvus line and the polytherm of the electrical
resistivity of the alloy as a whole for nickel-silicon bronzes
belonging to the quasi-binary Cu — Ni,Si cross section of the state
diagram of the Cu — Ni — Si system. For bronze K1H3 (Ukraine),
the composition of which belongs to the indicated cross section, the
temperature dependencies of the electrical resistivity were
experimentally obtained [3]. Therefore, it seems appropriate to
develop a mathematical model to determine the temperature
dependence of the composition of the phase based on copper on the
polytherms of resistance in order to assess the stability of the
hardening phases, based on the available information.

2. Background and means to solve the problem

For dispersion hardening copper conductive alloys, due to a rather
small volume fraction of the dispersed phase, one can assume that
indicators of the electrical resistivity are determined mainly by the
resistance of the base (for K1H3 bronze - of a copper-based solid
solution), and the effect of the dispersed phase is minor. Therefore,
in the framework of the classical theory of electrical conductivity,
the value of the electrical resistivity of the alloy at a given
temperature can be represented as the result of the combined action
of the following factors:

1. Interference to the movement of charge carriers (electrons)
created by copper atoms, oscillating regarding to the nodes of the
crystal lattice of the solid solution. This resistance R depends
linearly on temperature t, as follows from the equation for the
temperature dependence of the resistance of pure metals

R(t): R, (l+ at), where ¢ is the temperature coefficient of

resistance (K™).

The atoms of nickel and silicon, which are part of the solid solution
based on copper, violate the regular arrangement of atoms in the
crystal lattice, and thereby create additional obstacles to the
movement of charge carriers. At the same time, there is Vegard's
empirical law, which states a linear correlation between the
properties of the crystal lattice of the alloy and the concentration of
its individual elements at a constant temperature [4]. If this is
correct and the content of impurity in the crystal lattice of the solid
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solution is small, we can assume that the obstacles to the flow of
charge carriers due to the presence of lattice distortions created by
nickel and silicon atoms linearly depends on the total content of
these atoms in the solid solution.

3. Thermal vibrations of nickel and silicon atoms in the crystal
lattice of a solid solution create additional obstacles to the
movement of electrons. In the general case, the intensity of the
influence of thermal vibrations of impurity atoms on the value of
electrical resistance of a solid solution cannot be considered as
equivalent to the intensity of the influence of thermal vibrations of
copper atoms. However, the same as in the case with copper atoms,
it increases linearly along with increasing of temperature.
Therefore, the increase of electrical resistance created by thermal
vibrations of impurity atoms is determined by the composition and
temperature of the solid solution. The intensities of the influence of
thermal vibrations of nickel and silicon atoms on the value of
electrical resistance are not equivalent. But for alloys of the
quasibinary Cu — Ni,Si cross section of the state diagram (when the
transition to a solid solution of one of silicon atom is accompanied
by the transition of two nickel atoms), one can consider only the
total content of nickel and silicon in the solid solution (in [5] this
concept for alloys belonging to the quasibinary cross section is
indicated by the term "solubility of Ni,Si silicide in copper").
Within the framework of these assumptions, the temperature
dependence of the electrical resistivity of the alloy can be
represented as:

p(t)= Py +at+a, [X(t)_ Xo]+ Oy [X(t)_ Xo][ (D)
where Oy is the electrical resistance of the alloy in equilibrium state

at 0 °C (Ohm-m), which takes into account, inter alia, obstacles to
the movement of charge carriers due to the presence of impurities in

the solid solution at 0 °C; Q. is the coefficient which takes into

account obstacles to the movement of the electron flux caused by
the thermal vibrations of copper atoms at temperatures other than 0

°C (Ohm'm/°C); t is the value of temperature (°C); @, is the

coefficient which takes into account obstacles to the movement of
charge carriers caused by distortions in the crystal lattice of copper
created by the presence of impurity atoms (nickel and silicon) in it

at temperatures other than 0 °C (Ohm'm /%); X(t) is the “Ni,Si
silicide content” in a copper-based solid solution at temperature t
(Wt.9%); X, is the “Ni,Si silicide content” in a copper-based solid

solution at 0 °C (wt.%); &, is the coefficient which takes into

account obstacles to the flow of charge carriers due to thermal
vibrations of impurity atoms (nickel and silicon) in the crystal
lattice of the solid solution at temperatures other than 0 °C (Ohm‘m
1 °C-%)).
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3. Solution of the problem under consideration
It is often difficult to bring the alloy at a temperature of 0 °C to a
state which is close to equilibrium state as much as possible in order

to determine experimentally the value of O, . In this case, it is

possible to provide calculations in a relative coordinate system,
which implies determining of the content of elements dissolved in
the base at a given temperature relative to their content at some

randomly selected (“reference") temperature t01- Obviously, the

value of the (“reference™) temperature should be chosen based on
the convenience of achieving of the state of the solid solution which
is the closest to equilibrium one at this temperature.

To shift the reference point of the values of resistivity to

temperature t01, expression (1) is reduced to the form
p(t) =Pt (t _t01)+ ay [X(t)_ X0]+
Ty [X(t)_ Xo](t _t01)r @
where X, is the "content of silicide Ni,Si" in a solid solution based

on copper at{y,; ; Py, is the value of the specific electrical resistance
of the alloy determined by the polytherm at the "reference"
temperature t01. This addendum takes into account the influence of
all the above mentioned factors on the movement of charge carriers
at temperature t ), .

For K1H3 bronze, it is convenient to take t01= 550 °C as the
“reference” temperature (the optimal temperature of artificial aging
of the hardened alloy [5]). For this temperature Xgg,= 1.59 wt. %
[5] and Pggo=11.718-10"° Ohm'm [3].

4. Results and discussion

The values of the coefficients, &, , &, and &, were determined by
substituting in (2) the values of the specific electrical resistance of

bronze K1H3 (p(’[)) which were experimentally determined in

[3], and also the equilibrium compositions of the solid solution,
which were determined from the state diagram [5], at the
corresponding temperatures.

To ensure a more complete verification of the adequacy of the
obtained results, the group of data used in the calculation of the
coefficients did not include information on the electrical resistivity
and composition of the solid solution for temperatures lower than

t01= 550 °C. It should be emphasized that the number of obtained

equations exceeds significantly the number of sought-for unknowns.
Therefore, an overdetermined system of equations was solved by
minimizing the residuals using the least-squares method. The

calculated results give the following values of parameters: &, =

Xt~

0.0077-10° Ohmm/ C; ¢,= 2,5004-10° Ohmm /%; «
0.00346:10°® Ohm'm/(°C-%).

The value of @, = 0.0077-10® Ohm'm/°C is close to the tabular
value of the absolute temperature coefficient of the specific
electrical resistance of pure copper (according to [6] &=

0.00736:10® Ohm'm/°C). Even with the above assumptions, the
calculation error is 4.6%. The results of comparison show a good
coincidence between the experimentally determined temperature
dependences of the electrical resistivity of K1H3 bronze and those
ones which were calculated analytically using (2) (Fig. 1), including
results for temperatures below 550 °C, which were not used for
determining of the parameters of the model.It is also worth to pay
attention on the accuracy of model's predictions (2) of the linear
cross section of the polytherm of the K1H3 bronze electrical
resistance at temperatures exceeding the solvus temperature (843
°C), although the experimental points lying on this segment also
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Figure 1 - Temperature dependence of the specific
electrical resistivity of the bronze K1H3.
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were not used in calculations of the model parameters. The presence
of this segment is associated with the completion of dissolution of
the components of nickel silicide in the base. Ni,Si phase which is a
source of saturation of the copper-based solid solution with nickel
and silicon is already absent in the structure of K1H3 bronze at
temperatures above 843 °C (these elements are already completely
dissolved in the base). Therefore, upon further heating, the specific
resistance of the alloy increases only due to an increase of the
average amplitude of atomic vibrations at the nodes of the crystal
lattice. The action of only one factor, the intensity of the influence
of which on the resistance value depends linearly on temperature,
leads to the appearance of an almost rectilinear site on the
polytherm.

However, the determination of the contents of dissolved elements in
a phase based on copper (for equilibrium conditions of the
coordinates of points lying on the solvus line) with the usage of
experimental data on the polytherms of the electrical resistivity of
the alloy is of the greatest practical interest. For this purpose,
expression (2) should be submitted in the form:

X(t) _ p(t)— Po1 ~ a(t - t01)
ay, + oy (t - 1:Ol)
Literature data on the coordinates of points belonging to the solvus

line of the quasibinary Cu — Ni,Si cross section of the state diagram
of the Cu — Ni — Si system [5] are in good correlation with the

+ Xo1 (3)
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Figure 2 - Temperature dependence of the Ni,Si content
in copper based solid solution on alloys belonging to the
quasibinary cross section of the Cu - Ni - Si system

o [J— experimental data [4]

- — calculated for K1H3 bronze according to the
temperature dependence of resistivity
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values

of calculated electrical resistivity [3] (according to

expression (3)) (Fig.2). It should be noted that there is a good
coincedence between the data on the compositions of the solid
solution at temperatures up to 550 °C, information about which was
not used in the calculation of the coefficients of the model.

It should be noted that (3) can also be used to assess the temperature
stability of dispersed phases in alloys of more complex systems
(e.g., Cu - (Ni - Si) - (Fe - Cr - C)) for which state diagrams are
absent in literature sources (therefore, it is not possible to obtain a
priori information on the equilibrium composition of the solid
solution at a “reference” temperature). Although in this case,

expression (3) allows to obtain only the differences X(t)— Xo1:

however, this may be quite sufficient to estimate the temperature
stability of the dispersed phases.

5. Conclusions

The aggregate of the above mentioned facts allows to assume that
the developed model describes quite adequately the interrelation
between the value of the electrical resistivity of the alloy and the
content of dissolved elements in the base. Therefore, the presence of
empirical data on the polytherms of electrical resistivity allows to
determine analytically the content of elements dissolved in the base
of alloy at various temperatures. Having made additional
assumptions, it is possible to use the developed model in the future
to assess the temperature stability of the dispersed phases in alloys
of more complex systems (for example, such as Cu - (Ni - Si) - (Fe -
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Cr-Q)).
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Abstract: A system of two-phase particles (Fe3O4 — FesxTixO4) has been obtained using the sol-gel method followed by hydrothermal
treatment. It is shown that the synthesis conditions favor forming composites that contain titanomagnetite in very low concentration. A
theoretical analysis of the magnetic properties of system was performed using the model of clusters consisting of magnetostatically
interacting particles. The theoretical value of the saturation magnetization and the experimental values of the coercive force can be
explained by the presence of two different magnetic phases.
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where H is the Zeeman field, N; j are shape anisotropy coefficients.
If & # 0, then the free energy can be calculated considering the
Magnetic nanoparticles, especially in the superparamagnetic  change in the magnetic characteristics at the boundary [7].
state, are often used to filter heavy metals, to isolate nucleic acids
and proteins, in target drug delivery and in magnetic hyperthermia
[1-3]. In addition, magnetic nanoparticles are of interest in the
context of environmental magnetism providing valuable k : /i
information on paleoclimate [4, 5]. i i

1. Introduction

In this work, we present experimental data on the synthesized
Fe304 — Fe3xTixO4 composites and the theoretical modeling of their : |
magnetic properties. The complexity of modeling such structures
stems from both magnetic and chemical inhomogeneity of particles.
This requires the use of micromagnetic modeling taking into
account the dipole — dipole interaction and magnetic granulometry
data.

Results of theoretical calculations are in good agreement with
the experimental results obtained using X-ray diffractometry, X-ray
fluorescence, electron microscopy, vibration sample and SQUID-
magnetometry.

2. Solution of the examined problem

2.1 Theoretical model ‘ (1-e-38) 3 €
Let us consider a chemically inhomogeneous two-phase particle Fig. 1. 4 model of a two-phase particle with a boundary of finite

whoge magnetic states can be described using a model developed width o. The characteristic particle size a, elongation g, width of the
previously [6-8]. second phase &

To simplify the mathematical treatment, we assume that each
phase of the particle (Fig. 1) is a uniformly magnetized uniaxial
ferrimagnet with spontaneous magnetizations Ms; u M2 and
dimensionless first-order crystallographic anisotropy constants K;; u
K2, respectively. The inter-phase boundary is parallel to the XZ
plane and divides the particle into two parallelepipeds having
volumes ga’(1-&-8) for the first phase and ga’s for the second

In our calculations, we use a model in which the inter-phase
boundary between chemically different regions is infinitely thin due
to the proximity of their magnetic and structural characteristics. In
the case of grains containing few domains (pseudo-single-domain),
we consider the domain wall as an extended one, so that chemical
inhomogeneity is taken into account by introducing effective

: . parameters.
phase. We consider the case when the external field is parallel to the
Z-axis. This allows us to describe the orientation of the magnetic In this model, a particle can be in four states (indices 1 and 2
moment of each phase using the single angle 6 counted from the Z- number the first and second phases, respectively): 1) §:= 0, 62=0;
axis (the magnetization vector lies in the XZ plane). 2)0i=m 0:=m3)0:=0, 0:=rm 4) 6:= x, 62= 0. Applying an

external magnetic field A (parallel to the Z-axis) does not produce
the additional equilibrium states, but only makes the existing ones
more or less advantageous.

To find magnetic states and construct magnetization curves, free
energy was minimized, including the exchange, magnetocrystalline,
magnetostatic, and Zeeman energies. Free energy of the particle is

written as (5= 0): Thus, an ensemble can contain four types of particles. These
5 5 5 will determine the critical fields of magnetization reversal for a
E = qa*(Ni3Ms; + N33Ms; + (Nll = Niz + K (1= 5)) x given two-phase grain. In the case of an ensemble of identical

X M2, 5in?6; + (Nay — Nag + K10 &)M%5in?6,+Nyy Moy Mgy X particles, the expression for magnetization has the form [9]:

—Ny+nz—n

‘4 M zgnl_nz_n3+n4] (2)
S ’

No

ny
X sinf;sinBy + NpysMg Mg,c050,cos0, — H(1 — &)Mg;cos0; — I(q6H)=c [Ms1(1 — &)
— HeMs,c056,), )
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where c is the volume concentration of two-phase particles in a non-
magnetic matrix, ny = ny(H) is the number of particles in the k™
state, determined from the statistical Boltzmann distribution.

In the case of an ensemble of magnetostatically interacting
particles distributed randomly in a nonmagnetic matrix, an
interaction field Hin produced by all the particles in the ensemble
acts on each particle. Let the random interaction fields Hin: be
uniformly distributed in the interval (—Hmax ; +Hmax) [10]:

Hypax 7 5¢[Ms1 (1 — &) + My, €], if ¢<0.07,

Hppax~1.3Vc[Mg; (1 — &) + My, g], if ¢20.07. 3)

In addition, we use the approximation assuming that when the
external field changes, all the moments that change direction turn
over simultaneously and independently of each other, i.e. the
rotation of one moment does not affect the distribution of the
interaction fields [9]. The magnetization of the ensemble of
interacting particles is then written as:

I(H) =

1 +Hpmax
f max I(H - Hint)dHint‘ (4)

2Hpmay *—H,
The values of magnetization and magnetization reversal fields
obtained using the ensemble model of two-phase particles were
further consistent with theoretical estimates of the hysteresis
parameters and characteristics of anhysteretic remanent
magnetization calculated on the basis of the approach used in [11].

The use of these models can reveal the characteristic features
associated with chemical heterogeneity. It is however pointless to
determine the fine structure of magnetization without detailed
information about the structure of particles. Thus, the aim of this
study is to develop general understanding of the magnetic structure
of chemically inhomogeneous particles. Simplified structures found
in such a study can then be used as initial approximations for
subsequent more realistic calculations.

2.2 Synthesis of Fe,, 0, — TiO, composites

Synthesis of composites based on the Fe,0, — TiO, system
was carried out by precipitation of magnetite in a suspension of
TiO, powder [12]. 4 g of FeCl; - 6H,0 and 2 g of FeSO, - 7H,0
(molar ratio 2:1), were dissolved in 100 ml of distilled water. After
that (0.5, 1, 2 g) of the TiO, powder was dispersed in the solution
for samples TOSL and TO5H, T10L, T20L accordingly. Then 10 ml
of ammonia solution was added to the suspension, and the magnetic
precipitate has been washed using Nd-Fe-B permanent magnet for
particle extraction until pH = 7 was reached and chloride and sulfate
ions were absent. Finally, powders were dried at room temperature.
After that, three powders with different Ti content were
hydrothermally treated in distilled water at 240°C and 50 MPa for 4
hours. Sample TO5H was treated at 470°C and 42 MPa,
respectively, also for 4 hours.

2.3 Methods for the study of physicochemical and magnetic
characteristics

Phase composition of the samples was determined by X-ray
phase analysis using a DRON-3M diffractometer (JSC IC
“Burevestnik”, Russia). Peak identification on the diffractogram
was performed using PDWin 4.0 and Crystallographica Search-
Match software packages. Based on X-ray powder diffractograms,
average crystallite size corresponding to regions of coherent
scattering and the parameters of the crystal lattice unit cell have
been calculated. Samples elemental composition was determined by
electron probe microanalysis using a Hitachi S-570 scanning
electron microscope (Hitachi Ltd., Japan), equipped with Bruker
Quantax 200 microprobe system (Bruker Corp., USA). Qualitative
and quantitative elemental analysis of the samples was carried out
using a portable X-ray fluorescence crystal diffraction scanning
spectrometer Spectroscan MAX-GF2E  with built-in  software
(“Spectroscan” Ltd., Russia).
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To determine the grain size, the specific surface area (SSA) was
estimated using the instrument SORBI N.4.1 (CJSC “META”,
Russia). The volume of adsorbate gas absorbed by the test sample
was compared to the standard sample with a known specific surface
area using the thermal desorption method. Nitrogen was used as the
adsorbate gas. Determination of the specific surface area has been
carried out according to the 4-point BET method. The obtained data
were subsequently confirmed by scanning electron microscopy
(SEM) using a Hitachi S-3400N microscope (Hitachi Ltd., Japan).

Hysteresis characteristics were measured at room temperature
using a PMC 3900 vibrating sample magnetometer (Lake Shore
Cryotronics, USA). Demagnetization curves of the anhysteretic
remanent magnetization (ARM) were measured using an SRM-755
SQUID magnetometer (2G Enterprises, USA), also at room
temperature.

