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1. Introduction 

Behavior of the solutions of the Boltzmann equation 

 

3 3

0 0( , ); | , , (1)t x u

F F
u Q F F F F x R u R

t x


 
    

   
at large values of time are considered in most serious studies of this 

object. In fact, even Boltzmann expressed his thoughts on the 

possibility of rapid relaxation of an arbitrary initial distribution 

function to equilibrium. Many physicists now adhere to this 

conclusion, although the evidence they use is often far from 

mathematical perfection. The first serious analysis of these issues 

was carried out by Carleman [1] as early as the 30s of the XX 

century, and then only after 30 years was continued by many 

researchers. A fairly complete review of the results is contained in 

[2, 3]. In the aspect that interests us, their essence is that for solution 

F of problem (1), an inequality of the form  

       0
( ) ( ) (2)

M
N F F C p t 

    
is true, where N – suitable norm in the space of functions depending 

on speed u and radius-vector x  (so ( )N F  – is time dependent 

function); 
0C  – is a constant, depending possibly on the initial 

distribution 
0
( , ); (| |)

M M
F x u F F u  – Maxwell distribution; the 

behavior of functions p(t) essentially depends, on the one hand, on 

the class of function spaces in which a solution is sought, and on the 

other, on the properties of the collision operator ),( FFQ , 

characterized by assumptions about the type of intermolecular 

interaction potential. 

For “hard” “cut off in the corner” potentials U ~
kr

, 

k > 5 the problem was investigated very actively; the main result is 

that the function )(tp  in (2) tends to zero with an infinite increase 

in time t either as a power law or as an exponent, depending on the 

degree of smoothness over the coordinates of the initial distribution, 

the boundedness (or not) of the spatial region and the rate of 

decrease ),(0 uxF  at xu , . The presented results are well 

known [2, 3, 4, 5] (see also chapter 1 of [6]). 

Since in what follows we will consider situations close to 

equilibrium, then, as usual, instead of a function F, we use
 

)(2

1

MM FFFf 


. Equation (1) goes over to 

0( ) (| |) ( , ); ( , ) (3)t

f f
u L f u f f f f x u

t x
 

 
    

    
(see, for example, [2, 3] and chapter 1 of [6]). 

The result (2) in terms of a function f  has the form 

1 0( ) ( ) ( ), (4)N f N f p t
  

where 
1N  – a norm that is generally different from the norm N  

(the properties of a solution f generally speaking, worsen compared 

with the properties of the initial function f0 – see Caflich's work 

[7]), and ( ) 0p t 
 
 at t .

 
A characteristic feature of all the results discussed above 

is the uniform evolution of the solution to the equilibrium 

distribution function; in other words, “long-lived” initial 

distributions are absent. 

Significantly poorer is set of facts concerning the case of 

"soft" potentials , 2 5.kU r k    Here we have the results of 

Caflish [7], in obtaining which it was assumed that, first, there is a 

situation of the so-called "Grad box" with mirror-reflecting walls 

(i.e., the class of solutions periodic in coordinates is considered), 

and secondly, the initial distribution function is quite smooth and 

the difference  
M

F F  decreases (in speed) exponentially fast. 

 

         2. The case of “soft” potentials 

        For further research, we introduce the following 

          Definition. Let us call by an absolute degree of 

nonequilibrium of the Cauchy problem for equation (3) the value 

           
  )(/)(infsuplim 00

0

fNfN
TtfT 


 

where f  is a solution to problem (3) corresponding to the initial 

distribution f0 .  

     The result (4) therefore means that 0  . 

      The transition to “soft” potentials and the weakening of the 

conditions imposed on 
0f , fundamentally change the picture of the 

asymptotic behavior of the solutions of equation (3). 

      Theorem. In the case of power-cut potential-power 

intermolecular interactions of the form U ~
kr

, 2< k <5, for each 

0   and each T>0 there is an initial distribution ),(20 uxLf  , 

such that for the corresponding solution
 

),,( tuxf  of problem (3) 

we have the inequality 

 
0
inf ( ) / ( ) 1

0t T
N f N f 

 
   

 

Here )( fN  means the norm of f  in ),(2 uxL . 

Thus, 1   and, therefore, there exist “long-living” 

initial disturbances. 

The core of the proof of this theorem is the properties of 

the solutions of the corresponding linearized problem (designations 

see in [8]) 
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 0
( ); ,

t

f
A f f f x u

t



 


,        (5) 

where ; ( ) ( ) (| |) .xA u L L f K f u f
       

Lemma 1. An operator A  with a domain of definition 

              2
, , , , 0i

i

f
D A f x u t f u L x u t

x


   



  
 
   

generates in ),(2 uxL  a contracting semigroup of bounded linear 

operators   0, ,T t t   
of the class 

0C . (The terminology 

corresponds to that adopted in [9]; see also chapter 1 of [6]). 

Proof. The operator 1 xA iu 
  is self-adjoint on  

   ADAD 1
 and, therefore (see [10], Sec. Х.8), the operator 1

iA  

generates a compressive semigroup of class 
0C . Since under the 

conditions of the theorem the operator L  turns out to be bounded, 

self-adjoint, dissipative,    ADLD   and ( )D A    

        
2 2

1( ) ( ) ;L a iA L dxdu         
for an arbitrarily small number a , then, according to the lemma 

from Sec. X.8 of the book [10], the operator LiAA  1
 

generates a compressive semigroup   tT  of class 
0C , i.e. 

equation (4) with  ADf 0
 has the only solution  ADf  : 

                     
0

( ) ; ( ) 1. (6)f T t f T t   

The lemma is proved. 

Lemma 2. 0 ( )A  – spectrum of A. 

Proof. We shell show that 0  is the point of the 

essential spectrum of operator A , i.e. there is a bounded 

noncompact sequence
 

 ADf
n
 , satisfying condition 

  0lim 
 nn

fEA  . 

Let 0
n
    and 0

n
  , monotonously decreasing; let 

the numbers 0n 
 
 are such that

 
  nnv    (such 

n  exist due 

to the monotonic tendency to zero collision frequencies (| |)u   at 

| |u   for “soft” potentials; in particular
 

0n , 

monotonously increasing). Let further
 n  – limited area in 

3

u
R , 

located entirely outside a sphere of radius 
n  centered at the origin 

and such that 
2

| | 1.

n

u du



  

Let   uvn  
–  sequence of functions that are finite in 

the domains 
3

n u
R   with media lying in their respective areas 

n , and orthonormalized in  uL2
 (orthogonality can be achieved, 

for example, by choosing disjoint areas 
n ). We put further 

1 3 2

2 4
| |

( ) 2 ( ) exp .
2

n

x
x n

n
 

 

 
 
 
 

  

Note that
 nv  converges weakly to zero in  uL2

, and  

      
22

0.; n

in xx dx
n

dx





 
   

Let ( ) ( )n n nf u x  . Obviously, { }nf  is orthonormal 

sequence in 
2
( , )L x u . Let us rate 

( ) ( )
n n n n n n

n

x
A f u K


    




   , 

where   is a norm in  
2
( , ).L x u  Given the choice of functions 

,
n n

  , domains  
n

  and numbers ,
n n

   we get 

( ) 0,
n

A f n  . 

Lemma 2 is proved. 

Consequence. ( ) 1.T t   

Proof. By Theorem 16.3.1. and Lemma 16.3.2 from [9] 

we have 

( )

( ) sup | exp( ) | .
A

T t t
 




  

 But according to the lemma 2, 0 ( )A  and therefore, 

( ) 1T t  . On the other hand, by the lemma 1, ( ) 1T t  , 

hence, ( ) 1T t  . 

By virtue of (6), the statement of the main theorem is 

valid for the linearized equation (5). The proof of the main theorem 

for the nonlinear (but close to equilibrium) case is based on the 

technique developed in [4, 11] and the properties of solutions of 

equation (5) established above. 

Comment. For a spatially homogeneous linearized 

equation, the formulation of the main result will slightly change, 

namely, for the semigroup ( ) exp( )T t tL  generated by a bounded 

(for “soft” potentials) operator L , there is a presentation 

    

4

0( )\ 0

( ) ,
j

t

jL

T t e dE P

 

 

 
  

where 
j

P  are projectors on one-dimensional subspaces of additive 

invariants j . 

 Denote the first term on the right-hand side of the last 

equality by ( )T t . Then 

  

4

0

1

( ) .j j

j

f T t f a



    

Similarly, to the above, it is easy to show that ( ) 1.T t   
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3. Conclusions 
 

 The work is devoted to the study of the stability of 

solutions of the linearized Boltzmann equation in the case of “soft” 

intermolecular interaction potentials (that is, power potentials with 

exponents less than 5). In this case, a fact of loss of stability of 

solutions is found that is very curious from a physical point of view: 

it turns out that there are initial perturbations that "live" for an 

arbitrarily long time! 

Recall that for “hard” potentials (exponent greater than 5) 

this fact does not occur. We also note that the potential of Coulomb 

interactions is “soft”. 
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Abstract:  The problems of continuous motion of a cylindrical body with a displaced center of mass along vibrating horizontal and 

inclined surfaces are considered. 

The analytical solutions of the motion equations were obtained by the method of partial discretization of nonlinear differential equations 

[1] and graphs of changes in the rotation angles of a cylindrical body were constructed for various cases. 

 
KEY WORDS: SOLID BODY, ROUGH SURFACE, AMPLITUDE, FREQUENCY, MOMENT OF INERTIA, DIFFERENTIAL 

EQUATIONS 

 

1. Introduction 
 

Vibration processes are widespread in industrial and 

technological systems. Vibrations are significant in the processes of 

vibrational movement, transportation, and also used in part process 

technologies. In general, the dynamics of vibrating machines and 

mechanisms are widely studied. In studies of vibrational processes, 

modeling plays a significant role. In this case, models of various 

levels ща complexity are used. The indicated models are reduced to 

the description of nonlinear differential equations system, the 

analytical solutions of which present known difficulties. Therefore, 

the construction of their analytical solutions is very relevant. 

 

2. Preconditions and means for resolving the 

problem 
 

The movement of a cylindrical body occurs under the action of 

gravity and the reaction of the surface applied at a point Р . 

Decompose the reaction into two components: vertical N and 

horizontal F (Fig. 1). 

Let the surface perform translational rectilinear harmonic 

oscillations according to the law  tsinA   , directed at an angle 


 
to the horizontal 

 

 
 

Fig.1 The movement of a cylindrical body on a vibrating horizontal 

surface 

 

Here: ,A
 
– amplitude and frequency of oscillations; t –time. 

The inertial properties of the body are characterized by mass and 

moment of inertia relative to the center of mass C. We will set the 

position of the body by the CC y,x  coordinates of the center of mass 

in the Oxy  coordinate system associated with a rough surface and 

the rotation angle  . 

The interaction of a solid body with a surface occurs through 

the action of a normal reaction N and friction force F  (rolling 

friction is neglected). Assume that friction obeys the Amonton-

Coulomb law: 

NfF  , 

 

where f
 
is the coefficient of sliding friction. In this paper, we 

consider continuous motion, 0N . 

The body is also under the influence of gravity force mg . In 

relative motion, to all forces it is necessary to add the portable 

inertia force: 

 

 tsinAm 2   . 

 

Non-slip rolling of a cylindrical body with a displaced center of 

mass on a horizontal surface is described by differential equations 

system arising from general theorems on the motion of the center of 

mass and on the change in the kinetic moment [2,3]: 

 

(1)  

  ,sinNrcosrRFJ

,sinmgNym

,cosFxm

C

C

C



















 

  

where m – mass of a body; CC y,x  – coordinate of center of mass С 

of the body; N

 

– normal reaction of the surface; CJ  – moment of 

inertia about an axis perpendicular to the surface of the body;   – 

body rotation angle; R – cylinder radius; r – distance from the 

geometric center to the center of gravity of the body; g – 

gravitational acceleration. 

Consider the system of differential equations (1) together with 

the initial conditions 

 

(2)  .t 00 ,:0       

  

For a more convenient recording, we consider positive the 

direction of the rotation angle counterclockwise. The coordinates of 

the center of mass C can be represented as: 

 

(3)   ,cosrRysinrxx CDC   ;
 

 

where Ry,x DD 
 
– coordinates of the center of curvature D,

CDr  .  

When rolling without sliding, the instantaneous center of 

velocity is at the point of contact Р, i.e. 0Р , or 

 

(4)  .yRx DD 0;   
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Using (3), (4), find: 

 

(5)  
 

.osrсsinry

sinrcosrRx

C

C

2

2;












 

  

The first two of the three differential equations of the body 

motion (1), taking into account (5), give the dependence of the 

components of the surface reaction on  ,  и  : 

 

(6)      

    

     .costsinmAsinrcosrRmF

,sintsinmAcossinrgmN





22

22









 

      

Substituting expressions (6) into the third of the differential 

equations of motion of the body (1), arrive at the equation 

describing the change in the rotation angle  t : 

 

(7) 
    

     .rcosRcostsinmA

gRmrsincosRrrRmJC

0

2

2

222







 

 
 

By entering the notation  

 

(8)       
 

,
cosRrrRmJ

m
tf

C 222 
  

  

obtain equations (7) in the form 

 

(9)            .rcosRcostsinAgRrsintf 2 02     

 

3. Results and discussion 
 

The last equation in its final form is not integrated. To solve 

problem (9)-(2) using the method of partial discretization of 

nonlinear differential equations,  obtain 

 

(10)      

        

       

        

      ,tttrcosRcos

tsinAgtRtrsintf

tttrcosRcostsinA

gtRtrsintftt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
1

2

1















 













        

 

where  t  – Delta Dirac function. 

The general solution of equation (10) has the expression 

 

(11)       

          

       

        

      ,ttHtrcosRcos

tsinAgtRtrsintf

ttHtrcosRcostsinA

gtRtrsintfttCt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
11

2

1















 













        

 

where   tH
 – Heaviside function, 1C  – arbitrary integration 

constant. 

Using the initial conditions (2), we have 

 

(12)     

          

       

        

      .ttHtrcosRcos

tsinAgtRtrsintf

ttHtrcosRcostsinA

gtRtrsintfttt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
10

2

1















 













 

     

The general solution of equation (12) has the expression 

 

(13)     

          

        

        

       .ttHtttrcosRcos

tsinAgtRtrsintf

ttHtttrcosRcostsinA

gtRtrsintfttCtt

iii

i
2

iii

iiii
2

n

i

iiiii

111

1
2

111

1

2
120

2

1















 













 

 

With taking into account the initial conditions (2), the solution 

of equation (13) will have the form 

 

(14)    

          

        

        

       .ttHtttrcosRcos

tsinAgtRtrsintf

ttHtttrcosRcostsinA

gtRtrsintftttt

iii

i
2

iii

iiii
2

n

i

iiiii

111

1
2

111

1

2
100

2

1















 













  

In accordance with equation (14), expressions of the rotation 

angle  kt  and the angular velocity  kt  of the body at times 
kt  

will be: 

 

  ;0101   tt 
 

          

     .

2

1

11

2
1112101









trcosRcostsinA

gtRtrsintfttt

2



 

          

      ;

2

1

1211

2
11121002

tttrcosRcostsinA

gtRtrsintftttt

2

2







 
 

             

            

     .

2

1

2

1

22

2
222131

1
2

1112102













trcosRcostsinA

gtRtrsintftttrcosRcos

tsinAgtRtrsintfttt

2

2





 

          

      

          

        

      
    ;

2

1

2

1

2

1

233

3
2

33

324232

2
2

22213

1311

2
111210303

tttrcosRcos

tsinAgtRtrsin

tftttttrcosRcos

tsinAgtRtrsintftt

tttrcosRcostsinA

gtRtrsintftttt

2

2

2






























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          

     

          

       

      
   .

2

1

2

1

2

1

3

3
2

33

3242

2
2

22213

11

2
1112103

























trcosRcos

tsinAgtRtrsin

tftttrcosRcos

tsinAgtRtrsintftt

trcosRcostsinA

gtRtrsintfttt

2

2

2







 

 

Using the method of mathematical induction, construct analytical 

expressions of the rotation angle  kt  and the angular velocity 

 kt  at an arbitrary point nk 1, : 

 

          

      

        

      ,tttrcosRcostsinA

gtRtrsintftt

tttrcosRcostsinA

gtRtrsintftttt

ikii
2

k

i

iiiii

k
2

kk






















2

2
11

111

2
1112100

2

1

2

1





 (15) 

          

     

        

     .trcosRcostsinA

gtRtrsintftt

trcosRcostsinA

gtRtrsintfttt

ii
2

k

i

iiiii

2

k






















2

2
11

11

2
111210

2

1

2

1





 
 

Figure 2 presents graphs of changes of the rotation angle   t  

of a cylindrical body located on a horizontal surface. System 

parameters correspond to the values: ,kgm 50  ,rad,5240

,m,R 50   ,rad,17500    00  .  

In this case, the center of mass of the cylindrical body is offset 

from the geometric center by half the radius, i.e. m,r 250 .  

 

 
а  

 
b  

Fig.2  Graphs of changes of the rotation angle  t : 

а) at ,m,А 10 srad3  ; b) at ,м,А 0010  srad10   
 

From graph 2a it follows that the nature of the beating occurs 

with the corresponding parameters ,m,А 10 srad3 .  

Figure 2b shows a graph of changes  t  at ,m,А 0010  

srad10 . As follows from this graph, the fluctuations of the 

rotation angle  t  obeys the harmonic law and has an established 

character. It should be noted that when ,m,r 250
 
the period of 

oscillation of the rotation angle increases, when  m,r 250  the 

period decreases. 

 

Consider the motion of a cylindrical solid with a displaced 

center of mass along a vibrating inclined surface (Fig. 3). 

 

 
Fig.3 The motion of a cylindrical solid on a vibrating inclined 

surface 

 

In this case, the system of differential equations (1) takes the 

following form 

 

(16)   

  .sinNrcosrRFJ

,cosmgsinNym

,mgsincosFxm

C

C

C



















 

    

After some transformations, from the system of differential 

equations (16) obtain the values of the surface reaction components 

from  ,  и   in the form 

 

(17)

   

     .mgsincostsinmAsinrcosrRmF

,cosmgsintsinmAcossinmrN









22

22




 

 

Substituting expressions (17) into the third of the system of 

differential equations of body motion (16) and introducing the 

notation (8), obtain the expression for the change in the rotation 

angle  t
 in time: 

 

(18) 
      

   .rcosRcos

tsinArsinRsingrRsintf 2

0

2







 
  

   

Similarly, by the above method, obtain an analytical solution in 

the form: 

(19)  

         

         

           

       

    .ttHtt

tsinrsinRgtcosrcosR

tsinAttrRsintfttHtt

tsinrsinRgtcosrcosRtsin

AttrRsintftttt

ii

ii

i
2

iiiii

iii

n

i

2
iiiii

11

11

11
2

1

1

2
100

1

2

1



















 













 
 

Using the same transformations, define the expressions of the 

rotation angle  kt
 
and the angular velocity  kt

 
of the body at 

times kt  in the following form 
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         

     

        

         

    ,tttsinrsinRg

tcosrcosRtsinAttrRsin

tftttttsinrsinRg

tcosrcosRtsinA

ttrRsintftttt

iki

ii
2

ii

k

i

iiik

2

kk


























2

2

1111

11

1
2

112100

2

1

2

1





     

(20)

            

       

           

       

         

        .tttsinrsinRgtcosrcosR

tsinAttrRsintftt

tsinrsinRgtcosrcosR

tsinAttrRsintfttt

ikii

k

i

i
2

iiiii

2
k






















2

2
11

11

11
2

11210

2

1

2

1





 

 

Figure 3 shows the case when the inclination of the vibrating 

surface makes an angle with the horizontal: ,rad,1300
 
other 

parameters correspond to the values indicated in the previous case.  

        

 
а  

 
b  

Fig.3  Graphs of changes of the rotation angle  t : 

а) at ,m,А 10 srad3 ; b) at ,м,А 0010  srad10  
 

As can be seen from graph 3a, oscillations having the nature of 

a beating are preserved. 

As follows from graph 3b, the oscillations are harmonic, but 

due to the angle of inclination of the plane, the graph has the form 

of an offset. 

The research results show and this is evident from the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
 

The problems of continuous motion of a cylindrical body with a 

displaced center of mass along vibrating horizontal and inclined 

surfaces are considered. 

The analytical solutions of the motion equations are obtained by 

the method of partial discretization of nonlinear differential 

equations. 

Graphs of changes of the rotation angles  t  of a cylindrical 

body are constructed for various cases of changing the system 

parameters. 

In particular, changes were made to the distances of the 

displacement of the center of mass from the geometric center within 

m,r 10  до m,r 40 . 

It has been established that the nature of the oscillatory 

processes when the center of mass of the cylindrical body is 

displaced from the geometric center is significantly affected by the 

amplitude and frequency of the oscillations. 

It is shown that changes in the angle of inclination of the 

vibrating surface do not significantly affect the rotation angle of the 

body. 
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Abstract: In this paper we introduce, analyze and apply persistent homology, one of the main algorithms of TDA, on some real data 
sets from the bio-medical field. Topological data analysis (TDA) is a field which is a synergy between mathematics, data science and computer 
science. The main goal of TDA is studying the shape of data using topological techniques. TDA proposes new algorithms that deal with these 
problems based on tools or concepts from algebraic topology and pure mathematics. We analyze the results and give a topological 
characterization of the dataset and propose to use them in future work. 

 

Keywords: PERSISTENT HOMOLOGY, TOPOLOGICAL DATA ANALYSIS, ALGEBRAIC TOPOLOGY, DATA SCIENCE, 
COMPUTATIONAL TOPOLOGY 

 

1. Introduction 

 

       Topology is a mathematical field that studies properties of 
topological spaces, such as connectedness and compactness, 
invariant of continuous deformations. Algebraic topology studies 
topological spaces using techniques from algebra by associating 
algebraic objects such as groups with topological spaces. One of the 
main tools of algebraic topology is homology. Homology is a 
mathematical tool which associates sequences of algebraic objects 
with topological spaces. One way to study a topological space is to 
find and compute its homology groups. The motivation behind 
defining homology groups was that two shapes can be distinguished 
by examining their holes. For example, a disk is different from a 
circle, or a disk is not a circle, because the disk is solid while the 
circle has a hole through it. Homology groups are set of invariants of 
a topological space. These invariants characterize the topological 
space. The number of structures for some dimension k is the rank of 
the 𝑘-dimensional homology group of the topological space. The 
number of such structures is known as a Betti number (𝛽௞) of 
dimension 𝑘. 

       The main idea of Topological Data Analysis is application of 
these mathematical concepts on real data. Persistent homology is an 
algorithm from TDA that use homology as main idea. The algorithm 
computes topological features of a space. 

       

2. Mathematical Background 

 

The starting point is to construct a topological space from a given 
dataset. We will define some necessary mathematical concepts. 

Definition 1. A 𝒌-simplex is a convex hull of 𝒌 + 𝟏 affinely 
independent points 𝑺 = {𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}  ⊆ ℝ𝒅 . The points of S are 

vertices of the simplex. 
The low dimensional simplices (plural: simplices or simplexes) 

have special names: 

- a 0-simplex is  called a vertex; 

- a 1-simplex is called an edge; 

- a 2-simplex is called a triangle: 

-  
Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex 

 

Definition 2. Let σ be a k-simplex defined 𝒐𝒏 𝑺 =
{𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}. A simplex 𝝉 defined by 𝑻 ⊆  𝑺 is a face of 𝝈 and 
has 𝝈 as a coface. The relationship is denoted with 𝝈 ≥  𝝉 and 𝝉 ≤
 𝝈. 

      Definition 3. Let K be a set. Simplicial complex S is a collection 
of subsets of 𝑲 called simplices such that:  

1. For all 𝒙 ∈  𝑲, {𝒙}  ∈  𝑺.  

2. If τ ⊆ σ ∈ S, then τ ∈ S. 

 
Figure 2.  An example of a simplicial complex 
 

We call the sets {x} the vertices of K. Definition 3 gives a more 
abstract definition of simplicial complex that can be applied to a data 
where vertices will be the data points. Topological invariants of the 
space, such as holes and number of connected components, can be 
computed from a simplicial complex, see Figure 2. One of the key 
ideas of TDA is to construct a simplicial complex from a dataset. 
There are a few ways to construct such a simplicial complex [1].  In 
other words simplicial complexes are high dimensional analogues of 
graphs. We will explain the steps of the process. 

1. Construction of a topological space from a given point cloud 

The open (metric) ball of radius  ε >0 centered at a point 𝑚 ∈ 𝑀, 
usually denoted by 𝐵(𝑚; ε) is defined by 
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𝐵(𝑚; ε) = {n ∈ 𝑀 | 𝑑(𝑚, 𝑛) ≤ ε} 

Let 𝑴 be a point cloud in ℝ𝒅 and 𝜺 > 𝟎. The 𝜺 −neighborhood of the 
point cloud 𝑴 is the set 𝑺(𝒎; 𝜺), defined as  

 

𝑺(𝒎; 𝛆) = ራ 𝑩

𝒎𝛆𝐌  

(𝒎, 𝛆), 𝛆 ≥ 𝟎. 

It is known that every 𝛆 −neighborhood is a topological space. 
PH gives a summary of a sequence of such topological spaces for 
different values for 𝛆. The key idea here is to see how topological 
characteristics are changing and which features are the same as 𝛆 
increases. 

2. Construction of a simplicial complex from topological space  

In our experiments we will use Vietoris-Rips complexes. For a 
given point cloud 𝑴 and 𝛆 ≥ 𝟎 we construct Vietoris-Rips complex 
denoted as 𝑽𝑹(𝑴; 𝛆). 𝑽𝑹(𝑴; 𝛆) is defined as: 

𝑽𝑹(𝑴; 𝛆) = ራ 𝑽𝑹(𝑴; 𝛆)𝒏 

𝒏ஹ𝟎

 

𝑽𝑹(𝑴; 𝛆)𝒏

= ቄ(𝒎𝟎, … , 𝒎𝒏)ቚ𝒅൫𝒎𝒊𝒎𝒋൯ ≤ 𝛆, 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐢, 𝐣 ∈ {𝟏, 𝟐, … , 𝐧}ቅ 

Note that 𝑽𝑹(𝑴; 𝛆)𝒏 is the set of all n-simplexes of the simplicial 
complex. The simplicial complex constructed from the topological 
space is the approximation of the topological space. Hence, every 
simplicial complex is a topological space which is why we can 
analyze its topological features. 

3. Computing and representing homology groups 

Linear algebra is used for computing homology groups of a given 
simplicial complex. The 𝒌𝒕𝒉 homology group 𝑯𝒌(S) of a simplicial 
complex 𝑺 is defined as abelian quotient group. The rank of the 𝑯𝒌,
𝒓𝒂𝒏𝒌(𝑯𝒌(𝑺)), is called 𝒌𝒕𝒉 Betti number of 𝑺. It gives a measure of 
the number of k-dimensional holes in S. The homology groups are 
computed for every simplicial complex derived from the topological 
space for each 𝛆. Thus, by increasing 𝛆 we can trail elements of 
homology groups of the corresponding complex 𝑽𝑹(𝑴; 𝛆).  We can 
visualize the existence of homology groups as 𝛆 increases using a 
persistent barcode. Persistent barcode is a topological summary of a 
topological space. When an element shows at some 𝛆, we say that an 
element is born and denote that 𝛆 as  𝛆𝒃𝒊𝒓𝒕𝒉. When the element 
disappears at some 𝛆 (it is mapped to 0), we say that the element has 
died and we denote that 𝛆 as  𝛆𝒅𝒆𝒂𝒕𝒉. Every element is represented 
with a “bar” (a line in the persistent barcode) on the interval 
[ 𝛆𝒃𝒊𝒓𝒕𝒉.  𝛆𝒅𝒆𝒂𝒕𝒉). For example, in 𝑯𝟎 , this will correspond to the 

formation of a connected component in the simplicial complex at 

 𝛆𝒃𝒊𝒓𝒕𝒉 and connecting that component with others in a way that they 
will form a circle in  𝛆𝒅𝒆𝒂𝒕𝒉, see Figure 3. If we observe the Figure 3, 
we can see that the orange line is a bar which corresponds to an 
element of a homology group of dimension 1, which appears near  𝛆𝟐. 
It clearly be seen that there is one circle at the last simplex. Also, we 
can see that near  𝛆𝟐 there is one violet line which means that we have 
one connected component which corresponds with the given simplex.  

 

3. Diabetes datasets 

 

      For this case study we picked two diabetes datasets. First dataset 
is the Miller-Reaven dataset. Reaven and Miller (1979) examined the 
relationship among blood chemistry measures of glucose tolerance 
and insulin in 145 non-obese adults [10]. They used the PRIM9 
system to visualize the data in 3D, and discovered a peculiar pattern 
that looked like a large blob with two wings in different directions. 
In this dataset, the data is split up in three categories. Data from non-
diabetic patients, data from patients with diabetes classified as overt 
and data from patients with diabetes classified as chemical diabetes. 
Overt diabetes is the most advanced stage, characterized by elevated 
fasting blood glucose concentration and classical symptoms. 
Preceding overt diabetes is the latent or chemical diabetic stage, with 
no symptoms of diabetes but demonstrable abnormality of oral or 
intravenous glucose tolerance. There are 145 observations on the 
following 6 variables: 

       relwt 

relative weight, expressed as the ratio of actual weight to 
expected weight, given the person's height, a numeric vector 

glufast 

fasting plasma glucose level, a numeric vector 

glutest 

test plasma glucose level, a measure of glucose intolerance, a 
numeric vector 

instest 

plasma insulin during test, a measure of insulin response to oral 
glucose, a numeric vector 

sspg 

Figure 3. An example of Vietoris-Rips filtration of a space. There are different complexes for different 
values for ε. Violet horizontal lines shows barcodes in dimension 0 and orange line shows barcode for 
dimension 1. 
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Figure 6. Persistent for non-diabetic group 

Figure 9. Persistent barcode for diabetic data 

steady state plasma glucose, a measure of insulin resistance, a 
numeric vector 

group 

diagnostic group, a factor with levels Normal, Chemical_Diabetic, 
Overt_Diabetic. 

 

4. Preliminary results and discussion 

      First, we apply persistent homology for each diabetic group of 
data. For the Chemical_Diabetic group the results are given in Figure 
4 and for Overt_Diabetic group the results are given in Figure 5.  

    We can see that the persistent barcodes are different. In Figure 4, 
the persistent barcode has more red bars, which means that there are 
more circles in the simplex constructed from the data for the 
Chemical_Diabetic group. In this case, there is significant 
topological difference in the simplexes which means the shape of the 
data of the two groups is different. A question that arises here is 
which physical or real factor makes the difference? These factors 
may be crucial for better understanding the different types of 
diabetes.  

     Next, we apply persistent homology on both the diabetic group 
and the non-diabetic group. The results are given in Figure 6 and 
Figure 7.  

According to the barcodes in Figure 6 and Figure 7, we can 
conclude that topological characteristics in the data of diabetic and 
non-diabetic groups are obvious. In the second persistent barcode, 
there are circles which are present most of the time.  

We apply persistent homology on the second dataset which 
contains data from diabetic and non-diabetic patients. This dataset is 
originally from the National Institute of Diabetes and Digestive and 
Kidney Diseases. The objective of the dataset is to diagnostically 
predict whether or not a patient has diabetes based on certain 
diagnostic measurements included in the dataset. Several constraints 
were placed on the selection of these instances from a larger database. 
In particular, all patients in this dataset are females at least 21 years 
old and of Pima Indian heritage. The results are given in Figure 8 and 
Figure 9. 

 

5. Further work and application in bio-medical field 

 

The main goal is to link the differences of the topological 
characterizations of the two types of diabetes to real factors. 
Persistent homology, and in general, TDA, can be applied in the bio-
medical field in many areas. The application of statistics allowed 
significant progress in understanding diseases. Knowing that, and the 
fact that TDA gives a new way of analyzing the data, specifically, 
analyzing the shape of the data, we think that TDA will be useful for 
medicine. It can be used to see how one factor changes the 
topological characteristics of the topological space underneath the 
given data, and how it is related to a disease. If we work in three 
dimensional Euclidean space, we may find some structural 
deformations of a system in the body. For example, to observe the 
deformations of the vasculature of some organ or tissue. In the future, 
we will investigate how persistent homology can be applied to 
characterize retinal and liver vasculature networks. TDA can also be 
applied on big data from the healthcare field. 
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Figure 4. Persistent barcode for the Chemical_Diabetic group 

Figure 5. Persistent barcode for the Overt_Diabetic group 

Figure 7. Persistent for diabetic groups 

Figure 8. Persistent barcode for non-diabetic data 
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Abstract: The application of a rigorous CFD method and an all-encompassing algorithmic performance optimization method 

can make possible the CFD simulation of the extremely large-scale problems, which allows simulation of either larger systems, or 

more detailed simulation of systems that are already simulated. The CFD code has to show both efficient one-node performance 

and excellent parallel scaling. The record breaking performance on one node has been achieved before with application of the 

LRnLA algorithm and making use of many core parallelism as well as the vectorization. In the current work, the algorithm is 

extended for many-node parallelism. The algorithms is characterized by high parallelization degree, small number of node 

communication events, and may be concisely described and  programmed on the base of the previously implemented one-node 

solution, which is a rare feature among the algorithms with temporal blocking in all four of the spatial and time dimensions. 

Keywords: LATTICE BOLTZMANN METHOD, PARALLEL ALGORITHMS, LRNLA, CONEFOLD, CFD 

 

1. Introduction 

The mathematical modelling of fluids is used for industrial 

design problems, disaster prevention, exploration for oil and gas, as 

well as in the medical applications. The CFD problems are 

computationally heavy, and comprise a large portion of the 

supercomputer load. To make the large-scale modelling cheaper,  

accessible to more scientists, and to make extreme scale modelling 

possible, we develop algorithms that raise the efficiency of the 

parallel implementation of the numerical schemes higher than the 

memory bound limit.  

Among the CFD schemes the Lattice Boltzmann Method [14] 

has the advantage of high stencil locality. It is highly parallelizable, 

and the speedup from using the hybrid computers is achieved by 

many authors. The method has its range of stability, and there are 

extensions that allow for more stability in simulation of high 

Reynolds numbers. However, the extensions of the method may 

complicate the simulation so that it may be comparable in amount 

of computation to the Navier-Stokes discretization schemes. We 

promote the other way to extend the range of possible applications: 

by making the computer implementation of a simple scheme more 

efficient, larger meshes may be simulated in reasonable time. This 

way, the robustness of the method is gained by highly detailed 

mesh..  

Indeed, high performance LBM codes [1,2,6,7,8,12,13] use the 

most basic variations of the method. In our work we achieved the 

record breaking performance on multi-core CPU [6,10] and high-

end GPU [6,7]. These results were obtained by applying the LRnLA 

algorithms [4,5] that allow traversal in both space and time to 

enhance the locality of data access and take advantage of the 

computer memory hierarchy to gain more calculation performance. 

The approach of space-time decomposition of the problem has been 

used in LBM codes by other authors to conceal data copy in parallel 

simulation [13] and to overcome some of the memory bottlenecks 

[8]. In CFD LRnLA algorithms are also applied for the RKDG 

method [3]. 

In this paper we extend our previous algorithm to make the 

multi-node simulation possible.  

2. Methods 

In LBM [14], the simulation domain is split into Nx×Ny×Nz 

cubic cells. In each cell, the probability distribution function is 

known for a set of discrete velocities  𝑐     𝑖𝑗𝑘 . The specific method is 

denoted by a word like D3Q19, where the first number is the 

dimensionality of the model and the second number is the number 

of velocities. Discrete velocities are chosen as vectors that point 

from the center of the cell to the centers of its neighbors, and a zero 

velocity. In D3Q27, there is a set of vectors that point to each cell in 

a 3×3×3 cube. In D3Q19, the longest vectors of D3Q27 are pruned. 

For each velocity the update rule for its Distribution Function 

(DF) is split into two sub-steps: the streaming step 

𝑓 𝑖𝑗𝑘 (𝑟       𝑖𝑗𝑘 , 𝑡 + 𝛥𝑡 )  ← 𝑓 𝑖𝑗𝑘 (𝑟       
000, 𝑡 ), and the collision step 

after:  𝑓 𝑖𝑗𝑘 ← 𝑓 𝑖𝑗𝑘 − (𝑓 𝑖𝑗𝑘 − 𝑓 𝑖𝑗𝑘
𝑒𝑞 )/𝜏 ; i, j, k = -1, 0, 1 

while 𝑖 2 + 𝑗 2 + 𝑘 2 < 3for D3Q19. 

Streaming copies the fijk from cell with coordinates r000 to the 

cell with the relative position 𝑟       𝑖𝑗𝑘 = 𝑟       
000 + 𝑐       𝑖𝑗𝑘 𝛥𝑡 , 

𝑐       𝑖𝑗𝑘 = (𝑖 , 𝑗 , 𝑘 ). The collision operates with the DF in the same 

cell.  The expression for the equilibrium DF 𝑓 𝑖𝑗𝑘
𝑒𝑞  is taken as 

the most commonly used second-order polynomial in 𝑢       =

 𝑖𝑗𝑘 𝑓 𝑖𝑗𝑘 𝑐       𝑖𝑗𝑘 /  𝑖𝑗𝑘 𝑓 𝑖𝑗𝑘  [14] to make the 

performance comparison easier, but any expression that operates on 

the data inside one LBM cell may be used in the current 

implementation. 

 

Fig. 1 ConeFold algorithm in 2D1T and 1D1T 

 

For the implementation, we start from our previous work 

documented in [10]. The reader may refer to the texts for 

information of algorithm construction, data structure, details on the 

vectorization method. These are summarized below. 

2.1 ConeFold 

The algorithm operates recursively on a Z-curve array, which is 

a cube with linear size of N=2MaxRank, where MaxRank is an integer 

number. Between the synchronization steps in time t=0 and t=N the 

dependency graph is subdivided recursively (Fig. 1) until an 

elementary update of one cell.  

The procedure is implemented with recursive templates in C++. 

There are special cases for the inside of the domain, left and right 

boundaries, the decomposition in 1D1T is shown in Fig. 2 [11]. For 

2D1T and 3D1T the treatment of all corners is necessary, and the 

coding similar to a direct product, since the description of ConeFold 

may be split by coordinates. For example, in 3D1T  at x=N, y=N, 

z=0 the code is XXI.  

In 1D1T case, at maximal rank, two ConeFold should be 

executed: X and I. Each of them will recursively call ConeFolds of 

smaller rank (Fig. 2). In 3D1T, after XXX, three ConeFolds may be 

executed in parallel (XXI, XIX, IXX), as well as the next three (IIX, 

IXI,XII). The last one is III. 
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Fig. 2 ConeFold decomposition and codes near the boundaries in 1D1T 

 

2.2 Streaming algorithm 

The smallest ConeFold is an LRnLA cell. Its base is one data 

structure cell. Two of the streaming algorithms allow for only one 

LBM node to be put in this structure: EsoTwist [1] and the special 

swap algorithm used in our previous work [10]. Here we have 

implemented EsoTwist for further comparison of the methods. In 

EsoTwist, in the LRnLA cell the data that is saved is put in place of 

the data that was read for its execution. This prevents data race 

condition when parallelism is implemented with stepwise 

algorithms. In ConeFold, this advantage is not used. However, at 

smaller scales, this may lead to better data locality.  

 

Fig. 3 Implementation of ConeTur with vectorized ConeFold 

 

2.3 AVX vectorization 

The AVX2/AVX512 vectorization is implemented by putting 8 

float/double values into each DF in a cell. At the same time, the size 

of the domain is doubled in each direction.  

To return to 1D1T illustration, let the vector length be equal to 

2, not 8. These two values are from cells ix and 2N-ix-1 in the 

domain. It may be visualized as if the 2N cell domain is ‘folded’, 

the ends are ‘glued’ and we get a ‘ring’ of cells. First N cells are in 

the natural order, the next N cells are mirrored. The LBM scheme is 

also mirrored. The ConeFold is executed on a cube of N cells, 

which contain the vectors of natural and mirrored data. This way, 

the calculation inside the domain with scalars for the N size domain 

and the calculation in the with vectors for the 2N domain are 

indistinguishable. The mirroring is implemented only by 

introducing {1,-1} constant vectors into the numerical scheme. At X 

and I ConeFold, the mirrored and natural domains are linked by the 

vector shuffle operations. This is generalized to 3D, where the 

vector length is 8, the domain size is 2N×2N×2N, and some areas 

are mirrored by several axes. 

This kind of implementation of periodic boundary with 

wavefront blocking is also suggested in [9].  

3. Multi-node parallelism 

In the current work we explore the ability to make a many-node 

implementation of the code.  

There is a certain issue with multi-node parallelism of the 3D1T 

ConeFold, especially prominent when the number of nodes is high. 

Let us consider a simulation domain, made up of Bx×By×Bz cubes.  

The cubes may be passed to different nodes, and each node would 

start the ConeFold with MaxRank, treating the cube as a base. The 

maximal degree of parallelism can be estimated as a number of 

cubes on the 3D diagonal cross-section of the domain.  

On the other hand, other types of space-time traversal 

algorithms allow more parallelism, such as diamond tiling [15] or 

ConeTur [4, 5], or earlier version of the LRnLA algorithms. In 

2D1T subdivision, which we choose for the demonstration since it 

can illustrate some complexity of higher dimensions by using 3D  

shapes, the tiling is obtained with octahedra and two types of 

tetrahedra. In our work, the ConeFold is favoured since it is simpler 

for the programmer to write  and for the compiler to optimize, and 

produces a clean and comprehensible code due to the use of the 

common recursive C++ templates. The number templates types is 

equal to 3D, due to the fact that the special treatment is required for 

the boundary of the domain. If ConeTur is used, in 3D1T there are 

2D types of shapes, and each shape has to be specified in the 

variants that describe each of the 3D-1 boundary types.  

The use of ‘folding’ of the domain which has already helped 

with vectorization and application of the periodic boundaries can be 

used in this case as well, for the purpose of simplifying the 

implementation of ConeTur.  

In 2D1T illustration (Fig. 3), which is easily generalized to 

3D1T, let us take the area of 2×2 cubes KOO, and fold them to make 

a vectorized cube KV. If only the first ConeFold XX is executed on 

KV, it is equivalent to the execution of the 2D1T pyramid on  the 

KOO base. The data from KV is returned to the main array. Then 2×2 

cubes KOX, are folded into KV, and ConeFold IX is executed on it. 

This fills in the tetrahedron between the pyramids in the X 

direction. The same is performed in the Y axis, and then for KXX. At 

this point every cell is updated up to the synchronization instant. 

Thus, ConeTur is executed by ‘refolding’ of the ConeFold. The 

synchronization between nodes, in case the pyramids and the 

tetrahedra are distributed between different nodes, is performed 2D 

times per N time steps. 

4. Performance analysis 

We have implemented the described algorithm, namely, the 

‘unfolding’ and ‘folding’ the data cubes. On one node, in the 

Bx×By×Bz cubes domain, one vectorized cube is formed, 

processed, and unfolded repeatedly to update all cubes on the node. 

At the boundary, in case there is a part of domain that is processed 

by another node, the necessary amount of data is sent by MPI. 

Otherwise, the one-node domain is treated as periodic.  

The important metric for the performance analysis is the 

slowdown due to the vector copy operations. Thus, we have tested 

the code with and without the ‘refolding’ introduction and 

compared the results on different processors.  

The test was performed on one node with N=256, Bx×Bx×Bx = 

2×2×2, D3Q19. The performance is compared with the previously 

published results [10]. Since the results do not differ much, we 

conclude that the data copy, which is introduced with the new 

algorithm, does no significant impact on the performance. 

 

 

Fig. 4 Performance comparison against the previous solution 
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5. Conclusion 

We have introduced the extension of the vectorized ConeFold 

algorithm for the supercomputer fluid simulation with the Lattice 

Boltzmann Method. The ConeTur algorithm, that has been difficult 

to implement in 3D1T before, has been implemented by reshuffling 

the data structure in the code based on ConeFold. This solution 

leads to a comprehensible code for fluid simulation, where the 

space-time decomposition is used for 3 levels of parallelism: 

vectorization, multi-core and multi-node. 

We see that the introduction of the ‘refolding’ algorithm has not 

presented significant slowdown. The current results are even higher 

than the reported ones, which is probably due to small optimization 

of the code and compiler options. 

The introduced algorithm may be applied to other 

hydrodynamic schemes with cube stencil, and for similar schemes 

of other numerical methods.  

The work is supported by the Russian Science Foundation 

(project #18-71-10004). 
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Abstract: In this work presented mathematical model of user behavior analytical system for cloud service providers. User behavioral 

analysis systems include three main components: methods, data and threat detection scenarios. The work describes these components, as 

well as their application to a potential UEBA class system. The data is taken from the logs of cloud service provider. The novelty of the 

presented architecture is described in the methods for obtaining the necessary data. Methods for analysis use advanced analytics to study 

users, data: profiles, interests, public groups, publications, comments, and other parameters from the model of unsupervised learning model, 

the k-means method, remote functions, random forests, in-depth study, artificial intelligence. Moreover, artificial intelligence has become 

more commonly used in recent years by many vendors. Threat detection scenarios are a subjective component and are defined by the 

customer of the system. This work presents scenarios for detecting information security threats. 

KEYWORDS: USER BEHAVORIAL ANALYTICAL SYSTEM, THREAT, SIEM, VULNERABILITIES, CLOUD, SERVICE, 

CYBERSECURITY.  

 
1. Введение. Системы класса UEBA 

 

В данное время становятся всѐ более популярными 

услуги облачных сервис-провайдеров. Многие организации 

предпочитают пользоваться сторонними приложениями, не 

развивая парк технологий у себя. Сервисы, предоставляемые в 

облаках, могут быть различные, от услуг документооборота до 

предоставления финансовых услуг. Соответственно, вопросы 

обеспечения информационной безопасности могут быть 

различные по степени критичности, но при этом без 

ограничения общности можно считать наличие инструментов 

по обеспечению защищѐнности облаков обязательным. 

Для предоставления качественных сервисов облачному 

провайдеру необходима постоянно развивающаяся система 

управления информационной безопасности, позволяющая 

гарантировать защищенность таких атрибутов 

информационной безопасности, как конфиденциальность, 

целостность и доступность. Если ранее, корпоративную сеть 

можно было обеспечить стандартными инструментами, такими 

как файервол, антивирусное программное обеспечение, 

системы класса SIEM, прокси-сервер, то сейчас наступает 

необходимость применения аналитических инструментов для 

обеспечения безопасности компаний, и тем более облачных 

сервисов. Одним из аналитических инструментов является 

система класса UEBA (user entity and behavioral analytics).  

Риски информационной безопасности для облачных 

сервис-провайдеров – схожи с рисками для корпоративных 

сетей, и отличаются отдельными видами угроз. В работе [1] 

представлены примеры сценариев обнаружения угроз для 

облачных сервис-провайдеров.  

 

ТАБЛИЦА 1. Сценарии обнаружения угроз. 

 

Обнаружение компрометации 

учѐтной записи  

Решение UEBA определяет ситуации, когда учѐтные данные были украдены и 

используются кем-то иным. Выявление использования учѐтной записи или 

злоупотребления учѐтной записи одни из примеров данного сценария.  

Обнаружение 

скомпрометированного конечного 

устройства 

Решение класса UEBA используется для обнаружения сетевых устройств, 

которые были скомпрометированы, заражены зловредными ПО или 

демонстрирующие подозрительное поведение.  

Обнаружение утечки данных  UEBA также используется для выявления утечки данных. Неавторизованная 

или целенаправленная утечка данных может случиться даже в действиях 

авторизованного пользователя.  В результате, данный сценарий сфокусирован 

на определении такого типа активности, которая необходима для выявления 

скомпрометированных учѐтных записей и конечных устройств.  

Использование злонамеренно 

внутреннего доступа, включая 

привилегированные доступы 

Инструменты UEBA могут быть использованы для выявления пользователей 

(и работники и доверенные третьи лица), злоупотребляющих своими 

привилегиями доступа, которые во многих случаях связаны с злонамеренным 

событием. Примеры типов активности с превышением привилегий или 

неавторизованного доступа к данным (к примеру, получение доступа к базе 

данных с персональной информацией) или в случае злоупотребления 

системными привилегиями (к примеру, создание новой пользовательской 

учѐтной записи или присваивание дополнительных привилегий в разрез 

политики безопасности).  

Предоставление дополнительной 

информации и контекста для 

исследования 

Технологии UEBA изучают много информации касательно пользователей и 

сущностей в организации в порядке для определения аномалий, связанных с 

угрозами. Эта информация используется аналитиками, выполняя сортировку 

предупреждений и расследованием инцидентов.  Если аналитик подозревает, 

что конечная станция была скомпрометирована, например, он может 

использовать решение UEBA для получения информации о пользователях 

данной рабочей станции, их регулярное поведение и даже роль конечной 

станции в сети.  
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Разработка отдельных сценариев  Вендоры UEBA часто упоминают сценарии, где их решения используются в 

виде, отличающемся от оригинального назначения, начиная с обнаружения 

мошенничества до трекинга наркотиков в организациях здравоохранения. 

Свойство собирать отдельные данные и создавать типичные модели 

машинного обучения для тех сценариев достаточно важное.   

 

 

2. Пример использования системы UEBA 
 

Пункт CLD.12.4.5 стандарта ISO/IEC 27017 [2] 

определяет возможности провайдера, которые позволяют 

клиенту проводить мониторинг активности в облачной среде. 

Таким образом предоставляется возможность использования 

аналитических инструментов. В качестве тестового стенда в 

облачном сервис-провайдере Qazcloud использовалась система 

класса UEBA производителя IBM Qradar.  

Согласно [3], основу системы UEBA составляют 

сценарии обнаружения угроз, наиболее критичные и значимые 

для любой организации. Для определения угроз, были 

использованы, в первую очередь, стандартные сценарии: 

обнаружение компрометации учѐтных записей пользователей, 

обнаружение скомпрометированного конечного устройства, 

обнаружение утечки данных, использование 

несанкционированного внутреннего доступа, включая 

привилегированные доступы, предоставление дополнительной 

информации и контекста для исследования. Кроме того, 

должны использоваться специфичные сценарии угроз, 

свойственные конкретному облачному провайдеру. 

При тестировании используемой системы возникла 

следующая задача. Для каждого пользователя в настройках 

составляется порог рейтинга, при превышении которого, 

фиксируется событие аномального поведения, несвойственное 

нормальному поведению. Модель, используемая в системе, 

схожа с работой [4].  

Рейтинг пользователя составляется на основе 

включенных, настроенных правилах детектирования 

аномального поведения пользователя, которых в системе 

насчитывается порядка 157. В таблице представлены правила с 

наибольшим количеством зафиксированных срабатываний.  

 

ТАБЛИЦА 2. Правила детектирования аномального поведения. 

Подключение пользователя в нетипичное 

время суток  

После обучающего периода было установлена, что стандартные часы 

подключения пользователей с 9-00 до 19-00.  

Соединение с зловредными веб-сайтами  Логи прокси-сервера, указывающие на попытки соединения с 

зловредными веб-сайтами 

Повышение прав пользователя или группы 

пользователя  

Предоставление записи файлов, вместе чтения.  

 

В тестовой среде для 100 пользователей в рамках 

обучающего периода был выставлен порог в 20 баллов. 

Соответственно, согласно настройкам, при превышении 

указанного порога, система оповещала об инцидентах 

кибербезопасности для каждого пользователя.  При внедрении 

системы в продуктивную среду для крупного облачного 

сервис-провайдера рассматриваемая система оказалась 

неэффективна. Система UBA получила для анализа и 

обработки порядка 23000 пользователей. Соответственно для 

указанного порога рейтинга пользователя в 20 баллов за 

период с 29 июня по 25 сентября 2019 года было 

сгенерировано 37 733 448 срабатываний правил, и 3265 

событий превышения указанного порога. Соответственно, 

возникают сложности при обработке такого количества 

инцидентов, при этом для таких пользователей необходимо 

проводить обучающие курсы, повышать их осведомлѐнность.  

Идея разделить пользователей на отдельные группы по 

типу поведения – естественна, однако разделить порядка 23000 

облачных пользователей становится трудоѐмкой задачей. 

 

3. Постановка задачи  
 

Основной задачей для любой системы аналитики 

поведения пользователей, является создание математической 

модели, способной решать комплекс необходимых задач, при 

этом генерируя как можно меньше ложных срабатываний.  

Предлагается использование модели для анализа 

поведения пользователей и подсчѐта рейтинга пользователей. 

Для данной модели будет поставлена задача избежать 

генерации большого количества инцидентов, на которые 

физически невозможно среагировать. Таким образом 

представляет интерес получение системы UEBA, которая 

позволяет гибкую настройку рейтингов пользователей.  

Имеющиеся модели машинного обучения в системе – 

это модели на основе привязки пользователя к локальному ip 

адресу; соединенных сетевых портов в локальной сети; 

обнаруженных процессов в операционной системе Windows 

или Linux; проведѐнного времени в браузере на нерабочих 

сайтах; событиях приложения; соединений с рискованными 

веб-приложениями.  

4. Модель потенциальной системы 
класса UEBA 

 

В результате анализа использования системы UBA 

Qradar и готовых шаблонов моделей предлагается для 

потенциальной системы класса UEBA использование аналога 

рейтинга ЭЛО [5] для оценки поведения пользователя 

облачного сервис-провайдера.  Рейтинг ЭЛО, который 

используется в шахматных соревнованиях. Формула рейтинга 

для оценки поведения пользователей: 

вычисляется математическое ожидание количества баллов 

рейтинга, которое получит пользователь за день N в сравнении 

с предыдущим днѐм N-1 согласно следующей формуле: 

𝐸𝑁 =  
1

1+ 10
𝑅𝑁− 𝑅𝑁𝑜

400

 ,  

 

где 𝐸𝑁 – математическое ожидание количества баллов, которое 

наберѐт пользователь за день N в сравнении с рейтингом 

ожидаемого поведения пользователя в данной группе, где  𝑅𝑁 

– рейтинг пользователя за день N.  

Новый рейтинг пользователя считается по формуле  

𝑅𝑁 =  𝑅𝑛−1 + 𝐾 ∗ (𝑆𝑁  −  𝐸𝑁  ),  

где К - значение которого равно 10 для опытных пользователей 

(рейтинг 2400 и выше), 20— для пользователей с рейтингом 

меньше, чем 2400 и 40 — для новых пользователей (первые 30 

дней с момента регистрации). Как и во всех моделях, 

предполагающих случайную переменную, система оценки Эло 

уязвима к избирательным парам и непредставительным 

популяциям, что делает модель неточной. Указанные k-

факторы не окончательные, в рамках будущих тестирований 

модели могут измениться, аналогично [6]  
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Рис. 1 Настройки UBA IBM Qradar 

 

 

 
Рис. 2 Создание собственной модели 

 

 

5. Заключение  
 

Предложена модель подсчѐта рейтинга поведения 

пользователей, которая может быть применима для 

большого количества пользователей. Данная модель так же 

позволяет разделять группы пользователей согласно уровням 

k-факторам. Разделение пользователей по группам позволяет 

быстрее реагировать на схожие типы инцидентов, а также 

проводить обучающие, корректирующие мероприятий по 

повышению осведомлѐнности пользователей.   
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Abstract: In this paper we analyze and apply  one of the main algorithms of TDA (Topological Data Analysis), Mapper, on some real data 
sets. We  use Mapper for visualization of a data sets, and  we tend to get some insights if some key characteristics of the data are captured by 
the visualization and how they are connected with human perception of the data. Also, we will discuss if the visualization can make progress 
in further work. 

Keywords: MAPPER ALGORITHM, TOPOLOGICAL DATA ANALYSIS, ALGEBRAIC TOPOLOGY, DATA SCIENCE, 
COMPUTATIONAL TOPOLOGY 

 

1. Introduction 

 

     Topological data analysis (TDA), is an approach for analyzing 
data using techniques from topology. Extraction of an information 
from the  datasets which are high-dimensional, incomplete or noisy, 
is a wide field for researchers and scientists in last few years. TDA 
provides a general framework to analyze such data in a manner that 
is insensitive to a particular metric. Beyond this, it inherits functors , 
a fundamental concept of modern mathematics, which allows it to 
adapt to new mathematical tools.      

  Mapper algorithm was developed by Singh, M´emoli, and Carlsson 
in [1], and it gives a multi-resolution, low dimensional picture of  
point cloud. It’s highly customizable, and has a track record of 
revealing structure that some other methods, like clustering and 
“projection pursuit” methods miss. 

Mapper algorithm is one of the most important tools used in TDA for 
data visualization. For input, it use: 

-point cloud;  

- “filter function;”  

-covering of a metric space;  

-clustering algorithm;  

- various other parameters.  

Output is a Graph (or higher simplicial complex) which is tend to 
capture the main topological aspects  of the point cloud. 

2. Mathematical preliminaries 

We will introduce some mathematical concepts, in order to 
construct a topological space from given dataset.  

Let n ≥ 1 be an integer, let [n] = {0, . . . , n}.  

An n-simplex σ is the convex hull of n + 1 affinely independent 
vertices S = {vi},i∈[n] in Rd where d ≥ n.  

A simplex τ defined by T ⊆ S is called a face.  

A simplicial complex K is a finite set of simplices which meet 
along faces, every one of which is in K.  

Let e0 denote the origin in Rn and ei the i-th standard basis vector 
for Rn.  