3. Results and discussion
3.1 Physicochemical characteristics

Figure 2 shows the SEM images of the sample. As seen in Figure
1, particles with average size of 100-200 nm form aggregates as
large as a few micrometers.

Figure 3 shows X-ray diffraction patterns for four samples, with
peak designation according to the PDF-2 database.

Fig. 2. SEM images of the sample TOSH
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Fig. 3. X-ray diffraction patterns of the samples TO5SH (4), TOSL (B), T10L
(C), and T20L (D). 1 — a-Fe;O; Hematite 33-664, 2 — TiO, Anatase 21-1272,
3 — Fe;0, Magnetite 19-629, 4 — Fe; 75Ti 2504 Titanomagnetite 75-1373, 5 —
Fe,TiO, Ulvéspinel 34-177

Particle sizes are distributed over a relatively wide range from
few tens to hundreds of nm. Particles are often combined into
agglomerates (clusters) of submicron to micron size. Judging from
the X-ray data, samples may contain at least three magnetic
minerals: magnetite, titanomagnetite and hematite.
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3.2 Magnetic characteristics

Figure 4 shows the hysteresis loop for the TOSH sample.
Hysteresis curves of other samples have a similar shape.

204

M (Am?/kg)
-

204

T T
-100 0 100

Field (kA/m)

-200 200

Fig. 4. Hysteresis loop for the sample TO5H. Only the central part of the
loop is shown for clarity

Saturation magnetization and remanent saturation magnetization
of the TO5H sample are 23.8 A-m%*kg and 4.2 A-m?kg,
respectively. Coercive force and remanent coercivity are 8.8 kA/m
and 18.4 kA/m. Ratios of the remanent magnetization to saturation
magnetization (Mr/Ms) and the remanent coercivity to coercive
force (Hr/Hc) amount respectively to 0.18 and 2.1. Experimental
data for magnetite [13] show that such values correspond to
particles containing few domains (pseudo-single-domain) with
characteristic size > 100 nm. Alternatively, these may be due to
magnetostatically  interacting  superparamagnetic  particles,
combined into clusters with the same characteristic size.

In a model of ARM of single-domain particles [14], it is
assumed that an alternating field of a given amplitude magnetizes
magnetic particles having remanent coercivity Hr approximately
equal to that amplitude. Therefore, the ARM demagnetization curve
by alternating field can be regarded as a proxy for the remanent
coercivity spectrum. Thus, the obtained data make it possible to use
demagnetization curves to describe the distribution over Hic and to

reveal the effective particle size distribution [14].
2.0x10°
1.5x10° 4
2
E
% 1.0x10° 4
=
o
5.0x107
0.0 T T T T
0.0 2.0x10* 4.0x10* 6.0x10* 8.0x10*
H, A/m

Fig. 5. The coercive spectrum of the TOSH sample

Differentiating the ARM demagnetization curve, we obtain the
coercive spectrum of our sample shown in Fig. 5. For this sample,
the coercive spectrum has a maximum around 3 maxima (~ 12, 28,
and 36 kA/m) can be seen. Moreover, the curve is clearly
asymmetric, so that the main fraction of particles has coercivities
between 8-24 kA/m.
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3.3 Theoretical modeling

Changes in the composition and structure on the surface of
magnetic particles associated with the diffusion of titanium atoms
into the crystal lattice of magnetite and/or the formation of
vacancies and stresses result in their chemical inhomogeneity. For
simplicity, we further consider a model of an ensemble of two-
phase magnetic particles of the “magnetite-titanomagnetite” type.
The contribution to the remanent magnetization of hematite can be
neglected, since its spontaneous magnetization is two orders of
magnitude smaller than that of magnetite.

The TOSH sample obtained in the high-temperature conditions
(470°C, 42 MPa) has the most interesting magnetic properties.
Particles and/or agglomerates of three types represent its particle
size distribution: several microns in size, submicron and smaller (of
the order of ten or less nanometers).

To match the models in terms of size and concentrations of
magnetic nanoparticles, we assume their volume distribution s in
the sample to be lognormal [15]. The fraction of the area under the
lognormal distribution curve for a certain range of volumes
corresponds to the fraction of particles having these volumes. Fig. 6
shows an approximate lognormal distribution curve of magnetic
nanoparticles in the selected TOSH sample.
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Fig. 6. Log-normal density function o(x), x=v/vp (vp = (7/6)(dp)’, dp
~50 nm)

Assuming a lognormal distribution of particle volumes, three
groups were identified during the simulation: superparamagnetic
(SP), single domain (SD) and pseudo single domain (PSD) particles
with average sizes (diameters) of about 18, 27 and 60 nm,
respectively.

To estimate the spontancous magnetization, saturation
magnetization, coercivity, concentration, and fraction of the second
phase in a two-phase particle, the model described in section 2.1
was used. In this case, it was assumed that the fraction of the second
(titanomagnetite) phase is approximately 0.5 for SP and SD
particles and 0.01 for PSD (due to the small specific surface area).
A small remanent magnetization and nonzero coercivity of the SP
particles are explained by their interaction in clusters.

Fig. 7 shows the coercive spectra for different groups of
particles obtained using the two-phase grain model.
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Fig. 7. Coercive spectra of two-phase particles after simulation: 1 and 2 - spectra of particles without interaction and taking into

account the interaction, respectively

Notably, the main peaks (1) of the curves not taking into
account the interaction (Fig. 7) agree well with the experimental
ARM spectrum (Fig. 5). The expanded width of the peak in the
experimental spectrum may be due to a greater diversity in the
n,(H) particle types, which can lead to a broadening in H.
Presence of near-zero fields of magnetization reversal for SP and
SD is caused by a transition to intermediate states. For non-
interacting PSD particles, small coercivities are due to the
emergence of a domain structure. In large fields, all magnetic
moments enter the ground state, their orientations being along the
external field. The peaks (2) calculated for interacting case (Fig. 7),
are close to the average H,. for the ensemble of all particles (SP,
SD, PSD).

4. Conclusion

Theoretical modeling of a system of two-phase
magnetostatically interacting particles of synthesized composites
allows us to draw the following conclusions.

The magnetic characteristics of the composites calculated
within the framework of the proposed model agree well with the
experimental data.

The presence of a titanomagnetite phase appears quite likely,
which should significantly affect the magnetic properties, especially
of SP and SD particles. Simulation results best correspond to
experimental data at characteristic sizes of 18, 27, and 60 nm and
volume concentration of 1073, 1073, and 3.3-102 for SP, SD, and
PSD particles, respectively.

Theoretical and experimental coercive spectra show similar
ranges of critical fields. Magnetostatic interaction between particles
can result in a spread of critical fields and thus to a broadening of
the coercive spectra.
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Abstract: A model for calculating the permeability of two-layer powder filter materials (PFMs) is proposed taking into account the overlap
area. Examples of calculating the permeability of PFMs on real powder structures are given.
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1. Introduction

Despite the widespread use of polymeric, paper, and ceramic
materials in engineering, powder filter materials compete worthy
with them, especially in cases where it is necessary to realize the
physico-chemical properties typical for metals and alloys from
which PFMs consist. PFMs are successfully used to solve various
problems: for aeration of the air flow in order to saturate the air-
culture fluid with oxygen when growing aerobic microorganisms in
bioreactors; for dispergation of the ozone-containing air mixture
flow in order to decontaminate the fish habitat (including young
fish) in recirculating aquaculture systems (RAS) and uniform
distribution of vapor flow over the volume of coolant (water) to
control the temperature in working tanks during heat treatment of
milk, milk mixtures and technological media used in milk
treatment; air, water vapor, and oil purification, as well as for other
purposes [1-5].

In practice, two-layer materials are widely used to increase the
operational properties of PFM. One layer is formed by fine particles
and provides the necessary fineness of cleaning. The second layer if
formed by coarse particles and provides sufficient strength and high
permeability of PFM [6, 7]. The problem in this case is the
appearance of the intermediate layer at the boundary of the layers,
the so-called “overlap area”, in which smaller particles fill the pore
space formed by coarse particles [8]. One of the effective ways to
improve the properties of two-layer PFMs is to reduce the thickness
of the fine layer [8]. In this regard, the calculation of the influence
of the overlap area on the properties of two-layer PFMs is of great
interest.

The purpose of this work is modeling of PFM “overlap area” and
calculation of the permeability of this area.

2. Results and discussion

When two-layer materials are produced by co-molding powders of
different fractions in the area of the layer boundary, smaller powder
particles partially fill the pore space formed by larger particles,
making, as noted above, an intermediate layer (overlap area).
Figures 1 and 2 illustrate examples of the formation of such
structures in the production of two-layer materials based on titanium
and copper powders. We determine the effect of the overlap area on
the permeability of two-layer PFMs.

To calculate the permeability taking into account the overlap area,
we consider the case when the porous material consists of two
layers and the overlap area. The first and second layers are
respectively formed from powder particles with sizes D, and D,
with D;> D,. The overlap area (conditionally it can be considered
as the third layer), located between the first and second layers. It
consists of particles of these two sizes. Small particles with sizes D,
are located between large particles with size D;. We denote the
thicknesses of the first layer (substrate), the intermediate layer
(overlap area) and the second layer (fine powder) by h;, hy, and h,,
and the flow rate of the filtered medium through the PFM per unit
time by Q.
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Fig. 1 The structure of a two-layer PFM made of titanium
powders with a particle size of (minus 1000 + 400) and
(minus 100 + 40) um

Fig. 2 The structure of a two-layer PFM made of copper
powders with particle sizes (minus 315 + 200) and
(minus 80 + 40) um

Considering the flow of a liquid or gas through the whole material,
it is possible to write the following according to Darcy’s law [9]:

_kapg,

= @)
uh

Q

where k — coefficient of permeability; Ap — differential pressure on
PFM; S — filtration area; p — viscosity of filtered medium;
h — thickness of PFM.
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For each layer separately, equation (1) can be written as follows:

Q, = XadPr g, @)
phy
k., Ap
le — 122V g 3)
:Uhlz
Q, = k2A7pZ S, 4)
phy

where Apy, Ap1s, Ap,, - respectively, differential pressure on each of
the layers with thicknesses hy, hy,, hy;

S — the filtration area of all layers (the first layer is the substrate;
the intermediate layer is the overlap area and the second layer is
fine powder).

Obviously, the flows of the filtered medium passing through the
whole material Q and through each layer separately Q;, Q1,, Q,, are
equal to each other:

Q=0Q:1=0Q12,=0Qy, ®)
and differential pressure on PFM and its thickness are:

Ap = Ap1+ Ap1a + Apy, (6)

h=h;+hg+h,. )

Based on (1-4), taking into account (5-7), it is possible to
obtain the following equations:

Apy _khy ®)
Ap  k¢h

Apip _khp )
Ap  Kkpph

App _ kb | (10)
Ap  kyh

Summing up the left and right sides of equations (8-10), we obtain
the equation for calculating k:

1:m+m+kh2 ’ (ll)
kih - kph o koh
from which:
K= h . (12)
M My hy
ki kip ko

To determine the coefficient of permeability in the overlap area, we
have the following considerations. Surface sections blocked by
large particles with sizes D, are excluded from the filtering process
of this layer, and therefore its throughput capacity is determined by
the pore space areas of the substrate filled with fine powder with an
area of S, < S. Accordingly, the coefficient of permeability of these
areas can be taken equal to k.

Then, on the basis of the continuity condition of the flow (5), the
value of Q5 can be represented as:

koAp,
uhy,

Qr2 (13)

S
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Equating the right sides of equations (3) and (13) to each other, we
obtain:
ki =k Siz . (14)
S

To calculate S/S;, value, we use the elementary cell model,
according to which the properties of each PFM element are
determined by the elementary cell parameters in the form of a
parallelepiped selected from the regular laying of 8 powder particles
joined by interparticle contacts [9]. Then the value of S;, within
such a cell varies from a minimum value equal to:

2 T2
S12min = D1 _ZD:L ! (15)
to the maximum value:
2
S12max = Dl : (16)

To calculate S;,, we take the average value of this quantity:

Y

SlZcp = D].2 _g Dl2 ’ (17)

Given that:
N2

S=Df, (18)
then:

S 1 (19)

Sz T

8

The resulted equations (11), (14) and (15) make it possible to
calculate the coefficient of permeability of a two-layer PFM taking
into account the overlap area between layers, knowing the values of
the coefficients of permeability of the substrate and the fine layer.
Table 1 shows the results of calculations of the PFM permeability
coefficients for two-layer materials, the structures of which are
shown in Figures 1 and 2, and their experimental values. The values
of the permeability coefficients of the substrate and the fine layer,
as well as the thickness of the overlap layer are determined
experimentally.

Table 1
The calculated and experimental values of the permeability
coefficients of two-layer PFMs

PowQer particle Thickness, mm Coef‘flmentzof pegraneablllty,
size, pm m°<, x10
The calculated
. Experimental values | value of two-
Initial of layer PFM
material| Sub- | of fine | Sub- | 7 lof fine e
strates | layer |strates area layer Sub- |of fine olftwo—over wnthJut
strates | layer ayer -lap overfap
PFM area| area
Titaniu| .
m | ™Y inus
powder 1000 100 +40 3 1,0 15 | 1800 | 7,0 | 14,2 |11,8/ 233
+400
Copper MINYS | inus 80
315 1,7 0,3 1,0 70,0 | 2,16 | 4,17 |4,19( 6,1
powder +200 +40

The analysis of the data presented in the table shows, firstly, a
satisfactory coincidence of the calculated and experimental data
and, secondly, a significant negative effect of the overlap area on
the permeability of two-layer PFMs: its presence reduces the
permeability by 1.46 — 1.98 times when comparing the resulted
calculations and by 1.46 — 1.64 times when comparing the results of




MATHEMATICAL MODELING 2019

calculations with experimental values. This effect can be reduced by
reducing the thickness of the fine layer.

Figure 3 shows the calculated dependences of the permeability
coefficients of two-layer PFMs based on titanium (1) and copper (2)
powders on the layer thickness of fine powder at a constant total
thickness of the porous material, which, when compared with the
calculated data presented in the table, indicate that, for example, a
three-fold decrease in the thickness of the fine layer leads to an
increase in the permeability of PFM based on titanium by 1.4 times,
and based on copper — by 1.8 times. In the second case, the
permeability coefficient of the material is higher than the value of
the permeability coefficient of PFM with the initial thickness of the
fine layer, calculated without taking into account the overlap area.

k,szlCl‘3
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14 <
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10 \ »

8 \<
; N
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~

06

~~—
0.8 1

0 02 04 12 14

Fig. 3 The dependence of the permeability coefficient of two-layer
PFM on the thickness of the fine layer:
1 — titanium-based PFM, 2 — copper-based PFM

4. Conclusion

With reference to the abovementioned, it is possible to state that the
quotation obtained for calculating the permeability coefficient of
two-layer PFMs with the overlap area satisfactorily agrees with
experimental data. The negative effect of this area on the
permeability coefficient of the porous material is shown, which, due
to its presence, decreases by more than 1.46 times. It was found that
this effect can be compensated by a decrease in the fine powder
layer.
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SIMULATION OF THE THERMAL STABILITY AND MELTING OF THE Ag@Pd,
Au@Pd BIMETALLIC NANOPARTICLES

MOJIEJITMPOBAHUE TEPMHUYECKOM CTABUJILHOCTU U TUIABJIEHWS BUMETAJIJIMYECKUX
HAHOYACTUL] Ag@Pd, Au@Pd
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Abstract: Within the framework of the molecular dynamics methods the simulation of the temperature stability of the metallic nanoparticles
with the core-shell structure was performed and the melting temperature of the sample was determined. During the simulation of the
dynamic behavior of nanoparticle the calculation of forces of interatomic interactions was carried out within the embedded atom method. To
simulate the melting process the temperature of the sample was gradually increased by scaling the corresponding atomic velocities using the
Berendsen thermostat. The Lindemann index was used as a numerical parameter describing changes in the structure of the nanoparticle.
According to the results of the study, the temperature dependences of the Lindeman index and the average potential energy were obtained, as
well as the radial distribution functions for the nanoparticles. From the simulation results, atomistic configurations of the sample were built
and the dynamics of changes in its structure was investigated. Spatial distribution of the atoms on Lindeman index within the volume of the
sample around melting temperature was also calculated.

KEYWORDS: MOLECULAR DYNAMICS, CORE-SHELL, METALLIC NANOPARTICLE, MELTING, LINDEMANN INDEX

1 Introduction During the simulation of the melting process, the sample

Bimetallic nanoparticles are given considerable attention by  temperature was gradually increased by scaling the corresponding
researchers of nanoscale SystemS, Since they a"OW the design Of atomic Ve|OCItIES USIng the BerendS?n thermosta.t n the temp.erature
new structures with individual properties that are not observed in  range of 250-3000 K [16]. Recording of atomic configurations of
monometallic and bulk materials [1-3]. Particularly in demand from
theoretical and practical aspects were nanomaterials with a
core@shell structure, due to the wide range of applications in
optoelectronics, semiconductors, quantum dots, biological marking,
and nanocatalysis [4-6].

Among the objects of nanosystems are different types of forms
and structures [1]. It is known that by changing the type and
parameters of a shell, one can control the properties of these
systems, at the same time as the shell, in turn, protects the kernel
from external influence [7]. Thus, by correlating the structure and
properties of the core and shell material, especially the shape and Fig. 1. Initial atomistic configuration of Ag@Pd core-shell
size, the expansion of the functionality of these nanosystems is nanoparticle: overall view (left panel) and cross-section (left
ensured [8]. As a material for core-shell nanostructures, a wide panel). Pd atoms (shell) are shown in dark gray color; Ag atoms
range of combinations of inorganic and organic materials is used. (core) are shown in light gray color.

_The development and production of nanoparticles with e system and calculation of parameters were realized after the
individual characteristics requires an understanding of their temperature reached equilibrium value.

structural and th_ermodynamic_ prope_rties_ [9-11]. Numerqus The modified embedded-atom method (MEAM) was used to
methods of synthesis of nanoparticles with different structure, size calculate the forces of interatomic interaction [17]. MEAM is

and shape were proposed [1, 5]. However, some experimental — nown to reliably reproduce the basic properties of materials and is
techniques that are widely used in material science, not always can widely used in the metal alloys modelling by classical molecular

be applied to investigate the structure and behavior of the nanoscale dynamics (MD) techniques. The simulation was performed using
objects [12], thus, various theoretical and computational e | AMMPS software package [18].

investigations [13, 14] can be an additional tool in studying of
nanostructures.