The standard n-simplex ∆n ⊂ Rn is the convex hull of {ei}i∈[n]. 
Given any subset J ⊆ [n], let ∆J be the face of ∆n spanned by {ej}j∈J. 
The points of S are vertices of the simplex. 

As basic examples, the low dimensional simplices 
(plural:simplices or simplexes) have special names: 

- a 0-simplex is  called a vertex; 

- a 1-simplex is called edge; 

- a 2-simplex is called triangle 

- a 3-simplex is called tetrahedron,  
- a 4-simplex is called a 5-cell. 

 
Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex 

 

 
Figure 2.  Example of simplicial complex 

 

Topological invariants of the space, such as:  holes and number 
of connected components,  can be computed from a simplicial 
complex, see  Figure 2. One of the basic idea of Topological Data 
Analysis is to construct a simplicial complex from a dataset, i.e. in 
one hand, simplicial complexes are high dimensional analogues of 
graphs, and in other hand simplicial complexes are approximation of 
the topological space. 

3.Mapper algorithm  

The algorithm works very simple: put bin data into overlapping 
bins, cluster each bin, create a graph where vertices = clusters and 
two clusters are connected by an edge if they have points in common. 

Mapper algorithm (implementation) 

 

Figure  3 Mapper algorithm – steps 
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Figure 4. How works the Mapper algorithm – an illustration  

Next, it is given a more precise description of the algorithm. 

Given: X point cloud, |X| = N,  

filter function f : X → R.  

Assume we can always compute inter point distances.  

 Let I denote the “range” of f: explicitly I = [m, M] ⊂ R where m 
= minx∈X {f (x)}, M = maxx∈X {f (x) } 

Divide I into a set S of smaller intervals (of uniform length) 
which overlap. Obtain two resolution controlling parameters: l the 
length of the intervals, and p the percentage overlap between 
successive intervals. 

 For each interval Ij ∈ S, let Xj := {x : f (x) ∈ Ij}. Then the 
collection of all such Xj is a covering of X. 

 (2) For each Xj , perform a clustering algorithm to obtain 
clusters {Xjk }.  

 Each cluster defines a vertex of our simplicial complex: 
draw an edge between vertices whenever Xjk ∩ Xlm ≠ ∅. 

4. Application of the Mapper algorithm on the Tori 
( two rings) dataset 

 

In this section, we choose 3D object form of two rings (tori), see 
Figure 5. It’s synthetic dataset, consisted of 2048 points. We apply 
Mapper algorithm on that dataset. 

In these experiments, made in mathematical software R, we use 
different values of the parameters:  

 

Figure 5. Tori 

 n=number of intervals, varying between 6 and 16, 

 p=percent of overlapping, between 20 and 80, 

 b=number of  overlapping bins when clustering, 
between 5 and 15. 

 

The results from Mapper algorithm for Dvatorusi datset are given 
in Figure 6, Figure 7, Figure 8 and Figure 9. Every figure corresponds 
to a Mapper algorithm results for different parametars. 

 

 

Figure 6. Mapper algorithm on Tori- 2 obtained cycles 

 

 

 

 

Figure 7. Mapper algorithm on Tori - 1 obtained cycle  

 

 

 

 

Figure 8. Mapper algorithm on Tori - 3 obtained cycles 
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Figure 9. Mapper algorithm on Tori - 4 obtained cycles 

 

We can conclude that there are different graphs obtained for 
different values of  parameters. There is no one way of choosing 
parameters of Mapper algorithm. It depends on the subject of the 
research. 

5. Application of the Mapper algorithm on the 
Torus dataset 

 

In this section, we choose Torus- 3D object see Figure 10 and 
apply Mapper algorithm over the database. 

 

Figure 10. Torus 

In these experiments, it is interesting that Mapper graphs with 
one dimensional filter, for all values of the different parameters, are 
of the same form, showed in Figure 11. 

 

Figure 11. Mapper algorithm on Torus dataset 

 

But, if the filter is bi-dimensional [11], the obtained Mapper 
graph is of the form, showed in Figure 12. 

 

Figure 12. Mapper algorithm on Torus- bi-dimensional, filter 

 

 

6. Application of the Mapper algorithm on the 
Diabetes dataset 

In the following case, we apply Mapper algorithm on the 
Diabetes dataset, consists of 145 lines, with 6 attributes in each line- 
Miller-Reaven dataset. Reaven and Miller (1979) examined the 
relationship among blood chemistry measures of glucose tolerance 
and insulin in 145 non-obese adults [10]. They visualized the data in 
3D, and discovered a peculiar pattern that looked like a large blob 
with two wings in different directions. In this dataset, the data is split 
up in three categories. Data from non-diabetic patients, data from 
patients with diabetes classified as overt and data from patients with 
diabetes classified as chemical diabetes. Overt diabetes is the most 
advanced stage, characterized by elevated fasting blood glucose 
concentration and classical symptoms. Preceding overt diabetes is the 
latent or chemical diabetic stage, with no symptoms of diabetes but 
demonstrable abnormality of oral or intravenous glucose tolerance.  

 

 

Figure 13. Mapper algorithm on Diabetes dataset (n=10) 
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Figure 14.  Colored Mapper Graph over Diabetes dataset (from Fig.13) 

 

 

 

Figure 15. Mapper Graph on Diabetes data set (n=5) 

 

 

Figure 16. Colored Mapper Graph on Diabetes dataset (from Fig.15) 

 

The peculiar pattern visualized in [10], can be seen on Figure 14 
and Figure 16. The two types of diabetes are distinguished on the 
obtained graphs. 

 

7. Discusion 

Mapper algorithm is useful tool for visualization of datasets. 
There are many open problems in the process of choosing parameters, 
as it can be seen on the visualizations in this work. It is open research 
area. In the future, we like to optimize that process. Also, we plan to 
apply Mapper algorithm on bio-medical data and used it for 
categorize or group observations of some diseases. 
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Abstract: The results of a solution of the problem of the stability of steady convective flow in a vertical layer with thermally insulated 

boundaries and a comparison with the opposite limiting case of ideally thermally conducting boundaries are presented. Study is made of the 

effect of thermal properties of boundaries on the convective flow stability in a closed vertical layer. The numerical solution of a spectral 

amplitude problem for normal disturbance is presented for thermally insulated boundaries. The critical Grashof numbers are determined. A 

comparison with the case of ideal conducting walls shows that there is a slight effect of thermal properties on the instability criterion. 
KEYWORDS: STEADY-STATE CONVECTIVE FLOW, THERMAL PROPERTIES OF BOUNDARIES, STABILITY, LIQUID, 

IMPURITY.  

 

1. The results of studies of the stability of closed steady convective 

flow liquid with heavy impurity between vertical planes [1,4] a show 

that depending on the value of the Prandtl number Pr the instability is 

caused by mechanisms which differ in their physical nature. At low 

and moderate Prandtl number hydrodynamic disturbance leading to 

the formation of steady vortices at the interface of the opposing flows 

are responsible for the instability. At larger Prandtl number (Pr > 12) 

the instability has a wave nature and is connected with an increase in 

the convective fluxes of temperature waves.   

 

The numerical results presented in [1,4,6] were obtained on the 

assumption that temperature disturbances vanish at the boundaries of 

the layer. Such boundary conditions correspond to the limiting case 

when the thermal conductivity of the boundaries is much greater than 

the thermal conductivity of the liquid and the solid masses bordering 

on it are comparable then temperature disturbances penetrate into the 

solid masses. Then the question arises of whether the relative thermal 

conductivity of the boundaries affects the stability of the convective 

flow the conjugate problem of stability of convective flow. It is clear 

in advance that the hydrodynamic mechanism of the instability must 

be little sensitive to the thermal properties of the solid masses. As for 

a wave instability, since it is connected with growing temperature 

waves it cloud be expected, generally speaking, that the properties of 

the solid masses have a considerable effect on the critical parameters 

of this instability. The results presented below, however, that the 

penetration of temperature disturbances into the surrounding solid 

masses has a weak effect on the conditions of formation of 

instabilities of both the hydrodynamic and the wave types. 

 

To clarify the role of the penetration of thermal disturbances on the 

stability it is obviously sufficient to consider the limiting case 

opposite to that which one usually has in mind, namely when the 

thermal conductivity of the liquid is far larger than the thermal 

conductivity of the boundaries. In this limiting case the boundary 

condition of thermal insulation must be set up for temperature 

disturbances. 

 

In the following, a study is made of the effect on convective flow all 

factors characterizing the added particles: the rate of particle settling 

us, the velocity and temperature relaxation times for the particles (or, 

which comes to the same thing, their size, density, and heat capacity), 

and the mass concentration a of the additive. 

1. We consider a viscous incompressible fluid containing a cloud of 

spherical nondeformable solid particles of identical radius r and 

mass m.  As in [2-6], we assume the liquid and impurity to be 

continuous media, interpenetrating and interacting with each other, 

and neglect interaction between the particles.  The volume 

fraction of particles is assumed to be so low that the Einstein 

correction to liquid viscosity can be neglected.  The density of the 

particle material ρ1 is much greater than the density of the carrier 

medium ρ.   

 

The displacement force acting on the particles is negligibly small, 

since it is proportional to the ratio ρ / ρ 1 << 1.  Interaction between 

the phases as they undergo relative motion follows the Stokes law. 

The equations describing the behaviour of an incompressible fluid 

with an impurity of heavy solid particles have the form [2, 3]. Based 

on those equations, equations were obtained [2] in the Boussinesq 

approximation for the free convection of an incompressible 

medium with a heavy additive: 
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where u


 is the liquid velocity; T is temperature; p is pressure of the 

fluid measured with respect to the hydrostatic pressure renormalized 

because of the settling particles; c is the heat capacity of the fluid at 

constant pressure; β, ν and χ are the coefficient of volume expansion 

of the fluid, its kinematic viscosity, and thermal diffusivity; 

quantities with the subscript “p” refer to the particle cloud, where 

pu


is the velocity acquired by the particles as a result of their 

interaction with the moving fluid measured with respect to the rate of 

particle settling su


; c1 is the heat capacity of the particle material; 

N, number of particles per unit volume; and g


, acceleration of 

gravity. The quantities τt and τv have the dimensionality of time 

and are, respectively, the time required for the temperature 

difference between fluid and particles to decrease by factor e and 

the time required for the velocity of the particles relative to the 

fluid to decrease by factor of e in comparison with its original 

value. 

We consider convective motion of a fluid containing  an additive in 

a plane layer between infinite parallel vertical surfaces, which are 

constant temperatures – Ө and Ө, respectively. The particles, the 

concentration of which is nonuniform, move through the fluid.    

We obtain a steady-state solution of the equation, describing 

plane-parallel convective motion and we used boundary conditions 

u0(±h)  =  0, T0(-h)=Ө,  T0 (h) = - Ө and the closure condition for 

convective flow. We obtain the distribution of velocities and 

temperatures of the fluid and particle cloud over a section layer. 
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In the closed vertical layer between the plane x = + h plane-parallel 

convective flow is established with a linear temperature profile and a 

cubic velocity profile:   
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Here is u0 and up0 are the vertical velocity components and the 

subscript 0 indicates the steady-state solution of Eq. (1), Ga, GR, Pr 

are the Galileo, Grashof and Prandtl numbers; v and t are now 

dimensionless relaxation times;  is a unit vector directed vertically 

upward. 

The boundary conditions and closed flow condition are expressed by   

                      

,)(u 01    .00 


dxu
h
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                                        (3) 

 

As is clear from Eqs. (2), presence of added particles leads to 

renormalization of the velocity profile of the liquid in comparison 

with the case of a fluid without an additive. 

 We investigate the stability of the steady-state motion of a medium 

containing a heavy additive as defined by Eqs. (1).  To do this, we 

consider the perturbed fields of velocity, temperature, pressure and 

number of particles per unit volume u0 + u, T0 + T, Up0 +up, Tp0 + Tp, 

p0 + p, and N0 + N, where u, up, T, Tp, p, and N are small 

perturbations. We write the equations for the perturbations in 

dimension form, using the following units of measurement: distance 

h, time h2/, velocity /h, pressure ρ2/h2, and temperature . 

Linearizing over the perturbations, we obtain from Eqs. (1)  

As in the case of a pure fluid [4], one can show for a medium 

containing an additive that the problem of stability with respect to 

spatial perturbations reduced to the corresponding problem for plane 

perturbations. Plane perturbations are more dangerous in case of 

vertical orientation of the layer, i.e., lower Grashof numbers are 

associated with them. Consequently, it is sufficient to confine the 

investigation to plane perturbations in a study of stability. 

 

We consider plane normal perturbations  
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upx( x, y, z) = vpx (x)
)ctz(ike 
, upz (x, y, z) = vpz (x)

)ctz(ike 
  

 

 

where  is a stream function; ϕ, , vpx and vpz are the amplitudes of 

the perturbations; k is a real wave number; c = cr + ici is the complex 

phase velocity of the perturbations (cr is the phase velocity, ci the 

decrement). 

 

Substituting Eqs. (4) into Eqs. (1), we obtain a system of amplitude 

equations (primes denote differentiation with respect to x) 
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Boundary conditions are 

 

x= ± 1: φ = φ′= Ө′ = 0.                                      (6) 

                                                                                             

The boundary-value problem (5), (6) determines the spectrum of 

characteristic perturbations and their decrements. The complex phase 

velocity c depends on seven independent parameters of the problem:  

the Grashof, Prandtl, and Galileo numbers; the wavenumber k; the 

mass concentration a of the additive; and the relaxation times v  and 

t. The limit of stability for a steady-state flow is determined from 

the condition ci = 0. 

 

The boundary problem (5), (6) determines the spectrum of the 

characteristic disturbances an d their decrements ci. The solution of 

the problem was found numerically by the Runge-Kutta-Merson 

method with orthogonalization of the vector solutions by the 

Gram-Schmidt method at each step of integration; the 

orthogonalization was performed with respect to the maximum 

vector solution in absolute value (in the given step). 
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The principal result of the calculations is presented in Fig. 1, where 

dependence of the minimum (with respect to k) critical Grashof 

number Grm on the Prandtl number Pr is shown for the 

hydrodynamic (1) and wave (2) branches of instability. The 

corresponding limits of stability for ideally conducting boundaries 

are shown here by a dashed line for comparison. As is seen, in both 

branches of instability dependences Grm(Pr) for the two types of 

boundary conditions are similar. By comparison with the case of 

ideally conducting boundaries there is some decrease in the limiting 

Prandtl number Pr* beginning with which the wave branch of 

instability appears (extrapolation gives a value of Pr*  0.96 instead 

of 11.4 for the case for ideally thermally conducting boundaries). In 

the limit of Pr >> Pr*, as an asymptotic analysis shows, the some 

limiting law Grm = 590(Pr)1/2 occurs  in both cases of boundary 

conditions. The critical values of the wave number km are also 

similar for the two variants of the boundary conditions discussed.  

 

Thus, the calculation shows that the thermal properties of the 

boundaries have a weak effect on the stability of convective flow in a 

vertical layer. In this sense one must emphasize the difference from 

the problem of the stability of equilibrium of a horizontal layer of 

liquid heated from below, where, as is known, there is a very strong 

dependence of the limit of stability and the form of the disturbances 

on thermal properties of the boundary solid masses. 
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Abstract: Mathematical and numerical simulation of the non-classical problems, namely problems of localization of stresses and 

displacements in the elastic body, are obtained by the boundary element method. The current work examines two localization problems, 

which have the following physical sense: on the middle point of the segment lying inside a body parallel to the border half plane in first case 

a point force is applied, and we must find such value of the normal stress along the section of the border half plane, which will cause this 

point force, while in the second case, there is given a vertical narrow deep trench outgoing of this point, and we must find such value of the 

normal stress along the section of the border half plane, which will result in such a pit. By using MATLAB software, the numerical results 

are obtained and corresponding graphs are constructed. 

Keywords: NON-CLASSICAL PROBLEM, BOUNDARY ELEMENT METHOD, LOCALIZATION PROBLEM, HOMOGENEOUS 

ISOTROPIC HALF PLANE  

 

1. Introduction 

In the present work, mathematical and numerical simulation of 

the problems of localization of stresses and displacements in a 

body, are gained by the boundary element method (BEM) [1]. In a 

certain sense, the problem of localization of stresses in the elastic 

body is the inverse problem to the delocalization problem [2]. The 

localization problem is defined as follows: to change a sufficiently 

uniform stressed-deformed state of a body for a sharply expressed 

non-uniform stressed-deformed state (in conditions of constant 

external perturbations) by changing and appropriate selection of 

parameters of the medium.  

In the theory of elasticity, there are a number of problems   [3]-

[10] that could be called non-classical due to the fact that boundary 

conditions on a part of the boundary surface or on the entire 

boundary surface are either over-determined or underdetermined, or 

the conditions on the boundary are connected with the conditions 

inside the body (so called non-local problems). 

The current article sets and solves non-classical two-

dimensional elasticity problems by using BEM, and problems of 

localization of stress and displacement for a homogeneous isotropic 

elastic half-plane are formulated based on them. The present paper 

examines two localization problems, which have the following 

physical meaning: on the middle point of the segment lying inside a 

body parallel to the border half plane in first case a point force is 

applied, and we must find such value of the normal stress along the 

section of the border half plane, which will cause this point force 

(stresses localization), while in the second case, there is given a 

vertical narrow deep trench outgoing of this point, and we must find 

such value of the normal stress along the section of the border half 

plane, which will result in such a pit (displacements localization).  

Finally, there are test examples given showing the value of 

normal stress supposed to apply to the section of the half-plane 

boundary to obtain the pre-given localized stress or displacement at 

the midpoint of the segment inside the body. The numerical results 

of these problems are obtained and presented appropriate graphs, 

and mechanical and physical interpretations of the problems.  

2. Formulation of problems 

Let us set some non-classical static problems for homogeneous 

isotropic half plane  (see. Fig.1). 

It is known that a homogeneous system of elastic static 

equilibrium in displacements in the Cartesian system of coordinates 

has the form [16] 
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Fig. 1 Illustration of localization problems of stresses and displacements for 

elastic half plane. 

2.1. Statement and solving of problem when normal stress 

is applied to segment inside half plane 

(a) Setting. Let us consider a non-classical problem for half 

plane D  (see Fig. 1), when the tangent stress along the entire 

border and normal stress along boundary segment 0,  ycx
 

equal to zero. Along segment bycx  ,  inside the body, the 

value of normal stress 
yy

  is known. So, let us find the solutions to 

the system of equilibrium equations (1) satisfying the following 

boundary conditions: 

  ),(:   and  for
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where )(
0

xP  is the sufficiently smooth function given along 

segment
 
 cc; . 

We can formulate the set problem as follows: let us find the 

kind of distribution of normal stress 
yy

 along section 0,  ycx  

of the boundary of a half plane (see Fig. 1) so that the normal stress 

along segment bycx  ,  inside the body equals to the values of 

given function )(
0

xP . 

If we consider function of kind 
x

PxP
4

0
10)(



  

 constant P , which describes a force similar to the concentrated 
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one, then we will have the following localization problem: we must 

find the kind of distribution of normal stress 
yy

  along segment 

11
BA  to obtain the concentrated force of the given value 

(localization of stresses) along section AB  (see Fig. 1). 

(b) Solution. Let us divide segments 0,  ycx  and 

bycx  ,  into N  segments (elements) of the same size 

a2 and smaller sizes (i.e. Nca /  ). We mean that constant 

normal stresses j

y
P  act on each j th element of length a2  with 

center )0;( jx
 
of  segment 0,  ycx . We need to find such 

values of these stresses, for which the values of the normal stresses 

in middle points ),( bx i 
 
of each i th segment with a length of a2  

along segment bycx  ,  inside body will equal to the given 

value of )(
0

ixP .  

Normal stress in the centre of the i
th element lying on segment 

bycx  ,  will equal to following sum: 
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where for the influence coefficients ijA  has the following formula 

   
.

)()(
           

arctanarctan
1

2222 

































baxx

axxb

baxx

axxb

axx

b

axx

b
A

ji

ji

ji

ji

jiji

ij


 

Thus, we obtain the following system of N linear algebraic 

equations with N  unknown quantities j

y
P , Nj ,,2,1  . 
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If solving (2) system in relation to unknown quantities j

y
P  by 

means of any standard method of numerical analysis (by method of 

Gauss in our case), then we can assume that the set problem is 

solved and NjP j

y

j

yy
,,1    ,  . 

After solving these equations, we can express the displacements 

and stresses at any point  ki yx ,  of the body by means of other 

linear combination of load j

y
P . For example, the stresses and 

displacements have the following form: 
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2.2. Statement and solving of problem when normal 

displacement is applied to segment inside half plane 

(a) Setting. Let us consider a non-classical problem, when 

along the entire border of half plane D  (see Fig. 1) the tangent 

stress is equal to zero, and normal displacement 
y

u on segment 

bycx  ,  lying inside the body is known. Also, normal stress 

along part 0,  ycx  of boundary is equal to zero. Thus, we 

have the following boundary conditions: 

  ),(:   and   when

       ,0:0   and   when

       ,0:0   and  when

0
xUubycx

ycx

yx

y

yy

yx











 

where )(
0

xU  is the sufficiently smooth function given along 

segment  cc, . 

We can formulate this problem as follows: let us find the 

distribution of normal stress 
yy

  along part 0,  ycx  of the 

boundary of the half plane when normal displacement along 

segment bycx  , lying inside half plane D equals to )(
0

xU . 

Let us consider this function of the following kind 

 constant   ,10)(
4

0



 P

x
PxU , which describes clearly 

expressed non-uniform normal displacement. Thus, we will have 

the following localization problem: let us find the distribution of 

normal stress 
yy

  along  segment 
11

BA   to obtain the pit of a given 

value along segment AB  (displacements localization) (see Fig. 1). 

(b) Solution. Let us divide segments 0,  ycx  and 

bycx  ,  into N  segments (elements) with equal a2  and 

smaller lengths. We mean that constant normal stresses j

y
P  act on 

each j th segment of segment 0,  ycx , each with the length of 

a2  and with centre )0,( jx . We must find such values of these 

stresses, for which the values of normal displacement in middle 

point ),( bx i 
 

of each i th element with length a2  of 

bycx  , segment inside the body should equal to the given 

value of )(
0

ixU . 

Normal displacement in the centre of the i th element lying on 

segment bycx  , will be computed with the following 

formula: 
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Thus, the set problem is reduced to solving the following system 

of linear algebraic equations ( N  equations with N  unknown 

values): 
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            (4) 

 If we solve system (4) in relation to unknown values j

y
P , then 

the set problem can be considered as solved, like the problem set in 

2.1. 

3. Numerical simulation 

By using MATLAB software, we obtained the numerical values 

of the normal stresses (problem of stresses localization) and 

displacements (problem of displacements localization) along 

segment AB (the given normal load and normal displacement) and 

distribution of normal stresses along segment A1B1 (the obtained 

normal stress) shown in Fig. 1 for the following data: c=1m, 2m, 

3m, 4m, 15m, 18m, 20m, 30m, and  b=5m, 6,5m, 8m, 10m, 15m 

18m, 20m, 30m; 120N ;  210 cmkgP  . Below are  graphs of 

some of the obtained results. Namely, Fig. 2 shows load  xP
0

 and 

Fig. 3, Fig. 4 shows normal displacement  xU
0

  along AB segment 

and distribution of obtained normal stress 
y

P  along 
11

BA  segment, 

when mc 1  and mmmmb 10 ,8 ,5,6 ,5 . 

 
Fig. 2 The load  xP

0
 along segment AB and distribution of obtained 

normal stress 
yyyy

P :  along segment 
11

BA , when mc 1 . 

 
Fig.3 Displacement  xU

0
 along segment AB and distribution of obtained 

normal stress 
yy

P  along segment 
11

BA , when mc 1  and 

22102 cmkgE  , 42.0  (technical rubber). 

 
Fig. 4 Displacement  xU

0
 along segment AB and distribution of obtained 

normal stresses 
yy

P  along segment 
11

BA , when mc 1  and 

26102 cmkgE  ,  3.0 (steel). 

Besides, represented 3D graphs of the distribution of stresses 

and displacements in the body section relevant to domain 

1030-  ,  ycxc , when mc 1 , mb 30 ; for steel 
26102 cmkgE  , 3.0  (see Fig. 5 and Fig. 8 for stresses 

localization problem, and Fig. 6 and Fig. 10 for displacements 

localization problem) and technical rubber 22102 cmkgE  , 

42.0  (see Fig. 9 for stresses localization problem, and Fig.7, 

Fig.11 for displacements localization problem). Formula (3) 

evidences that the stresses in the stress problems do not depend on 

Young's modulus and Poison's ratio. As for the displacements, the 

normal displacement less and tangential displacement is bigger in 

steel than in technical rubber. 

 
Fig. 5 Distribution of stresses in domain 1030-  ,  ycxc , 

when mc 1 , mb 30 ,  3.0  (in stresses for the problem, when 

x

PxP
4

0
10)(



 ). 

 

Fig. 6 Distribution of displacements for steel in domain 

1030-  ,  ycxc , when mc 1 , mb 30 , 

26102 cmkgE  , 3.0  (in stresses for the problem, when 

x

PxP
4

0
10)(



 ). 

 
Fig. 7 Distribution of displacements for technical rubber in domain 

1030-  ,  ycxc , when mc 1 , mb 30 , 

22102 cmkgE  , 42.0  (in stresses for the problem, when 
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x

PxP
4

0
10)(



 ). 

 
Fig. 8 Distribution of stresses in the part of the body of steel bordered by 

domain 1030-  ,  ycxc , when mc 1 , mb 30 , 

26102 cmkgE  , 3.0  (in displacements for the problem when 

x

PxP
4

0
10)(



 ). 

 
Fi. 9 Distribution of stresses in the part of the body of technical rubber 

bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
22102 cmkgE  , 42.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

 
Fig. 10 Distribution of displacements in the part of the body of steel 

bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
26102 cmkgE  , 3.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

 
Fig. 11 Distribution of displacements in the part of the body of technical 

rubber bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
22102 cmkgE  , 42.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

4. Conclusion 

The paper sets non-classical problems, and problems of 

localization of stress and displacement for a homogeneous isotropic 

elastic half-plane are formulated based on them. The essence of the 

problems is as follows: we must find the distribution of the normal 

stress along section 
11

BA  (see Fig. 1) of the border of the half plane 

so that normal stress 
yy

  or normal displacement 
y

u  along segment 

AB parallel to the border of a given length distanced from the 

border by b within the body should equal to the value of the given 

function. If we take the kind of this function, which describes the 

point-force applied to the middle point of section AB  (e.g. 

 constant   ,10)(
4

0




CCxU
x

), we will obtain the problem of 

localization of stresses and displacements. The set problems are 

solved by BEM [1].  

By using the MATLAB's software, we obtained the numerical 

results and plotted the corresponding graphs showing the values of 

normal stress to be applied to the part of the boundary of the half 

plane to obtain the point force or displacement in the middle point 

of a segment inside the body. The paper also presents 3D graphs of 

distribution of stresses and displacements within the parts of the 

bodies of steel and technical rubber bordered by domain . 

The problems considered in the work can be used in practice, 

e.g. in soils and rocks, materials that are susceptible to cracking and 

faulting when sheared, as well materials used to demolish military 

structures or in underground facilities. 
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Annotation:  In this paper we are consider a problem of nonlinear heat conduction with double nonlinearity under action of a strong 

absorption. For which an exact analytical solution is found, analysis of which makes it possible to reveal a number of characteristic features 

of thermal processes in nonlinear media. The following nonlinear effects are established: an inertial effect of a finite velocity of propagation 

of thermal disturbances, spatial heat localization and finite time effect i.e. existence of a thermal structure in a medium with strong 

absorption. 

Keywords: degenerate nonlinear, parabolic equation, not divergent, exact solution, new effects, localization, estimate. 

 

I. Introduction 
     In the investigation of the processes of energy transfer in high-

temperature environments, a number of their special properties 

should be taken into account. For example, the dependence of heat 

capacity and the coefficient of thermal conductivity on temperature, 

it is necessary to take into account the contribution of volume 

radiation to the energy balance, the processes of exo and 

endothermic ionization, the leakage of chemical reactions, 

combustion, etc. The consideration of these factors determines the 

nonlinearity of the equation of energy transfer. Along with this, one 

can also take into account convective heat transfer and its influence 

on the evolution of the process under the investigation. The 

intensive development of the theory of nonlinear transfer was 

stimulated by studies in plasma physics [1]. Here, fundamental 

results have recently been obtained, and a number of nonlinear 

effects have been discovered, which determine the properties of 

inertia and localization of thermal processes [1-4]. In the [6-8] 

author study the properties of solutions for the following degenerate 

and singular parabolic equation in non-divergence form 

2
( )

pmu
u u u

t






     

       Properties of solutions, which are different of equations in 

divergence form, generalizing the results of other authors . Then 

getting self-similar solution, we show asymptotic behavior of 

solutions for large time. Slow and fast diffusion cases investigated.  