The purpose of this work was to study the behavior of
bimetallic nanoparticles Ag@Pd, Au@Pd (Ag/Au is core; Pd is
shell) during melting within molecular dynamics methods.

The complete algorithm for particle motion calculations used in
molecular dynamics simulations involves obtaining analytical
expressions for the forces of interatomic interaction F(r), based on
the given dependences for the potential energy, through the
equation

2 Model and simulation configuration Fir)=-% Q)
Within the framework, Ag@Pd and Au@Pd nanoparticles were or

investigated, which had a spherical shape with a core (Ag/Au)-shell

(Pd) structure. In the experiment the total number of atoms was

16 757 for Ag@Pd, where 14 634 (87.3 %) atoms were palladium dr ou

and 2123 (12.7 %) atoms were silver, and the total number of mﬁz Fi(r) = o &)

atoms was 46 049 for Ag@Pd, where 40 274 (87.5 %) atoms were

palladium and 5 775 (12.5 %) atoms were aurum for Au@Pd. The for each atom i.

initial diameters of Ag@Pd and Au@Pd nanoparticles were 7.4 nm Within the MEAM, the total potential energy of a metallic

(core diameter ~4.0 nm) and 13.0 nm (core diameter ~7.0 nm), crystal can be presented as a sum of two components, each of which

respectively. The simulation was performed with the support of an describes the corresponding mechanisms of interaction:

ideal vacuum at free boundary conditions in three directions.

OVI_TO sqftware package was used t_o'o'btaln images qf atomistic U= %Zi,j,i;tj <P(Tij) +Y.F(pp), (3)

configurations [15]. For example, the initial atomic configuration of

the Ag@Pd modeled nanoparticle is presented in Fig. 1.

and further numerical integration of the equations of motion

where ¢(r;;) is the pair energy between atoms i and j at a distance
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75 F(p,) is the local embedding energy of the i-atom in the space
domain, that is characterized by the electronic density p,.

For each term in equation (3), the analytical expression was
proposed through approximating the data obtained from the
calculations from the first principles [19]. Thus, the pair energy of
the interatomic interaction can be written in the form

8975(57 1)

e

(4)

where 7, is the equilibrium distance between the two atoms of the
given type; A, B, «, p are the approximation parameters; «, 1 are
the additional parameters for ensuring zero energy of interaction at
significant interatomic distances.

The local embedding energy as a function of electron density
F(p,) is calculated in several steps. Firstly, the electronic density p;
is calculated as

pPi = Zi,j#:if(ri/’)r (5)
where f(r;;) is the local electron density in the atomic region of
atom i, calculated through the following expression

(7 -1)
fry) = L=
1+

(% -4

that has the same form as the second term in formula (4) with the
same values of parameters S and A. Then the electronic density
function F(p,) should be calculated from three following equations,

depending on the value of p,

©

F(P) = i3:0 Fy; (pin_ 1)| P<Pn Pn= 0-85Pev (7)
F(p) =X F; (f— 1), Pn <P <po, Ppo=115p,,(8)

F)=F (1-mi)") & po<p. 9

Such method for determining the electronic density function
F(p,) is necessary for the realistic approximation of the embedding
energy and for reproducing the properties of the material in a wide
range of values p.

The forces between different types of atoms can be calculated
using the MEAM model for alloys [19]. Within mentioned approach
the pair energy ¢ (r;;) between atoms of type a i b can be
calculated as

fe
P

o) = (LD ).

fem (10)

g +

Thus, using equations (1)—(10), it is possible to investigate the
dynamics of metallic nanoparticles under the external influences.

The description of changes in nanoparticle structure was based
on the use of the Lindemann numerical parameter [20]. The local
Lindeman index of the i-th atom was determined through the

following formula:
1 (7”5) - (Tij )

J#i (ﬁj) '

4 =y (11)

where 7;; is the distance between i and j atoms; corner brackets are
time averaging at a constant temperature value.

The quantitative characterization of the changes in the sample
structure is carried out by the calculated radial density functions
g(r,), which are defined as the relative probability of finding a pair
of atoms at some distance from each other. g(r,) was calculated
through the equation [21]:
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_ Vh,
- 2nNZr2Ar’

90) (12)

where V;, is the volume of the sample; h,, is the number of atomic
pairs (i,j) for which the condition ((n— DAr<r; < nAr) is
satisfied; N,, is the total number of atoms; Ar — parameter of

sampling of interatomic distances (Ar has sufficiently small values);
r, = (n — 1/2)Ar is the value of the interatomic distances.

3 Results

Temperature dependences of the Lindemann index calculated
for the Au@Pd and Ag@Pd nanoparticles under investigation are
shown in Fig. 2. As it can be seen from the figure, the obtained
values on the dependences Q(T) and E(T) increase monotonically
in the temperature range T <1500 K. After that, the Lindemann
index and the potential energy start to rise rapidly at a temperature
value of T ~ 1 600 K, which may be a start of the melting process.
The value of the Lindemann index for the Ag@Pd nanoparticles
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Fig. 2. Temperature dependence of the Lindemann index for
Au@Pd (top panel) and Ag@Pd (bottom panel) core-shell
nanoparticles.
was Q. ~ 0.01 and for the Au@Pd nanoparticles was Q. ~ 0.015. At

temperatures T >1 700 K, there is a slow, almost linear increase in
the values of Q and E (Fig. 2, Fig. 3).

To detect the changes in the structure of the nanoparticles, the
radial distribution functions were calculated at the initial
temperature of 300 K (Fig. 4, Fig. 5). As can be seen from the
figure for Ag@Pd, at temperatures T =300 K and T = 1 050 K, the
sample has clearly expressed peaks corresponding to the crystalline
structure of silver and palladium. At T =1050 K, the g(r,) is
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characterized by a decrease in the height (intensity) of the peaks. At structure. It is noticeable that above the melting temperature core-

T =2000, only the first peak corresponding to the equilibrium
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T,K

500 1000

2.4
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-3.01

E, eV

-3.21

3.4

36

500 1000 1500 2000 2500 3000
T,.K
Fig. 3. Temperature dependence of averaged potential energy for

Au@Pd (top panel) and Ag@Pd (bottom panel) core-shell
nanoparticles.

0

distance between atoms is visible on the radial distribution function,
and there are no other peaks. This kind of radial distribution
function is typical of an amorphous state.

40 | ' : ' i
30l — 300K |

— 1100 K

2100 K
oot 1

bp
- A
2 3 4 5 6 7
r A
Fig. 4. Radial distribution functions for Au@Pd core-shell

nanoparticle at different temperatures.

The cross sections and general views of the Ag@Pd
nanoparticle at the melting point and the maximum temperature of
the computer experiment are shown in Fig. 6. As it follows from
visual analysis, temperature growth lead to increasing spacing
between atoms, resulting in destruction of the initial crystal
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shell structure of the nanoparticle is also destroyed, due to the

Fig. 5. Radial distribution functions for Ag@Pd core-shell
nanoparticle at different temperatures.

Fig. 6. Atomistic configurations of Ag@Pd core-shell nanoparticles
at 1210; 1650; 2950 K (from left to right): cross-section (top
panel) and overall (bottom panel).

increased velocity of the diffusion processes.

4 Conclusion

In the work melting behavior of the bimetallic Ag@Pd, Au@Pd
nanoparticles with core-shell structure investigated by classical
molecular dynamic simulations. According to the simulation results,
the numerical parameters were obtained for the samples and the
dynamics of the structural changes were analyzed. The approximate
melting point for nanoparticles was 1 600 K. At that point the
Lindemann indexes exceed the critical values Q. ~0.01 and
Q. ~0.015 for Ag@Pd, Au@Pd respectively. Initial core-shell
structure of the nanoparticle is preserved up to the melting point.
With the temperature growth, the volume of the nanoparticle is also
increasing due to the larger spacing between atoms, which lead to
the destruction of the initial crystal structure and the core-shell
diffusion became more intense. It should be noted that the model
presented here allows us to investigate the behavior of nanoparticles
of another chemical composition during heating and melting
(depending on the presence of a parameterized interatomic
interaction potential), size and shape.
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MATHEMATICAL MODELING OF ATOM-MOLECULAR DEPOSITION BY
MAGNETRON SPUTTERING

MATEMATUYECKO MOJAEJIMPAHE HA ATOMHO-MOJIEKYJIHO HACJIOSABAHE YPE3
MATHETPOHHO PA3ITPAIIIABAHE

Ass. Prof. Dr. Georgi Evt. Georgiev, Prof. Dr. Luben Lakov, Ass. Prof. Dr. Petio lvanov, Dr. Michaela Alexandrova
Institute of Metal Science, Equipment and Technologies with Hydro-aerodynamics Centre "Akad. A. Balevski"-BAS

Abstract: The thickness distribution of thin films deposited by the magnetron sputtering technique is studied with the means of
mathematical modelling. A mathematical model describing the process of atomic or molecular sputtering followed by deposition process in a
RF/DC magnetron equipment is proposed. It has enough comprehensiveness to describe the sputtering of metals, insulating materials or
semiconductors. An algorithm has been developed to solve the equations of the model, which is implemented in the form of a computer
program. With the help of this program model solutions have been received and presented by different configurations and parameters of the
magnetron system. An optimal solution has been also found, where the non-homogeneity of the coating is minimal.
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Pestome: Popmupanemo Ha MmvbHKU MAMEPUATHY CTIO€6E C NOMOWMA HA MASHEMPOHHO PA3NPAULABAHE € U3CNEe08AHO CbC CPeOCmeama Ha
Mamemamuyeckomo moodenupare. Ilpeocmagen e mamemamuuecku Mooel HA npoyeca HA AMOMHO UMW MOAEKVIAPHO pasnpauiasane,
nocneosano om HacnoaeaHe, NPOMUUAL] 6b8 BUCOKOUECHIOMEH U NOCHOAHHO MOKO8 maznempoH. Modenvm npumedcasa 0ocmamuvyna
cmenen na obwHocm 3a 0a onuwe HACOABAHe HA Memanu, U30NAYUOHHU mamepuanu uiu noaynpogoonuyu. Cvsoaden e aneopumvm 3a
pewiasane Ha ypagHeHUAMa Ha Mooend 8b8 opmama Ha Komniomuvpua npoepama. C Helina nomowy ca noayueHu u npeocmaseru MooenHu
pelenus 3a npoyeca Ha HACI0ABAHe NPU PA3IUYHY KOHUSypayuu u napamempu Ha maziempounama cucmema. Hamepeno e u onmumanto
peluenue, npu Koemo 0ebetuHama Ha Clos e ¢ MUHUMATHU PA3TUKLL.

K/IIO90BU JIVMH: MATEMATUYECKO MO/EJ/IMPAHE, ATOMHO H MOJIEKYJ/IAIPHO HACJIOABAHE, MAI'HETPOHHO
PA3IIPALIIABAHE

1. Yeoo B [6] e nemoHCTpHpaHO, Ye HEAKCHATHUAT MAarHETPOHEH U3TOYHUK
MarHeTpoHHOTO ~ paspallaBaHe € MHOTO(YHKIHOHAIHA U HEroBaTa POTAalHs MOAOOpSBAT PaBHOMEPHOCTTA Ha JebenrHaTa
TEXHHKA 32 IPUTOTBSHE HAa THHKH (PHIMH 32 MIPUIOKEHHS B IIHPOK Ha (uIMa B CPaBHCHHC C KOHBCHIMOHAIHHTC MarHCTPOHHH
nuamnazon. [1Jo ce oTHAacs 1O Ka4eCTBOTO HA OCHOBHHS (MM, OT U3TOYHUIM, KBICTO U3TOUHUKBT Ha paslpallaBaHe CIOAC/I ¢lHa 1
pemaBamio 3Ha4YCHHWE € TIOCTOSHHATa JeOelMHa Ha HAHECEHOTO ChILa OC HA CUMETPHUs CbC CyOcTpara.
MOKPHUTHE, ThH KaTo MpSAKO 3acsira (PU3HYECKUTEe CBOWCTBA W Hpyru  (akropu, Bimsemu BbPXY pasUpEC/ICHUETO Ha
CIIeIOBATENTHO IIPOM3BOAUTENHOCTTA Ha YCTPOHCTBOTO. nebenrHaTa Ha HaHEeCeHHs (UM ca XapaKTePUCTHKUTE Ha pa3psiaa
W3paboTBaHe HAa MHOTO paBHOMEPHHM IOKPUTHS Ha TOJIEMH (MOUIHOCT, HalsraHe M T.H.), U3TOYHHMKBT HA MArHeTPOHA M
OTJIaraTeJIHH IJIOIIK U KOHTPOJMPAHETO Ha MeOenHaTa UM € 00CKT OTHOCHTE/IHHTe JBIKCHUS HA M3TOYHUKA CIpsiMO cyOcrpara [5].
Ha M3CIIEBaHe B MHOTO my6iukaiuu [1-4]. IIpe3 mocneqHUTE HAKOJKO MAECETHIETHS Ca H3BBPIICHA MHOTO
JlebennHata HAa TOKPUTHETO C€ ONPEAENs OCHOBHO OT W3CNEBAHKUS HA Pa3IMYHA BUAOBE PA3MpAIINTETHA CHCTEMH 32
TeOMETpHATa M B3AaHMMHOTO PA3MOJIOKEHWE Ha MHUINIEHATa CIPSIMO NPOTHO3UPaHe HA HEeQHOPOLHOCTHTE B AeOenvHaTa Ha (uima.
cyocrpara. [Ipe3 roguHNTE CHMYyTallMOHHUTE MOJEIH MOMOTHaxa Bbnpekn ToBa, TBH Karo pasnpeseNeHHeTO Ha AeCelnnHaTa Ha
Jla ce MPOMEHH Pa3MOI0KEHHETO Ha IeNTa CIpsiMo cyOcTpara 3a (uava e pyHKIHS OT MHOXKECTBO NPOMEHIIMBY, HE € BE3MOXKHO J1a
MOCTHTaHe Ha TMO-BHCOKa XomoreHHocT. Ha ®wur.l e mnokasaHa ce wu3Bese OOLIO, HE-HHTETPalHO YPABHEHHE, KOETO OIMCBA
CXeMa HA KOHCTPYKUHMATA HA4 DealeH MarHeTpoH B HETOBOTO pasmpeseneHneTo Ha JebenrHaTa Bb3 OCHOBA HAa BCHYKH OCHOBHH
HAIPEYHO CEUCHHE. takropu [5]. Bemopekn TOBa, KOMIIOTHPHUA CHMYJAIUMH U IOIY-

eMITMpHYHN (hopMyITH ca pa3paboTeHN Bh3 OCHOBA HA aHATHTHIHU
MOJIENH 32 T0-100po 00sicCHeHne Ha MPO(UINTE 3a paslpeneieHne
Ha Jie0bennHara.

CHUMyNallMOHHHTE MOJENU ChIIO Taka CIOMOTHaxa 3a
OIITUMHU3ALUA HA npodmna Ha MarfHuTHOTO II0JIE, HA I'€OMETPUATA U
Pa3MNOJIOKEHUETO HA MAarHETPOHHUTE U3TOYHUIM 3a Ja CE€ IOJIYyUUu
Hali-700pPOTO H3MOI3BaHE Ha IIENTa 33 XOMOTCHU3HMpAaHE Ha CIIOS
BBPXY cyOCTpara.

B nacrosmara paspabotka e GopMyIHpaH MaTeMaTHIeH MO
3a TPOTHO3MpaHe Ha pasmpeneleHHeTo Ha Je0OenWHaTta Ha
MIOKPUTHUETO BBPXY KPBroB CyOCTPAT MOCTPEACTBOM PAANOYECTOTHA
(RF) kpbroBa MarHeTpoHHa pasnpaliuTenHa cucreMa. Paspaborena
€ CrennagHa KOMIIOTbPHA MPOTrpaMa 3a Ioy4aBaHe Ha PEIICHUATa
Ha mojena. IIpeyoKeHuAT MoAXo] MoXe Ja ObJe NMPHIOKEH W
KBM JIPYTH MarHeTPOHHO Pa3MpalIUTEeTHN CHCTEMH.
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2. Mamemamuuen mooeJ

33 OeJINTeC Ha MAaTEMAaTHYHOTO MOlleJ'[I/IpaHe FeOMCT‘pI/IHTa u
B3aMHOTO pasnonoxceHI/Ie Ha MHUIIICHATA U cy6CTpaTa ciaeaBa nga
OBJaT MOAXONAIIO NepuHUpaHW. Bw3mpuerata KOHQUTYpamus e
II0Ka3aHa Ha q)I/IFZ Ha HEd ca 0603Ha‘IeHI/I U OCHOBHHUTC
olpenesIy KoHUrypanusra mapamerpu. Ilo Bpeme Ha mpomneca
Ha pasmpariaBaHe, B MHIIeHata ce (opMupa epo3UOHEH XKied,
qusaTo (GopMa 3aBUCH OT NPOoQuIa HA MArHUTHOTO IMOJIE Ha

®@ur.1l. Cxema Ha RF/DC MarHetpoH B ceueHue.
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M3TOYHMKAa Ha pasnpamanaHe. Ilo Bpeme Ha mpomeca Ha
pasnpariaBaHe €pO3HOHHHAT NMPO(QHUI Ce NPOMEHS M BIHUSE BbPXY
pasnpeneneHreTo Ha ebennHara Ha IOKPUTHETO BBPXY cyOcTparta.
B pasrexxaanust ciydail opmara Ha epO3HOHHHS XKIeO € IPBCTEH
U HeTOBUSIT paauyc e o3HaueH ¢ A na Our.2 u dur.3.

CyGcrpar

30HAa HA epo3us

Mumena

N HN3TouHuK

®@ur.2. Kondurypauus Ha ciucTemara 3a MarHeTpOHHO
pasnpaniaBaHe

2.1. Ocnoséuu nonosicernus
B mo-HaraTbeIIHUTE pa3FHC)I(I[aHPI}I ca B’bSHpI/IeTI/I CJICOAHUTE
OrpaHU4YCHUA:

1. Bcuuku u30UTH OT €pO3MOHHMS NMPBCTEH YACTHIM HAITyCKaT
munreHata. To3M TPBCTEH € KOHLEHTPUYEH —CIIPSIMO
MHIIEHATa ¥ UMa TIOCTOSTHEH Pajnyc;

2. Tlpenmoiara ce, 4e HaJATaHETO B MarHETPOHa € JOCTATHYHO
HHUCKO, TaKa dYe CpEeOHHAT CBOOOAEH Tpoder Ha
pa3snpbCKBAaHUTE AaTOMH CTaBa pPaBeH WM MO-TOISM OT
pascrosiHHeTO 10 cyOctparta. Taka, cONBCHIHTE MEXIY
pa3NpBCKBaHUTE aTOMH, aprOHOBHTE aTOMU HJIM aprOHOBHTE
ioHu Morar aa ObmaT mpeHeOperHatu. B pesynrar Ha ToBa
pa3npBCHATUTE aTOMH C€ JBMXKAT MO TpaBa JIMHHS ClIe]] KaKTO
HarycHaT muireHara. llle mpexnonoxxum ormie, 4e CpeIHUST
cBOOOJICH Tpo0er Ha W30UTUTE OT MUIIEHATa aTOMH C€ JaBa
oT ¢opmynara:

1
n (r1+17)2

(1)

KbIACTO I U I Ca AaTOMHHUTC pPaauyCH Ha H30MTHTE OT
MUIICHATa aTOMHM M aTOMHUTE Ha rasa, CbOTBETHO. N €
YHUCJICHaTa IJIBTHOCT Ha Ira3a,

3. Ilpenmonara ce, ue GoMOapaupanuTe HOHU YAPST MHUILICHATA
NEePNEHANKYIISIPHO;

4.  JIndysusta, OTpaXCHHMETO U IOBTOPHOTO H30MBaHE Ha
pa3npBCHATUTE aTOMH OT IMOBBPXHOCTTA Ha cyOcTpaTa ChIIO
ce mpeHeOpersar.

2.2. OcHosHu ypagnenus Ha mooena

I[e6eJ'II/IHaTa Ha TMMOKPUTUETO BHB BCAKA TOYKA Ha cy6CTpaTa [§]
OponopHuoOHalIHa Ha MaCOBHUA IIOTOK OT paslpanieHyd 4YacTUlu,
Imormagall B Ta3d TO4YKa. ETo 3allo 3aJiavdara 3a pasnpeeICHUETO Ha
HAHECEHOTO MOKPHUTHE € TACHO CBbP3aHa C OIpele/ssHe MMEHHO Ha
TO31u moTOK. Cxemara, W3IOJ3BaHa 332 HErOBOTO MNPECMSATAHE ¢
npencraBeHa Ha Our.3.
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®@ur.3. Cxema Ha KoHuUrypanuara

Heka ¢ N na o3HaunM Oposi Ha YaCTHIIUTE, HAIMYCKAIIH IJIOIITa
do 3a emumuMma BpeMe BB BCHUKM MOCOKH. Torapa GposT Ha
YaCTHIUTE, KOMTO TNPEMHHABAT B TpPOCTpaHCTBeHMs Brua df),

onpenesieH OT bI'bJI'BT a 3a eauHMIa BpeMe, CICABa Ja Ce
W3YHCIY IO popMyraTa

dN = CNf (a)dw, )

kbaeTo f(a) e QpyHKUMs Ha pa3mpefesicHHeT0 Ha MHTEH3WTeTa Ha
Pa3MpPBCKBAHUTE YAaCTHIH 10 Brbia o.. C € HOPMHpAI MHOKHTEI,
OIpeielIeH Upe3 YPaBHEHUETO

[dN =N, ®)

OTpa3sBalllo 3aKOHA 3a 3ala3BaHe Ha Macara, KOHTO W3HCKBa
cyMaTra OT YacTHIMTE 10 BCHYKH HAINpAaBICHUS Ja € paBHAa Ha
o0mmms mM 6poit N. 3non3Baiiku 3aBUCHMOCTHTE

do= dIR?,d2= dS cosp, dR="5L

4)
KBJIETO R € pasCcTOSHUETO OT pasriekaaHara TOYKa Ha W3TOYHHMKA
mo touka P Ha cyOctpara u 3amecTBaiiku B (2) mosyyaBame
YPaBHEHUETO

dN _ CNf(a)cosp
E - Rz ) (5)
KOCTO HHU JaBa YaCTHLUTEC, JOCTHIrallHU obnacrra dS , CKJIFOYBaIla

BI'BI [ C HANpaBICHHETO Ha emucHuira mpu Ttouka P. [ToToksT B
To4yka P OT menus AMCK Ha epo3usATa clelBa Ja ce MPECMETHE C

HUHTETrpUpaHe 1o HETOo, T.€. MO0 a3UMYTHHUSA BI'bJI (0, KaKToO cjie/iBa

Fioc (P) = CN [ [2" Q(0) 9L dpd,

kpmero ¢  Q(p) e o3HaueHa (GyHKOWSATA, TMPEICTaBAIIA
6omOapaupaHara MOBbPXHHHA HAa MHMIIEHaTa. AKO CyOCTpaTrhbT ce
BBPTH OKOJIO CBOsITA IIEHTPAIHA OC, TO BCHYKH TOUKH Ha cyOcTpaTta
HAa Pa3CTOSIHUE T OT IEHThpa [Ie MOJYydYaT ChHINUS MOTOK. Taka
OOIIMAT MOTOK B JIaJICH MOMECHT II[¢ ©Ma BH/1a

(6)

1 f2m 1 A (21 (21 (a)cos,
Fie (1) = 5= )" Floe (PYA0 = - CN [1' [ [ Q(p) E252E dpdbdp. (7)

KbaeTo fe asumytHuaT brea Ha 0S. Thil karo mebenunara Ha
HAHECEHHUs CJIOW € MPONOPIHOHATHA Ha TIOTOKa, TO TS Clie/Ba Ja ce
npeacTaBd oT BuAa (7) ¢ eaHa HOBa KOHCTaHTa oTipen. Torasa
00eIMHABANKY BCUYKHA KOHCTAHTH 3a AcOeMHATa Ha CJIOS MOYKEM
J1a HAIMUIIEM

A (2 2
To(r) = Cor Ji S 177 Q) K22 dpdedp.  @®

Koncranrara Cys Hali-uecTo ce ompeness upe3 uaeHTHduKanus Ha
6a3ara Ha EKCIEPUMCHTAIHM JaHHU. 32 MOJIyYaBaHe Ha KOHKPETHH
3HaueHuss Ha ¢QyHkuuata ot (8) e paspaboTeHa KOMIIOTbpHA
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nporpama Ha esuka FORTRAN. Ts npecmsita 3Hauenusita Ha Tp(r)

IpH KOHKPETHH 3Ha4eHusi Ha mapamerpure b, L, A u r, cbriacHo
KoopauHatHaTa cuctema Ha ®ur.3. brioBoto pasnpeznencHue f(a)
MOXE Jla ce 3aJaBa KaKTO aHAIMTHYHO, Taka M  4pe3
eKCIIEPUMEHTAIHY JJaHHU B IUCKPETHH TOYKH.

2.3. benoso pasnpeoenerue Ha 6bombapoupauume amomu

ChIiecTBYBaT MHOKECTBO TEOPETHYHH Pa3pabOTKH, IOCBETCHH
Ha CB3JaBaHETO Ha MOAXOMIIl (M3MYECKH MOJEN Ha BIIIOBOTO
paslpeseNieHie TPH MarHeTpOHHOTO pasmpamasaHe. Ot Haii-
3HAUMMUTE CJIeIBa JIa ce OTOCNEKHU TeopusTa Ha SUrMyHA-TOMIICHH
[8,9]. 3a HAKOM KOHKpPETHHU TPOIIECH T€ ca B JOOPO CHBIAJCHUE C
excrepuMeHTanHuTe pesynratd [10]. Haii-noGpo cbBmageHune c
MOBEYETO SKCIIEPUMEHTAIHH PE3YNTATH € I0Ka3alo MPeII0KEHOTO
ot SImamypa [10,11]

f(a) = cos(a) [1 + kcos?(a)], 9)

kbaeTo k e cBobojieH 3a ¢urHpaHe mapameTsp. BuabsT Ha Takosa
pasnpenenenue npu k=-0.7 e nokasan Ha dur.4.

cos(@)(1+ kcosz(a])

« [Radians)

05 10 1.5

®ur.4. Paznipenenenue no Smamypa

SImaMypa B cBOHWTE TEOpETHYHH pa3paboTKu mpeanara u Gopmyna
3a mpecMsTaHe Ha mapameTspa k oT Buaa

G

Ep L
1-(5)2

el

(10)

KbJIeTO E € eHepruara Ha GomOapaupamus HoH, Ej e eHepreTuaHus
Oapuep 3a OTKBCBaHE OT MOBBPXHOCTTa Ha MaTepuaja Ha
MHUIIICHATA.

3. lonyuenu pesynmamu

3a momy4yaBaHe Ha pEIICHHS Ha W3JIOKEHHS B T.2
MaTeMaTHdeH Mojen Oe Ch3JafeH AIrOpHThM H O€ H3rOTBEHa
kommioThpHa mporpamMa Ha FORTRAN, kosto ro peammsmpa. C
HellHa TOMOI ca TMOJy4YeHH pelleHus 3a JebennHara Ha
MOKPUTHETO TIPH Pa3IMYHU HA0OpH OT MapaMeTpd Ha Mojena U
BIJIOBM pa3lpe/iefieHusl Ha Tpoleca Ha pasmpamiaBaHe. Te ca
noka3anu Ha Our.5-8. Ha ®wur. 5-8.1 ca npeacraBenn

fia)
0Sr
044
03
k -0.65
02
ol
OL.S ljﬂ 1:5
af[Radian)

®@ur.5.1. Pasnpenenenne Ha SImamypa. [Tozumms 1.

W3non3sanure pasnpeneneHus Ha SImamypa, npu  KOMUTO ca
HOJIYYeHU ChOTBETHHUTE PE3YNTATH 3a AeOeIMHATa HA MOKPUTHETO,
npencraBenn Ha wur. 5-8.2, crorBerHO. 'pymara oT n3non3BaHu
napamMeTpu ¢ u3o0paseHa Ha camute Qurypu. Pesynrtature Ha
®ur.5.2 u dur.6.2 crorBercTBar Ha [loosunusa 1 Ha MuIIeHaTa B
MmaraeTpoHa (Bmx ®wur.1), a Te3n Ha Our.7.2 u Gur.8.2 Ha [lozums
2.

650

A o L=107 mm
(A°) | b= 65mm
s k =-0.65
- Cof =248

sso} ~——

so0}

asol

0.0 13 25 38 51 64 76
r [mm]
®@ur.5.2. Pasnpenenenue Ha AeOennHaTa Ha TIOKPUTHETO.
TTo3umus 1.

k =-0.68

0lF

i

0.5

I:O
a[Radian)

|
.
o

®ur.6.1. Pasnpenenenue Ha SAmamypa. [lozumms 1.

A 850

(A%) 800}
s S e
700+ b =57 mm
» k =-0.68
650} Cof =237
600 . ,
00 13 25 38 51 64 76
r [mm]

®ur.6.2. PasnipenencHue Ha nebenuHaTa Ha IIOKPUTHETO.
Io3umms 1.
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fla)
0.5
045
03
ot k=-0.77
0.1k
0.5 1.0 15
a[Radian)

®@ur.7.1. Pasnpenenenue Ha Smamypa. [Tozurms 2.

A 550
L =75 mm
°) &
(A°) 500 b =113 mm
450 k ==0.77
400 Cof =289
350
300
250
200 . ’
0.0 0.5 1.0 1.5 2.0 28 3.0
r (Inches)
®@ur.7.2. Pasnpenenenne Ha nebennHaTa Ha IIOKPUTHETO.
To3nmus 2.
f(a)
0S¢
o.af
0.3
ot =-0.70
0.1
0.5 1.0 1.5
a[Radian)
A 550
L=70 mm
®) 500¢
(A%) b =120 mm
450 =-0.70
400 Cof =280 I
350 — —
300
250
200
0.0 13 25 38 51 64 76
r [mm]
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Bbprenero Ha cyOcTpaTa OCHUTYpSiIBA XOMOICHHOCT Ha
neOesHaTa Ha MOKPUTHETO 10 a3UMYTHMST MY BI'bJl Ha BBPTCHE,
HO TMpU BCHYKM BapuaHtu oT ¢urypu 5-8 ce Habmogasa
HEXOMOTEHHOCT B paJuaiHa nocoka. C momouira Ha HHTEPAKTUBHO
— WTepaTUBEH MeToJ| OsiXxa BapHpaHU MO3HIMATa Ha MHIIEHATa U
napaMeTpuTe Ha MoJea, Taka, 4e Ja ce HONyYH Hail-XOMOTCHHO
nokputre. TakoBa O6e HaMepeHO IpH BapHaHTa, Noka3aH Ha Our.9.

" A 550
fla) } L=91 mm
°) 500}
M (A°) % b=117 mm
ol 450f k=-0.59
b 400} Cof =233
(X} E
] 350¢
2l k=-0.59 :
{ 300}
n 250}
.................. L | S
0s 1.0 15 0.0 13 25 38 51 64
a[Radian) r [mm]
®@ur.9. Bapuant, ocurypsiBail MaKCHMalTHO XOMOTEHHO
TOKpUTHE

4. 3aknouenue

B HacrosiaTa pa3paboTKa € IpeCTaBeH MaTeMaTHIeH MOJIEI
Ha pasmpaniaBaHe 4Ype3 MHOHHO OoMmOapaWpaHe B MAarHETPOH.
W3nomsBann ca (yHAAMEHTAJIHUTE 3aKOHH W  3aBHCHMOCTH,
ny6nukyBanu B [1,6,7]. Ch3majgeHa € KOMIIIOThPHA Iporpama, ¢
KOSITO MOTaT Jia Ce IMOJIy4aBaT KOHKPETHH pemreHus Ha mouena. C
HelHa TIOMOII IPY MOJICJTHU 3HAYEHHUS Ha [apaMETPUTE € HaMEpeH
BapHaAHT C XOMOT€HHO pasmpe/ielieHre Ha e0ellMHa Ha TOKPUTHETO.

MoJensT MOKe Ja HaMepd TPUIOKEHHE B PpasiHdHH
CHBPEMCHHH TEXHOJOTHH 3a ONTHMH3AlMs HAa MPOIECHTE Ha
HaHAaCsSHE Ha METAIHU U HEMETAIHM ToKpuTus. Hanpumep, Toit 61
MOT'BJI Ja C€ MPWIOKH YCIEIIHO KakTO TPH (OPMHPAHETO HA
CWIMIMEBH MOKPUTHS 3a MOJYIPOBOJHUKOBH M3IEJHs, TaKa M 32
HAHACAHETO HA THHKM M30JIAIIMOHHU TOKPUTHS OT KEepaMHUYHH
Mareprald 3a HYXIUTE Ha TEXHOJOTMUTE, NpeIHa3HAYEeHH 3a
Ch3/IaBaHETO HA CBPHX MOIIHHM KOHJIEH3aTOPH 3a HYKIWTE Ha
€HEpPreTHKATa U aBTOMOOMIIOCTPOEHETO.
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DESIGN AND ANALYSIS OF A NOVEL SEALING UNIT
FOR PACKING MACHINES

M.Eng. Numan Irmak?, M.Sc. Onur Cimen?, Prof. I.Etem Saklakoglu PhD.?
!Kansan Wetwipe Machinery R&D Center, Izmir, Turkey

2Ege University Faculty of Engineering Mechanical Engineering Department, Izmir, Turkey
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Abstract: Packaging machines using for wet wipes operate at high speeds and the demand for speed in the relevant market is constantly
increasing. The most important difficulty to faster operation of these machines is the relative slowness of the units used for sealing the
packages. In this study, it is aimed to design a unique mechanism that can work at 160 packages per min instead of sealing unit which is still
operating at 120 packages per min, and to verify the design by mechanical analysis. For this purpose; instead of the existing sealing unit
driven by a single servo motor, the horizontal and vertical movements are separated and driven by two servo motors to achieve %33 more

speed.

Keywords: PACKAGING MACHINES, WET WIPES, SEALING

1. Introduction

Nowadays, the standard application for sealing the packages in
packaging machines is provided for a fixed time, at a constant
temperature, with spring compression and due to the standard cam
geometry, adhesive bonding under variable pressure forces during
the application period. This results in higher energy consumption on
the one hand, while limiting the type of material that can be bonded
on the same machine.

There is no automatic adjustable machine both in our company
and in the global market. In this study, it is aimed to develop a user
friendly and energy efficient machine which can work with all kinds
of polymer packaging materials at high speed and efficiency.

2. Definition of Problem

The jaw unit in our standard packaging machine is capable of
bonding at a constant time and pressure. This causes problems in
the adhesion of some of the packaging materials developed recently
and slows down the speed of the machine. Therefore D-Cam
movement obtained by single servo motor in the jaw module of our
standard packaging machine was improved. D-Cam movement will
be provided by using 2 different cam movements by means of 2
independent servo motors. One motor will be control the vertical
movement of the jaws, while the other motor will control the
horizontal movement, ie the synchronous movement with the
package. To do this, it have been worked on formulating the jaw
movement that was occur by using 2 different mechanisms on the
automation side and added into the equation. Therefor an easily
adjustable adjustment screen that can be understood by the operator
was designed.

Horizontal movement of the sealing jaws (movement in the
direction of the flow of the package) was provided by separation of
the horizontal and vertical movement.

While the horizontal movement is limited to 60mm fixed value
in the current system, it is planned to increase this movement up to
100mm in the system to be developed and be able to change it from
the operator panel without any mechanical adjustment.

It is also aimed to increase the contact time of the sealing jaws
to the package by increasing the horizontal movement and to
achieve better adhesion quality at lower temperatures.

In the design of the movement mechanism of the jaw unit, the
choice of cam bearing according to the loads to be formed,
determination and design of the closed cam form, dimensioning the
connecting mechanism to be designed according to the jaw stroke
movement were studied.

Both mechanical and automation measures was taken to protect
the jaw unit against mechanical jams. When driving the horizontal

85

movement of the jaw unit, torque limiter coupling was used in the
system.

Automation measures was taken in order to detect the phase
misalignment that may occur in the system. So that the sealing jaws
do not press on the wet wipes which do not center the package.

A graphical image of the movements that can be obtained with
standard D-Cam and adjustable D-CAM mechanisms is given in
figure 1.