At last, we give the results of numerical experiments of the Cauchy   

problem. 

 

II. Problem formulation 

        Let us consider the following problem about the effect of an 

instantaneous concentrated source of heat in an incompressible 

nonlinear medium with a coefficient with double nonlinearity of 

thermal conductivity of temperature and its gradient in the presence 

of volume absorption of thermal energy in it, which power depends 

on the temperature and explicitly on the time according to the 

power law. Such a non-stationary process of heat conduction is 

described by the following Cauchy problem for a degenerate 

quasilinear parabolic equation in not divergent form 

2
1

0( ) ( ( ) ) ( ) , (0, ) ( ), ( 0, )
p

n m k q Nu
u u u u div v t u b t u u x Q x t x R

t







         (1) 

Here, и(х, t) — temperature , m, k, p — the parameter of 

nonlinearity of the medium: b>0, ( ) qb t u - is the power of 

volumetric heat absorption; 0Q -the value that determines the 

energy of the heat source at the initial moment of time; ( )x —  

Dirac’s delta function that is characterizing the initial temperature 

distribution of a concentrated heat source placed at the beginning of 

the coordinate. 

     To investigating different qualitative properties of the solutions 

of the problem Cauchy and boundary value problem for particular 

value of numerical parameters devoted many works [1-9]. For 

instance in the case , 0, 0 1m k n q     by analyzing 

an exact solution [2] when  

 

[m( 1) 1]
, 1 2, (p 1) 1

1

p p
q m p m

p

  
     


 

establish the following properties of solutions: an inertial effect of a 

finite velocity of propagation of thermal disturbances, spatial heat 

localization and finite time localization solution effect. Considered 

the problem of the effect of an instantaneous concentrated heat 

source in incompressible nonlinear medium with a power 

dependence of a coefficient of heat conduction on temperature in 

presence of volume absorption of thermal energy, whose power 

depends on temperature and explicitly on time by a power law. 

      Jin and Yin [5] consider the doubly degenerate diffusion 

Cauchy problem when k=0, where m>1, p>1. The authors obtained 

the critical exponent 1cq p m   , namely, the solutions 

are global if cq q , and there exist both global and blow-up 

solutions if cq q . In the [9] authors study global in time 

existence and nonexistence conditions are found for a solution to 

the Cauchy problem. Exact estimates of a solution are obtained in 

the case of global solvability, where k=1, n=0. 

In the [10] authors study the large time behavior of nonnegative 

solutions to the Cauchy problem for a fast diffusion equation with 

critical zero order absorption if 

: ( 2) / 1cm N N m    and 

2 /q m N  . Chunhua J., Jingxue Y. [11] study the self-

similar solutions for a non-divergence form equation of the form, 

where 1, 1n p  , This equation comes from many 

physical problems such as dispersal mechanisms on species 

survival, plasma physics, damage mechanics, curve shortening flow 

and so on, see for example [12-15]. If the initial value 

0( ,0) ( )u x u x  is appropriately smooth, there are papers 

in devoting to the solvability of the Cauchy problem of (1), one can 

refer to Wu-Zhao [16], Gmira[17], Yang and  Zhao [18], Zhao [19], 

Zhao and Yuan [20], Li and Xie [21] and the references therein for 

details.
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         Let us show that with  

[ ( 2) ]
, 1 2

1

p k p n m
q m

p

   
  


                      (2) 

problem (1) has a definite one. In order to show it, we consider the class of radially symmetric solutions of the equation, obtained by 

following  

1/2

1

0 0

( , ) ( , ), ( ) , ( ( ( ) ) ,

t t
N N

iu t x w t r v ydy x v ydy x x R          (3) 

Then the unknown function w (t, r) satisfies the equation 

2

1 1 1

0( ) ( ) , (0, ) ( ),

p
k

n N N m qw w w
w r r w b t w w x u x

t r r r







    
  

  
            

(4) 
Further assuming 

1
1( , ) ( )( ( ) ) , / ( 1), ( 1) / ( ( 2) 2)w t r a t f t r p p p k p m n           

(5)

 

where, a (t), f (t)- are the functions to be defined, and through ( )n  , the expression of ( ) max(0, )n n   is designated.  

Calculating the derivatives of the function of w(t, r), we have 

1 1 1

1( ( ) ) ( ) ( ( ) )
w da df

f t r a t f t r
t dt dt

   
   

 ,

 

1 1 1

2

( 1)( 2) ( 1) 11 1 2 ( 2)k

1 1

2 ( 2) 1

1

( ) ( ) ( ( ) )

( ) ( , ) ( )

p
k

k p mN m p p m N

p k p m N

w w
r w k a r f t r

r r

k a r w t r C Q

    

 



         

   

 
   

 

  

(6) 

If  we choose  1  from (6) as 

1(k( 2) 1) ( 1) 0p m n p       , then       1

( 1)

(k( 2) 1)

p

p m n





   
 

1

1

2

(k( 2) ) ( 1)1 1 1 2 ( 2)

1 1

(k( 2) ) 12 ( 2) 1

1 1 1

( ) ( ) ( ( ) )

[( ) ] [ ( ) )]

p
k

p m n pn N N m p k p m n

p m np k p n m

w w
w r r w k Na f t r

r r r

k a r f t r



 

 

  



          

       

  
   

  

 

 (7) 

or considering the fact that 

1 1(k( 2) ) ( 1)p m n p                             (8) 

Calculating 

1

1

2

1 1 1 2 ( 2)

1 1

12 ( 2) 1

1 1 1

( ) ( ) ( ( ) )

[( ) ] [ ( ) )]

p
k

n N N m p k p m n

p k p n m

w w
w r r w k Na f t r

r r r

k a r f t r



 

 

  



      

    

  
   

  

 

 

expression (8) may be rewritten as 
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1

1

1

2

1 1 1 2 ( 2)

1 1

12 ( 2) 1

1 1

2

1 1 1 2 ( 2)

1 1

2

1

( ) ( ) ( ( ) )

[( ) ] [ ( ) ]

( ) ( ) ( ) ( ( ) )

[( )

p
k

n N N m p k p n m

p k p n m

p
k

n N N m q p k p n m

p

w w
w r r w k Na f t r

r r r

k a r f t r

w w
w r r w b t w k Na f t r

r r r

k



 



 

 

 

 



      

    



      



  
   

  

 

  
    

  

 1 1( 2) 1

1 ( ) ][ ( ) ) ]k p n m qa r b t a f t r
       

(9) 

If   1 1 1q    

Then, through substituting the calculated expressions into equation (4) we get the following: 

1 1

1 1

1

1

12 ( 2) 2 ( 2) 1

1 1 1 1

( ( ) ) ( ) ( ( ) )

( ) ( ( ) ) [( ) ( ) ][ ( ) ]p k p n m p k p n m q

da df
f t r a t f t r

dt dt

k Na f t r k a r b t a f t r

  

   



   



        

   

    
 

From here we have 

1

1

2 k( 2) 2 ( 2) 1

1 1 1 1 1

1

[ ( ) ]( ( ) ) [ ( ) [( ) ]

( ) ][ ( ) )] 0

p p n m p k p n m

q

da df
k Na f t r a t k a r

dt dt

b t a f t r

 



            



    

  
(10) 

Now from here, to define the functions a(t), f(t), we obtain a system of nonlinear differential equations  

( 2)

1 1

2 ( 2)

1 1

( ) ( ) ( ) ( )

( ) [( )] 0

q p k p n m

p k p n m

df
a t b t a a f t

dt

da
k N a

dt

 

 

  

   

  

  
 

2 ( 2)

1 1 1( ) [( )] 0,
(p 2) n m 1

p k p n mda p
k N a

dt k
        

    (11)

( 2)

1 1( ) ( ) ( ) ( )p k p n m qdf
a t a f t b t a

dt
     

              (12) 

And the equation (9) has the following general solution 

1

1 ( 2) 1

1 1

1

1 ( 2)

( ) [ 1 (k( 2) )( ) [( ) ]

[ ( ) ( (k( 2) ) ]
k( 2)

p k p n m

p k p n m

a t c p n m N t

p
c p p n m Nt

p n m

 


    


   

       

     
  

 

where c  is a constant of integration. 

Rewrite equation (12) as 

1 2( ) ( )
df

b t f b t
dt

 
                      (13) 

Then, taking into account (11) from (12), we have 
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1 1

1( ) [ ( ) ( (k( 2) 1) ]
k( 2) 1

pp
b t c p p n m Nt

p n m

       
    , 

1

2

k( 2)
( ) ( )[ ( )]qp n m

b t b t a t
p

  
 

 

2 1

1( ) [( ) ( (k( 2) 1) ]
k( 2)

pkp
b t p p n m N t

p n m

      
    

Hence the solution tending to  at 0t    has the form of

2 1/((k( 2) ) 1)( ) [( ) ( (k( 2) 1) )] ,
k( 2) 1

p p n mkp
a t p p n m N t

p n m

          
                                                                                                                                      

(14) 
 

The equation (13) is a first order linear equation. It is integrated. 

Its overall solution is: 

1

1
( ) ( (k( 2) ) ( )1 k( 2)

0 2

0

( ) [ ( ) ( (k( 2) ) )] [ ( ) ]
k( 2) 1

pp t
p p n m N b y dyp p n mp

f t c p p n m Nt f b y e dy
p n m

    
          

      

When с=0, we have 

1

1

( ) ( (k( 2) ) )
1 k( 2)

0

( )

2

0

( ) [( ) ( (k( 2) ) )] [
k( 2) 1

( ) ]

pp
p p n m N

p p n m

t
b y dy

p
f t p p n m Nt f

p n m

b y e dy

    
        

   

 
 

1/2 ( 1)/

1

0

0

( ( ( ) ) [ ( )]

( ) , ( ) , 0

t
N p p

i

t

v y dy x f t

v y dy f t t

 

     

 


 

Theorem 1. Let in equation (1) 

[ ( 2) ]

1

p k p n m
q

p

   



, 0( ) (0, ), Nu x z x x R   

where 

1
1( , ) ( )( ( ) ) , / ( 1), ( 1) / (k( 2) 1),z t r a t f t r p p p p n m             

where the functions a(t), f(t) are defined above. 

Then for problem (1), the phenomenon FSP takes place. 

Theorem 2. Let into an Equation (1) 

 

 
[ ( 2) ]

1

p k p n m
q

p

   



, 0 ( ) (0, ), , ( ) , 0u x z r r R f t t      

where
 

1
1( , ) ( )( ( ) ) , / ( 1), ( 1) / (k( 2) 1),z t r a t f t r p p p p n m             

and a(t), f(t)- are the functions defined above. 

Then for problem (1), the spatial localization of the solution takes place. 

Fast diffusion case: ( 2) 0k p m n     
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Theorem 3. Let in the equation (1) 

 
[ ( 2) ]

1

p k p n m
q

p

   



, 0( ) (0, ), Nu x z x x R   

where
 

1
1( , ) ( )( ( ) ) , / ( 1), ( 1) / (k( 2) 1),z t r a t f t r p p p p n m            a(t), 

f(t) are the functions defined above. 

Then for the solution of problem (1), there is a place for the estimate. 

( , ) ( , ), , 0u t x z t r r R t  
 

 

           The finite time of the thermal impulse is due to the influence of the volume absorption of thermal energy in considered medium. 

Indeed, if we consider even the initial temperature distribution of the form u (x, 0)  and then due to the volumetric absorption of heat, the 

temperature of the medium will decrease by time. 

 

The results of numerical calculations are given below. 

        Numerical schemes, algorithms and a set of programs for the tasks in the Python3 environment are developed, the analysis of results on 

the basis of the received estimates of decisions is carried out. 

At mt t  volumetric heat absorption becomes the dominant factor in the energy balance, the heating wave is replaced by a cooling wave, 

and the width of the heat pulse begins to decrease with time. At the moment of time, the heat pulse shrinks to a point and ceases to exist. 

 

Visualization when using a timer: 

 

 
Parameter value: k = 1.1, p = 4, m = 1.1, n = 1.1, 

 

 

Conclusion 

          In the considered problem, the following nonlinear effects 

observed the inertial finite speed of propagation, the effect of a 

spatial localization of heat, the effect of finite time of existence of a 

thermal structure in a medium with absorption in the case strong 

absorption. The analysis of solutions showed that this phenomenon 

is peculiar only for nonlinear problems. It is find an exact solution 

to these problems based on which we analyze the properties of its 

solution such as localization and finite time effect. The solution 

found is in good agreement with the processes of physics. 
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Results of computational experiment at the initial moment of 

time: 

Results of the computational experiment at a finite time: 
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INDUSTRIAL PROCESSES STABILITY MODELING 
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Summary. A theoretical analysis of the stability of the non-equilibrium industrial processes is presented. A unified approach is proposed for 

the creation of the mathematical models of the processes that allows the determination of the velocities at which the processes move to their 

thermodynamic equilibriums and their use for mathematical analysis of processes velocities stability. For this purpose is used mathematical 

stability theory, evolution (autonomous) equations, bifurcation theory (stable focuses, stable cycles), parameter eigenvalues and 

eigenfunctions. 

Keywords: stepped complex, stability theory, evolution equations, bifurcation theory, stable focuses, stable cycles, parameter eigenvalues. 

 

 

Introduction 
Non-equilibrium industrial systems are aggregations of physical, 

chemical and biological processes. They "move" to their 

thermodynamic equilibrium with a velocity that depends on the 

velocities of the individual processes. Non-equilibrium industrial 

systems are stable when two conditions are met: 

1. The velocity of movement towards their thermodynamic 

equilibrium is a constant; 

2. Capable of rapidly reaching their constant velocity at deviations, 

as a result of smooth change of external conditions. 

The theoretical analysis of the stability of the non-equilibrium 

industrial systems consists of 2 stages: 

1. Creation a mathematical model of the system, allowing the 

determination of the velocity at which the system moves to its 

thermodynamic equilibrium; 

2. Mathematical analysis of system velocity stability. 

The first stage is different for individual systems, while the second 

stage is common to all industrial systems. 

An unified approach will be proposed for the creation of a 

mathematical model of the system, which permits to be obtained the 

velocity of the system movement to its thermodynamic equilibrium 

and mathematical analysis of the system stability. 

 

 

Industrial processes kinetics 
The kinetics of industrial processes depends on a set of variables. If 

the velocity of the industrial process is denoted by the values of 

these variables, the equation of the kinetic model of the industrial 

process will have the form: 

  1,..., .ny f x x  (1) 

This function is a mathematical structure that is retained when changed the measurement system of the variable, i.e. this mathematical 

structure is invariant with respect to similar transformations [1]: 

 , 1,..., ,i i ix k x i n   (2) 

i.e. f  is a homogeneous function: 

        1 1 1 1 1,..., ,..., . ,..., , ,..., .n n n n nky f k x k x k k f x x k k k     (3) 

A short recording of (3) is: 

      .i i if x k f x  (4) 

The problem consists in finding a function f that satisfies equation (4). A differentiation of equation (4) concerning 1k leads to: 

 
 

 
1 1

.
i

i

f x
f x

k k

 


 
 (5) 

On the other hand 

 
     

1
1

1 1 1 1

.
i i if x f x f xx

x
k x k x

  
 

   
 (6) 

From (5, 6) follows 

 
 

 1 1

1

,
i

i

f x
x f x

x






 (7) 

where 

 1

1 1

.

ik
k






 
  

 
 (8) 

The equation (7) is valid for different values of ik  including 1ik    1,..., .i n  As a result , 1,...,i ix x i n   and from (7) 

follows: 

 
1

1 1

1
,

f

f x x





 (9) 

i.e. 

 1

1 1 .f c x


  (10) 

When the above operations are repeated for 2 ,..., nx x , the homogenous function f assumes the form: 

 

MATHEMATICAL MODELING 2019

39



 1

1 ,..., ,n

nf kx x


  (11) 

i.e. the function f is homogenous if it represents a power functions complex and as a result is invariant with respect to similarity (metric) 

transformations. 

The parameters 1, ,..., nk    are determined by experimental data of the industrial process velocity. This allows to consider the velocity of 

the industrial process y  (phase velocity) as a point in a n -dimension space, with coordinates 1,..., nx x  (phase space). Velocity 

projections on coordinate axes 1,..., nx x  are  1,...,idx
i n

dt
  and satisfy the "evolution" law of the industrial process: 

 1

1 0... ; 0, ; 1,..., ,ni
i i n i i

dx
a y a kx x t x x i n

dt


      (5) 

where 1,..., na a  represent the ratios of variable 1,..., mx x  velocities and the industrial process velocity y . 

The components of the phase velocity  1,...,idx
i n

dt
  are the coordinates of the vector field at the same phase velocity and determine 

the velocity of motion of the industrial process in the phase space. The points   1,...,ix t i n  represent a curve (phase trajectory) in 

the scalar phase space. 

If we use the rule to differentiate a exponent function, the derivative of the velocity of the industrial process (4) over the time has the form: 

 

  
 11

i

i
n n

i i

ii i

dx

dy dtk x t
dt x t






 
 

     
 
 

 . (13) 

From this equation is possible to be obtained stability condition 0
dy

dt
  of the industrial process: 

  
 

  0

11

0, 0 , 1,..., .
i

i
n n

i i i i

ii i

dx

dtk x t x x i n
x t






 
 

      
 
 

  (14) 

The solution of this set of equations allows the determination of the conditions for the stability of the industrial processes. 

 

 

Mathematical Stability Theory 
The velocity of the non-equilibrium industrial processes with which they "move" to their thermodynamic equilibrium is determined by the 

theory of the evolution equations [2-4]. Their capable of rapidly reaching their constant velocity at deviations, as a result of smooth change 

of external conditions, is determined by the theory of bifurcations [5]. 

Evolution equations 

 

Let consider the industrial process velocity, which may be determined by the variables  n,...,1ixi  . This permits to consider the state 

of the process as a point in n-dimensional space with co-ordinates  n,...,1ixi   (a phase space). 

The changing of the process velocity over the time is a vector in the n-dimensional space. Its projections on coordinate axes 

 n,...,1i
dt

dxi   satisfy the "evolution" law of the process: 

    1 0,..., , , 0 , 1,..., .i
i n i i

dx
X x x t x x i n

dt
    (15) 

The evolution equations (15), for processes with laws independent of the time, are termed autonomous equations: 

    1 0,..., , 0 , 1,..., .i
i n i i

dx
X x x x x i n

dt
    (16) 

The components of the phase velocity  n,...,iX i  are the co-ordinates of the vector field of the same phase velocity and determine the 

velocity of the process in the phase space. The points   n,...,itxi  represent a curve (a phase trajectory) in the scalar phase space (field). 

For simplicity of explanation consider the autonomous equation  

     0,    0
dx

X x x x
dt

  . (17) 

The process is stable when the system velocity does not change over the time: 
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   0X x  , (18) 

i.e. 

   0X a  . (19) 

It follows from (19) that the point ax   may be considered as a stationary point (the process velocity is constant over time). If 0xa   it 

clear that  

 ( )x t a  (20) 

is a solution of (17), where a  is a singular point. 

For simplicity will be considered the linear version of the equation (17) and its solution: 

    0 0, 0 , exp
dx

x x x x x t
dt

    . (21) 

It is follows from (21) that 0x   is a singular point, i.e. 0 0x   and the solution of (21) has the following features (see Fig. 1): 

   00, lim 0, ;
t

x t x


    (22) 

 0 00, , ;x x x     (23) 

  

 

0

0

0

0, , 0;

0, lim , 0;

0, lim , 0.

t

t

x x at t

x t x

x t x











  

   

    

 (24) 

The multiformity of the solution at 0  is not a result of its non-uniqueness, but this due to the solution instability with respect of the 

small perturbation of the initial condition  0x . 

 

.

 t  t  t

>0 <0 =0

e
t e

t
e
t

 
Fig.1. Solution of the equation (14) 

 

The solution of the equation (14) leads to the following conclusions: 

1. The solution (the process) is unstable at 0   and the small deviations of the initial state 0 0x   lead to deviations of the solution 

0x  . 

2. At 0   the solution is unstable for each 0x . 

3. At 0   the solution is approaching to the singular point 0x  , i.e. the stationary point become a focus of attraction of the solution 

(an attractor). 

The linear equation (14), together with the conditions for the solution stability, are attractive because they give the basis of the kinetics 

models of many important processes (evolution of the organisms, nuclear processes, chemical reactions etc.) These features in the area of the 

real number  R  become more interesting in the complex area  C , where the equation (14) has the form: 

      0 0, , , , 0 , exp .
dz

z z C C t R z z z t z t
dt

         (25) 

Bifurcation theory 

The bifurcation theory [5] is wide applied for investigations of jump reactions of processes as responses of smooth changes of the external 

conditions. For the real processes it has been developed recently as a theory of the catastrophes. Here, the bifurcation theory will be 

considered in two-dimensional phase space only. 

For clarity of explanation, consider that a real evolutionary process occurring in the phase plane  y,x  and the corresponding model is: 

        0 0, , , , , , 0 , 0 .
dx dy

X x y Y x y x x y y
dt dt

      (26) 
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The process evolution in time is represented by the phase trajectory (the trajectory of the phase point) of the process  

  , , 0,F x y    (27) 

where  tx  and  ty  in (27) are determined from the solution of (26). Depending on the form of the relationships for X  and Y  in (26), 

the parameter   and the initial conditions 
0x  and 

0y  various phase trajectories are possible. 

The variations of the parameter   lead to several interesting cases of the solution of (26) shown in Fig. 2. The case shown in Fig. 2a 

corresponds to a periodic process that is attenuating with the time and approaching to a focus (a stationary state point). If other value of   is 

chosen the process might be unstable and periodic (Fig.2b). The stable periodic processes (limit cycles) have closed trajectories in the phase 

space (Fig.2c). The change of the initial state  0y of the stable processes leads to attenuating processes approaching a stable periodic state. 

(Fig. 2d). 

 x  x  x  x

 y  y  y  y

 A

a b c d

Fig. 2. Phase trajectories. 

 

Figure 2 may be developed for more complicated cases (see Fig. 3). It is possible the existence of two limit cycles (periodic processes and 

solutions,), where one of them (the internal) is stable if the initial conditions are in the entire internal area of the large cycle. The internal 

cycle attracts all the solutions, while the external cycle is unstable (Fig. 3a).The variations of the parameter  may lead to a junction of both 

cycles (Fig.3b). The junction of an unstable and a stable cycle (as these in Fig. 3a) may lead to an abnormal limit cycle (Fig. 3b). In this case 

the solutions go from the initial conditions in internal area, approach the cycle and then due to small perturbations may go out of the cycle, so 

the process becomes unstable. The further changes of   may lead to a situation when the limit cycle disappear and the process becomes 

unstable (Fig. 3c). 

 y  y  y

 x  x  x

a b c

 
Fig. 3. Limit cycles. 

 

The resulted obtained here show that the bifurcation theory considers qualitatively the changes of the movement of phase point as a result of 

a continuous variation of the model parameters. Parallel to the existence of stable points (focuses) there are stable cycles. They describe 

stationary periodic oscillations of the systems (self-oscillations). They differ from the free oscillations (of a pendulum for example) where 

the system does not interact with the environment as well as from the forced oscillations provoked by external periodic impacts. 

The focuses and the limit cycles attracting the solution (the phase point) are termed attractors. 

Figure 4 shows bifurcations of cycle transitions from focuses. The case (a) corresponds to a supercritical bifurcation (stable closed 

trajectories), while the case (b) presents a subcritical bifurcation (unstable and closed trajectories). 

Further, Fig. 4a shows the mechanism of a transition from a stable point (focus) toward a stable orbit (cycle). This type of bifurcation is 

shown in Fig.5. The stages of that transition are: 1) a stable point; 2) the occurrence of a closed trajectory; 3) an increase of the closed 

trajectory amplitude. This order leads to the existence of stable three-dimensional torus. 
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Fig.4. Bifurcation of cycle transitions from focuses. 

 
Fig. 5. Mechanism of a transition from a focus toward a cycle. 

 

Eigenvalue problems 

The presented analysis of the processes and the systems concerns its stabilities as functions of the model parameters. This requires a solution 

of differential equations with parameters. It is possible that the solution of the differential equation to exist at a given point (e.g. focus), only 

for a specific value of the parameter - "eigenvalue". For example, the second-order ordinary differential equation, when the boundary 

conditions are presented at two different points, can have solution for a specific value of the parameter only, i.e. this leads to eigenvalue 

problems. The solution to this problem will be demonstrated in a first order linear ordinary homogeneous differential equation: 

    ' 0,y f x g x y      (28) 

where   is a parameter and the solution must to satisfy the condition: 

    , 0.y b y a    (29) 

The solution of (28) is well known  

  exp .

x

a

y C f g dx
 

   
  
  (30) 

The substitution of (30) in (29) shows that the condition (29) is satisfied, when 0  , only: 

 0

ln

,

b

a

b

a

fdx

gdx







 





 (31) 

well known as an eigenvalue. The substitution of (31) in (30) leads to an eigenfunction. Thus, for example at 0f   and 1g   it follows 

directly:  

 
 

0

lnln
, exp .

x a
y C

a b a b




 
   

  
 (32) 

It is well demonstrated in the differential equation theory [6] that if  

b

a

0gdx  there is an infinite set of eigenvalues: 
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0

2
, 0, 1, 2,... .k b

a

k i
k

gdx


     



 (33) 

The results obtained are used [7] for the theoretical analysis of the hydrodynamics stability in systems with non-linear mass transfer. 

 

 

Conclusions 
The presented theoretical analysis shows, that the stability of the 

non-equilibrium industrial processes (physical, chemical, 

biological and economic processes) is possible to be analyzed by 

the creation a mathematical model of the process, the 

determination of the velocity at which the process moves to its 

thermodynamic equilibrium and mathematical analysis of process 

velocity stability. 

A unified approach is proposed for the creation of the 

mathematical models of the processes that allows the 

determination of the velocities at which the processes move to 

their thermodynamic equilibriums and their use for mathematical 

analysis of processes velocities stability. For this purpose is used 

mathematical stability theory, evolution (autonomous) equations, 

bifurcation theory (stable focuses, stable cycles), parameter 

eigenvalues and eigenfunctions. 
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1. Introduction 

 

The sensitivity analysis is currently receiving considerable 

interest in the area of the performance evaluation of diff erent 

stochastic models. The sensitivity analysis consists on investigating 

which individual input parameter drives most of the uncertainty on 

the model output. In this regard, we estimate the Sobol’s indices for 

global sensitivity analysis of stationary distribution in the GI/M/1/N 

queueing models. Specifically, when we estimate the Sobol’s 

indices, we consider the more influents parameters are uncertains. 

In this case, we estimate the expectation and the variance of the 

stationary distribution under the uncertainty.  

Recently there has been a rapid increase in the literature on 

queueing systems with negative arrivals. Queues with negative 

arrivals, called G-queues, were first introduced by Gelenbe [5]. 

When a negative customer arrives, it immediately removes an 

ordinary (positive) customer if present. Negative arrivals have been 

interpreted as inhibiter and synchronization signals in neural and 

high speed communication network. For example, we can use 

negative arrivals to describe the signals, which are caused by the 

client, cancel some proceeding. There is a lot of research on 

queueing system with negative arrivals. But most of these 

contributions considered continuous-time queueing model: 

Boucherie and Boxma [6], Jain and Sigman [8], Bayer and Boxma 

[2], Harrison and Pitel [9] all of them investigated the same M/G/1 

model but with the diff erent killing strategies for negative 

customers; Harrison, Patel and Pitel [10] considered the M/M/1 G-

queues with breakdowns and repair; Yang [11] considered GI/M/1 

model by using embedded Makov chain method. 

The remainder of this paper is organized as follows. In Section 

2, we introduce the necessary notations: the sensitivity analysis and 

uncertainty analysis. In Section 3, we outline description of the 

model and we finish by the numerical framework to illustrate the 

applicability of this analysis. Concluding remarks are provided in 

Section 4. 

 

 

2. Sensitivity Analysis 

Mathematical models always approximate the real phenomena. 

The uncertainty of their input parameters described the incapacity to 

envisage precisely her issues, from which the uncertainty also of the 

output parameters.  

Thus, the precision of the output parameters will depend on the 

quality of the available information. These uncertainties often 

correspond to the errors made by measuring instruments, 

manufacturing processes or limited data. 

There are several types of sensitivity analysis. We satisfies in 

this work on one precise method, it is the method of analysis of the 

global sensitivity. This method studies the influence of the 

variability of the input parameter in the output parameters.  We 

can’t speak about the sensitivity analysis without citing the Sobol’s 

indices. 

If we consider a mathematical model  

 

Where  is the vector of the input 

parameters, Y is the output parameter. 

The purpose of this analysis is to estimate the Sobol’s indices of 

sensitivities by this formula: 

 

  

In general way, the compute of the first order Sobol’s indices 

proves so difficult or impossible in some case, that returns to the 

complexity of the function f, from which the obligation of using of 

the simulation methods. The Monte Carlo method seems the 

appropriate for this kind of problem. 

3. Queueing Model Description 

We investigate the GI/M/1/N queue with negative customers, 

where N is the capacity of the system including the one who is in 

service. 

Assume that customer arrivals occur at discrete-time instants 

, where  customers arrive at the system according to 

a renewal process with  interarrival  time distribution and 

mean  .The service time of each server is assumed to be 

distributed exponentially with service rate . It’s density function 

is given by 

 

Additionally, we assume that there is another kind of customers, 

namely RCH, arriving in the system according to an independent 

Poisson process of parameter . Let  denote the number of 

customers left in the system immediately after the kth departing 
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customer. A sequence of random variables 

 constitutes a Markov chain. Its 

transition probabilities matrix is given by: 

 

 

Where  

 

 

4. Numerical Results  

Consider this application 

 

where  is the stationnary distribution of a 

such model, and is a vector of all 

parameters of the model. The first order Sobol’s indices are 

compute by this formula  

  

 The M/M/1/4 

Consider the M/M/1/4 system with negative arrivals, where the 

inter-arrivals times and the service times are exponentials. 

Let the input vector parameters  

   

 

 

Figure 1: Sobol's indices for the M/M/1/4 model 

According to this figure, we note that the values of the highest 

indices those, which correspond to the parameters µ and ζ, therefore 

these two last, are more influents on the stationary distribution, and 

as the parameter λ is less influent, so it is considered deterministic 

(constant). 

The H2/M/1/4 

Consider the H2/M/1/4 system with negative arrivals, where the 

inter-arrivals times are hyper-exponentials and the service times are 

exponentials. 

Let the input vector parameters  

   

 

 

Figure 2: Sobol's indices for the H2/M/1/4 model 
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According to this figure, we note that the values of the highest 

indices those, which correspond to the parameters and 

ζ, therefore these two last, are more influents on the stationary 

distribution, and as the parameter  is less influent, so it is 

considered deterministic (constant). 

 

According to the analysis carried previously, we obtained µ and 

ζ like the most influential parameters for each component πl, l = 0, 

1…, 4 of the stationary distribution π (µ, ζ), and the parameter λ is 

considered like a deterministic parameter. 

 

To simulate the expectation and the variance of the stationary 

distribution, we present a new formula the two parameters µ and ζ: 

 

          

 

 

 

 

 

 

According to the analysis carried in this table, we note that a 

disturbance of 10% of each input parameter involve a maximum 

variance of 4.63 × 10E(-04), which proves the robustness of the 

M/M/1/4 model with negative arrivals, compared to the uncertainty 

inflicted in the influential parameters. In other words, a small 

disturbance on the input parameters generates a small disturbance in 

the output parameter. 
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1. Introduction 

When data is transmitted through or stored on some medium, 

due to the noises in the medium or other external influences, there is 

a possibility of errors. This means that the data received by the 

recipient may not be identical to those sent through the 

communication channel or data recorded on the storage. Therefore, 

there is a need to check that the data is correct. Checking is done 

using the codes for error control. There are two basic types of these 

codes: error-correcting and error-detecting codes. While the first 

ones have ability to correct up to some number of incorrectly 

transmitted bits, there are slower in their work. The error-detecting 

codes are faster and are in advantage in networks where errors 

rarely occur. There are various error-detecting codes: from very 

simple as parity bit ([1]) and repetition code ([2]) to more complex 

as checksum ([3], [4]), CRC ([5], [6]), etc. In our previous work we 

have also defined some error-detecting codes ([7], [8], [9]).   

All error-detecting codes add redundant symbols on the input 

blocks, which are later used by the receiver in order to check 

whether there are errors in transmission. If the code detects that 

some data is incorrectly transmitted, it asks for retransmission of 

that data [10]. 

For every error-detecting code it is possible that there will be 

errors in transmission that the code will not detect. Therefore, 

before any code is implemented, it is important to know the ability 

of the code to detect errors. In this regard, it is important to know up 

to which number of incorrectly transmitted bits, the code will detect 

the error for sure. In this paper we will analyze an error-detecting 

code in the light of this parameter - the number of errors that the 

code surely detects. The number of errors that the code surely 

detects is the maximum number of incorrectly transmitted bits up to 

which the code will surely detect the error in transmission.    

2. Definition of the Error-Detecting Code 

Let A and B be non-singular binary matrices of order ss, and 

let C be a binary matrix of order 1s. The alphabet is={0, 1, …, 

2s-1}. We choose the parameter r of the model, which should be a 

non-negative integer.   

Let the input block be a0a1…an-1, where all symbols ai are from 

the alphabet . Then the redundant symbols are defined using the 

following equation:  

(1) 𝒅𝒊 = 𝒂𝒊𝐴
𝑛−2 +  𝒂𝒊+𝒋𝐵𝐴𝑛−𝑗−2 + 𝐶  𝐴𝑗𝑛−3

𝑗=0
𝑛−2
𝑗 =1 ,  i=0, 1, …, r 

where n is the length of the input block, r is the model’s parameter 

that is an integer which satisfies the condition 1rn-1. Bolded 

symbols are the binary representations of the corresponding 

symbols as 1r vectors, i.e., 𝒂𝒊 is the binary representation of the 

information symbol 𝑎𝑖 , i=0, 1, …, n-1, while 𝒅𝒊 is the binary 

representation of the redundant symbol 𝑑𝑖 , i=0, 1, …, r. A, B and C 

are the binary matrices that are used for coding. The operation + is 

binary addition and all operations in indexes are modulo n. 

After calculating the redundant symbols, the binary form of the 

input block a0a1…an-1 is extended into a block a0a1…an-1d0d1…dr. 

With this is obtained the binary form of the coded block, which is 

transmitted through the binary symmetric channel. 

From the above definition of the model we can see that this 

code always adds r+1 redundant symbol on each input block, 

regardless of its length. As we can see from the constrains for the 

parameter of the code r, the length of redundancy must not exceed 

the length of the input block.  

When the receiver receives the output block, in order to ensure 

that it has a correct block, it calculates the redundant symbols using 

equation (1). If the calculated symbols are identical with the 

received ones, it accepts the block as correctly transmitted. In 

opposite, the receiver concludes that the block is not correctly 

transmitted. It that situation, the receiver asks the sender to send the 

block once again. But, there is always a small chance to have errors 

in transmission and at a same time the calculated by the receiver 

symbols to be equal to the received redundant symbols. This means 

that it is possible to have undetected errors in transmission. 

Therefore, it is important to know up to which number of 

incorrectly transmitted bits, the code will surely detect the error, 

which is exactly the subject of this paper. 

But, first let see the coding procedure in the following example.  

Example: In this example we will demonstrate the coding 

procedure. Let the following binary matrices of order 33 are used 

for coding: 

𝐴 =  
1 0 1
0 1 1
1 1 1

 , 𝐵 =  
0 1 1
1 1 1
1 0 1

 , 𝐶 = [0 0 0] 

The alphabet is ={0, 1, 2, 3, 4, 5, 6, 7}. 

Let suppose that the parameter of the model is r=2 and input 

block a0a1a2a3a4=46320 of length n=5 symbols from the alphabet is 

coded. Then, the binary representations of the information symbols 

are a0=[1 0 0], a1=[1 1 0], a2=[0 1 1], a3=[0 1 0] and a4=[0 0 0]. The 

redundant symbols are calculated using (1), i.e.: 

di=aiA
3+ ai+1BA2+ai+2BA+ai+3B, i=0, 1, 2. 

First, we obtain the matrices: 

𝐴3 =  
0 1 1
1 0 1
1 1 1

 , 𝐵𝐴2 =  
1 0 1
1 1 1
0 1 1

 , 𝐵𝐴 =  
1 0 0
0 0 1
0 1 0

  

Now,  

d0=a0A
3+ a1BA2+a2BA+a3B=[1 0 0]  

0 1 1
1 0 1
1 1 1

 + 

[1 1 0]  
1 0 1
1 1 1
0 1 1

 +[0 1 1]  
1 0 0
0 0 1
0 1 0

 +[0 1 0]  
0 1 1
1 1 1
1 0 1

 = 

=[1 0 1] 

d1=a1A
3+ a2BA2+a3BA+a4B=[1 1 0]  

0 1 1
1 0 1
1 1 1

 + 

 

MATHEMATICAL MODELING 2019

48



[0 1 1]  
1 0 1
1 1 1
0 1 1

 +[0 1 0]  
1 0 0
0 0 1
0 1 0

 +[0 0 0]  
0 1 1
1 1 1
1 0 1

 = 

=[0 1 1] 

d2=a2A
3+ a3BA2+a4BA+a0B=[0 1 1]  

0 1 1
1 0 1
1 1 1

 + 

[0 1 0]  
1 0 1
1 1 1
0 1 1

 +[0 0 0]  
1 0 0
0 0 1
0 1 0

 +[1 0 0]  
0 1 1
1 1 1
1 0 1

 = 

=[1 1 0] 

The redundant symbol d0 over the alphabet  is d0=5, the 

symbol d1 over the alphabet  is d1=3 and the symbol d2 is d2=6. 

With this we obtained the coded block a0a1a2a3a4d0d1d2=46320536, 

while the binary form is 

a0a1a2a3a4d0d1d2=100110011010000101011110. This coded block 

in binary form is transmitted through the binary symmetric channel.  

Let suppose that the 14th information bit is incorrectly 

transmitted. This means that if we denote the output block that 

receiver receives with a0’a1’a2’a3’a4’d0’d1’d2’, then a0’=a0, a1’=a1, 
a2’=a2, a3’=a3, a4’=[0 1 0] a4, d0’=d0, d1’=d1, d2’=d2. The receiver 

checks whether the block is correctly transmitted, i.e., using (1) it 

calculates the redundant symbols for the received block 

a0’a1’a2’a3’a4’. 

d0’=a0’A
3+ a1’BA2+a2’BA+a3’B=[1 0 1] 

d1’=a1’A
3+ a2’BA2+a3’BA+a4’B=[1 0 0] 

d2’=a2’A
3+ a3’BA2+a4’BA+a0’B=[1 1 1] 

Since d1d1’ (also d2d2’), the receiver concludes that there are 

errors in transmission, i.e., the received block is not identical with 

the block sent by the sender. Therefore, it demands retransmission 

of the block. 

3. Results from the Simulation Procedure 

In this paper, using simulations we will obtain the number of 

errors that the code surely detects. In the simulation process for a 

given n and r, we transmit through a simulated binary symmetric 

channel a large number of coded input blocks of length n over the 

alphabet . For each i from 1 to the length of the coded input 

blocks in binary form, we calculate the percentage of transmitted 

coded blocks with i incorrectly transmitted bits in which the error in 

transmission is not detected. The number of errors that the code 

detects for sure is the largest integer v such that the percentage of 

incorrectly transmitted coded blocks with i incorrectly transmitted 

bits in which the error is not detected is equal to 0% for all i from 1 

to v. In order to obtain reliable and accurate results, we chose the 

probability of bit-error in the simulated binary-symmetric channel 

such that the number of incorrectly transmitted coded blocks with i 

incorrectly transmitted bits to be large number for small values of i, 

i.e., values of i smaller than or equal to v. 

In the coding procedure, we use the following binary matrices 

A, B and C: 

𝐴 =  
1 0 1
0 1 1
1 1 1

 , 𝐵 =  
0 1 1
1 1 1
1 0 1

 , 𝐶 = [0 0 0] 

The alphabet is ={0, 1, 2, 3, 4, 5, 6, 7}. We will consider the 

cases when the parameter of the model r=2, r=3 and r=4.  

Since the length of the redundancy is r+1 symbol, follows that 

in the case when r=2, the length of the redundancy is 3 symbols 

from the alphabet .  Since the length of the input block must be 

greater than or equal to the length of the redundancy, in this case the 

length of the input block n must be greater than or equal to 3 

symbols from the alphabet  (Fig. 1). Each element from the 

alphabet of order 8 is presented with 3 bits in the binary 

representation. Therefore, in this case the redundancy has length 9 

bits. 

 

 

 

Fig. 1 Percentage of undetected incorrectly transmitted coded blocks with i 
incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 9 bits. 

In Fig. 1 are given the percentages of incorrectly transmitted 

coded blocks in the simulation process in which i6 bits are 

incorrectly transmitted and the error in transmission is not detected 

in the case when the redundancy is 9 bits (r=2). The length of the 

input blocks n is expressed in a number of symbols from the 

alphabet . Please note that the scaling of the y-axis is different on 

the three graphs. For small values of the length of the input block n, 

the percentages of undetected incorrectly transmitted blocks with i 

incorrectly transmitted bits are very small. In order the results to be 

visible they are separated in the first figure from Fig. 1. Since the 

percentages of undetected incorrectly transmitted blocks with i 

incorrectly transmitted bits increase when n increases, the scaling of 

the second and third image from Fig. 1 is adjusted accordingly.      

As we can see from Fig. 1, when the length of the input blocks 

is n=3 symbols from , the percentage of undetected incorrectly 
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transmitted blocks with i incorrectly transmitted bit is different than 

0% only for i=3. Since the code detected all incorrectly transmitted 

blocks with 1 or 2 incorrectly transmitted bits, but there are blocks 

with 3 incorrectly transmitted bits in which the error is not detected, 

the number of errors that the code surely detects when the length of 

the input blocks is n=3 symbols from  is 2. Also, in the case when 

the length of the input blocks is n=4, the smallest value of i for 

which the percentage of undetected incorrectly transmitted blocks 

with i incorrectly transmitted bits is different than 0% is 3. 

Therefore, we conclude that in this case the code surely detects also 

up to 2 incorrectly transmitted bits. The same conclusion holds also 

in the cases when the length of the input block n is 5 or 6 symbols 

from the alphabet . For input blocks with length greater than or 

equal to 7 symbols, the percentage of undetected incorrectly 

transmitted blocks with 2 incorrectly transmitted bits is positive 

(there is the orange pillar), from where follows that in this case the 

code surely detects 1 incorrectly transmitted bit. 

 

 

 

Fig. 2 Percentage of undetected incorrectly transmitted coded blocks with i 

incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 12 bits. 

The results when r=3 are given in Fig. 2. In this case the length 

of the redundancy is 4 symbols from the alphabet  (i.e., 12 bits in 

the binary representation). Therefore, in this case the length of the 

input block must be greater than or equal to 4 symbols from . 

From Fig. 2, we can see that in the case when the redundancy is 12 

bits, the code surely detects up to 4 incorrectly transmitted bits 

when the length of the input block is 4 or 5 symbols from . When 

the input block has length 6 symbols, the code surely detects up to 3 

incorrectly transmitted bits, while when the input block has length 7 

symbols, the code surely detects up to 2 incorrectly transmitted bits. 

When the input block has length greater than or equal to 8 symbols, 

the code surely detects 1 incorrectly transmitted bit. 

 

 

 

Fig. 3 Percentage of undetected incorrectly transmitted coded blocks with i 

incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 15 bits 

Similarly, when the parameter r=4, the redundancy is 5 symbols 

from  (i.e., 15 bits in the binary representation) and the length of 

the input blocks n5 (Fig. 3). When the length of the input block is 

5 symbols, the code surely detects up to 5 incorrectly transmitted 

bits, while when the length of the input block is 6 symbols, the code 

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

4 5 6 7 8 9

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

10 11 12 13 14 15 16 17 18 19 20

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

24 28 32 36 40 44 48 52 56 60 64 68 72

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

0,01%

0,02%

0,03%

0,04%

0,05%

0,06%

0,07%

5 6 7 8

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

9 10 11 12 13 14 15 16

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

17 18 19 20 24 28 32 36 40 44 48 52 56 60 64 68

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

 

MATHEMATICAL MODELING 2019

50



surely detects up to 4 incorrectly transmitted bits. For input blocks 

with length 7 or 8 symbols, the code surely detects up to 2 

incorrectly transmitted bits. When the length of the input block is 

greater than 8 symbols, the code detects for sure 1 incorrectly 

transmitted bit. 

 

Fig. 4 Number of incorrectly transmitted bits that the code surely detects 

when the length of the input blocks is n symbols from the alphabet  and the 

redundancy is 9, 12 and 15 bits. 

In Fig. 4 and Fig. 5 are presented the numbers of incorrectly 

transmitted bits that the code surely detects when the redundancy is 

9, 12 and 15 bits. On x-axis in Fig. 4 is given the length of the input 

block, on y-axis is given the number of errors that the code surely 

detects, while the color of each pillar represents the length of the 

redundancy.  

From Fig. 4 we can see that when the length of the input 

block is fixed, if longer redundancy is added to the input blocks, 

then the number of incorrectly transmitted bits that the code 

detected for sure is greater or at least equal to the number of 

surely detected incorrectly transmitted bits when a shorter 

redundancy is added. This is expected result since longer 

redundancy means that each information symbol is controlled by 

more redundant symbols. 

 

Fig. 5 Number of incorrectly transmitted bits that the code surely detects 

when the length of the input blocks is n symbols from the alphabet  and the 

redundancy is 9, 12 and 15 bits. 

On Fig. 5 on x-axis is given the length of the redundancy, while 

the length of the input blocks n is represented with the color of the 

pillars. As we can see from Fig. 5, regardless of the length of the 

redundancy, when the length of the input block increases and 

the length of the redundancy is fixed, the number of errors that 

the code surely detects decreases or remains the same. 

As we can see from Fig. 4 and Fig. 5, the best result from 

the aspect of the number of errors that the code surely detects is 

achieved when the length of the input blocks is 5 symbols from 

the alphabet  and the redundancy has length 15 bits. This 

means that from the aspect of the number of errors that the code 

surely detects, it is best to divide the input message into blocks 

of length 5 symbols from  and to code these blocks such that 

the redundancy is 15 bits (i.e., to choose the parameter r in the 

model to be 4). In this case the code will detect for sure every 

incorrectly transmitted coded block with up to 5 incorrectly 

transmitted bits.     

4. Conclusion 

The results for the number of errors that the code surely detects 

when the given binary matrices A, B of order 33 and zero matrix C 

of order 13 are used for coding are the following: 

In the case when the redundancy has length 9 bits, the code 

surely detects up to 2 incorrectly transmitted bits when the length of 

the input block is smaller than or equal to 6 symbols from . For 

input blocks with length greater than or equal to 7 symbols, the 

code surely detects 1 incorrectly transmitted bit.  

When the redundancy is 12 bits, the code surely detects up to 4 

incorrectly transmitted bits when the length of the input block is 4 

or 5 symbols from the alphabet , up to 3 incorrectly transmitted 

bits when the input block has length 6 symbols, up to 2 incorrectly 

transmitted bits when the input block has length 7 symbols and 1 

incorrectly transmitted bit when the input block has length greater 

than or equal to 8 symbols. 

When the redundancy has length 15 bits, the code surely detects 

up to 5 incorrectly transmitted bits when the length of the input 

block is 5 symbols, up to 4 incorrectly transmitted bits when the 

length of the input block is 6 symbols, up to 2 incorrectly 

transmitted bits when the length of the input blocks is 7 or 8 

symbols. The code surely detects 1 incorrectly transmitted bit when 

the length of the input block is greater than or equal to 9 symbols.  

When the length of the input blocks is fixed, the number of 

errors the code surely detects does not decrease with increasing 

redundancy length.  If the length of the redundancy is fixed, then 

when the length of the input block increases, the number of errors 

that the code surely detects decreases or remains the same. 

In order to achieve largest number of surely detected incorrectly 

transmitted bits, the input message should be divided into blocks of 

length 5 symbols and each block to be coded separately such that 

the parameter of the model is r=4.  
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Abstract: In this paper, a computer simulation of a new technology of thick-sheet rolling, including rolling in rolls with a relief surface 

followed by rolling on rolls with a smooth barrel to the desired size. The analysis of effective plastic deformation, hydrostatic pressure and 

temperature field was carried out according to the results of modeling. According to the results of the analysis of effective strain, maximum of 

processing in the first pass receives the ridge area, but after the second pass observed alignment distribution of this parameter over the cross 

section. The study of the temperature field showed that the greatest temperature difference in the cross section occurs when rolling in relief 

rolls, in the future when rolling in smooth rolls due to the increase in the contact surface area, this difference decreases. Analysis of 

hydrostatic pressure showed the presence of both compressive and tensile stresses in the deformation zone. Such distribution is caused by the 

presence of a relief surface after 1 pass in the further alignment of the strip profile, which occurs both in the longitudinal and transverse 

directions. 

Keywords: ROLLING, SHEAR DEFORMATION, SIMULATION, TEMPERATURE, STRESS-STRAIN STATE. 

 

1. Introduction 

Obtaining high-quality products, i.e. products that fully meet the 

needs of the consumer, realizing the greatest economic effect and 

having the highest technical, economic and operational indicators, 

in metallurgical and machine-building production is mainly 

associated with the development of new technological processes. 

Thus, one of the primary and most urgent tasks of metallurgical 

production is to obtain high-quality cast billets, as well as the 

modernization of existing and development of new technological 

schemes of rolling capable of providing the study of the cast 

structure, a high level of mechanical properties and performance of 

the finished product. Currently, the use of technological processes 

of rolling with the use of classical tools and existing deformation 

schemes do not fully provide the required level of mechanical and 

operational properties due to the uneven distribution of the degree 

of deformation in the metal volume. Therefore, a promising 

direction to improve the quality of finished products is the 

development of new deformation schemes, including those 

implementing intensive shear or alternating deformation in the 

entire volume of the processed metal. 

For introduction into production, a new technological scheme 

for rolling thick-sheet blanks was proposed, which implements 

intensive shear deformation without significant changes in the 

geometric parameters of the original workpiece. This technological 

scheme includes rolling in rolls with a relief surface followed by 

rolling of relief blank in rolls with a smooth barrel to the desired 

size. The technological scheme is presented in figure 1. 

 

 
a) rolling in rolls with a relief surface; b) alignment and subsequent rolling in rolls with a smooth barrel 

Fig. 1 Scheme of rolling according to the proposed technology 

 

The surface of the relief rolls is made in the form of annular 

grooves forming projections and depressions of trapezoidal shape 

along the entire length of the roll barrel and located at an angle of 

90° degrees to the rolling axis [1]. At rolling in rolls with a relief 

surface there is an introduction of trapezoidal segments of 

protrusions in the workpiece and due to features of the form there is 

a displacement of a part of metal in deepening of hollows. As a 

result, the intensification of shear deformation along the section of 

the workpiece is carried out with the formation of alternating 

protrusions and depressions on the surface of the workpiece in the 

form of trapezoidal segments. During the subsequent rolling of the 

workpiece in smooth rolls, conditions are created to ensure the 

alternating flow of metal when alignment the surface of the roll 

with the preservation of the original geometry of the workpiece.  

The purpose of this work is to study the influence of the 

proposed deformation scheme on the stress-strain state of the metal 

and the distribution of the temperature field over the cross-section 

of the workpiece. 

 

MATHEMATICAL MODELING 2019

52



 
 

2. Computer model of process 

The use of only theoretical methods of analysis of technological 

processes can not be effective for a number of reasons. To 

implement an objective and more accurate analysis, in addition to 

theoretical calculations, it is necessary to resort to new innovative 

technologies. One of the most effective technologies productive in 

the development and research of materials processing pressure is 

computer modeling. One of the most productive and popular is the 

Simufact Forming software package - a specialized software 

package designed to simulate the processes of metal forming. 

Based on previous studies [2], when modeling a new 

technological scheme of rolling, including rolling in relief rolls, it 

was decided to use relief rolls with an unequal ratio of the 

protrusion to the cavity, providing the same values of the roll gap at 

different points (figure 2a). The use of such rolls allows to 

implement a simple shift scheme, which most favorably affects the 

preservation of the original dimensions of the workpiece than the 

use of rolls with an equal ratio of the protrusion to the cavity (figure 

2b), where in addition to the shift is carried out and compression on 

the inclined sections of the rolls. 

 

a)   b)  

a) unequal ratio of the protrusion to the cavity; b) equal ratio of the protrusion to the cavity. 

Fig. 2 Variants of ratio of the protrusion to the cavity 

 

When constructing the geometry of relief rolls for modeling, the 

following dimensions were adopted:  

- diameter of the proposed roll-embossed surface for the clamps 

is 200 mm; 

- barrel length 380 mm (these values correspond to the 

geometric dimensions of rolls for existing laboratory mill DUO 

200); 

- depth of the depression is equal to the height of the protrusion 

is 10 mm.  

- bevel groove on the projections and depressions is 45°.  

The design of the gap in the relief rolls is shown in figure 3. The 

total gap between the two opposite cavities of the roll was 20 mm. 

Smooth rolls were made with geometric dimensions: the diameter 

of the barrel rolls is 200 mm, barrel length is 380 mm. 

After importing the geometry files into the Simufact Forming, a 

computer model was obtained (figure 4) consisting of 3 consecutive 

rolling stands: the first stand with relief rolls, where the workpiece 

undergoes shaping and shear deformation, the second and third - 

with rolls with a smooth barrel. The second and third stands serve to 

align the relief shape of the workpiece obtained in the first pass to 

its original geometric shape (flat form), while the alternating 

deformation is realized in the metal, contributing to a more 

intensive study of the original metal structure. 

 

           
                          Fig. 3 Gap design in relief rolls     Fig. 4 Model of rolling process by new technology 

 

The following technological parameters in computer modeling 

of the process were used: 

Rolling was carried out at room temperature (20°C); 

The temperature of the workpiece before rolling was 1000°C; 

The thermal conductivity coefficient was 7000 W ⁄ (m2·℃) ; 

The Siebel friction model (the contact stress exceeds the yield 

strength); 

Friction coefficient was 0.7; 

The rolling speed was 1.25 rad/s. 

The initial blank is a thick sheet of rectangular shape with 

dimensions h x b x l = 10 x 140 x 200 mm. Material for the 

workpiece the steel AISI 1015 was selected. 

3. Simulation results 

The whole rolling process can be divided into three main stages. 

At the first stage, the preheated to the temperature of rolling 

beginning the workpiece is fed into the roll gap of the proposed 

design and a single compression in the first pass is carried out until 

the cavity of the rolls is completely filled with metal (figure 5a). 

After rolling in the 1st stand on the workpiece surface the 

alternating protrusions and depressions in the form of trapezoidal 

segments are formed. This stage is characterized mainly by shear 

deformation, but there is also a high-altitude deformation at the 

junction of the projections, contributing to the capture of the 
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workpiece. In order to align the surface of the profiled workpiece 

after rolling in relief rolls, it is rolled in stands equipped with rolls 

with a smooth barrel (figure 5b-c) (second and third stage). In this 

case the conditions are created to ensure the alternating flow of 

metal when alignment the metal surface when rolling in smooth 

rolls with the preservation of the original shape of the workpiece. 

 

a)    b)     c)   
Fig. 5 Stages of the rolling process 

 

In the study of any metal forming process, the key step before 

laboratory or industrial testing is the study of the stress-strain state 

(SSS). It will allow to reveal distribution of stresses and strains in 

the considered process, and also to define their critical values that 

will give the chance to check the working tool on durability. 

Effective plastic strain shows the intensity of the workpiece 

throughout its cross-section. This parameter also allows you to track 

the degree of accumulated deformation, which is cumulative. When 

studying the strain state, it is necessary not only to provide a high 

level of equivalent strain required for the formation of a fine-

grained structure, but also a uniform distribution of this parameter 

over the section of the workpiece. 

At the first stage (figure 6a) deformation develops during 

rolling in the deformation center in relief rolls. From the results 

obtained, it was revealed that the maximum value of effective 

plastic strain is concentrated at the junction of the roll ridges and is 

0.4. Also, the cross-section of the workpiece is observed shear 

deformation, its value is in the range of 0.25-0.35. The difference in 

equivalent strain values was 62.5 %. At the second stage (alignment 

of the workpiece in smooth rolls) there is a further increase in the 

equivalent deformation (figure 6b). There is also a cross-section 

alignment of the deformation, as evidenced by a decrease in the 

difference in the values of the equivalent deformation to 50 %. 

From the results at stage 3, it can be said about the uniform 

distribution of accumulated deformation (figure 6c). The difference 

in equivalent strain values is less than 20 %. 

Also, in the SSS study, it is very useful to study the temperature 

conditions of the process, since the change in the temperature of the 

deformed metal significantly affects the energy-power parameters 

of deformation.  

Figure 7a shows the temperature distribution on the surface and 

in the cross section of the workpiece when rolling in relief rolls. In 

the center of deformation during the process there is an increase in 

temperature to 1070°C, which improves the plastic properties of the 

workpiece. In other parts of the workpiece is maintained uniform 

temperature distribution. According to the laws of thermodynamics, 

the cooling of the surface layers is faster than the internal, so the 

temperature of the end parts of the workpiece has decreased to 

970°C. 