Standart D-Cam Adjustable Strok D-Cam
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Fig. 1 Standard and Adjustable Strok D-Cam

The design of the movement obtained with a single servo motor
in the jaw module of our standard packaging machine is shown in
figure 2.
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Fig. 2 Isometric and front view of single servo motor in the jaw module
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3. Variable Stroke Jaw Design

While the horizontal movement is limited to 60mm fixed value
in the current system, it is planned to increase this movement up to
100mm in the system to be developed and be able to change it from
the operator panel without any mechanical adjustment.

It is aimed to increase the contact time of the sealing jaws to the
package by increasing the horizontal movement and to achieve
better adhesion quality at lower temperatures.

In the design of the movement mechanism of the jaw unit, the
choice of cam bearing according to the loads to be formed,
determination and design of the closed cam form, dimensioning the
connecting mechanism to be designed according to the jaw stroke
movement were studied. Figure 3 shows the variable stroke jaw
mechanism designed by us
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Fig. 3 Isometric and front view of single servo motor in the jaw module

4. Variable Stroke Jaw Position Equations

In order to provide axis movements in the two-motor design, the
geometric positions formed during the movement of the mechanism
must be calculated and formulated so that the automation system
can control the positions.

Figure 4 shows the initial state of the closed cam positions.
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Fig 4. Initial state of the closed cam positions.

The calculations related to the location analyzes performed
below are given.

X1
I, = 100mm
I, =253mm

cosa, (0,360)

. L2124 x?
17 2x1, xcosa,
1002 — 2532 + x,2

2 x 100 x cos a,

X, =

x,2—(200cosa;)x; — 54009 = 0

A= b? — 4ac, a=1,b=—200cosa,,c = —54099
—b+ A

T

X

l; =50mm

l, = 249mm

cosa, (0,360)

. :.!32—142+x22
27 2% 1y x cosa,
50% — 2497 + x,?

X, =
27 2x50xcosa,

X,2— (100 cosa,)x, — 59501 =0

A= b? — 4ac, a=1,b=—100cosa,,c = —59501
—b+A
X, =———+71lmm
2a

(+71 mm; added length of part connected to 14)

C(x2);
Position of the jaw on the x axis relative to the center ol

C(Xz ):640'X2
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Region-V
217,48 < x, <362

c(x);
Position of the jaw on the x axis relative to the origin

C(X)=640-(((100*COS(RADYAN(I2))+SQUAREROOT((- v, =29
100*COS(RADY AN(12)))"2-4*(-59501)))/2)+71)-270
To solve the problem, equations of origin moved to the center
of the jaw stroke. Fig 6. shows the coordinates which origin moved
to the center of the jaw stroke
P(x,); Position of the cam plate horizontally (x) relative to
the origin

P(xy) =x, —122

P(x;) =((200*COS(RADYAN(A2))+SQUAREROOT (-
200*COS(RADYAN(A2)))"2-4*(-54009)))/2)-122

Vertical movement of the jaw

Fig 5. shows the vertical movement of the jaw

= £ pr

Fig 6. The coordinates which origin moved to the center of the jaw stroke

Hesg]

C(X)=640-(((L00*COS(RADYAN(12))+SQUAREROOT((-
100*COS(RADYAN(12)))"2-4*(-59501)))/2)+71)-320

C(x)=(-50,+50)mm

Fig 5. Vertical movement of the jaw x_¢=C(x_2 )-P(x_1); The horizontal position of the jaw relative

. " . to the cam plate
x. = C(x2)— P(x4); The horizontal position of the jaw
relative to the cam plate x_¢=(640-(((L00*COS(RADYAN(J2))+SQUAREROOT((-
100*COS(RADYAN(J2)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN(A2))+SQUAREROOT((-
Region-I 200*COS(RADYAN(A2)))"2-4*(-54009)))/2)-122))

0<x <5284 It is the combined state of the equation that gives the jaw y

¢ ! values according to the cam plate. U2 represents the main formula
x¢. By entering U2 into the equation, the equation that gives the jaw
height to A2 EXCEL (X, Y) formula; Equation that gives
coordinates in form (X, Y). As a result, a single equation in excel
were created as follows.

="("&ROUNDUP(((640-

y. = 100 + 29 = 129mm

Region-11
52,84 <x <918

a, = 52,84mm, b, =4lmm, 1, =59mm (((100*COS(RADYAN(B1))+SQUAREROOT((-
_ , . 100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
(Xe—a)) = (.= b)) =ny 320));2)&":"&ROUNDUP(IF((640-
((100*COS(RADYAN(B1))+SQUAREROOT((-
2 100*COS(RADYAN(B1)))*2-4*(-59501)))/2)+71)-
Y. = 3481 - (x; - 52,84) +41+ 29 (((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))*2-4*(-54009)))/2)-
Region-I11 122))<52,84;100+29;IF(VE((640-
((100*COS(RADYAN(B1))+SQUAREROOT((-
91,8 = x; <1673 100*COS(RADYAN(B1)))*2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

Y = (167.3 - x;)tan 41,33 + 18,93 +29 200“COS(RADY AN($A309)))"2-4%(-54000)))/2)-

Region-1V 122))>52,84;(640-
(((100*COS(RADYAN(B1))+SQUAREROOT((-
1673 = x; < 21748 100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
_ B o (((200*COS(RADYAN($A309))+SQUAREROOT (-
Gy = 217.48mm, b, =76mm, 1, =76mm 200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-
(X = @3)2 = (= by)2 = 12 122))<91,8); SQUAREROOT (3481-((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

3 100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
y = 76— J 5776 — (xC _ 217,43) 129 (((200*COS(RADYAN($A309))+SQUAREROOT((-
¢ 200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-122))-
52,84)"2)+41+29;IF(VE((640-
((100*COS(RADYAN(BL))+SQUAREROOT((-
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100*COS(RADY AN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADY AN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-
122))>91,8;(640-(((100*COS(RADYAN(B1))+SQUAREROOT((-
100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))2-4*(-54009)))/2)-
122))<167,3):(167,3-(640-
((100*COS(RADYAN(B1))+SQUAREROOT((-
100*COS(RADY AN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADY AN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-
122)))*(TAN(RADYAN(41,33)))+18,93+29; IF(VE((640-
(((100*COS(RADYAN(B1))+SQUAREROOT((-
100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))2-4*(-54009)))/2)-
122))>167,3;(640-
(((100*COS(RADYAN(B1))+SQUAREROOT (-
100*COS(RADY AN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-
122))<217,48);76-SQUAREROOT (5776-((640-
(((100*COS(RADYAN(B1))+SQUAREROOT((-
100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))"2-4*(-54009)))/2)-122))-
217,48)2)+29;IF((640-
(((100*COS(RADYAN(B1))+SQUAREROOT((-
100*COS(RADYAN(B1)))"2-4*(-59501)))/2)+71)-
(((200*COS(RADYAN($A309))+SQUAREROOT((-
200*COS(RADYAN($A309)))2-4*(-54009)))/2)-
122))>217,48;29;0)))));2)&")"

As a result of all the location analyzes and calculations
performed in excel, point cloud showing the position status in excel
environment was created. Figure 7 shows a graphical representation
of these points.

i

Fig 7. A graphical representation of cloud showing the position status

5. FEM Analysis

In the study, mechanical analysis of the critical loads was
performed. This ensures safe operation of the machine parts. Figure
8 shows examples of analysis of the selected carrier pin and pin
socket.

Fig 8. a. Carrier pin socket
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Fig 8. a. Carrier pin
Fig 8. Examples of analysis of the selected carrier pin and pin socket

6. Conclusion

In this study, instead of the existing sealing unit driven by a
single servo motor, the horizontal and vertical movements were
separated and driven by two servo motors. To have position control
it has been analyzed the geometric positions and to have stiffness
mechanical analyses were performed for critical parts of machine. It
is designed a unique mechanism for sealing unit that can work at
160 packages per min instead of 120 packages per min.
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MATHEMATICAL MODELLING OF THE CRYSTALLIZATION OF AN
ALUMINIUM CASTING MODIFIED WITH NANOPARTICLES

MATEMATUYHO MOJEJIMPAHE HA KPUCTAJIM3AIIUATA HA OTJIMBKA OT AJIYMHUHEBA
CIUTIAB, MOAUOUIINPAHA C HAHOYACTHULIN

Ass. Prof. Sasho Popov, Ass. Prof. Georgi Evt. Georgiev, Ass. Prof. Valentin Manolov, PhD Pavel Kuzmanov,
Chief Assistant Angel Velikov
Institute of Metal Science, Equipment and Technologies with Hydro-aerodynamics Centre "Akad. A. Balevski"-BAS

Abstract: The insertion of nanoparticles into the melt of the metal alloys leads to an increase in the mechanical properties and
fragmentation of the macro- and microstructure To give the answer the question what is the mechanism of interaction between nanoparticles
and alloy during the transition from liquid to solid state is a priority for scientists working in this field.. In this paper, a mathematical model
for heat transfer and crystallization of an aluminium alloy casting with nanoparticles inserted therein is presented. As a result of the model
solution and the application of the MAGMASOFT software package, the dependences of the temperature field, the average grain size and the
values of the undercooling are obtained. The influence of the number of crystallization centres on these quantities is investigated.

KEY WORDS: MATHEMATICAL MODELLING, CRYSTALLIZATION OF ALLOYS, NANOMODIFICATION

Pe3zome. Brpexnmanero na HAaHOpPa3MEPHU YaCTUUM B METATHUTE CIUIABM BOAM [0 IMOBULIABAHE HAa MEXaHWYHHUTE CBOWCTBA M
n3apeOHsIBaHEe Ha MaKpo- U MUKPOCTPYKTypara. /la ce OTToBOpHM Ha BBIpOCa KaKbB € MEXaHH3MbBT Ha B3aMMOZEHCTBIE Ha HAHOYACTUIINTE U
CIUIaBTa B Ipolleca Ha MPEXO OT TEYHO B TBHPJO CHCTOSHUE € IPHOPUTET Ha yUeHUTe, paboTely B Ta3u 001acT.B Hactosmara pabora e
NpeCTaBeH MaTeMaTHUeH MOJEI 3a TOIUIOOMEH M KPUCTAlIM3alis Ha OTJIMBKA OT alyMHHHEBa CIUIAB C BbBEIEHH B Hes HaHOYAcTUIHU. B
pe3yiTaT OT pellaBaHeTO Ha YpPaBHCHHATA HA MOJENia M ChBMECTHOTO C HM3moyi3BaHe Ha codryeprus nmaketr MAGMASOFT ca nosiyueHu
3aBHCHMOCTUTE HAa TEMIEPATypHOTO MOJe, CPeNHHsS paauyC Ha 3bpHATa W INpeoxiaxaaHeTo. M3cienBaHO ¢ BIUSHHETO Ha Oposi Ha
LIEHTPOBETE Ha KPUCTAINU3alKs BbPXY IOCOUEHUTE BETUUMHHU.

KIIFOYO0BU JIYMU: MATEMATUYECKO MOJ[EJIUPAHE, KPUCTAJIU3ALIUA HA OT/IMBKU, HAHOMOJU®UIIUPAHE

1. Bveeoenue Vpaeuenus (1)-(3) ca momydeHH 3a ciydas Ha OTHOCHTEITHO
BBBEXK/IAHETO HA Pa3IHYHA BHOBE HAHOYACTHIA B MCTAIHHTE Malbk 00eM MeTan V,, 3a KOWTO € B cHia 00eMHA HEU30TCPMHUYHA
CIUIaBA BOAM [0 IIOBMIIABAHE HAa MEXaHHYHHWTE CBOWCTBA H KPHUCTANN3aLysl ¥ TeMIIepaTypaTa My 3aBHCH caMo OT Bpemeto. Tyk

u3apeOHsABaHE HA Makpo- W MHKpocTpykrypara [1,2,3]. 3a BEJIMYMHUTE fa, fc m f osHauaBaT CHOTBETHO OTHOCHTENHHMTE
pa3sKpHBaHEe Ha MEXaHHW3Ma Ha B3aMMOJCHCTBHE Ha HAHOYACTULIUTE
U CIUIaBTAa C€ MH3MO0J3BaT KAKTO EKCIHEPHUMEHTAIHU Taka U
TEOPETHYHH, MOJEIHH M3clenBaHus. B HacTosmara pabGorta e

obemun Ha O -TBBPAMS Pa3TBOp, HA €BTEKTHKATa M HA CyMapHaTa
TBBbpAA (asa B uHTEpBaNa 0T T, 10 Ty .

MPEICTaBeH MaTeMaTW4YeH MOZEN, OTYHMTAI BIMSHHETO HATMYHUTE Benuunnara q(t) € TOIUIMHHHUA MOTOK OT o0eMa METal KbM
HAHOYACTHIM BBPXY 3apOJMIIOOOpasyBaHETO IO BPEME Ha OKOJIHATa cpena, L ¢ ToruiMHa Ha KpHCTalu3aius Ha CIuiaBTa, Lg e
KpucTanusanuaTa. ToBa MO3BOJABA Jla CE AHAIM3UPA TAXHOTO TOIIJIHA Ha CBTCKTHYCCKaTa KpHUCTaIM3alus, Cp - TOINIMHCH
BIIMSIHUE BbPXY (JOPMUPAHETO HA CTPYKTYpATa Ha CILIABTA. Kanaiurer, R ¢ OTHOLICHHeTO Ha obema V,  Ha Merana KbM

2. Onucanue na mamemamuuius mooe HEroBaTa IMOBBPXHOCT, O - INIBTHOCT Ha CILIABTa, t - Bpeme, T -

B pabora [4] e mpencraBeH moaxona 3a QopMyiHpaHe Ha TemIeparypa.

MaTreMaTuyHus Mojes. Tyk Iie NpuBeJeM OCHOBHUTE YPaBHEHMS, Cnopen Konmoropos [5] o6emsT Ha kpucranmsupanus metan V
KOWTO Ca BKJIFOYEHU B HETO. pu Bpeme t moxe J1a ce OIpeneIn OT:
2.1. YpaBHeHue 3a TOIUIOOOMEH B HUHTEpBaja OT HayajHaTa V :Vo []__ exp(_ a))] 4)
TemrepaTypa T, 70 TemmepaTtypara Ha TUKBHmyca T,
3
ar g ) t

Gt RyC, o=gN| [u(-)dz | . ®)
0

2.2. YpaBHeHue 3a TOIUIOOOMEH M KpHCTajIM3allysl B MHTEpBaja OT

KBJIETO e mapamMeTsp Ha (Qopmara Ha KpucTajga, KaTo 3a
T, mo Temmneparypara Ha eBTeKTHKaTa T o p P ¢op P ,

chepuuen  kpucran @ =4/3m, u(r) e CKOpocT Ha

dl :L%+L. 3] kpuctanuzanusta, N e OposT Ha IEHTPOBETE Ha KPUCTAJIM3ALHS.
d C, dt RyC, CxopocTTa Ha KpHCTalu3alus Ipu 3apoaui ¢ paauyc R(t) e:
2.3. YpaBHeHHUs 3a TOIDIOOOMEH M KpHCTAM3alys B HHTEpBaJa OT u= E =K\AT

TE A0 TEeMIIEpaTypaTa Ha I'BJIHO 3aTBBPASABAHE TS , KOATO CC€
KBJICTO KV c KOBCbI/IHI/IeHT, PpaB€H Ha JIMHEHHATa CKOpPOCT Ha

OIIpesieNs OT yCIOBHETO f = =
pen ¥y f=f,+f=1 HapacTBaHe Ha Kpucranma mpu npeoxnaxgane 1°C. Taka

HoJTyJaBame:
dl — i% a . 3) a) 3a matepsana T, >T >T. YpaBHEHHATA
d C, dt RC,
_dR, _ )
2.4. VYpaBHeHHE 3a TOIUIOOOMEH Ha CIUIaBTa cjeJ HeHHara u= d K (TL _T)
KpUCTAIM3AIMs B HWHTEpBaJa OT TS bi (o) Tf. Tyk ce uzmons3ea 4 (8)
f, :l—exp[—fzzNRjj
ypaBHBHHE (1).
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d;: =47NK, (1— f,)R(T -T) ©)
0) 3a nHTEpBaANA Tz >T >T, ypaBHeHusTa

u=%=KE(TE—T) (10)
f, :1—exp{—%7zN(R§ - Rj)} 11
e _ 4RIK, (T, —T)exp{—gﬂN(Rg —Rj)} (12)

Tyk ¢ R,(t) ¥ R (t) Ca O3HAYCHM PAJUYCUTE HA KPHUCTAIHOTO

3BpHO 32 o-TBBPA pastBop oT R=0 o R=R(t) u 3a eBTekTHKATA OT
R t) mo Rg() cporerHo. B [6] cblo € H3MON3BAHO
MpuOIMKEeHHeTo 3a CpepudHH KPHUCTaNd, KOMTO HapacTBaT IIo
3akoHa (7).

3. Memoo na pewienue Ha mamemamuiHus Mooes
cvemecmuo cve copmyepnua nakem MAGMASOFT

Maremarnaauar monen (1)-(12) ce pemaBa CBBMECTHO C
copryepuust maker MAGMASOFT 3a chOoTBeTHHS OOCKT Ha
n3cnenBane. B Hamms cirydail ToBa e oTNIMBKa OT ciuiaB AlSi7Mg ¢
ycnoBHO HanMeHoBanue "Kiema". Ha ®wur. 1 e mokazan oOmust
BUA Ha orimBKara. Cien ToBa TS € paspsA3aHa Ha OIpejereHa
BHCOYMHA, NIOKa3aHa Ha ®ur. 1 u oT MeTana e u3paboTeHo MPOOHO
TSJIO 3a OIIPEZeNITHE Ha CPeNHMs AMAMETHhp Ha MAaKpO3bpHATA Upe3
KonmdecTBeHa Metanorpadus. Taka e mosydeHa mH(opmarus 3a
Tasy BEJMYMHA 32 OTJIMBKAa Oe3 BBHBEJCHM HAHOYACTHLIN M 3a
OTJINBKA C BbBEJCHH HAHOYACTHUIIH.

3o0Ha 3a
MeXaAHHYHH
H3NHTAHHSA

30Ha 3a CTPYKTYPHH
H3NHTAHHSA

Kakto e m3BecthHo MAGMASOFT e mporpameH NpomyKT,
KOWTO CITY)XH 3a IIPECMSTaHE Ha CIPErHaTH 3a/a4H 3a TOIIOOMEH U
KpUCTaJM3alisd Ha OTIMBKA OT pa3IM4YHH CIUIABU W CIIOXKHA
TpuUMepHa (opma. B pesynrar oT penraBaHeTo MM ce IIOJy4aBa
uHbOpMaNUs 3a pa3NpeeIeHHEeTO Ha TeMIepaTypaTa, Ha CPEeIHHsS
pa3Mep Ha KPHCTAIHHTE 3bpHa M Ha MHOTO APYTH BEIMYHHH,
XapaKTepU3upamy Jespckus mpouec. B mocnenHo Bpeme ¢ el
u3peOHsABaHE HAa CTPYKTypara B TEXHOJOTHUTE 3a JIECHE Ce
npuiara MoauHIMpaHe Ha CTONWIKaTa 4Ype3 BBbBEXKIaHE Ha
HaHOpa3MepHH dacTHIU. OYakBaHO € 9acT OT TAX JAa H3IBIHSAT
(yHKIMATAa HAa HOBM KPHCTAIN3alMOHHM 3apoJuiin. B pesynrar Ha
ToBa, oOOmma Opoil Ha 3apoaumUTe HapacTBa (HOBH +
CBIIECTBYBAIM €CTECTBEHO). Taka mo-roieMusT Opod 3apoumm
BOJM /10 M3ApEOHsBaHE Ha KPUCTAIHUTE 3bPHA B CPaBHEHHE C TE3H
B HeMmoauducupanarta ctpykrypa. MAGMASOFT He mnpemiara
BB3MOXKHOCT Jla H3BBPIIM IPECMATaHe HAa 3aTBbPASBAHETO Ha
OTJIMBKA, B KOATO Ca BBBEACHU [ONBIHUTEIHH LEHTPOBE Ha
kpuctamm3anus. Martemarnaausat monen (1)-(12) moxe ma nane
nH(OpMaIys 3a BIMSHUETO Ha Oposi Ha BHBEACHUTE HAHOYACTUIIH
BBPXY CpEeIHMS IHaMeThp Ha 3bpHATA, aKo ce WHTerpupa C
MAGMASOFT.
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Ot peleHHeTo Ha 3a/a4aTa 3a TOINIOOOMEH M KpUCTaIM3aLus
Ha OTiIMBKara c u3noin3BaHe Ha MAGMA moxe na ce momydu
TOIUIMHHUAT NOTOK (] , Ko¥iTO IpuckcTBa B ypasuenus (1)-(3). Tora

HO3BOJISIBA [1a TIOJIYYHM 32 BCSIKA TOYKA OT OTJIMBKATA 3aBUCHMOCTTA
Ha TemmepaTypaTa oT Bpemero u dymkmmute R, (7), Re(t), f (1),
fe(t), u T(t).

Maremarnunusat mozpen (1)-(12), mpencraBen mo-rope, OmnucBa
mpoleca Ha HENPeKbCHATO OXJIAKAaHe Ha CIUIaBTa, BKIIIOYBAIL
KaKTO HEWHOTO TEYHO ChCTOSIHHE, TaKa M KpUCTaju3aumusra . 3a
YHCICHOTO pellaBaHe Ha JU(EPCHUHATHUTE YpPaBHCHHS €
n3noi3BaH Mertoza Ha Pynre-Kyra, peammsmpan upe3 omeparopa
“dsolve” ot mporpamara Maple. ITspBo ce penraBa ypaBuenue (1) ¢
HavanHo ycnosue T(0) =T,

.OT Hero HaMUpaMme Kora ce JJOCTUra TeMmIeparypara Ha JMKBHIyca
T\, T.e. onpeziensiMme MOMeHTa Bpeme 1.

3a uHTepBana T, >T >T, U3MO0JI3BaMe ypaBHeHHE (2), KOeTo, 3a
ciyyas Ha MHOTOKOMIIOHEHTHA CIUIaB, MOXE Ja ce IpeoOpa3ysa
BBB BH/IA
dAT g _[ L

dt  RoC, [Cp

3
R :VFU’ a):goN[J'KvATer !

W

o, do (13)

HRE )T AC }e .

KBJETO O - KOC(HIMEHT Ha TOIUIONpEIaBane; T¢ - TEMIEpaTypa Ha
¢dopmara; F - miom Ha omnimBkata; C; - KOHUEHTpalus Ha i-Ta
KOMIIOHEHTA B CIUIABTAa; I - TEMIEpaTypa Ha TONCHE Ha YHUCTHS
Metan;, [ - MOAyNl Ha Koe(HIMCHTa Ha HAKJIOHA Ha JHHHUATA Ha
JMKBUOyCa OT AWarpamara Ha CBhCTOSHHE 3a I-Ta KOMIIOHEHTa U
OCHOBHHs MeTan, K - koepuumeHT Ha pasmpeneneHue. Tyk
unpekcsT T Ha Ty ce oTHacs 3a TOIUIOPU3MIHATE XaPAKTEPUCTHKH
Ha (opmara.

3a HavaJIHO ycioBHe Ha ypaBHeHHeTo (13) e n3bpano

AT () =0, (14)
KpIeTo t e Bpemero, IpHu
TeMIlepaTypara Ha JIHKBUayca T .
3a pemraBane Ha ypaBHeHue (13) ¢ HauanHO ycnosue (14) ce Hamara
Jla ce HAIpaBu CMAHA Ha 3aBucuMara npomerymsa AT , Thif KaTo
nsicHata crpaHa Ha (13) ceabpika mHTerpamu or AT . 3a menra e
BbBE/IeHa HOBA 3aBHCHMA [IPOMEHJIMBA ChIIIAacHO opMynara

KO€TO CTOIIMJIKaTa J0CTUra

Q=[aTde (15)
4
Ce10BaTeNHO 32 U HEHHATA MPOM3BOIHA HMaMe
®=gNKJQ®, %—?:3¢I\IK\3QZ%—?’ (16)
a (15) Boau o
AT =9Q 7 aaT _a%Q- 17)

dt  dt  dt?

Cren 3amecTBaHe Ha momydeHute BenmumHH B (13) ce momywaBa
CIETHOTO IH(EpEHIHATHO YpaBHEHHE OT BTOPH Pel

sz a dQ —(k-1)pNK$Q?
= T,-T,——-¢ v .C,
dt? RpCF[ AT dt Zﬂ '

- [CL +(L-kye AN Zﬁici}e’m"a 3pNKJQ
P i

(18)

s dQ
dt

Otunraiiku (15) u (17) 3a HavanHUTE ycnoBus Ha ypaBHeHHe (18)
nMame

n dQ

Q(tl)::j:ATdrzo ot (19)

—AT(t)=0"

&

Crex 4ncneHoOTO pemiaBaHe Ha ypaBHeHHe (18) mpu HavamHH
yenoBus  (19) ompenensme ¢ynkuousra Q(f), a upes Hes u
temneparypara T(t). 3a nenra uznonssame Gpopmya (Bx. [7])
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T=T,-AT- > BC"

KOsITO B€YC€ NMa BHa
dQ —(k-D)gNK$Q? .
T =TA_E_E (k-1)¢NKy Q ZﬁICI
i

3a HHTEpBaja TE >T >TS peniaBaMe cucreMara OT TpU

auepeHIHatHy ypaBHeHHs ¢ HeusBecTHH QyHkuud T(t), re M
fE(t), T.e. ypaBuenus (3), (10) u (12). Hayanuure ycnoBus Tyk ca:
T(tE):TE ! RE(tE): Ra ! fE(tE):O'

KBJIETO

R, = [K,[T, (e

tL

3a uHTEpBama T 7.7, H3MO3Bame ypasHeHue (1) ¢ HauamHO
yCIOBHE T(ts):Ts .

4. Pe3yﬂmamu om mamemamuiHomo MOOeJmpaHe.
3amavara, BKitouBaia ypasHeHus (1)-(12) e pemiena mnpu
CIeHATE 3HAYCHNs Ha Pu3mueckuTe KoHcTanTH: V=8 10°m° $=2.4
107m?, R=3.33 10™m, p =2500kg/m°®, C=1220 J/(kgK), T,=988K,
T, =886.8K, L=430518 J/kg , ¢=47/3, N=2.7 10" Um® u 2.7

10°2/m* K\=0.001 m/(sK),, To=933K, T¢=850K, L ;=3.2 10° J/kg,

r,=0.5 107, Kg=0.005 m/(s-K).

Ha ®wur.2 e mokazaHo pa3mpeneneHUeTo Ha TeMIlepaTypara Ha
OTJIMBKATa B CEYCHHE MEPIEHINKYISIPHO HA BEPTUKAIHATA OC Z HA
ormuBka . Knmema“ mpm t=10cek., MOIY4EHO MOCPEICTBOM
KOMITIOTBPHO CHUMYJHPaHE Ha 3aTBBPASIBAHETO HA OTJIUBKATA CHC
copryepa MAGMAsoft.

B pesynraT Ha TOmI000MeHa MEXIy HO-CTy/AeHaTa MeTanHa Gopma
U OTJIMBKAaTa TEMIIepaTypara Ha OTIMBKaTa ce moHwkana. Ha dur.4
€ TMOKa3aHO HAATBKHO CEUeHHE Ha OTIMBKaTa U HEWHOTO
TeMIepaTypHo noje. Bikza ce, de Haii-BHCOKa € TeMIepaTypaTa B
30HAaTa Ha MBPTBATa IJIaBa, KOSATO MMa (YHKOWS 1A ITOJXpaHBa
3aTBBPSABAIINTE CIOEBE ITO]] Hesl.

Temperature
*c

empty

6423
6353
6283
6213
6143
6073
6002
5932
5862
5792
5722
ses2
ss82
ss11

sea1
2
-

miSma

Ha cnenamara ®ur.5 e noka3ana remnepaTypHara 3aBUCUMOCT OT
BpPEMETO B TOUKaTa, 0003HaueHa Ha Our.3 u dur.4.

a1

milGma

750
700
650

[&]

°_ 600
550 —

500

450 : ‘ ‘ ‘
20 30

o
-
(-]

t,s

Bmxna ce, de neHTpanHaTa 4acT Ha oOeMa Ha OTJIMBKAaTa MMa Haii-
BHCOKa Temmeparypa. II0mo6HO € TemmepaTypHOTO MOJie W IpH
t=18cek., mokaszano Ha Pur.3.

Temperature
18458 74 35%

IpecMsTaHETO € M3BBPLICHO ChC cucTeMaTa ypaBHenus (1)-
(12) u ¢ u3non3BaHe HA TOIUIMHHHS TOTOK ((7), OMpemeneH OT
pelieHHeTo 3a 3aTBbpAsBaHe Ha omimBkata ¢ MAGMAsoft.
TemrepaTypHaTa KpHUBa HMa CIICIHHTE XapaKTepHH OOJacTH:
nbpBa- GbP30 MOHMWKCHHE HAa TeMIIeparypara 10 JUKBHAYyca, BTOpa-
3a0aBsHE Ha TEMIIa Ha OXJaXAaHE C OTIENsAHE Ha TOIUIMHATA Ha
KpUCTaIN3alHsl Ha O-TBBPAUS pa3TBop B uHTepBana [Tg, 7 ], Tpera-
HOYTH MOCTOSHHA C TeMIepaTypa paBHa Ha Tg , KOraTo ce OTACI
TOIUIMHATA HA KPUCTAJIM3alUsl Ha eBTEKTHKATa M TIOCNe[Ha - 00IacT
Ha OXJIaKJjaHe Ha TBhpaaTa (dasa.

Ha cnenpamata ®ur.6 e npeacTBeHO BIMSHHUETO Ha Oposi Ha
LIEHTPOBETE HAa KPUCTAIM3ALMs BbPXY BEIMYMHATA HA MUHHMyMa
Ha TeMIlepaTypaTa Ha CIIJIaBTa MPU JUKBHIyca WIH BEJIMYMHATA HA
IPEOXJaXKAAHETO B pe3yiTaT Ha KOMTO 3aloyBa HApaCTBAHETO HA
TBBpAaTa (haza BpXy IEHTPOBETE Ha KpHucTanu3anus. Bikna ce, ge
Cc yBenn4yaBaHe Ha Opos Ha IIEHTPOBETE N=2.7.10° 1/m® 1o
N=2.7.10'° 1/m? MPEOXJIAXKJAHETO HaMaJIsBa.

Kakro Oemie ka3aHO, OT MaTeMAaTHYHHsS MOJEI MOXE Ja ce
ompeleny CpeAHUs paauyc Ha KpHCTaJHUTE 3bpHA IpHU
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HpeanoyioxeHne, 4e Te uMar cepuuna ¢popma. OT pemieHHeTo Ha
MojieNna ¢ a onpezelieHn 3aBucuMocture R(7) 3a aBata pasrienanu
ciyyan 3a N. Te ca noka3anu na @ur. 7

613.8
— N=2.7 101°
--- N=2.7 10°
613.6
(&)
© -
b~
613.4 — L
613.2 , | : \ : | : |
2.8 3 3.2 3.4 3.6
it s
0.0005 — —1
0.0004 0.8
1 I
0.0003 0.6
& - = S
0.0002 — 0.4
0.0001 - —0.2
0 T ™ T 0
2 4 6 8 10 12 14 16 18 20 22
t, s

Ot rpadukara ce BIKAa, 4ye Ha IMMO-ToJeMHUs Opoil 3apoauiin
ChOTBETCTBA MO-Mayika croiiHocT Ha R(7). Ha cemara ¢urypa e
MOKa3aHa 3aBUCHMOCTTa OT BPEMETO Ha 4acTTa Ha TBbpAaTa (asa B
nBydasnara 3ona f(t). Tst e momydena ot pelieHHeTo Ha cUCTEMaTa
ypaBuenwsi(1)-(12). ®@yukuusita f(t) ce u3mens or 0 mo 1 u uma
TOYTH JIMHEECH XapakTep. MOMeHTa OT BpeMe, B KOWTO € 3aTBBPIsiI
uenust 00eM BpeMeTo Ha MbJIHA KPUCTANM3AIMSA Ha 00eMa CTOMHIIKA
ce onpexeist ot ycnosuero f(7)=1. B Hamms ciydaii ToBa e t=21cexk.
OT JBE OTIIMBKM ,, KJIeMa °’, OTJIATH NPH €AHAKBH HadaHH
yciaoBusi 03 M ¢ HAHOYACTHIM W 4pe3 Mertamorpadus ca
OTIPE/ICIICHH CPEAHHUTE JHAMETPH M ChOTBETHO CPEIHHUTE PaguyCH
Ha KpUCTATUTE Ry, MM B CHOTBETHOTO cedeHue. B Tabnunara mo-
IOy ca IOKa3aHH W3UYHCICHUTE C MOAENa CPeiHU paiumycu RgHa
3ppHaTa 3a JIBe 3Ha4yeHHs Ha N U M3MepeHuTe paguycH Rpe upes
KOJIMYEeCTBEHA MeTaorpadus.
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Ta6n. 1 Paguycu Ha 3bpHaTa, u3MepeHu upe3 Metawiorpadus R,
u u3unciend ¢ moxena (1)-(12) Rg npu pasnuuen Gpoii LEHTPOBE
Ha KPUCTAJIM3ALUs U CpelieH pa3Mep Ha 3bpHata D, nporHosupan ot
MAGMAsof.

N, 1/m® RE, mm Rumet, MM D,mm
2.7 101 0.2305 0.196 ¢ HaHOUACTHIH
2.710° 0.4967 0.283 0e3 HAHOUACTHLIU 0.802

B cpmiara Tabnuia e mokasaH NPOTHO3HPAHUS C IIOMOIITa Ha
nporpamata MAGMAsoft cpcen pasmep D Ha 3ppHaTa. Brkna ce,
ye TMOopsiAbKa HAa BEIUYHHUTE € €JUH M CBI, HO H3MEPEHHUTE
BEJIMYMHU Ca MO-MalK{ OT M3YMCIeHHUTEe. BBIpeku Tasm pasinka
MOX€ J]a Ceé CUMTa, 4e € pa3paboTeH MaTeMaTHYeH MOJeEN AaBall
BB3MOKHOCT JIa C€ IIPOTHO3HMPAT pa3MepuTe Ha KPUCTATHUTE 3bPHA,
TeMIepaTypHaTa 3aBHCHMOCT OT BPEMETO M MPEOXTaXKIAHETO B
3aBUCHMOCT OT Oposi Ha KPHCTAIM3ALHOHHATE IIEHTPOBE B
CTOIMJIKATA.

6.3axnwouenue

IIpennoxxen e MareMaTWdeH MOAEN 3a KPHCTanIM3amus Ha
ommBKa OT cmiaB A356, MoamduimpaHa ¢ HaHOpa3MEpHU
yacTHIM. MOJENBT € HHTETrpUpaH CbC COMTYCpHHUS HPOIYKT
MAGMAsoft. 3uncienu ca 3aBUCUMOCTHTE Ha TeMIlepaTypaTa OT
BpPEMETO, YacTTa Ha TBbpAaTa (a3a B AByQa3HaTa 30HA, CPEIHHS
pagmyc Ha KpHUCTAIHHTE 3bPHA M IpeoxnaxkaaHero. M3cnensaHo e
BIIMSIHUETO Ha OpOsl HA HAaHOYACTHLUTE BBPXY IPEOXNAKAAHETO U
cpemHMs pagMyc Ha 3bpHata. HampaBeHo e cpaBHeHHE Ha
W3YNCIICHUTE pa3MepH Ha 3bpHAaTa C  EKCIIEPUMEHTAIHO
ONpeIeNICHNTe pa3MepH Ha 3bpHaTa 4pe3 Meramorpadus Ha
o0pasiy OT OTJIMBKH ,,kiIeMa’’ 06e3 u ¢ HaHowacTunu. [TomydeHo e
YIIOBJIETBOPHUTEIIHO CHBIIAJICHUE.
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MATHEMATICAL MODELING OF THE OPERATING SYSTEM OF
THE CAROUSEL TYPE TRANSPLANTING MACHINE
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Abstract. The main disadvantages of transplanting machine are presented in the article and the mathematical modeling of the operating
system of the carousel type transplanting machine with a new method of calculation of the design parameters of the system is proposed. As a
result of theoretical research of the operating system of carousel type transplanting machine the rule of motion of the point F and the
mathematical model for determining initial velocity V, of the falling seedling have been obtained.