 

a)  

b)  

c)  
Fig. 6 Effective plastic strain of the workpiece by passes 
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a)  b)   c)  
Fig. 7 Temperature distribution at each stage of rolling 

 

In the second stage (figure 7b), most of the surface cools to 

temperatures of 950°C and only in the deformation center the 

temperature reaches 1040°C. At the third stage of rolling (figure 

7b), almost the entire surface of the workpiece, in addition to the 

deformation center, cools to 920°C. On the cross section, the 

temperature difference of the workpiece layers can be clearly 

observed. 

Another important component in the SSS study is hydrostatic 

pressure. Hydrostatic pressure shows the intensity of compressive 

and tensile stresses across the workpiece section, i.e. the value of 

the stress can take both positive and negative values. By analyzing 

this parameter, it is possible to identify those zones that are exposed 

to tensile stresses, i.e. are the most dangerous from the point of 

view of defects. From the results obtained, it can be concluded that 

at the first stage of rolling (figure 8a) at the point of contact of the 

roll with the workpiece, the hydrostatic pressure fluctuates between 

-150÷-100 MPa. The compressive nature of stresses is due to the 

fact that in addition to shear deformation in the place of formation 

of ridges and troughs, a certain proportion of high-altitude 

deformation occurs. In the undeformed zone of the workpiece, a 

pressure value within 30÷50 MPa is observed. The tension of the 

central layers of the workpiece remained unchanged. 

At the second stage (figure 8b) in the process of the workpiece 

alignment on smooth rolls in the zone of the deformation center, a 

hydrostatic pressure within -350÷-300 MPa is created. In places the 

top of the ridge there are tensile stresses.   

In the center of deformation at the secondary alignment of the 

workpiece on smooth rolls (figure 8c), the value of hydrostatic 

pressure reaches -450÷-500 MPa. The cross-section of the 

workpiece clearly shows the accumulation of compressive stress at 

the base (origin) of the ridges, this is due to the occurrence of 

backpressure during the lateral flow of the metal (there is a collision 

of the lateral flows of the metal flow during the alignment of the 

ridges). The voltage in this area reaches 130 MPa. 

 

a)   b)  c)  
Fig. 8 Hydrostatic pressure distribution 

 

Conclusions 

In this paper, a computer simulation of a new technology of 

thick-sheet rolling, including rolling in rolls with a relief surface 

followed by rolling on rolls with a smooth barrel to the desired size. 

The analysis of effective plastic deformation, hydrostatic pressure 

and temperature field was carried out according to the results of 

modeling. According to the results of the analysis of effective strain, 

maximum of processing in the first pass receives the ridge area, but 

after the second pass observed alignment distribution of this 

parameter over the cross section. The study of the temperature field 

showed that the greatest temperature difference in the cross section 

occurs when rolling in relief rolls, in the future when rolling in 

smooth rolls due to the increase in the contact surface area, this 

difference decreases. Analysis of hydrostatic pressure showed the 

presence of both compressive and tensile stresses in the deformation 

zone. Such distribution is caused by the presence of a relief surface 

after 1 pass in the further alignment of the strip profile, which 

occurs both in the longitudinal and transverse directions. 
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Abstract: A multiparameter metamodel of the eddy current probe with the volumetric excitation structure is constructed. As variable 

parameters of the metamodel, the spatial coordinates of the testing zone, the radii of the excitation coils and the height of their location 

above the testing object were used. Due to the use of hybrid construction of multiple neural networks using decomposition of the search 

space, an acceptable metamodel’s error of the eddy current probe with volumetric excitation structure is obtained. 
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1. Introduction 

Some difficulties associated with the non-uniform sensitivity of 

the probe in the testing zone are characteristic for the defectometry 

problems solution by the eddy current method. The non-uniform 

sensitivity is due to the exponential eddy currents density 

distribution (ECDD) in the testing object (TO) and is inherent in 

any type of excitation coils, so their using in this case is not 

effective. In defectometry the best sensitivity characteristic in the 

testing zone is considered to be uniform, the so-called P-shaped. In 

this case, the effect of the dependence of the probe sensitivity to the 

location of the defect in the testing zone is reduced. Thus, there is a 

need to create eddy current probes (ECP) with uniform sensitivity, 

and, consequently, the uniform ECDD in the TO zone. One of the 

ways to solve this kind of problem is the optimal surrogate 

synthesis of the excitation system (ES) of ECP. Using parametric 

non-linear synthesis, a sectioned excitation coil system is created 

and takes into account the shape, electrophysical parameters of the 

TO and a priori given uniform sensitivity characteristic. 

In [1] the problem of the linear synthesis of ECP with a given 

structure of the excitation field in the TO zone is considered. In 

addition, since the linear values of the ECDD were obtained with 

the help of linear synthesis, the practical implementation of such 

ECP’s is complicated. The cases, when the given field structure is 

obtained with non-linear parameters of the probe are not considered 

in these work. 

The non-linear synthesis problem was solved in [2]. The 

problem solution for the optimal placement of the section coils and 

their geometric dimensions provided the fixed value of the 

excitation current density in them is obtained. The structural-

parametric synthesis method of the source of the electromagnetic 

field [3] allows us to solve the problem of choosing the structure of 

the ES ECP. However, the presence of a conductive medium and 

the speed effect, i.e. at motionless ECP relatively TO is not taken 

into account. 

2. Background and means to solve the problem 

A number of works by the authors of [4–6] are devoted to 

solving the problems of the non-linear, in the general case, synthesis 

of non-coaxial circular EDP’s with a planar ES structure. A 

characteristic feature of a planar ES structure is the presence of M 

coils of radii rk (k = 1...M) with their uniform ∆r = const or non-

uniform ∆r = var arrangement, which are at the same height z0 

above the TO [7] and switched on counter or consensually “across 

the field” (Fig. 1). For such task the synthesis parameters are three 

variables = ( , , )J f x y r : spatial coordinates x, y of the testing zone 

and the radii of the excitation coil sections r. 

Moreover, the obtained ES of planar design with a uniform or 

un- uniform arrangement of coils provides a value of the reduced 

error in the uniform of the ECDD in the testing zone from 9 to 

11 %, which is not an entirely acceptable result, and leaves the 

desire to further improve the structure of the ES [4-8]. 

 

a) 

 

b) 

Fig. 1 Variants of the arrangement of the coil sections of the surface ECP 

with a planar ES structure: a) uniform ∆r = const; b) un-uniform ∆r = var; 
MC - measuring coil 

3. The solution to the problem 

As a result, there is a need to study probes with a volumetric 

structure of ES, both of a homogeneous and heterogeneous structure 

(Fig. 2). 

The arrangement of coils of surface ECP’s of a volumetric ES 

can be either uniform when ∆r = const, z1 = zk = const, or non-

uniform ∆r = const, z1 ≠ zk (Fig. 3). 

In contrast to the planar structure of the ES, the number of 

parameters of the synthesis problem increases, i.e. the height of the 

coils above TO z0 is added 
0

= ( , , , )J f x y r z . As in the simpler case 

of the planar design of the probe, one cannot do without the ECP 

metamodel
0

ˆ= ( , , , ),J f x y r z  which significantly reduces the 

calculation time and it becomes possible to solve the synthesis 

problem. 
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a) 

 

b) 

Fig. 2 Volumetric structures of ES ECP: a) homogeneous; b) heterogeneous 

 

a) 

 

b) 

Fig. 3 Arrangement of sections of coils of surface ECP’s of a volumetric 
homogeneous structure ES: a) uniform ∆r = const, z1 = zk = const; b) un-

uniform ∆r = const, z1 ≠ zk 

The aim of the work is constructing a multiparameter hybrid 

RBF-metamodel of eddy current probes with volumetric 

homogeneous excitation structure. 

On the basis of a mathematical model of a moving surface ECP, 

which was obtained analytically by solving the direct problem of 

electrodynamics in the form of Maxwell’s differential equations [6], 

a neural network metamodel that takes into account the change in 

four parameters simultaneously 
0

ˆ= ( , , , )J f x y r z  was constructed. 

The metamodel for the moving structure of the ES ECP in the form 

of ampere-coils located at different heights above the TO (Fig. 3) 

with the following initial data: TO thickness d = 10 mm; excitation 

current frequency f = 5 kHz; electrophysical parameters of the 

material TO  = 3,745107 Sm/m, r = 1, the speed of the probe 

relative to TO  40,0,0   m/s was constructed. Variable model 

parameters are: spatial coordinates of the testing zone x = -

 45 ... 45 mm; y = 0 ... 35 mm; the radii of the coils ES 

r = 2 ... 15 mm; their height above TO z0 = 2 ... 5 mm. 

Next, the construction of a metamodel of a moving surface ECP 

in accordance with the algorithm proposed in [6, 7] is performed. It 

is advisable to approximate the multidimensional response surface 

using the heuristic method based on artificial neural networks. This 

method has some significant advantages in comparison with to 

well-known methods [9]. An RBF-neural network with a Gaussian 

activation function as a multidimensional approximator was used. 

However, unlike the simpler case of an optimization problem with 

three variables, a number of difficulties arise in this case. Firstly, 

the response surface has a complex topography, which imposes 

certain limitations associated with the need to use a big data array in 

the procedure of training a neural network. Secondly, there is a big 

range of ECDD values in the range of radius changes. This is 

especially true for the region beyond the ES, which entails an un-

uniform distribution of the ECDD values at the points of the 

experiment plan (Fig. 4), which necessitates the decomposition of 

the search space. All this greatly complicates the constructing of a 

multiparameter metamodel and it is almost impossible to implement 

it on the simplest, so-called single RBF-neural networks. 

 

Fig. 4 Normalized ECDD values for the subregion Iz - ІIIr of the testing zone 

beyond the ES 

The decomposition along the height of the probe and along the 

radius manages to partially level a number of these difficulties. The 

decomposition along the height of the probe above the TO is 

performed into three subregions: Iz (2  z 3 mm), 

IIz (3 < z  4 mm), IIIz (4 < z  5 mm). The decomposition along 

the radius of the coil turns is performed into six subregions: 

Іr (2  r  3 mm), ІІr (3 < r  5 mm), ІIIr (5 < r  8 mm), 

ІVr (8 < r  10 mm), Vr (10  r  12 mm), VІr (12 < r  15 mm). 

Additionally, if necessary, the radius of the search space is further 

divided into two subregions - directly under the turns of the coil 
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sections and beyond them.  In order to construct the metamodel as 

accurately as possible, the number of points of the experiment plan 

at which the eddy current density is calculated is set different for the 

area under the turns of the coil sections and beyond them. Thus, it is 

possible to simplify the architecture of a single RBF-neural network 

and achieve a certain balance between the accuracy of the 

construction of the metamodel and the number of points in the 

experiment plan of the Ntraining. In this case, not classical methods of 

experiment planning are used, but computer methods of 

homogeneous filling with search points of hyperspace, namely, 

points of the Sobol’s LP-sequence ξ1, ξ2, ..., ξ52 [10]. So, for 

example, for the subregion Iz0 and all subregions along the radius 

Ir - VІr where such LP-sequences as ξ1, ξ2, ξ3, ξ4 in the region 

immediately under the coil sections, and ξ1, ξ3, ξ4, ξ2 realized 

beyond it. Those, we have the arrangement of points of the LP-

sequence in a multifactorial space, respectively, in the x and y 

coordinates of the testing zone, in the radius r of the excitation coils 

and the height of their location above the TO z0 (Fig. 5). The 

number of points for each subregion is set individually depending 

on the size of the excitation coil and, accordingly, the size of the 

region under it. Accounting the symmetry of the ECDD concerning 

to the coordinate axes also influences the choice of the number of 

points, i.e. for a moving probe they are specified for I and II 

quadrants. For example, for Iz - IIr the size of the testing area 

directly under the coil is x = - 17...17 mm; y = 0...13.5 mm. For the 

most accurate description of the behavior of the response surface, 

the number of points for the training sample was chosen 

Ntraining = 1749 (Fig. 6), while beyond the region - Ntraining = 1198. 

 

Fig. 5 Arrangement of points of the LP-sequence ξ1, ξ3, ξ4, ξ2 in three-

dimensional factor space for r = 5...6 mm at a fixed height z = 2 mm 

 
а)                                               b) 

Fig. 6 A training sample, presented in the form of lines of ECDD, with 

points of the LP-sequence for the Iz - IIIr subregion: a) r = 6 - 7 mm; b) 
r = 7 – 8 mm 

Acceptable accuracy of the metamodel was obtained using 

hybrid neural network construction. This implies the construction of 

several cascades of neural networks with subsequent additional 

application at each committees cascade (Fig. 7) [6]. As a function 

of activation of neurons in a hidden layer of an RBF-network the 

Gauss function is used. Then the output of the neural network is 

formed by a linear combination of the outputs of the neurons of the 

hidden layer and is described by the formula: 

       
2 2 2 2

2
1

ˆ( , , , ) exp ,i i i i

m
x y r z

i

i i

x c y c r c z c
J x y r z w

a

       
   
 
 
 


 

where m is the number of neurons in the hidden layer; iw  is the 

weighting coefficient of the output neuron with the i-th neuron of 

the hidden layer; cxi, cyi, cri, czi are coordinates of the center of the i-

th neuron; ai - the width of the i-th neuron. 

 

Fig. 7 Hybrid construction of a neural network metamodel 

For the network’s committee only networks with the 

productivity of the training, testing, and controlling samples of 

more than 90 % are used. The number of cascades is determined by 

the obtained value of the mean absolute percentage error MAPE, %. 

The best models were selected according to a combination of 

objective statistical indicators [10] and a subjective assessment of 

dispersion diagrams and histograms of residues. 

Table 1 shows the obtained values of MAPE, % at the stage of 

training and reconstitution of neural networks for several 

decomposition subregions. 

4. Results and discussion 

Verification of the metamodel was carried out by checking the 

correctness of reconstitution of the response surface in all 

subregions on the sample, which has a bigger number of points than 

during training, i.e. Nreconstitution > Ntraining. To illustrate this, Fig. 8 

shows the dispersion diagrams of the values of the 

multidimensional approximation function for one of the Iz-IIIr 

subregions at the stages of training the neural network and its 

reconstitution. 
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a) 

 
b) 

Fig. 7 Diagram of the dispersion of the values of the multi-dimensional 

approximation function for the subregions Iz-IIIr: a) the stage of training the 
neural network; b) the stage of reconstitution 

The adequacy of the obtained metamodel was evaluated 

according to the statistical F-criterion based on the following 

indicators: the sum squares of the regression and residues ones; the 

average  square of the regression and residuals at a significance 

level of 5 % [10]. The information content of the constructed 

metamodel is controlled by the coefficient of determination. 

Table 1: Values of MAPE,% of the obtained multi-parameter hybrid neural 

network metamodel of ECP for several decomposition subregions. 

Decomposition 

subregions 

Ntraining / 

Nreconstitution 

MAPЕ,% 

stage 
training 

stage 
reconstitution 

Iz-ІIIr (beyond coil) 1198/2186 16,72 21,17 

Iz-ІIIr (under coil) 1749/3680 19,09 21,31 

IІz-Іr (under coil) 900/1250 4,35 6,22 

Thus, due to the use of hybrid construction of multiple neural 

networks using decomposition of the search space, an acceptable 

error in the metamodel of the volumetric structure of the ES EDP is 

obtained. 
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Abstract: The work presents a study of an upper limb exoskeleton designed for rehabilitation and training. While in the first stages of 

rehabilitation, when the patient is unable to move alone, the exoskeleton must be rigid, in the next stages it should be able to respond to any 

movement made by the patient. The key feature here is transparency: the robot must be able to “hide” if the patient is able to make the 

movement without assistance. The aim of the work is to identify and evaluate an appropriate solution of the upper limb exoskeleton that 

provides transparency and natural safety on the one hand, and force impact and performance on the other. In the paper, the mechanical 

model of the exoskeleton was shown. The mechanical structure is similar to the structure of the human arm. Through the kinematic model, 

the direct and inverse tasks of kinematics are solved using the Octave matrix software. The upper limb exoskeleton is designed as a haptic 

device that can perform tasks in virtual reality. Simulations of the interaction force between the patient and the exoskeleton were conducted 

also using the Octave software. Here, an assessment of the interaction force was made as a result of the exoskeleton passive impedance and 

the active control of the exoskeleton. Finally, conclusions and development recommendations are given. 

 

Keywords: EXOSKELETON, REHABILITATION, PASSIVE IMPEDANCE, INTERACTION FORCE, SIMULATIONS 

 

1. Introduction 

The exoskeleton must be capable of both: to generate a high 

level of forces to sustain, assist, and/or to perturb the motor 

capabilities of the patient; and without perturbing to follow human 

movements which have large velocity and acceleration peaks, thus 

requiring a high level of dynamic interaction [1], [2]. 

As soon as the patient has recovered a minimal amount of motor 

capacity [3], [4], shared control of movement must be possible. 

Therefore, one key feature that rehabilitation exoskeletons have to 

exhibit is transparency: the robot must be able to “hide” if the 

patient is able to make the movement without assistance [5]. The 

forces that must be overcome when moving the robot are produced 

by mechanical impedance of the robot including inertia, friction and 

stiffness. Gravity forces must be added to these forces as well. 

There are two main approaches to reduce the device impedance: 

the active and the passive approaches. A more feasible way is to use 

active control. This compensation can take the form of the model 

feedforward [6] or feedback control [7]. The passive approach 

which is independent of the servo-responses provides increased 

safety and maintains the transparency. 

Various approaches are known to implement passive 

impedance. All of them require the use of a passive or natural 

compliant element. The so-called “serial elastic actuation” [8], [9] is 

the most well-known approach to realize passive compliance. The 

values of the high impedance are limited to the values of the elastic 

link stiffness.  

One of the most common approaches to implement natural 

compliance is the usage of pneumatic artificial muscles (PAM), 

[10]. Compared to other actuation systems, high power/weight and 

power/volume ratios allow pneumatic muscles to be a good solution 

for lightweight actuation design.  

The aim of the work is to reveal the results of modelling and 

simulation of an upper limb exoskeleton for rehabilitation and 

training that ensures transparency and natural safety on the one 

hand and force impact and performance on the other.  

2. Mechanical structure and actuation of 

exoskeleton arm  

One way to achieve the design goal is to build an exoskeleton 

developing the passive approach. This means having extremely 

light attachments to the limbs, and putting all the heavy exoskeleton 

components on the torso or the ground. Thus an exoskeleton with 

light segments was developed. The exoskeleton mechanical 

structure (Fig.1a) consists of two arms L and R, each consisting of 

four movable segments 1, 2, 3, 4. The two arms are mounted on a 

rigid structure that is fixed to the base behind the operator's back as 

shown in Fig.1.  

All segments of the arm are made of aluminium, they have 

adjustable length, thus allowing quick and easy adjustment 

according to the user’s size. Each arm has four active joints J1, J2, 

J3 and J4 resembling the natural motion of the human arm from 

shoulder to elbow. A CAD view of the exoskeleton prototype is 

shown in Fig. 1 b). The summed masses of the four main segments 

of the arm calculated from the CAD program are M1=0.302kg, 

M2=0.303kg, M3=0.271kg and M4=0.122kg. The lengths of the 

exoskeleton arm and forearm in the initial setup are L1=0.286 m 

and L2=0.370 m respectively. The exoskeleton is designed so, that 

it covers the requirements of “Activities of daily living” (ADLs) as 

they have been assessed in [11]. The ranges of exoskeleton joints 

are: J1(110°), J2(120°), J3(150°), J4(135°). 

 

 

a) 

 

b) 

Fig. 1 Exoskeleton arms: a) mechanical structure; b) CAD view of the 
prototype. 

The actuation system of exoskeleton arm should have the 

following advantages: excellent power/weight ratio with inherent 

safety, natural compliance, low cost. Self-made braided pneumatic 

muscle actuators (PMA) are used to achieve these advantages. The 

muscles are used not only singly, but also in parallel groups as 

bundles [12]. Joint motion/torque on the exoskeleton arm is 

achieved by antagonistic actions through cables and pulleys, driven 
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by the pneumatic bundles. All actuators are mounted on the exo-

shell on the operator’s back. A selection of bundles with different 

number of muscles for every joint is performed to ensure nominal 

torques in the joints. 

 3. Mechanical model of exoskeleton arm  

The mechanical model of the exoskeleton arm was build up, 

according to the kinematics scheme shown in Fig. 1. The kinematics 

structure includes 4 rotation joints with h = 4 DoF. Independent 

parameters for evaluation are the rotations in the four joints q1, q2, 

q3 and q4, corresponding to the four basic motions of the upper 

limb: shoulder abduction/adduction, shoulder flexion/extension, 

elbow flexion and shoulder med./lat. rotation. 

(1)   
 Thqq ,...,q 1

    

The coordinates of the end-effector (ЕЕ) are presented by the 

vector 

(2)   
  61   ,,...,X

T
XX

   

Jacobian matrix is built using the Octave Software,  

(3)  














q

X
J

    

The direct task of kinematics is solved regarding positions and 

velocities. Assuming that the operator hand is connected to a point 

EЕ (end effector), we will further consider exoskeleton positions 

only, and we will accept the operating space as 3 dimensional (ν=3). 

The vector of end-effector coordinates (2) will be (3 x 1) 

dimensional, and Jacobian (4) will be (3x4) dimensional.  

Using the pseudoinverse of the Jacobian [J +] in the Octave 

Software and an iterative procedure using small position deflection 

on the selected path, inverse kinematics is solved and the 

corresponding angles and velocities of the joint are found: 

(4)  XJq       

Denote by 

(5)   
 Th,...,QQ1Q

    

the (h x 1) vector of the generalized torques in the joints in the basic 

chain corresponding to the generalized parameters (1) and by  

(6)   
 Tzyx FFF ,,F 

   

the (3 x 1) vector of the external forces applied at the end effector 

and corresponding to the coordinates (2) of the end effector. The 

link between the external forces (6) and the effective generalized 

torques (5) can be defined according to the principle of virtual work 

as follows 

(7)   FJQ
T     

In virtual reality tasks, the vector of the external forces (6) 

represents the desired force on the end effector, when the user is in 

contact with a virtual surface.  

The gravity of exoskeleton links and the gravity of human arm 

influences on the behaviour of the end-effector. The (4 x 1) vector  

(8)  
 T41,...,GGG

    

is the vector of gravity torques, generated at the exoskeleton joints. 

Its components are determined by the mass of the links and their 

centre of mass positions in the base frame. 

4. Interaction “patient– exoskeleton” as a result of 

the exoskeleton passive impedance 

If a rehabilitation robot is completely transparent, the 

interaction force initiated by the patient between him and robot is 

zero. The subject of the present simulations is to evaluate the 

interaction force between the patient and the exoskeleton as a result 

of the exoskeleton passive impedance. As rehabilitation robotics, 

especially upper limb robotics, operate at high torques at low 

velocity, the interaction force includes mainly gravitational forces, 

elastic forces and frictional forces. 

An experiment has been conducted on the influence of 

gravitational forces on the end effector motion in a curvilinear path, 

such as a circle, in the OXY plane. (Fig. 2a). At the points of the 

circular trajectory, the inverse kinematics problem (4) is solved by 

the Octave Software and the corresponding joint angles are found. 

For each point in the procedure, the joints torques (8) generated by 

the gravitational forces are calculated. From these torques, the 

inverse solution of (7) is made and the equivalent force of EE (6) is 

calculated. Fig. 2 a) depict graphically the change of this force, and 

Fig. 2 (b) shows the change of its components along the axes of the 

Cartesian coordinate system OXYZ.  

 

 

a) 

 

b) 

Fig. 2 Gravitational influence in guiding the end effector in a circle with 

radius 0.18 m: (a) change in the interaction force; (b) modification of the 
components of the interaction force.  

 

Fig. 3 shows the results of a similar experiment when the arm is 

in a different configuration and the end effector moves in a circle 

with smaller radius. Fig. 3 a) depict graphically the change of end 

effector force, and Fig. 3 (b) shows the change of its components 

along the axes of the Cartesian coordinate system OXYZ. Joint 

moments as a result of arm gravity are shown in Fig.3 c). 

 

 

a) 
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b) 

 

c) 

Fig. 3 Gravitational influence in guiding the end effector in a circle with 

radius 0.05 m: (a) change in the interaction force; (b) modification of the 

components of the interaction force; (c) joint moments as a result of arm 
gravity. 

In motion initiated by the patient to maintain the end effector 

trajectory, in cases without feedback or without mechanical model 

compensation, the force exerted by the patient depends on the 

configuration of the arm. As can be seen from the graphs, in some 

configurations this force is limited in size. In other configurations 

and special positions, the interaction forces are multiplied several 

times. Ensuring transparency in these situations can be achieved 

through active control, by changing the exoskeleton arm 

configuration, by changing contact points, and more. 

At the initial moment of “patient - exoskeleton” contact, the 

interaction force is mainly the result of elastic displacement. The 

exoskeleton passive elasticity is determined by the compliance of 

the pneumatic drive. For selected design parameters such as: 

number of muscles in each bundle m = 7, wheel radius r = 0.04 [m], 

maximum feed pressure of 600 kPa, joints compliances reache 

values Bpii = 0.031 [rad / Nm], i = 1, ..., 4, [12]. 

The exoskeleton compliance in Cartesian space represents a 

function of the joint compliance and joint positions, involved in 

Jacobian J: 

(9)  
T

pJJBB 
  

Above, B represents a (3x3) symmetric matrix of end effector 

linear compliance and Bp represents (4x4) diagonal matrix of joint 

compliance.  

The end effector compliance (11) is calculated for the specified 

values of joint compliances in the four joint Bpii. The calculations 

are consistent with changing situations in the four joints of the arm 

respectively in 0, 550.300, 300 in the range of joint motions. The 

results are shown in Fig. 4 using a compliance ellipsoid. The 

experiment shows that there are large differences between 

compliance at different points, as well as between compliance in 

different directions from a given point. Transparency is directly 

dependent on the type of compliance represented by compliance 

ellipsoid with a certain shape.  

 

 

Fig.4. End effector passive compliance at workspace points. 

5. Interaction “patient– exoskeleton” as a result of 

active control 

The passive impedance of the pneumatic actuation takes care of 

the initial response in order to provide security and ensure the 

transparency but the active impedance creates a subsequent 

response that is generated by the position feedback and feed-

forward compensations.  

An open-loop impedance controller with feedforward gravity 

compensation is selected [2]. This type of force control is called 

open-loop because there is no force feedback from the device to the 

controller to regulate the force output of the exoskeleton end 

effector as it is illustrated by the control block diagram in Fig. 5.  

Virtual Engine in the controller on Fig. 5 according to reference 

impedance value Kd generates a desired force command Fd used to 

calculate force command in the exoskeleton joints. A software 

block G(q) is introduced in order to take into consideration the 

effects of the exoskeleton weight. Generalized torques in the joints 

as joint force commands are given by the following equation 

(10)  Hd

T QG(q)FJQ 
   

Forces that human exerts on the exoskeleton end effector QH 

represent a physical, not control input to the device. 
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Fig.5. Block scheme of impedance control with feedforward gravity 
compensation. 

In the next experiment, a simulation is made for the case where 

the patient leads the hand in a circle as shown in Fig. 3, and the 

exoskeleton assures transparency with active control. The force 

commands to the joint according to (10) are formed only by the 

gravitational compensation command (8) ΔQ = G, as shown in Fig. 

3c).  In this case the desired force of the end effector is zero (Qd = 

0). In each position, the compensated arm deviates as a result of 

gravitation and pneumatic actuator passive compliance. In a series 

of points on the trajectory elastic deviation in the joints Δq = BpΔQ, 

and the corresponding deviation of the end effector ΔX=JΔq are 

calculated. Fig. 6a) shows the end effector trajectory after elastic 

deviations as result of gravity. When the patient is leading the hand, 

he applies force Qh = JTFh to the end effector, which according to 

(10) changes the joint torques. As a result, the elastic exoskeleton 

arm deviates further. 

The task of the impedance controller shown in Fig. 5 is to 

provide transparency with low stiffness Kd, to reduces errors in joint 

torque in order to reset the interaction force Fh. Due to low sensor 

resolution or other factors as a result of active control, the patient-

initiated force may be different from 0. The magnitude of this force 

is determined by the passive impedance of the exoskeleton. In the 

experiment, the elastic deviation of the еnd effector at trajectory 

points was calculated when a setpoint of the interaction force Fh= [-

5, -5, -5]TN was chosen. In Fig. 6b) arm deviations are shown as 

result of the set interaction force. In Fig. 7a) components of the EE 

deviation vector dXa dYa dZa are shown as a result of the set 

interaction force. The joint moments nd as a result of set interaction 

force are shown in Fig.7 b). The results obtained show the 

relationship between the deviations from the desired trajectory and 

the uncompensated interaction force as a result of the elasticity of 

the exoskeleton arm. 

 

 

MATHEMATICAL MODELING 2019

62



 

a) 

 

b) 

Fig. 6. Deviations as a result of: a) gravity and b) as a result of 

interaction force. 