KEYWORDS: TRANSPLANTING MACHINE, SEEDLING, CAROUSEL TYPE, OPERATING SYSTEM, QUADRILATERAL, INITIAL

VELOCITY.

Introduction

The improvement and modernization of agricultural
machinery and equipment is under constant development, where
increasing the working speed of machines is one of the main trends
in improving their construction.

For transplanting machines, increasing the speed of work is
also a very important matter in increasing the working capacity of
the planting units [1, 2]. The main disadvantages of the known
semiautomatic machines for planting seedlings are:

- reduced working capacity;
- low quality of planting at a higher speed of the planting unit.

In order to solve these problems, an improved construction of
the carousel type transplanting machine was proposed [1]. The
research of the operating system of the perfected transplanting
machine is of particular importance when optimizing the main
parameters of the machine. That is why determining the law of the
vertical rod end movement to push the fasteners on the carousel of
the transplanting machine is the basic problem of the given work.

Material and method

The drive mechanism of the carousel type transplanting
machine is designed based on the quadrilateral with two arms for
rotating the interminable movement mechanism, the transport of the
seedlings from the coulter to the gripper, water dosing and
distribution in portions.

The OACB quadrilateral (fig. 1) is joined by a slider type 1-2,
which transforms the circular motion of the support wheel and
drive of the planting machine into the "go-come" movement of the
exit point 3. On the connecting rod 4 a sprocket for pushing the
seedlings (point M) is arranged, and the vertical actuating rod (point
F) of the transplanting machine carousel [3, 4] is arranged on the
driven rocker 5.

F

Fig.1. Kinematic diagram of the operating system of the
transplanting machine:
AC - lower rod; CB - vertical rod; A - the output point of the drive
mechanism; M - the end of the push pad; F - the end of the vertical
rod.
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Rezults and discussions
Let the following parameters of the drive mechanism be
known: the coordinates Xg, Yo and Xg, Yg of O and B joints, the
length of the rockers lo=I3 and Izg= s, the initial ¢; and final ¢f
angles of the driving rocker’s return 3 with coordinates XIM and
y'M of the point M located on the connecting rod 4 relative to the

joint in point O. The coordinates Xc (@) and Yc () of the inner
joint C, which belongs to the dyad ACB (or 3-4), are determined
according to the turning angle ¢ of the driving rocker, through the
system of equations of the circumferences with the radii lac and Ig
[4, 5]:

(12.—124x3 X2 +y2—y2 - 2yc(Ya-ys): @

2(Xg—Xa)

_ B—VB%-AC;
yc - A

where: A =F?+ l;
B=FG-FXa+Ya;
C=(G—X)’+Ya-Inc.

In order to determine the law of motion of the end of the
vertical pushing rod (point F) it is necessary to express the ratio of
the average speeds to the free and full stroke by moving the Sg of
the vertical pushing rod (point F):

Xe

@

k= Vn|1:ed.cl - Sg /T5c.l :T5C-P ; )
Vrr|1:ed.cp. SF /T5C.p. TSC.I.

where T5C_p_ and Tse, - the period of time respectively at the full
race and at the free race of the element 5, s.
If the crank angular velocity w; is constant:

Tscp _ Prep’ “)

T5C.| Drel

and o the values of the turning angles of the
q)]_c_p_ 1c.l.

crank respectively to the full and free stroke, so

(plc.p. +(plc.l. =27
It is obvious that the periodicity of movement of the driving
element 3 and the driven element 5 is equal Tscp = Tacp. and Tscy,
= Tac1. As aresult, the coefficient of change of the average speed
K is determined only by a part of the transmission mechanism, and
namely, crank-slide. On the other hand, the coefficient K can be

determined by the angle S between the extreme positions of the
slide:

where

kzﬂ; ®)

T—p
The Kk coefficient limit is the maximum value of the
acceleration aymax Of the seedling thrust pack from the coulter in
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the gripper. At the uniform rotation of the crank with the angular
velocity w4, the acceleration ay is equal:

__2. . ,m/s’ 6
ay =y, ©
where d ZXM - the analog of the point M acceleration, which
a =
M 2
dey
moves horizontally.
As _ d dXM d¢3 _ d ( (7)
Ay =" T VmsVs
M 2 d d d
d(ol o3 Up (7}
where: v the analog of the velocity of point M compared to
M3

element 3 of the OACB quadrilateral;
V3 - the analog of the speed of the cranked part of the drive

mechanism.
Taking into account that the derivative Vs /dps =ama is
analogous to the acceleration of the point M with respect to element

3, and dVy3 /dp; =@3 is analogous to the acceleration of the
slider, at the result of the derivation will be obtained:

a :%.V +V %:M%V +V

.a '
M 37 'M3 M3 73
dey dv, dg; degy
=V2. . .
Uy =V y3 T3 Vs
Finally, the acceleration of point M becomes:
— 22 . 8
a,, = (\/3aM3+a3VM3) ®)

The kinematic characteristics of the slider as part of the
driving mechanism of transplanting machine can be chosen from
manuals, guidance etc [3, 4].

Then the relationship can be used to determine the velocity
analog V3:

l, : ©
v, = I—cos((p1—¢3)
3
where: |3 - the length of the slide;
(3 - the angle of return of the slide.

The variable parameters |3 and @3 are determined from the
relation:

|, =I2+2+21g);sin g, (10)

i . 11

¢3=arctglo+llsm¢1 (11)
I, cosg,

The analog of the slide acceleration a, is equal:
a, 2—(0‘52”1 Sin(¢1_¢3))/l3; 12
where 0‘3‘52 - the analog of the Cariolis acceleration, which is
determined by the relation:
ay, = 2V:§2V3;
v =—1 sin(p—@,

) - the analog of the relative sliding
speed of the slide 3 on element 2.

From this

(13)

where

a,= 2v3|18in(¢l—¢3)/ I3' (14)

When passing to the next dyad 4-5, it is necessary to take into
account the given length In of the leading rocker OA and its
position dislocated relative to the slide with a constant angle Ag,:

. 15

W,=0,+Ap, (15)
The formulas for determining the analogs of the angular

speeds of the transmission functions V43, Vs3 and the analogues of

the respective angular accelerations of the connecting rod
Ayzr A3

4 and of the driven rocket 5 relative to the driving one are:

:_IASin!l//3—(p5};

B 1, sin(p,—gs)
__lasin(yz—9, ) (16)
R E sin(ps—¢4)
o =la CO8(y/s~0s J-Veals +vil, Cos(p ) A1)
* 1 sin(p,—g5)
a. — |5-CO8(w3—0 )-Vigly +Visls-COS(ps—0p, ) (18)
» —lssin(ps—p,)

The angular positions and ) in relations (17) and (18)
5

P4
are determined as follows:

¢, =arctgya=Vc | 1)

Xa—Xc
From the analogs of the angular characteristics of the OACB
quadrilateral it is easy to move to the true values of the angular
velocities a)4and o, of the angular accelerations g4and & of

elements 4 and 5:

—m -\ = -V__ 20
@)= W3V W5 = Wy Vgg (20)
—m2- RV w2 RV VA
=05 Quu+Eg Ny =0 O+, Vg @)
Then the speed of point F of the vertical rod becomes equal:
VF :a)le :(03": IAJ—)S"] V3= Ps)
ls 5'”((05—(/’4)
i . 22
vV :w,IFIA,Sm(‘//B_(p4) (22)
F

ls  sin(ps—e,)

Parameter Vg drives the process of dropping the seedling
from the bucket into the coulter by means of the initial horizontally
oriented velocity V. Let AB be the displacement path of the point
F of the vertical rod (fig. 2).

v

Fig.2. The displacement path of point F and the velocities
diagram

Then the horizontal projection of the velocity of point F will
be:
_ " (23)
VE=V_cosg,
oL the angle that determines the direction of the
5
velocity vector Vg with respect to the x-axis.
From Fig. 2 it is obvious that ¢'s is equal:
P =i —y—do;
where: y — the displacement angle of the FC rod in the end
position relative to the vertical one, rad.

where
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dps— changes within the limits ) 2 ,
Ps 9 0. P —Ap... == P —Ap-a E g
The function that describes the displacement path of point F is n n
the folloing: From this . a (psmx —Ag}n; (29)
max . (24) a=
VE (‘/’S)ZVF coslps —y—dys 2
Since the angular velocity of any point on the carousel (fig. 3) o- (p”ﬁx —Aon 30
. _ ( 5 ¢} . (30)
is equal to , then Ly — , Where and ,, are Q.= —Ap—
Ocar O =0 =0y W= O > 27
respectively the angular velocities of the fastener of the Substituting o, in (27) it is obtained:
interminable movement mechanism and of the seedling from the 5
i -1 an
seedling cup , s, PV, COS(-((DQW —A(/?)—}/—A(DJ . (3))
c _ 2r
V()=

0 , P
rcos§ —ao
n

As according to the projected construction the forward angle
is equal to  , the theoretical mathematical model for determining
0

the initial velocity Vq of the seedling at its movement from the seed
cup into the coulter of the machine has the form:

ao'n max
co . —A —Ap |- (2
e { ) (o™ ~ap)- ¢j

T

Vo (a
0 ( ) r' (272' J
cos ———a,
n
The importance of performing the synthesis of the elaborated
Fig.3. The diagram of the carousel during the operation of transplanting machine’s operation system consists in the possibility
the vertical rod on the fastener of using the methodology and modeling of the operating system

obtained as the result of the research.
That's why the following relation is true:

Vi Voo oand Ve (25) Conclusions
r r 0 r' 1. The research of the operating system of the carousel type

where: V; — fastener speed, m/s transplanting machine allows the determination and optimization of
. the essential design parameters of the improved machine.

I — radius to the center of the cups on the carousel, m 2. There was established the law of the movement of the

I' —radius of the fasteners arrangement, m. pushing vertical rod end of the fasteners on the carousel of the

Taking into account the fact that the seedling begins its fall from the planting machine and the theoretical mathematical model for

cup with an advancement equal to the angle ¢¢ and velocity Vo7 0:  determining the initial velocity Vg of the seedling at its movement

(26) from the seedling cup into the coulter of the machine.
F(¢5 3. The proposed mathematical modeling of the operating
Vf (Ot,(/’s)Z system of the carousel type transplanting machine can be used in
cos(ﬂ—a) the researching processes of the drive systems of carousel-type
n planters with an intermittent carousel movement.
where N — number of seedling cups arranged on the carousel.
The angle of the advance ¢¢ of the seedlings fall from the References
carousel cup into the coulter can be changed in the interval 1. Melnic, Iu., Bumacov, V. Masind de plantat rdsaduri.
lzﬂ./ n; Of ]23/238/82 de inventie nr.2371 din 29.02.2004. - Chiginau: BOPI nr.
_ Substituting (24) and (26) into (25) the following function is 2. Memsunk 10, Tlopsmerse paGovieii CKOPOCTH JBHKEHHS
ObtamEd: max ; (27) paccagonocaovIHoro arperara. KOHCpr}OBaHHH, BI/IpOGHI/IIITBO Ta
Vv (05,(05): rVe cos ((/75 _7_(05) eKCTIUTyaTalis CiTbCKOTOCmoaapchkuX MammH. Zbirnic naukovih
0 , P prati, Bumyck 39. - Kiposorpaz, 2009. — c. 356-362.
r Co{n—aj 3. Menbnuk 0. B., Bymakos B. M. CuHTe3 3a/1€/bIBAIOLIETO

) YCTpOMCTBa pPAccaZionocaZoqHON MAIUHBI KapyCEeJIbHOIO THIIA.
where mex - the maximum return angle of element 5 compared Zbirnic naukovih prati. - Kirovograd, 1997. — p.78...80.
5 4. Aprobonesckuii M. U. Teopus MexaHW3MOB W MaIlIHH:

to its initial position, rad. y4eOHUK. JUIs BTY30B. - 4-¢ m3]1., epepad. u gom. - M: Hayka, 1988.

Suppose that ¢¢" is the forward angle in the vertical plan, - 640 c.
which finds the position of point F at a forward opening of the cup 5. Melnic, Tu. Cercetarea sistemului de actionare a masinii de
equal to the angle ¢r, then plantat rasaduri de tip carusel. Intellectus, AGEPI, Chisinau, 2007,
— 28 4. —pp.75-79. ISSN 1810 7079.
d%_wgnax_Aw_a' (28) nr pp.75-79. ISSN 1810 7079

where: Ag - the angle until point F contacts the fixer, rad;

(Pgnx —Ap - the rotary phase of the carousel, rad.

In order to express ¢ through ¢, the following relation is used:
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KOMIIBIOTEPHASA MOJIEJIb ITOJI3YIIET'O ABU/KXEHUSA BA3KOI'O CJ0s
1O CKJIOHY BO3BBILIEHHOCTHU

COMPUTER MODEL OF THE CREEPING MOTION OF THE VISCOUS LAYER ON THE SLOPE OF THE
HILL

[Ipodeccop, nokTop ¢pusuKo-MareMaTuuecknx Hayk Kypamnbaes 3.
AJMaTHHCKUI YHUBEPCUTET SHEPTETHKH U CBsA3H, T.AnMatbl, Kazaxcran
E-mail: zaufan@mail.ru

Annomayun. Hccredosanue npoyecca 603HUKHOBEHUS ONOJ3HEN OCAOOYHBIX 20PHLIX NOPOO, HAXOOAWUXCA HA  NOBEPXHOCHIU
B03GbIUCHHOCU  NPOBEOEHO  MEMOOOM  MEXAHUKO-MAMEMAMUYECK020 MOOeIUPOBAHUs, 6  pe3yIbmame KOMOpPo20  NOIYy4eHd
MAMeMamuyeckas 3a0a4a 0 KE8A3UWIUHCUHOM YPAGHEHUU Napaboiudecko2o mund. s peuieHus NOLYHeHHOU MAMeMamuyecKkol 3a0ayu
UCNONBb3068AH KOHEUHO-PAZHOCIHBLIL Memo0; ObLIAd 6blOPAHA HENUHEUHAs. HEABHAS PACUEMHAS CXeMd, HA OCHO8e KOMOPOU CHOPpMYyAuUposan
anzopumm pewenust 3a0a4u u paspabomana KoMnblomepHas npospamma. Ilposedeno KomnvlomepHoe MoOerupoOsarIUe paccCmMampusaemo2o
npoyecca, 8 pesyibmame NPOBEOCH YUCICHHBLL IKCHEPUMEHM OISl PA3IUMHBIX 603MONCHBIX 8APUAHMOS, 8 KAYECMEe UCXOOHbIX OUHHBIX
Qusuyeckux napamempos 63samvl MEXAHUUECKUE XAPAKMEPUCTUKU 2TUHUCIBIX NOPOO. Pesyrbmamel ucciedosanus npeocmasiensl 8 guoe
epaguros u mabnuy.

K/IFOYEBBIE CJOBA: OCAJOYHBIE IIOPOJbhl,  PEOJIOTMYECKHE  CBOMCTBA, IOJI3YYECTh, MEXAHH3M
BO3HUKHOBEHHA OIOJI3HEH, MATEMATHYECKASA U KOMIIbFOTEPHAS MOJEJIb.

1. Beeoenue 2. Mamemamuueckas mooenn 3a0auu

OpmHOM M3 aKkTyalbHBIX NPOOJIEM Ul TOPHBIX pailoHOB B naHHOM cimydae paccMmaTpuBaeTcs BSI3KUM  cioit
SBISIFOTCS UCCIICIOBAHUsI, CBA3aHHBIC C TaKUM SBJIECHHEM KaK  OIpEAENEeHHOM  TOMmMHBI  (MOLIHOCTH),  IOKOsSIMiics  Ha
OIIOJ3HU, BO3HUKAIOIINE B BBICOKOTOPHBIX OOJACTAX BCIEACTBHE  IOBEPXHOCTH BO3BBIICHHOCTH WM B HAYaIbHBIH MOMEHT BPEMEHH
Pa3IUYHbIX IPUYKH, B YaCTHOCTH, H3MEHEHUS BSI3KOCTHBIX CBOMCTB ~ 3TOT CJIOM HAXOAUTCS B YCTOWYMBOM IIOJIOXKEHUH, OTCYTCTBYET B
MaTepHaloB H3-3a2 MPUPOTHBIX I KIMMATHIECKUX IPOLECCOB.  HeM Kakoe-mubo asmkenue (Pur.l).

IIpeanomnaraercs, 9To MPOUCXOAUT IBIKEHHE HEKOTOPOTO BEPXHETO

CIIOSI, COCTOSIIIETO W3 PBIXJIOrO IPYHTA, KOTOPBI HE CIOCOOEH
BBIZIEP)KHMBATh HArpy3Ky COOCTBEHHOTO Beca, MOITOMY HPOUCXOAUT

cMemieHne. Takoe Treoloro-ropHoe  SBIEHHE  IPEJCTaBIsAET
OTIPE/IENIEHHYIO YIPO3y COOPYKEHHUSM U HACEIEHUIO, HAXOSIUMCS 1
B TaKHUX paiiOHax.

IMpm coxpaHeHWH ONpENENEeHHBIX TEeONOTHYECKUX U
KIMMaTHYeCKUX YCIOBUH, B TAaKMX MeCTaxX JOCTaTOYHO MIOJTOe
BpeMsl  COXpaHAeTCA  yCTOMUMBOE  MOJNOXKEHHE  TPYHTOBBIX
MarepranoB. OHAKO YacTO UMEET MECTO YBIaKHEHHE W Pa3MBITHE
TOPHBIX TOPOJ IOXIEBOW WIIM TaJod BOAOW, YTO TNPHBOIIT K
U3MEHEHHMIO BS3KOCTHBIX CBOMCTB MaTepHalioB, COCTaBJIAIOIIUX
BEpXHHE CJIOU TpyHTA. JIMOO MOA BIMSHHEM TEKTOHMYECKHX WIIH
TEXHOTEHHBIX IPOLIECCOB MOTYT BO3HHMKATh MOJ3YILINE ABMKEHHS
BEPXHHX CJIOEB BO3BBIIICHHOCTEH IMOJ BO3/ICHCTBHEM COOCTBEHHOM
TSDKECTH. VIcclemoBaHUs TAaKOTO SIBICHUS SIBISICTCS aKMYalbHbIM
10 U3BECTHBIM npuuuHam [1,2].

MmHoroneTHHe HaOMIOACHNS U H3yYSHHE TaKUX IPOIECCOB
nokaseiBanu [3,4,5], 4To ocajouHblC TOPHBIE MOPOABI, KOTOPHIC
MOKpBIBalOT Oonee 75% TMOBEPXHOCTH 3€MHOH cyim, 00iajaloT
cBOicTBOM moi3yudecTH. «llom3yuecTs — sIBI€HHE MOCTENEHHOIO
pocta aedhopManié BO BPEMEHH MPH MOCTOSHHOM HANPSKCHHH U
CHIDKEHHEM NPOYHOCTH TPH JIUTEIBHOM HATrpyKeHHH» [S, cTp. I[Ipenmomnaraercsi, 4To MPOMCXOAUT CHMXKEHHE 3HAUEHUS
36]. VYumTbBasg, UYTO ION3YYECTh SBIACTCS MPHYMHON TAKMX  [MHAMMYECKOTO KO3()(UIUEHTa BA3KOCTH CJOS, M M3-33 3TOTO
ABJICHUH, KaK OIOINI3HH, CEJIEBBIE IOTOKM, TEYCHMS JICAHUKOB M MPOMCXOJWT JBIXKCHHE MATEPUAJOB CJIOS BHH3 10 CKJIOHY
JIpYTUX, B JAHHOH paboTe MPUBECHO TEOPETHUECKOE HCCISJOBAHNE  BO3BLILIEHHOCTH MO BO3JEHCTBHEM  COOCTBEHHOIO  Beca.
UX ¢ TOMOHIBI0  MAaTEMaTHYECKOrO U KOMIBIOTEPHOTO  BoO3HHKaeT HEOOXOAMMOCTh CO3/IaHMSl MAaTeMaTHYeCKOH MOJeiH

@ue.l — Hauanvroe nonosiceHue 6036bluleHHOCU

MOJICITUPOBAHHUSI. 3TOTO Iporiecca, U cHOPMYIUPOBATH MATEMAaTHYECKYIO 3a/1ady.
Jlannas paboTta MOCBSIIEHA KOMITBIOTEPHOMY st CO3IaHus MaTeMaTHIECKOM MOJEIH

MOJIETIMPOBAHHUIO OJJHOTO M3 BapHMAHTOB MEXaHM3Ma BOSHMKHOBEHHMA  pacCMATPUBAEMOrO MpoOIlecca OMNPENENAIOTCS  OCHOBHBIE — €ro

OTIONI3HEH, KoTraa IOPOMCXOAUT OIYCKaHWE TPYHTOB TIIOA  MapaMeTPbl U BBOAATCS COOTBETCTBYIOIIME OOO3HAYEHUs. 31ech

BO3JICHCTBHEM COOCTBEHHOTO BC€Ca npu HU3MCHCHUU ux

> NpPUHATA OPSMOYTOJIbHAS CHCTEMa KOOPJIHMHAT, B KOTopoit X n V -
PEOJIOTMIECKHUX CBOMCTB. 3/1ech NCHONB3yeTcsl (hU3MIecKast MOAENb

«OM3YIIMX» TeueHui B BsA3koM cioe [3,4], a s uccrnenoBanust TOPU30HTAILHBIE KOOPAUHATEL, & £ — BEPTUKAIbHAS KOOPAUHATA,
paccMaTpuBaEMOro Ipolecca - METON MaTEMaTUYECKOTO M

ocb £ HampaBlieHa BBEpX, OOpaTHO HANpPAaBICHUIO BEKTOpPA CHIIBI
KOMIIBIOTEPHOI'O MOJEIMPOBAaHMSA C IIPOBEACHUEM YHCIIEHHOTO 5
JKCIIEPUMEHTA. TsOKECTH .

Hnst ympouieHuss ObUIM HCIOJIb30BAaHbI H3BECTHBIC W3
THOPOIMHAMUKYM JIONMYLIEHUS O «MEJIKOH BOJE» [4]. Has
NpPOBEICHUSI  PAacdyeToB  HA  KOMIIBIOTEPE  HCIOJIB30BaHbBI
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6e3pa3MepHbIe MapaMeTphl, A YErO OCYIIECTBIEH Mepexof, K
6e3pasMepHbIM TapamerpaM. IIpoBeJeH aHamM3 claraeMbelx B
6e3pa3MEpHBIX YpaBHEHUSIX, MOTyYEHBI YIIPOIIEHHbIE
MaTeMaTH4eCKHe 3aBHCHMOCTH, COBOKYITHOCTh KOTOPBIX SIBHJIACh
MaTeMaTHIeCKOH MOJEIbI0 M3ydaeMoro mpomecca. s omucaHus
cBOOO/IHOH IIOBEPXHOCTH BSA3KOIO CIJIOSl IOJY4EHO CIEAyIolIee
KBasWIMHEHHOe nuddepennuansHoe ypaBHeHHE MapaboImdecKkoro
THUMA B 6e3pa3MepHBIX IePEMEHHBIX:

ou ER 0 3 du 0 ou
Q) —=—"[-Wu-9 )+—U-9))I
oX ox oy oy
OcHOBaHHE BS3KOTO CJIOS OIIMCAHO cieayrommeil GyHKIuei
[6-8]:
_uzg 2 2062 1)
() sxy)=Q1-"f)-e -[PT],

rae f — mepBOHauasbHAs TONIMHA BA3KOTO CIIOSL.
B ypaBHenuu (1) MMeeTcsi eAMHCTBEHHBIN Ge3pa3sMepHbIid
3
H o
, KOTODBI 3aBHCHUT OT (GHU3MYECKHX H
nuL

TEOMETPUICCKUX CBOMCTB BSI3KOI'O CJ104,

napametp ER =
rae  p© —IUIOTHOCTh
MaTepuaga M 7] — IMHAMHYECKHH KO3()(MHULIUEHT BSI3KOCTH CIOS,
g — yckopenue cuitsl TspKecTH, U, H, L — XxapakTepHbIe BEJIMIHUHBL:

CKOPOCTb, BEPTUKAIbHBIM M TOPU3OHTAIbHBIM pa3Mepsl
COOTBETCTBEHHO.
Pemrenne ypapHeHust (1) MO3BOJISET BEIMUCIHTD 3HAYCHHUSI

CI10s1

CKOpOCTEH JBMXKEHUS MAaTepUalloB CJlOs IO CIEAYIOIUM
dhopmynam:
ER oe 2 2
Uy =——-[(z-u) " -@u-9"1
2 ox
@)
ER oo 2 2
Uy =— —[z-0°-E-971
2 oy
[Ipenmonaraercsi, 4To B HavyaJbHBIH MOMEHT BPEMEHH
(mpu t=0), xorma BA3KWII CIIOW HAXOAWICA B COCTOSTHUH

yCTOﬁ‘{HBOFO IMOJIOKECHHUA, €Tro CBOGO[{Haﬂ TMOBEPXHOCTH ObLia

omycaHa cieayroueil oe3pasmMepHoil QyHKINeH:

2,2
_Xo+y 2 2
@uxy0—e b .p YD
b

W3 fomyIeHus 0 MallOCTH XapaKTEPHOTO BEPTHKATHLHOTO
pasMepa Ciosi B CPAaBHEHHH C €r0 XapaKTePHBIM TOPH30HTAILHBIM
pasmepom, MOYXHO C JIOCTATOYHO OOJBLUION TOYHOCTHIO
NPE/ITIONOKUTH BBIIOIHEHHE CIIEAYIOLIErO YCIOBHS:

(5) u —> 0 mpu ycroBuH X —> £00, Y — Foo,

HpI/IHﬂTI)I CJIEAYIOIHNE TI'PpaHUIHBIC YCIOBUA:

X ==d, u(xd,y,t) =0,
6)y==d,

u(x,xd,t) =0.
CdopmMynupoBaHa IMMOCTAaHOBKA MaTEMAaTHYECKOW 3aaadu
(1)-(6). B xauecTBe MeTO/a pelIEHHs] TAHHOM 3a/1a4d HUCIIOIb30BaH
KOHEYHO-Pa3HOCTHBIM METOJl M aJTOPUTM HEJIMHEHHOW pacueTHOM
cxemsr [9]:

g ) j+H1
o uER g3 U U
, R 3.h 1+1 i+1 h
) uj+1 uj+l
j+1 3 Y% YA
(TR 1
i=1,23...,n j=1223 ..., m,

rac
N — KOJIMYECTBO TOYEK MO X, @ M — 1o t.
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3.

Anzopumm peutenusn 3aoauu

B xkauectBe HYJIEBOT'O HpI/I6J'II/I)KeHI/IH s METoJia

UTEpalliyl  HCIOJIB3yeTcsl 3HadeHHe WCKOMOWH (YHKIMH Ha
IpeabLIyIIEM CIIOE.
Buytpn wurepanuu OyAyT BBINONHEHBI  CIEAYIOIIUE

OlIepaLUH:
1°.Onpenenensl  3HaYeHHs KOA((HIMEHTOB CHCTEMBI
ypaBHenuii (8) mo gpopmynam (9).

2°. B mpsMoil IPOTOHKE OINpENCTCHB HEH3BECTHBIC
KOS((GUIMEHTH! TIPOTOHKH C MOMOIIBIO CIIETYIOIINX
tdhopmy:
(10) oy =1, By =0.
" A Vit A B
A1) ajy = v Pl T '
1+ A + A 1+ A + A
i=1273...,n-1
3 B 00paTHOH TPOTOHKE ONpEeNeNiCHbl 3HAYCHUS
HCKOMOW YHKIMK IO hopMymam:
Up =0, Uj =aj,q-Uiq+Fiq
(12) i+l 7+l i+l
i=n-1n-2,...,1

4°, Wrepaunonnsiil mpouecc NpoAobKaics A0 TeX Mop,
MOKa He OBUIO BHINOJIHEHO YCIOBHE TOUYHOCTH:
(13) max{| uli] - wli] [} < ¢,
rae &£ — Majoe MOJOXKHUTEIbHOE YUCIO.

4.  Yucnenuan peanuszayusn anzopumma

IIpoBeneH 4YMCINEHHBIH OSKCIEPHUMEHT C  MOMOIIBIO
pa3paboTaHHOH KOMIBIOTEPHOW NporpamMmel. B nmaHHOM ciydae
pellleHHe  3aJa4d 3aBUCUT TOJNBKO OT OJHOrO Oe3pa3sMepHOro
napamerpa ER.  Dmemenrtapubie pacuersl ToOKa3anu, 49TO UL
OOJIBIIMHCTBA OCAJOYHBIX IOPOJA, B TOM 4YHCIE, TJIHMHHUCTHIX,
MOKPBIBAIONIMX 3HAYMTENBHYI0 YacTh 3EMHOH IOBEpXHOCTH,
HOPSJOK 3Ha4YeHUH Oe3pasMepHoro mapamerpa ER wmoryr ObiTh B

mpenenax  0,01; 0,1; 1,0; 10. [ng >THUX 3HAYeHUH JaHHOTO
napameTpa ObUTH MPOBEICHBI PACUCTHI.
B maH  YHCIEHHOTO  OJKCIEPUMEHTa  BKIIOYEHBI

CIEYIOIINE TaHHBIE:
- ma Ge3pa3MepHOil BenmumHBI ER mpuHATH deTsIpe
smauenns: ER = 0,01, ER =01 ER =10; ER =10;
- [Iard 110 HE3aBHCHMBIM MEPEMEHHBIM:
7 = 0,000%,
- TIepBOHAYaJIbHAS TOJIIMHA CIIOS MPUHSATA IOCTOSHHONW 1
pasunoii f =0,3;

h =0,02;

- g OHNpeAciCHUS TOYHOCTHU BBIUHUCIIEHUI HNPUHATO
¢ =0,0001;

- PpacHeThl
0<t<10;

- IPOMEKYTOK MO0 TOPU30HTAIBHON NEPEMEHHOMN COCTaBHII
-3<x<3.

MNpoOBOAUIINCL  1JI1 MOMEHTOB BpPEMEHHU

4.1. Pe3ynrbmamvl YUCIEHHO20 pelieHUs: 3a0aiu

B pesynbrare YMCICHHOI peajM3aliyd  ajlropHTMa
pelieHuss JaHHOW 3aJadd TOJydeHBl pe3yibTaThl,  KOTOpbIC
npescTaBiieHsl B Buzie rpadukos. OnpeesneHs! HOJ0KeHHS BI3KOTO
COS IS PasiMYHBIX MOMEHTOB BpPEMEHM B HPOMEXYTKE
0 <t <10 nust pa3HbIX 3HaUeHHI Ge3pazmepHoro napamerpa ER.

WUs-3a toro, uto npu ER = 0,01, korpa nunamuueckuit
KOG GHIHEHT BI3KOCTH HMEET JOCTATOYHO OOJbIIOE 3HAYCHHE,
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U3MCHEHHE IIePBOHAYAIBHOTO IIOJ0KEHHS BA3KOTO CIIOSl 0KA3aJoch
HE3HAYUTEJIbHBIM, IpadyK Ul 3TOTO CIIydast 34€Ch He NPEICTABIICH.
Ha ¢wur.2-4 mokazaHbl HEKOTOpBIE IMOJOXKEHUS BSI3KOTO

criost B Moment Bpemenn t =10 amsa suavennit mapamerpa ER :
0,1 1,0; 10.

t=~ 904 ER ~ 000508

O S T T T
45 5 55 & 65 5

B

s |
8 358 95

@ue. 2 — Ionoocenue éazkozo cnos npu t =10 ors ER =01

t=108ER~ 10158

3zl
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o -
a3k
I I I I I I i J

14 1 34 5 8y 1 14

PO L (O S T U S T T

2 3 4 8 7 89 NN

g
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@Due. 3 — [onoscenue eszkoco croanpu t =10 ons ER =1

t=108ER~10

14 1 Q5 0 0s 1 15 2

O U IR ST
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L R S T O SR YO T

213 14 1516 17

YN

T
RBDMUYY

ER

Ol O e COR T OO

|
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@uz. 4 — Ionodcenue sszrozo crosinpu t =10 ors ER =10
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5. Amnanus pesynomamos

B cBs3u ¢ TeM, YTO OCHOBHBIM MAapaMeTPOM, BIIUSIOLINM
HAa paccCMaTPUBAeMBbIil MpOIECC, SBISIETCS HM3MCHEHHE 3HAUCHUS
MUHAMHYECKOTO0 KO3 QUIHEHTa BI3KOCTH, W3MEHEHHE 3TOTO
napamerpa ObLJIO YYTEHO B KayecTBE OCHOBHOTO (hakropa Ipu
HCCIIEIOBaHUN  JaHHOTO Tporiecca. ClenoBarelibHO,  3HAYCHUS
mapamerpa ER, 3aBucsmero o0paTHO NPONOPIHUOHATBEHO OT
JTMHAMHYECKOTO KO3 HUIMeHTa BI3KOCTH, OBUIN UCIIOIb30BAHBI IS
YHCJIEHHOTO YKCIIEPUMEHTA.

W3 aHanm3a YHCIIEHHBIX PE3YJILTATOB CIEAYET, YTO IPU
JOCTaTOYHO OONBIIOM 3HAYCHUH JUHAMUYECKOTO KO3(duIreHTa
BsaskocTH paccMarpusaemoro cinos (ER =01 u ER =0,01)
H3MCHEHHE MepBOHAYATIBHOTO COCTOSTHHS cItost Oyner
HE3HAYUTENLHBIM. B caMoM Jierie, olyCKaHne MaKCUMaIbHON TOYKH
(BepIIMHBI) BHENIHEH MMOBEPXHOCTU CIIOS 32 TPOMEKYTOK BPEMEHHU
t =10 cocrasnser s cnydast, korma ER = 0,1, Bcero na 6,15%
(ymenbmenne ot 1 g0 0,9385), a aua ciywas, korna ER = 0,01,
Bcero Ha 1.09% (to xe camoe, ot 1 mo 0,9891). s cpaBHeHUS
MOXHO mpuBecTd namHele i ER =1 uw ER =10. B nByx
MOCHEAHUX Clydasx KodddumueHT BA3KocTH Oyder HMeTh
CpaBHUTENLHO HeOoubmMe 3HadeHus. OIyCKaHWe MaTepHaioB
BAI3KOTO CJIOSI [IPU 3TOM OYJI€T 3HAUUTENILHBIM; OIIyCKaHUE BEPIIMHBI
ciost coctaBut: i cinydas ER =1 oxomno 18%, a mis ER =10 -
26%.

Kpome storo ciemyer OTMETHTB, YTO M3-3a OMYCKAHHS
BHHM3 MAaTE€PUAIOB CJIOS MPOMCXOJUT YTOHEHHE BEPXHHUX dYacTeit
(®ur.4), w 3a cuer 3TOro mporuecca MPOUCXOIAUT YTOJIIEHHE
HIDKHUX 9acTedl paccMarpuBaeMoil 00JacTH, TJe HaKarIMBAKOTCS
0CaI0YHBIE MOPOJBI, TOJIIHHA KOTOPBIX JOCTUTaeT 3HAYHTENBHBIX
pa3MepoB. YTOINIIEHHE CIIOST OCAJOYHBIX TOPOJ] HA CAMOM HIKHEM
ypoBHE (Ha IOJIOIIBE) BO3BBIILICHHOCTH JUIS Pa3INYHbIX BAPUAHTOB
cocTaBJsUM 3Ha4eHus ot 13,6 % 1o 84,2 %.

6. 3axnrouenue

Crnenyer OTMETHUTh, YTO Pe3yJbTAaThl PEIICHUS NaHHOW
3a/1adyd TI03BOJISIET TEOPETHYECKOE (MaTeMaTHYeCKOe) OIMCAaHhe
MeXaHH3Ma  BO3HUKHOBEHHS  OINOJI3HEH,  3ajleraloiux  Ha
BO3BBIIICHHBIX MECTHOCTSX. [IpoBeneHa OlEHKA H3MEHCHHI,
MPOMCXOMASIINX U3-3a OMOJI3HEH MPH yMEHBIICHUH KO3 (HUIMEeHTa
BA3KOCTH  OCAQIOYHBIX  mopox.  [lomyueHHble — pe3ynbTaThl
WCCIICIOBAHMSI TIO3BOJISTIOT OLIEHUTh MAcIITA0bl KaTacTPOPHIECKAX
ITOCIICICTBHI M3-32 BO3HUKHOBEHHS OTIOJI3HEH.
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