 

 

a) 

 

b) 

Fig. 7. Motion parameters along the selected trajectory: a) components of 

the EE deviation vector dX, dY, dZ as a result of the set interaction force; b) 

joint moments as a result of interaction force. 

 

The calculated values of the EE deviations determine the 

transparency as a result of passive compliance. Of course, this 

transparency depends on the amount of passive compliance and the 

speed and accuracy of active control. The experiment was 

conducted for a minimum value of passive compliance. By 

controlling the pressure of the pneumatic actuators, the passive 

compliance in the joints can be increased, thus increasing the 

transparency and safety of the interaction. 

 

6. Conclusion 

The work presents a study of an upper limb exoskeleton 

designed for rehabilitation and training. The aim of the work is to 

identify and evaluate an appropriate solution of upper limb 

exoskeleton that provides transparency and natural safety on the one 

hand and force impact and performance on the other.  

In the paper, the choice of a mechanical structure is shown to be 

equivalent to the structure of the human arm. A mechanical model 

of the exoskeleton arm was built. Through the kinematic model 

direct and inverse tasks of kinematics are solved using the Octave 

matrix software.  

The upper limb exoskeleton is designed as a haptic device that 

can perform tasks in virtual reality. Simulations of interaction force 

between patient and exoskeleton are conducted using the Octave 

software. Here an assessment of the interaction force as a result of 

the exoskeleton passive impedance and as a result of exoskeleton 

active control is made.  

It has been shown that for this arm structure the transparency in 

some positions and directions is higher than in others. Ensuring 

transparency in the extreme and singular positions can be achieved 

through active control, by changing the exoskeleton arm 

configuration, by changing the contact points “patient -

exoskeleton”, etc. We can also select structure of the arm with more 

degrees of mobility and wide working area than the human arm.  
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1. Introduction 

The most important way to generate income in a market 

economy is investing, which implies the rejection of current 

consumption in order to profit in the future. At present, the greatest 

interest in the Russian financial sector is caused not by investing in 

bank deposits (this tool is characterized by a practically single 

probability of the risk of loss of funds due to the comparability, or 

even exceeding, of inflation rates offered by banks on deposit 

interest rates), but investing in the IT sector, venture capital 

investment and the formation of investment portfolios on stock 

exchanges. Now, it is more important not just to generate income, 

but to guarantee it in conditions of instability along with hedging 

financial risks. An important role is played by the development of 

innovative methods of portfolio formation that can provide a more 

accurate forecast of the financial result. 

Despite its considerable age, the most widely accepted theory of 

the optimal investment portfolio is authored by G. Markowitz, 

based on maximizing the return on investment while minimizing 

risk [2]. The risk is usually expressed by the standard deviation of 

return. The optimization problem is solved, and the portfolio 

structure is selected in such a way as to ensure the best values of its 

indicators calculated based on historical returns on assets. It is 

assumed that in the future the probabilistic characteristics of the 

price of these assets (mathematical expectation, standard deviation) 

will remain unchanged, prices will behave in a similar way. 

However, investors are not interested in past returns, but in the 

future. In practice, a portfolio optimized by historical price values 

will be optimal if the future yield dynamics is a constant. Of course, 

in real life, in an unstable economy, dynamically changing market 

conditions, financial crises, such a premise is not feasible. We 

suggested that if we extrapolate the price series of assets included in 

the portfolio and calculate the target function not by historical 

returns, but by forecast , then the resulting portfolios should have 

more attractive characteristics (higher profitability with less risk) 

than when applying the classical model of average dispersion. 

There are many methods for forecasting the dynamics of the 

rates of financial instruments. According to some authors, the most 

adequate mathematical apparatus for studying the complex behavior 

of financial indicators was developed based on fractal theory 

[5],[9]. There are extensions of widely used econometric models 

(such as linear ARIMA, non-linear GARCH) that consider the 

fractal properties of market time series. Researches have shown 

higher efficiency of such models compared to classical ones [6]. In 

this paper, we decided to predict the returns of financial instruments 

that make up the portfolio, apply the ARFIMA long memory model. 

Thus, the purpose of this study is to test the hypothesis that the 

formation of an investment portfolio based on forecasted returns 

using fractal models can improve the characteristics of the portfolio 

in comparison with the approach to calculating the characteristics of 

historical returns only. To achieve the goal, the following tasks 

were set: to carry out a literature review on the research topic, 

describe the input data and the research methodology, make the 

necessary calculations, analyze the results and outline the directions 

for further work. 

The problem of applying and developing the theory of portfolio 

investment has been dealt with by many researchers. So, in the 

work of E. Gubanova and a group of authors proposed a 

methodology for the formation of the most effective portfolio of 

securities, considering the current situation on the market 

(aggressive, passive or balanced) [4]. The models of W. Sharp and 

J. Tobin are used, which are a development and alternative to the 

classical model of G. Markowitz. I. Agarysheva et al. proposed an 

original methodology for selecting the instruments included in the 

portfolio [1]. Article by B. Aouni et al. discusses approaches to 

optimizing the portfolio according to several criteria different from 

average profitability and variance [2]. Moreover, in all the studied 

works, portfolios are invariably formed according to the historical 

profitability of the instruments. 

The use of fractal analysis to predict financial time series is not 

paid much attention to by researchers. G. Caporale [3], 

S. Zhelyazkova [8], P. Simonov and R. Garafutdinov [6] and others 

dealt with this problem. Their researches show that financial series 

have a long memory and can be well described by various fractal 

modifications of econometric models. In article [6], on a large data 

set, the advantages of such models over classical forecasts in 

accuracy are demonstrated. 

2. The solution to the problem 

We describe the input data and state the research methodology. 

It was decided to consider the dynamics of asset prices from 

January 2008 to February 2019. Since the portfolio, as a rule, is 

formed in order to generate income for a sufficiently long time, the 

annual return on asset Ry calculated by formula (1) and the annual 

standard deviation were taken as optimized characteristics of the 

portfolio. 

(1) 
0

01

P

PP
Ry


 , 

where P1 is the closing price of the asset at the beginning of the 

month of a certain year, P0 – the closing price of the asset at the 

beginning of the month of the previous year. 
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The initial sample of instruments included ordinary shares of 51 

issuers traded on the Moscow Exchange from the list of securities 

for customers with a standard risk level. Of these, two instruments 

with a rather low level of correlation of annual returns (0.309) were 

selected as the base for portfolio formation: ordinary shares of PJSC 

“Aeroflot – Russian Airlines” (ticker AFLT) and PJSC “Acron” 

(ticker AKRN). 

The mathematical formulation of the investment portfolio 

optimization problem is described in many works, for example, in 

[1]. Optimized variables are the shares of assets in the portfolio. 

Additional limitation: the sum of shares must be equal to one. In the 

framework of this study, we will perform optimization according to 

three criteria: maximizing profitability; risk minimization; 

maximizing the profitability to risk ratio. Since it is necessary to 

compare the portfolios obtained in the new and classical ways, we 

will form portfolios in two ways. In the first case, the objective 

function is calculated based on the average annual return on assets 

(to calculate the average annual return on an asset and estimate its 

standard deviation, annual returns for 2009–2018 are used, only 10 

values). In the second case, according to the predicted annual 

returns in 2019 (the annual return on the asset is forecasted, and the 

standard deviation is estimated by several historical annual returns 

her with the addition of predicted returns, only 11 values). The 

criteria for comparing the portfolios obtained by both methods are 

the actual annual portfolio return in 2019 and the standard deviation 

of its annual return calculated from the series of historical annual 

asset returns with the actual added in 2019. 

To model predicted returns, it is necessary to use not annual 

historical returns, but monthly ones, since at least several tens of 

values are required to identify the parameters of the ARFIMA 

model. Monthly returns are calculated similarly to annual ones by 

formula (1) – with the only difference being that the interval 

between prices P0 and P1 is not a year, but a month. To switch from 

monthly returns to annual Ry, the formula is used: 

(2) 



12

1

1)1(
i

miy RR , 

where Rmi is the monthly yield of the asset, i – the serial number of 

the month. Table 1 shows the obtained annual returns (E(Ry) is the 

average annual return of the asset, σy – the standard deviation of the 

annual return). 

Table 1: Historical annual returns on portfolio assets. 

Year AFLT AKRN 

2009 -0.7574 -0.7541 

2010 1.4916 1.5806 

2011 0.3767 0.4044 

2012 -0.3513 0.0022 

2013 0.0660 0.0170 

2014 0.4870 -0.1886 

2015 -0.5333 1.0235 

2016 0.4668 0.5613 

2017 2.1952 -0.0402 

2018 -0.2266 0.1776 

E(Ry) 0.3215 0.2784 

σy 0.9216 0.6572 

The methodology for using ARFIMA(p,d,q) models is 

described in [6]. The fractional differentiation operator d is 

calculated through the Hurst exponent of the time series. To assess 

the fractal dimension of the series and the Hurst indicator, it was 

decided to use the so-called dimension of the minimum coverage, 

since only a few dozen observations are required to calculate it 

sufficiently accurately [7]. In order to obtain adequate models 

suitable for forecasting, that is, satisfying the distribution normality 

Lilliefors test) and the lack of autocorrelation of residues (according 

to the Ljung-Box test) and the significance of the coefficients (at 

least half of the coefficients should be significant at the 5% level), 

etc. It was necessary to change the length of the training interval, 

cutting off the values from the front. Among the models satisfying 

all the conditions, the models with the lowest values of the BIC 

were selected. Table 2 presents the characteristics of the constructed 

models (n is the length of the interval on which the model was 

trained, that is, the number of monthly returns in a row). 

Table 2: ARFIMA Forecast Models the return on each asset in the portfolio. 

AFLT AKRN 

ARFIMA(1, -0.007408, 1) 

n = 100 
BIC = -151.71 

ARFIMA(0, -0.068203, 2) 

n = 103 
BIC = -180.49 

Figure 1 shows the graphs of the monthly returns of both 

instruments from February 2008 to February 2019, as well as their 

forecast from March 2018 to February 2019. 

 

Fig. 1 Actual and forecast graphs of monthly asset returns. 

3. Results and discussion 

As you can see, forecasts tend to the mathematical expectation 

of instrument returns and very weakly model their volatility. In the 

framework of this study, the most interesting are the characteristics 

of the portfolio, the structure of which is optimized based on these 

forecasts. 

As an optimizer, the Solver tool in Microsoft Excel was used. 

Optimization method was GRG Nonlinear. Before each start of the 

optimization process, the values of the variables were set to 0.5. Six 

portfolios with various objective functions were formed, the results 

are summarized in table 3 (Rph is annual portfolio historical return, 

σph – standard deviation of historical portfolio annual return, Rpp – 

annual portfolio return forecast, σpp – standard deviation of portfolio 

annual forecast, Rpf – annual portfolio return actual, σpf – standard 

deviation of annual portfolio return, taking into account the actual). 

Table 3: Characteristics of portfolios formed in various ways. 

Portfolio 

number 

Target function Share 

AFLT 

Share 

AKRN 

Portfolio 

characteristics 

0 – 0.5 0.5 

Rpf = -0.0461 

σpf = 0.6191 

Rpf / σpf = -0.0744 

1 Rph → max 1 0 

Rpf = -0.2226 

σpf = 0.8896 

Rpf / σpf = -0.2502 

2 σph → min 0.27 0.73 

Rpf = 0.0352 

σpf = 0.5789 

Rpf / σpf = 0.0607 

3 Rph / σph → max 0.33 0.67 

Rpf = 0.0140 

σpf = 0.5824 

Rpf / σpf = 0.0240 

4 Rpp → max 0 1 

Rpf = 0.1305 

σpf = 0.6251 

Rpf / σpf = 0.2087 

5 σpp → min 0.27 0.73 

Rpf = 0.0364 

σpf = 0.5788 

Rpf / σpf = 0.0628 

6 Rpp / σpp → max 0 1 

Rpf = 0.1305 

σpf = 0.6251 

Rpf / σpf = 0.2087 

As you can see, the parameters of portfolios that are optimized 

according to historical and forecast data differ. A balanced 
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portfolio, which includes equally shares of both issuers (portfolio 

0), is expected to have mediocre characteristics: negative return 

(-5%) and high volatility (62%). However, portfolio 1, maximizing 

historical profitability, in practice turned out to be even more 

unprofitable and risky. Portfolio 4, which maximizes projected 

returns, showed returns 35% higher and volatility 26% lower. 

Portfolios that minimize historical and forecast risks (2 and 5) are 

practically the same (portfolio 5 has slightly better parameters, and 

the coincidence of its structure with the structure of portfolio 2 is 

due to rounding). This is because the series of asset returns for 

estimating the forecast standard deviation differ from the series of 

historical returns by adding a single forecast value. However, as you 

can see, even this single value slightly improves portfolio 

parameters. Portfolio 6, which maximizes the forecast profitability 

to risk ratio, showed 12% greater profitability and 4% greater 

volatility than portfolio 3, which can also be considered an 

improvement in performance. 

It turned out that the hypothesis that the use of fractal models 

for forecasting returns and the formation of investment portfolios 

based on projected returns allows us to improve the characteristics 

of portfolios is not rejected. The only experiment conducted showed 

that the parameters of the portfolio, at least, do not deteriorate. 

Therefore, we can talk about a new method of forming investment 

portfolios as a possible application of a fractal approach to 

forecasting financial series. In any case, start its discussion. 

Moreover, the technique used in this study has several limitations. 

Firstly, the classic, simplest method of forming optimal portfolios, 

proposed by G. Markowitz, was applied. As part of the first testing 

of our methodology, this approach is justified, but it would be more 

interesting to try more advanced portfolio models with other 

performance criteria (for example, the risk measure can be 

expressed by the VaR indicator). Secondly, the choice of securities 

for inclusion in the portfolio was carried out arbitrarily and their 

number was only two, while a well portfolio with well-diversified 

risk can contain up to a dozen instruments. Such a primitive 

approach to the selection of assets led to the fact that the portfolios 

turned out to be quite low-yield and high-risk. In addition, the 

optimizer in some cases completely preferred to leave the only asset 

in the portfolio, which does not even allow talking about portfolio 

investment. Thirdly, ARFIMA linear models were used to predict 

returns, while no predictive analysis of the fractal properties of the 

price series of the selected assets was made and no conclusion was 

made on the appropriateness of using such models to predict these 

series. All these limitations indicate that it makes sense to continue 

the study of our proposed method of forming portfolios, to develop 

an idea that at this stage exists almost in the form of a concept. 

4. Conclusion 

Thus, in our opinion, the proven approach to portfolio formation 

looks promising and deserves attention. Modeling the expected 

dynamics of portfolio returns using modern mathematical methods 

instead of using the simplest expected value as predicted returns 

allows us to more adequately describe real market processes and, as 

a result, to create more profitable and less risky portfolios. The 

directions of future research, due to the shortcomings of the 

methodology used, may be the following: 

• application of a more sensible methodology for choosing 

financial instruments to form the portfolio base, increasing the 

number of assets in the portfolio; 

• performing a prediction analysis of the series and the use of 

other, more suitable predictive models (for example, fractal 

modifications of the GARCH); 

• use of more advanced portfolio models and non-classical 

indicators of its effectiveness. 
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1. Introduction 
Dispersion-hardening bronzes are among the best hardened 

conductive alloys (for example, heat- and electrically conductive 

ones) [1, 2]. However, the upper temperature limit at which such 

materials retain acceptable mechanical and conductive properties is 

restricted by the stability of inclusions of the hardening phase. 

Therefore, when developing new dispersion hardening alloys which 

are capable to maintain acceptable characteristics of performance at 

elevated temperatures, the problem of a fairly simple and effective 

assessment of the temperature stability of the hardening phases with 

respect to dissolution in the base remains relevant. Temperature 

dependencies of the content of dissolved elements in the base can 

serve as one of the indicators of such stability.  

Preliminary studies [3] established interconnection between the 

configurations of solvus line and the polytherm of the electrical 

resistivity of the alloy as a whole for nickel-silicon bronzes 

belonging to the quasi-binary Cu – Ni2Si cross section of the state 

diagram of the Cu – Ni – Si system. For bronze K1H3 (Ukraine), 

the composition of which belongs to the indicated cross section, the 

temperature dependencies of the electrical resistivity were 

experimentally obtained [3]. Therefore, it seems appropriate to 

develop a mathematical model to determine the temperature 

dependence of the composition of the phase based on copper on the 

polytherms of resistance in order to assess the stability of the 

hardening phases, based on the available information. 

2. Background and means to solve the problem 
For dispersion hardening copper conductive alloys, due to a rather 

small volume fraction of the dispersed phase, one can assume that 

indicators of the electrical resistivity are determined mainly by the 

resistance of the base (for K1H3 bronze - of a copper-based solid 

solution), and the effect of the dispersed phase is minor. Therefore, 

in the framework of the classical theory of electrical conductivity, 

the value of the electrical resistivity of the alloy at a given 

temperature can be represented as the result of the combined action 

of the following factors: 

1. Interference to the movement of charge carriers (electrons) 

created by copper atoms, oscillating regarding to the nodes of the 

crystal lattice of the solid solution. This resistance R depends 

linearly on temperature t, as follows from the equation for the 

temperature dependence of the resistance of pure metals 

   tRtR  10 , where  is the temperature coefficient of 

resistance (K-1). 

The atoms of nickel and silicon, which are part of the solid solution 

based on copper, violate the regular arrangement of atoms in the 

crystal lattice, and thereby create additional obstacles to the 

movement of charge carriers. At the same time, there is Vegard's 

empirical law, which states a linear correlation between the 

properties of the crystal lattice of the alloy and the concentration of 

its individual elements at a constant temperature [4]. If this is 

correct and the content of impurity in the crystal lattice of the solid 

solution is small, we can assume that the obstacles to the flow of 

charge carriers due to the presence of lattice distortions created by 

nickel and silicon atoms linearly depends on the total content of 

these atoms in the solid solution. 

3. Thermal vibrations of nickel and silicon atoms in the crystal 

lattice of a solid solution create additional obstacles to the 

movement of electrons. In the general case, the intensity of the 

influence of thermal vibrations of impurity atoms on the value of 

electrical resistance of a solid solution cannot be considered as 

equivalent to the intensity of the influence of thermal vibrations of 

copper atoms. However, the same as in the case with copper atoms, 

it increases linearly along with increasing of temperature. 

Therefore, the increase of electrical resistance created by thermal 

vibrations of impurity atoms is determined by the composition and 

temperature of the solid solution. The intensities of the influence of 

thermal vibrations of nickel and silicon atoms on the value of 

electrical resistance are not equivalent. But for alloys of the 

quasibinary Cu – Ni2Si cross section of the state diagram (when the 

transition to a solid solution of one of silicon atom is accompanied 

by the transition of two nickel atoms), one can consider only the 

total content of nickel and silicon in the solid solution (in [5] this 

concept for alloys belonging to the quasibinary cross section is 

indicated by the term "solubility of Ni2Si silicide in copper"). 

Within the framework of these assumptions, the temperature 

dependence of the electrical resistivity of the alloy can be 

represented as: 

   

        txtxxtxtt xtxt 000   ,   (1) 

where 0 is the electrical resistance of the alloy in equilibrium state 

at 0 0С (Ohm·m), which takes into account, inter alia, obstacles to 

the movement of charge carriers due to the presence of impurities in 

the solid solution at 0 0С; t is the coefficient which takes into 

account obstacles to the movement of the electron flux caused by 

the thermal vibrations of copper atoms at temperatures other than 0 

0С (Ohm·m/0С); t is the value of temperature (0C); x is the 

coefficient which takes into account obstacles to the movement of 

charge carriers caused by distortions in the crystal lattice of copper 

created by the presence of impurity atoms (nickel and silicon) in it 

at temperatures other than 0 0С (Ohm·m /%);  tx  is the “Ni2Si 

silicide content” in a copper-based solid solution at temperature t 

(wt.%); 0x  is the “Ni2Si silicide content” in a copper-based solid 

solution at 0 0C (wt.%); xt  is the coefficient which takes into 

account obstacles to the flow of charge carriers due to thermal 

vibrations of impurity atoms (nickel and silicon) in the crystal 

lattice of the solid solution at temperatures other than 0 0C (Ohm·m 

/ (0C·%)). 
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Figure 2 - Temperature dependence of the Ni2Si content 

in copper based solid solution on alloys belonging to the 

quasibinary cross section of the Cu - Ni - Si system 

□ ⁮– experimental data [4] 

- – calculated for K1H3 bronze according to the 

temperature dependence of resistivity 
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Figure 1 - Temperature dependence of the specific 

electrical resistivity of the bronze K1H3.  

o - according to experimental data 

. .   – calculated by the equation (2) 

 

3. Solution of the problem under consideration 
It is often difficult to bring the alloy at a temperature of 0 °C to a 

state which is close to equilibrium state as much as possible in order 

to determine experimentally the value of 0 . In this case, it is 

possible to provide calculations in a relative coordinate system, 

which implies determining of the content of elements dissolved in 

the base at a given temperature relative to their content at some 

randomly selected ("reference") temperature 01t . Obviously, the 

value of the ("reference") temperature should be chosen based on 

the convenience of achieving of the state of the solid solution which 

is the closest to equilibrium one at this temperature. 

To shift the reference point of the values of resistivity to 

temperature 01t , expression (1) is reduced to the form 

       00101 xtxttt xt   

   010 ttxtxxt  ,                      (2) 

where 01x  is the "content of silicide Ni2Si" in a solid solution based 

on copper at 01t ; 01 is the value of the specific electrical resistance 

of the alloy determined by the polytherm at the "reference" 

temperature 01t . This addendum takes into account the influence of 

all the above mentioned factors on the movement of charge carriers 

at temperature 01t . 

For K1H3 bronze, it is convenient to take 01t = 550 °C as the 

“reference” temperature (the optimal temperature of artificial aging 

of the hardened alloy [5]). For this temperature 550x = 1.59 wt. % 

[5] and 550 = 11.718·10-8 Ohm·m [3]. 

4. Results and discussion 

The values of the coefficients, t , x and xt were determined by 

substituting in (2) the values of the specific electrical resistance of 

bronze K1H3 (  t ) which were experimentally determined in 

[3], and also the equilibrium compositions of the solid solution, 

which were determined from the state diagram [5], at the 

corresponding temperatures. 

To ensure a more complete verification of the adequacy of the 

obtained results, the group of data used in the calculation of the 

coefficients did not include information on the electrical resistivity 

and composition of the solid solution for temperatures lower than 

01t = 550 °C. It should be emphasized that the number of obtained 

equations exceeds significantly the number of sought-for unknowns. 

Therefore, an overdetermined system of equations was solved by 

minimizing the residuals using the least-squares method. The 

calculated results give the following values of parameters: t = 

0.0077∙10-8 Ohm∙m/0С; x = 2,5004∙10-8 Ohm∙m /%; xt = 

0.00346∙10-8 Ohm∙m/(0С∙%). 

The value of t = 0.0077∙10-8 Ohm∙m/0С is close to the tabular 

value of the absolute temperature coefficient of the specific 

electrical resistance of pure copper (according to [6] t = 

0.00736∙10-8 Ohm∙m/0С). Even with the above assumptions, the 

calculation error is 4.6%. The results of comparison show a good 

coincidence between the experimentally determined temperature 

dependences of the electrical resistivity of K1H3 bronze and those 

ones which were calculated analytically using (2) (Fig. 1), including 

results for temperatures below 550 °C, which were not used for 

determining of the parameters of the model.It is also worth to pay 

attention on the accuracy of model's predictions (2) of the linear 

cross section of the polytherm of the K1H3 bronze electrical 

resistance at temperatures exceeding the solvus temperature (843 

°C), although the experimental points lying on this segment also 

were not used in calculations of the model parameters. The presence 

of this segment is associated with the completion of dissolution of 

the components of nickel silicide in the base. Ni2Si phase which is a 

source of saturation of the copper-based solid solution with nickel 

and silicon is already absent in the structure of K1H3 bronze at 

temperatures above 843 °C (these elements are already completely 

dissolved in the base). Therefore, upon further heating, the specific 

resistance of the alloy increases only due to an increase of the 

average amplitude of atomic vibrations at the nodes of the crystal 

lattice. The action of only one factor, the intensity of the influence 

of which on the resistance value depends linearly on temperature, 

leads to the appearance of an almost rectilinear site on the 

polytherm. 

However, the determination of the contents of dissolved elements in 

a phase based on copper (for equilibrium conditions of the 

coordinates of points lying on the solvus line) with the usage of 

experimental data on the polytherms of the electrical resistivity of 

the alloy is of the greatest practical interest. For this purpose, 

expression (2) should be submitted in the form: 

 
   

  01

01

0101 x
tt

ttt
tx

xtx










 ,                  (3) 

Literature data on the coordinates of points belonging to the solvus 

line of the quasibinary Cu – Ni2Si cross section of the state diagram 

of the Cu – Ni – Si system [5] are in good correlation with the 
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values  of calculated electrical resistivity [3] (according to 

expression (3)) (Fig.2). It should be noted that there is a good 

coincedence between the data on the compositions of the solid 

solution at temperatures up to 550 °C, information about which was 

not used in the calculation of the coefficients of the model. 

It should be noted that (3) can also be used to assess the temperature 

stability of dispersed phases in alloys of more complex systems 

(e.g., Cu - (Ni - Si) - (Fe - Cr - C)) for which state diagrams are 

absent in literature sources (therefore, it is not possible to obtain a 

priori information on the equilibrium composition of the solid 

solution at a “reference” temperature). Although in this case, 

expression (3) allows to obtain only the differences   01xtx  , 

however, this may be quite sufficient to estimate the temperature 

stability of the dispersed phases. 

5. Conclusions 
The aggregate of the above mentioned facts allows to assume that 

the developed model describes quite adequately the interrelation 

between the value of the electrical resistivity of the alloy and the 

content of dissolved elements in the base. Therefore, the presence of 

empirical data on the polytherms of electrical resistivity allows to 

determine analytically the content of elements dissolved in the base 

of alloy at various temperatures. Having made additional 

assumptions, it is possible to use the developed model in the future 

to assess the temperature stability of the dispersed phases in alloys 

of more complex systems (for example, such as Cu - (Ni - Si) - (Fe - 

Cr - C)). 
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Abstract: A system of two-phase particles (Fe3O4 – Fe3-xTixO4) has been obtained using the sol-gel method followed by hydrothermal 

treatment. It is shown that the synthesis conditions favor forming composites that contain titanomagnetite in very low concentration. A 
theoretical analysis of the magnetic properties of system was performed using the model of clusters consisting of magnetostatically 
interacting particles. The theoretical value of the saturation magnetization and the experimental values of the coercive force can be 
explained by the presence of two different magnetic phases. 

Keywords: MICROMAGNETIC MODELING, TWO-PHASE NANOSTRUCTURES, MAGNETOSTATIC INTERACTION, 
DEMAGNETIZATION COEFFICIENTS, COMPOSITES “MAGNETITE – TITANOMAGNETITE” 

 

1. Introduction 

Magnetic nanoparticles, especially in the superparamagnetic 
state, are often used to filter heavy metals, to isolate nucleic acids 
and proteins, in target drug delivery and in magnetic hyperthermia 
[1-3]. In addition, magnetic nanoparticles are of interest in the 
context of environmental magnetism providing valuable 
information on paleoclimate [4, 5].  

In this work, we present experimental data on the synthesized 
Fe3O4 – Fe3-xTixO4 composites and the theoretical modeling of their 
magnetic properties. The complexity of modeling such structures 
stems from both magnetic and chemical inhomogeneity of particles. 
This requires the use of micromagnetic modeling taking into 
account the dipole – dipole interaction and magnetic granulometry 
data. 

Results of theoretical calculations are in good agreement with 
the experimental results obtained using X-ray diffractometry, X-ray 
fluorescence, electron microscopy, vibration sample and SQUID- 
magnetometry. 

2. Solution of the examined problem 

2.1 Theoretical model 
Let us consider a chemically inhomogeneous two-phase particle 

whose magnetic states can be described using a model developed 
previously [6-8]. 

To simplify the mathematical treatment, we assume that each 
phase of the particle (Fig. 1) is a uniformly magnetized uniaxial 
ferrimagnet with spontaneous magnetizations Ms1 и Ms2 and 
dimensionless first-order crystallographic anisotropy constants K11 и 
K12, respectively. The inter-phase boundary is parallel to the XZ 
plane and divides the particle into two parallelepipeds having 
volumes qa3(1--)  for the first phase and qa3 for the second 
phase. We consider the case when the external field is parallel to the 
Z-axis. This allows us to describe the orientation of the magnetic 
moment of each phase using the single angle θ counted from the Z-
axis (the magnetization vector lies in the XZ plane). 

To find magnetic states and construct magnetization curves, free 
energy was minimized, including the exchange, magnetocrystalline, 
magnetostatic, and Zeeman energies. Free energy of the particle is 
written as ( = 0): 

ܧ ൌ ଷሺܽݍ ଵܰଷܯ௦ଵ
ଶ ൅ ଷܰଷܯ௦ଶ

ଶ ൅ ൫ ଵܰଵ െ ଵܰଷ ൅ ଵଵሺ1ܭ െ ሻ൯ ൈ 

ൈܯ௦ଵ
ଶ ଵߠଶ݊݅ݏ ൅ ሺ ଷܰଵ െ ଷܰଷ ൅ ௦ଶܯଵଶሻܭ

ଶ ଶ൅ߠଶ݊݅ݏ ଶܰଵܯ௦ଵܯ௦ଶ ൈ 

ൈ ଶߠ݊݅ݏଵߠ݊݅ݏ ൅ ଶܰଷܯ௦ଵܯ௦ଶܿߠݏ݋ଵܿߠݏ݋ଶ െ ሺ1ܪ െ ሻܯ௦ଵܿߠݏ݋ଵ െ 

െ	ܪܯ௦ଶܿߠݏ݋ଶሻ,               (1) 

where H is the Zeeman field, ௜ܰ௝ are shape anisotropy coefficients. 
If   0, then the free energy can be calculated considering the 
change in the magnetic characteristics at the boundary [7]. 

 

Fig. 1. A model of a two-phase particle with a boundary of finite 
width . The characteristic particle size a, elongation q, width of the 
second phase  

In our calculations, we use a model in which the inter-phase 
boundary between chemically different regions is infinitely thin due 
to the proximity of their magnetic and structural characteristics. In 
the case of grains containing few domains (pseudo-single-domain), 
we consider the domain wall as an extended one, so that chemical 
inhomogeneity is taken into account by introducing effective 
parameters. 

In this model, a particle can be in four states (indices 1 and 2 
number the first and second phases, respectively): 1) θ1 = 0, θ2 = 0; 
2) θ1 = , θ2 = ; 3) θ1 = 0, θ2 = ; 4) θ1 = , θ2 = 0. Applying an 
external magnetic field H (parallel to the Z-axis) does not produce 
the additional equilibrium states, but only makes the existing ones 
more or less advantageous. 

Thus, an ensemble can contain four types of particles. These 
will determine the critical fields of magnetization reversal for a 
given two-phase grain. In the case of an ensemble of identical 
particles, the expression for magnetization has the form [9]:  

,ݍሺܫ , ሻܪ ൌ с ቂܯ௦ଵሺ1 െ ሻ ௡భି௡మା௡యି௡ర
௡బ

൅ ௦ଶܯ
௡భି௡మି௡యା௡ర

௡బ
ቃ,      (2) 

 

MATHEMATICAL MODELING 2019

70



where c is the volume concentration of two-phase particles in a non-
magnetic matrix, ݊௞ ൌ ݊௞(H) is the number of particles in the kth 
state, determined from the statistical Boltzmann distribution. 

In the case of an ensemble of magnetostatically interacting 
particles distributed randomly in a nonmagnetic matrix, an 
interaction field Hint produced by all the particles in the ensemble 
acts on each particle. Let the random interaction fields Hint be 
uniformly distributed in the interval (–Hmax ; +Hmax) [10]: 

௦ଵሺ1ܯ5ܿሾ	௠௔௫ܪ െ ሻ ൅    ,௦ଶሿ, if с<0.07ܯ

௦ଵሺ1ܯ1.3√ܿሾ	௠௔௫ܪ െ ሻ ൅  ௦ଶሿ, if с0.07.         (3)ܯ

In addition, we use the approximation assuming that when the 
external field changes, all the moments that change direction turn 
over simultaneously and independently of each other, i.e. the 
rotation of one moment does not affect the distribution of the 
interaction fields [9]. The magnetization of the ensemble of 
interacting particles is then written as: 

ሻܪሺܫ ൌ
ଵ

ଶு೘ೌೣ
׬ ܪሺܫ െ ௜௡௧ܪ௜௡௧ሻ݀ܪ
ାு೘ೌೣ

ିு೘ೌೣ
.  (4) 

The values of magnetization and magnetization reversal fields 
obtained using the ensemble model of two-phase particles were 
further consistent with theoretical estimates of the hysteresis 
parameters and characteristics of anhysteretic remanent 
magnetization calculated on the basis of the approach used in [11]. 

The use of these models can reveal the characteristic features 
associated with chemical heterogeneity. It is however pointless to 
determine the fine structure of magnetization without detailed 
information about the structure of particles. Thus, the aim of this 
study is to develop general understanding of the magnetic structure 
of chemically inhomogeneous particles. Simplified structures found 
in such a study can then be used as initial approximations for 
subsequent more realistic calculations. 

2.2 Synthesis of ݁ܨ௠ ௡ܱ െ ܱܶ݅ଶ composites 

Synthesis of composites based on the Fe୫O୬ െ TiOଶ system 
was carried out by precipitation of magnetite in a suspension of 
TiOଶ powder [12]. 4 g of FeClଷ ൉ 6HଶO and 2 g of FeSOସ ൉ 7HଶO 
(molar ratio 2:1), were dissolved in 100 ml of distilled water. After 
that (0.5, 1, 2 g) of the TiOଶ powder was dispersed in the solution 
for samples T05L and T05H, T10L, T20L accordingly. Then 10 ml 
of ammonia solution was added to the suspension, and the magnetic 
precipitate has been washed using Nd-Fe-B permanent magnet for 
particle extraction until pH = 7 was reached and chloride and sulfate 
ions were absent. Finally, powders were dried at room temperature. 
After that, three powders with different Ti content were 
hydrothermally treated in distilled water at 240°С and 50 MPa for 4 
hours. Sample T05H was treated at 470°С and 42 MPa, 
respectively, also for 4 hours. 

2.3 Methods for the study of physicochemical and magnetic 
characteristics 

Phase composition of the samples was determined by X-ray 
phase analysis using a DRON-3M diffractometer (JSC IC 
“Burevestnik”, Russia). Peak identification on the diffractogram 
was performed using PDWin 4.0 and Crystallographica Search-
Match software packages. Based on X-ray powder diffractograms, 
average crystallite size corresponding to regions of coherent 
scattering and the parameters of the crystal lattice unit cell have 
been calculated. Samples elemental composition was determined by 
electron probe microanalysis using a Hitachi S-570 scanning 
electron microscope (Hitachi Ltd., Japan), equipped with Bruker 
Quantax 200 microprobe system (Bruker Corp., USA). Qualitative 
and quantitative elemental analysis of the samples was carried out 
using a portable X-ray fluorescence crystal diffraction scanning 
spectrometer Spectroscan MAX-GF2E with built-in software 
(“Spectroscan” Ltd., Russia). 

To determine the grain size, the specific surface area (SSA) was 
estimated using the instrument SORBI N.4.1 (CJSC “META”, 
Russia). The volume of adsorbate gas absorbed by the test sample 
was compared to the standard sample with a known specific surface 
area using the thermal desorption method. Nitrogen was used as the 
adsorbate gas. Determination of the specific surface area has been 
carried out according to the 4-point BET method. The obtained data 
were subsequently confirmed by scanning electron microscopy 
(SEM) using a Hitachi S-3400N microscope (Hitachi Ltd., Japan).  

Hysteresis characteristics were measured at room temperature 
using a PMC 3900 vibrating sample magnetometer (Lake Shore 
Cryotronics, USA). Demagnetization curves of the anhysteretic 
remanent magnetization (ARM) were measured using an SRM-755 
SQUID magnetometer (2G Enterprises, USA), also at room 
temperature. 

 

3. Results and discussion 

3.1 Physicochemical characteristics 

Figure 2 shows the SEM images of the sample. As seen in Figure 
1, particles with average size of 100–200 nm form aggregates as 
large as a few micrometers. 

Figure 3 shows X-ray diffraction patterns for four samples, with 
peak designation according to the PDF-2 database. 

 

Fig. 2. SEM images of the sample T05H 

 

Fig. 3. X-ray diffraction patterns of the samples T05H (A), T05L (B), T10L 
(C), and T20L (D). 1 – α-Fe2O3 Hematite 33-664, 2 – TiO2 Anatase 21-1272, 
3 – Fe3O4 Magnetite 19-629, 4 – Fe2.75Ti0.25O4 Titanomagnetite 75-1373, 5 – 
Fe2TiO4 Ulvöspinel 34-177 

Particle sizes are distributed over a relatively wide range from 
few tens to hundreds of nm. Particles are often combined into 
agglomerates (clusters) of submicron to micron size. Judging from 
the X-ray data, samples may contain at least three magnetic 
minerals: magnetite, titanomagnetite and hematite. 
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3.2 Magnetic characteristics 

Figure 4 shows the hysteresis loop for the T05H sample. 
Hysteresis curves of other samples have a similar shape. 
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Fig. 4. Hysteresis loop for the sample T05H. Only the central part of the 
loop is shown for clarity 

Saturation magnetization and remanent saturation magnetization 
of the T05H sample are 23.8 Am2/kg and 4.2 Am2/kg, 
respectively. Coercive force and remanent coercivity are 8.8 kA/m 
and 18.4 kA/m. Ratios of the remanent magnetization to saturation 
magnetization (Mrs/Ms) and the remanent coercivity to coercive 
force (Hrc/Hc) amount respectively to 0.18 and 2.1. Experimental 
data for magnetite [13] show that such values correspond to 
particles containing few domains (pseudo-single-domain) with 
characteristic size > 100 nm. Alternatively, these may be due to 
magnetostatically interacting superparamagnetic particles, 
combined into clusters with the same characteristic size. 

In a model of ARM of single-domain particles [14], it is 
assumed that an alternating field of a given amplitude magnetizes 
magnetic particles having remanent coercivity Hrc approximately 
equal to that amplitude. Therefore, the ARM demagnetization curve 
by alternating field can be regarded as a proxy for the remanent 
coercivity spectrum. Thus, the obtained data make it possible to use 
demagnetization curves to describe the distribution over Hrc and to 
reveal the effective particle size distribution [14]. 
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Fig. 5. The coercive spectrum of the T05H sample 

Differentiating the ARM demagnetization curve, we obtain the 
coercive spectrum of our sample shown in Fig. 5. For this sample, 
the coercive spectrum has a maximum around 3 maxima (~ 12, 28, 
and 36 kA/m) can be seen. Moreover, the curve is clearly 
asymmetric, so that the main fraction of particles has coercivities 
between 8–24 kA/m. 

3.3 Theoretical modeling 

Changes in the composition and structure on the surface of 
magnetic particles associated with the diffusion of titanium atoms 
into the crystal lattice of magnetite and/or the formation of 
vacancies and stresses result in their chemical inhomogeneity. For 
simplicity, we further consider a model of an ensemble of two-
phase magnetic particles of the “magnetite-titanomagnetite” type. 
The contribution to the remanent magnetization of hematite can be 
neglected, since its spontaneous magnetization is two orders of 
magnitude smaller than that of magnetite. 

The T05H sample obtained in the high-temperature conditions 
(470°С, 42 MPa) has the most interesting magnetic properties. 
Particles and/or agglomerates of three types represent its particle 
size distribution: several microns in size, submicron and smaller (of 
the order of ten or less nanometers). 

To match the models in terms of size and concentrations of 
magnetic nanoparticles, we assume their volume distribution s in 
the sample to be lognormal [15]. The fraction of the area under the 
lognormal distribution curve for a certain range of volumes 
corresponds to the fraction of particles having these volumes. Fig. 6 
shows an approximate lognormal distribution curve of magnetic 
nanoparticles in the selected T05H sample. 
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Fig. 6. Log-normal density function (x), x=v/vp (vp = (/6)(dp)3, dp 
 50 nm) 

Assuming a lognormal distribution of particle volumes, three 
groups were identified during the simulation: superparamagnetic 
(SP), single domain (SD) and pseudo single domain (PSD) particles 
with average sizes (diameters) of about 18, 27 and 60 nm, 
respectively. 

To estimate the spontaneous magnetization, saturation 
magnetization, coercivity, concentration, and fraction of the second 
phase in a two-phase particle, the model described in section 2.1 
was used. In this case, it was assumed that the fraction of the second 
(titanomagnetite) phase is approximately 0.5 for SP and SD 
particles and 0.01 for PSD (due to the small specific surface area). 
A small remanent magnetization and nonzero coercivity of the SP 
particles are explained by their interaction in clusters. 

Fig. 7 shows the coercive spectra for different groups of 
particles obtained using the two-phase grain model. 
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Notably, the main peaks (1) of the curves not taking into 
account the interaction (Fig. 7) agree well with the experimental 
ARM spectrum (Fig. 5). The expanded width of the peak in the 
experimental spectrum may be due to a greater diversity in the 
݊௞(H) particle types, which can lead to a broadening in Hrc. 
Presence of near-zero fields of magnetization reversal for SP and 
SD is caused by a transition to intermediate states. For non-
interacting PSD particles, small coercivities are due to the 
emergence of a domain structure. In large fields, all magnetic 
moments enter the ground state, their orientations being along the 
external field. The peaks (2) calculated for interacting case (Fig. 7), 
are close to the average Hrc for the ensemble of all particles (SP, 
SD, PSD). 

 

4. Conclusion 

Theoretical modeling of a system of two-phase 
magnetostatically interacting particles of synthesized composites 
allows us to draw the following conclusions. 

The magnetic characteristics of the composites calculated 
within the framework of the proposed model agree well with the 
experimental data. 

The presence of a titanomagnetite phase appears quite likely, 
which should significantly affect the magnetic properties, especially 
of SP and SD particles. Simulation results best correspond to 
experimental data at characteristic sizes of 18, 27, and 60 nm and 
volume concentration of 10-5, 10-3, and 3.3·10-2 for SP, SD, and 
PSD particles, respectively. 

Theoretical and experimental coercive spectra show similar 
ranges of critical fields. Magnetostatic interaction between particles 
can result in a spread of critical fields and thus to a broadening of 
the coercive spectra. 
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Fig. 7. Coercive spectra of two-phase particles after simulation: 1 and 2 - spectra of particles without interaction and taking into 
account the interaction, respectively 
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Abstract: A model for calculating the permeability of two-layer powder filter materials (PFMs) is proposed taking into account the overlap 

area. Examples of calculating the permeability of PFMs on real powder structures are given. 

KEYWORDS: TWO-LAYER POWDER FILTER MATERIALS, CALCULATION MODEL, PERMEABILITY, OVERLAP AREA. 

 

 

1. Introduction 
Despite the widespread use of polymeric, paper, and ceramic 

materials in engineering, powder filter materials compete worthy 

with them, especially in cases where it is necessary to realize the 

physico-chemical properties typical for metals and alloys from 

which PFMs consist. PFMs are successfully used to solve various 

problems: for aeration of the air flow in order to saturate the air-

culture fluid with oxygen when growing aerobic microorganisms in 

bioreactors; for dispergation of the ozone-containing air mixture 

flow in order to decontaminate the fish habitat (including young 

fish) in recirculating aquaculture systems (RAS) and uniform 

distribution of vapor flow over the volume of coolant (water) to 

control the temperature in working tanks during heat treatment of 

milk, milk mixtures and technological media used in milk 

treatment; air, water vapor, and oil purification, as well as for other 

purposes [1–5]. 

In practice, two-layer materials are widely used to increase the 

operational properties of PFM. One layer is formed by fine particles 

and provides the necessary fineness of cleaning. The second layer if 

formed by coarse particles and provides sufficient strength and high 

permeability of PFM [6, 7]. The problem in this case is the 

appearance of the intermediate layer at the boundary of the layers, 

the so-called “overlap area”, in which smaller particles fill the pore 

space formed by coarse particles [8]. One of the effective ways to 

improve the properties of two-layer PFMs is to reduce the thickness 

of the fine layer [8]. In this regard, the calculation of the influence 

of the overlap area on the properties of two-layer PFMs is of great 

interest. 

The purpose of this work is modeling of PFM “overlap area” and 

calculation of the permeability of this area. 

 

2. Results and discussion 
When two-layer materials are produced by co-molding powders of 

different fractions in the area of the layer boundary, smaller powder 

particles partially fill the pore space formed by larger particles, 

making, as noted above, an intermediate layer (overlap area). 

Figures 1 and 2 illustrate examples of the formation of such 

structures in the production of two-layer materials based on titanium 

and copper powders. We determine the effect of the overlap area on 

the permeability of two-layer PFMs. 

To calculate the permeability taking into account the overlap area, 

we consider the case when the porous material consists of two 

layers and the overlap area. The first and second layers are 

respectively formed from powder particles with sizes D1 and D2, 

with D1> D2. The overlap area (conditionally it can be considered 

as the third layer), located between the first and second layers. It 

consists of particles of these two sizes. Small particles with sizes D2 

are located between large particles with size D1. We denote the 

thicknesses of the first layer (substrate), the intermediate layer 

(overlap area) and the second layer (fine powder) by h1, h12 and h2, 

and the flow rate of the filtered medium through the PFM per unit 

time by Q. 

 

 
 

Fig. 1 The structure of a two-layer PFM made of titanium 

powders with a particle size of (minus 1000 + 400) and  

(minus 100 + 40) µm 

 

 
 

Fig. 2 The structure of a two-layer PFM made of copper 

powders with particle sizes (minus 315 + 200) and  

(minus 80 + 40) µm  

 

Considering the flow of a liquid or gas through the whole material, 

it is possible to write the following according to Darcy’s law [9]:  

 

S
h

pk
Q




 ,     (1) 

 

where k – coefficient of permeability; р – differential pressure on 

PFM; S – filtration area;  – viscosity of filtered medium;  

h – thickness of PFM. 
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For each layer separately, equation (1) can be written as follows: 
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where р1, р12, р2, - respectively, differential pressure on each of 

the layers with thicknesses h1, h12, h2; 

S – the filtration area of all layers (the first layer is the substrate; 

the intermediate layer is the overlap area and the second layer is 

fine powder).  

Obviously, the flows of the filtered medium passing through the 

whole material Q and through each layer separately Q1, Q12, Q2, are 

equal to each other: 

 

Q = Q1 = Q12 = Q2,   (5) 

 

and differential pressure on PFM and its thickness are: 

 

р = р1 + р12 + р2,    (6) 

 

h = h1 + h12 + h2.    (7) 

 

Based on (1–4), taking into account (5–7), it is possible to 

obtain the following equations: 
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Summing up the left and right sides of equations (8–10), we obtain 

the equation for calculating k: 

 

hk

kh

hk

kh

hk

kh

2

2

12

12

1

11  ,    (11) 

 

from which: 
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To determine the coefficient of permeability in the overlap area, we 

have the following considerations. Surface sections blocked by 

large particles with sizes D1 are excluded from the filtering process 

of this layer, and therefore its throughput capacity is determined by 

the pore space areas of the substrate filled with fine powder with an 

area of S12 < S. Accordingly, the coefficient of permeability of these 

areas can be taken equal to k2. 

Then, on the basis of the continuity condition of the flow (5), the 

value of Q12 can be represented as: 

 

12
12

122
12 S

h

pk
Q




 .     (13) 

Equating the right sides of equations (3) and (13) to each other, we 

obtain: 

 

S

S
kk 12

212 
.     (14) 

 

To calculate S/S12 value, we use the elementary cell model, 

according to which the properties of each PFM element are 

determined by the elementary cell parameters in the form of a 

parallelepiped selected from the regular laying of 8 powder particles 

joined by interparticle contacts [9]. Then the value of S12 within 

such a cell varies from a minimum value equal to: 

 

2
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2
1min12

4
DDS
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to the maximum value: 

 
2
1max12 DS  .     (16) 

 

To calculate S12, we take the average value of this quantity: 
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Given that: 
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The resulted equations (11), (14) and (15) make it possible to 

calculate the coefficient of permeability of a two-layer PFM taking 

into account the overlap area between layers, knowing the values of 

the coefficients of permeability of the substrate and the fine layer. 

Table 1 shows the results of calculations of the PFM permeability 

coefficients for two-layer materials, the structures of which are 

shown in Figures 1 and 2, and their experimental values. The values 

of the permeability coefficients of the substrate and the fine layer, 

as well as the thickness of the overlap layer are determined 

experimentally. 

 

Table 1 

The calculated and experimental values of the permeability 

coefficients of two-layer PFMs 

 

Initial 

material 

Powder particle 

size, µm 
Thickness, mm 

Coefficient of permeability,  

m2, 1013 

Sub-

strates 

of fine 

layer 

Sub-

strates  

of 

overlap 

area 

of fine 

layer 

Experimental values 

The calculated 

value of two-

layer PFM 

Sub-

strates 

of fine 

layer 

of two-

layer 

PFM 

with 

over

-lap 

area 

without 

overlap 

area 

Titaniu

m 

powder 

 

minus 

1000 

+400 

minus 

100 +40 
3 1,0 1,5 180,0 7,0 14,2 11,8 23,3 

Copper 

powder 

minus 

315 

+200 

minus 80 

+40 
1,7 0,3 1,0 70,0 2,16 4,17 4,19 6,1 

 
The analysis of the data presented in the table shows, firstly, a 

satisfactory coincidence of the calculated and experimental data 

and, secondly, a significant negative effect of the overlap area on 

the permeability of two-layer PFMs: its presence reduces the 

permeability by 1.46 – 1.98 times when comparing the resulted 

calculations and by 1.46 – 1.64 times when comparing the results of 
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calculations with experimental values. This effect can be reduced by 

reducing the thickness of the fine layer. 

Figure 3 shows the calculated dependences of the permeability 

coefficients of two-layer PFMs based on titanium (1) and copper (2) 

powders on the layer thickness of fine powder at a constant total 

thickness of the porous material, which, when compared with the 

calculated data presented in the table, indicate that, for example, a 

three-fold decrease in the thickness of the fine layer leads to an 

increase in the permeability of PFM based on titanium by 1.4 times, 

and based on copper – by 1.8 times. In the second case, the 

permeability coefficient of the material is higher than the value of 

the permeability coefficient of PFM with the initial thickness of the 

fine layer, calculated without taking into account the overlap area. 

 

 
 

Fig. 3 The dependence of the permeability coefficient of two-layer 

PFM on the thickness of the fine layer: 

1 – titanium-based PFM, 2 – copper-based PFM 

 

4. Conclusion 
With reference to the abovementioned, it is possible to state that the 

quotation obtained for calculating the permeability coefficient of 

two-layer PFMs with the overlap area satisfactorily agrees with 

experimental data. The negative effect of this area on the 

permeability coefficient of the porous material is shown, which, due 

to its presence, decreases by more than 1.46 times. It was found that 

this effect can be compensated by a decrease in the fine powder 

layer. 
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Abstract: Within the framework of the molecular dynamics methods the simulation of the temperature stability of the metallic nanoparticles 

with the core-shell structure was performed and the melting temperature of the sample was determined. During the simulation of the 

dynamic behavior of nanoparticle the calculation of forces of interatomic interactions was carried out within the embedded atom method. To 

simulate the melting process the temperature of the sample was gradually increased by scaling the corresponding atomic velocities using the 

Berendsen thermostat. The Lindemann index was used as a numerical parameter describing changes in the structure of the nanoparticle. 

According to the results of the study, the temperature dependences of the Lindeman index and the average potential energy were obtained, as 

well as the radial distribution functions for the nanoparticles. From the simulation results, atomistic configurations of the sample were built 

and the dynamics of changes in its structure was investigated. Spatial distribution of the atoms on Lindeman index within the volume of the 

sample around melting temperature was also calculated.  

KEYWORDS: MOLECULAR DYNAMICS, CORE-SHELL, METALLIC NANOPARTICLE, MELTING, LINDEMANN INDEX 

 

1 Introduction 
 Bimetallic nanoparticles are given considerable attention by 

researchers of nanoscale systems, since they allow the design of 

new structures with individual properties that are not observed in 

monometallic and bulk materials [1–3]. Particularly in demand from 

theoretical and practical aspects were nanomaterials with a 

core@shell structure, due to the wide range of applications in 

optoelectronics, semiconductors, quantum dots, biological marking, 

and nanocatalysis [4–6]. 

 Among the objects of nanosystems are different types of forms 

and structures [1]. It is known that by changing the type and 

parameters of a shell, one can control the properties of these 

systems, at the same time as the shell, in turn, protects the kernel 

from external influence [7]. Thus, by correlating the structure and 

properties of the core and shell material, especially the shape and 

size, the expansion of the functionality of these nanosystems is 

ensured [8]. As a material for core-shell nanostructures, a wide 

range of combinations of inorganic and organic materials is used. 

 The development and production of nanoparticles with 

individual characteristics requires an understanding of their 

structural and thermodynamic properties [9–11]. Numerous 

methods of synthesis of nanoparticles with different structure, size 

and shape were proposed [1, 5]. However, some experimental 

techniques that are widely used in material science, not always can 

be applied to investigate the structure and behavior of the nanoscale 

objects [12], thus, various theoretical and computational 

investigations [13, 14] can be an additional tool in studying of 

nanostructures.  

 The purpose of this work was to study the behavior of 

bimetallic nanoparticles Ag@Pd, Au@Pd (Ag/Au is core; Pd is 

shell) during melting within molecular dynamics methods. 

 

2 Model and simulation configuration 
 Within the framework, Ag@Pd and Au@Pd nanoparticles were 

investigated, which had a spherical shape with a core (Ag/Au)-shell 

(Pd) structure. In the experiment the total number of atoms was 

16 757 for Ag@Pd, where 14 634 (87.3 %) atoms were palladium 

and 2 123 (12.7 %) atoms were silver, and the total number of 

atoms was 46 049 for Ag@Pd, where 40 274 (87.5 %) atoms were 

palladium and 5 775 (12.5 %) atoms were aurum for Au@Pd. The 

initial diameters of Ag@Pd and Au@Pd nanoparticles were 7.4 nm 

(core diameter 4.0 nm) and 13.0 nm (core diameter 7.0 nm), 

respectively. The simulation was performed with the support of an 

ideal vacuum at free boundary conditions in three directions. 

OVITO software package was used to obtain images of atomistic 

configurations [15]. For example, the initial atomic configuration of 

the Ag@Pd modeled nanoparticle is presented in Fig. 1. 

 During the simulation of the melting process, the sample 

temperature was gradually increased by scaling the corresponding 

atomic velocities using the Berendsen thermostat in the temperature 

range of 250–3000 K [16]. Recording of atomic configurations of 

the system and calculation of parameters were realized after the 

temperature reached equilibrium value. 

 The modified embedded-atom method (MEAM) was used to 

calculate the forces of interatomic interaction [17]. MEAM is 

known to reliably reproduce the basic properties of materials and is 

widely used in the metal alloys modelling by classical molecular 

dynamics (MD) techniques. The simulation was performed using 

the LAMMPS software package [18]. 

 The complete algorithm for particle motion calculations used in 

molecular dynamics simulations involves obtaining analytical 

expressions for the forces of interatomic interaction F(r), based on 

the given dependences for the potential energy, through the 

equation  

 

 𝐹 𝑟 = −
𝜕𝑈

𝜕𝑟
 (1) 

 

and further numerical integration of the equations of motion  

 

 𝑚
𝑑2𝑟𝑖

𝑑𝑡2 = 𝐹𝑖 𝑟𝑖 = −
𝜕𝑈

𝜕𝑟
 (2) 

 

for each atom i. 

 Within the MEAM, the total potential energy of a metallic 

crystal can be presented as a sum of two components, each of which 

describes the corresponding mechanisms of interaction: 

 

 𝑈 =
1

2
 𝜑 𝑟𝑖𝑗  +𝑖,𝑗 ,𝑖≠𝑗  𝐹(𝜌𝑖)𝑖 , (3) 

 

where (𝑟𝑖𝑗 ) is the pair energy between atoms 𝑖 and 𝑗 at a distance 

Fig. 1. Initial atomistic configuration of Ag@Pd core-shell 

nanoparticle: overall view (left panel) and cross-section (left 

panel). Pd atoms (shell) are shown in dark gray color; Ag atoms 

(core) are shown in light gray color. 
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𝑟𝑖𝑗 ; 𝐹(𝑖) is the local embedding energy of the 𝑖-atom in the space 

domain, that is characterized by the electronic density 𝑖 .  

 For each term in equation (3), the analytical expression was 

proposed through approximating the data obtained from the 

calculations from the first principles [19]. Thus, the pair energy of 

the interatomic interaction can be written in the form 

 

 𝜑 𝑟 =
𝐴𝑒

−𝛼 
𝑟
𝑟𝑒

  −  1 

1 +  
𝑟

𝑟𝑒
 − 𝜅 

20  −  
𝐵𝑒

−𝛽 
𝑟
𝑟𝑒   −  1 

1 +  
𝑟

𝑟𝑒
 − 𝜆 

20 , (4) 

 

where 𝑟𝑒  is the equilibrium distance between the two atoms of the 

given type; 𝐴, 𝐵, ,  are the approximation parameters; ,  are 

the additional parameters for ensuring zero energy of interaction at 

significant interatomic distances. 

 The local embedding energy as a function of electron density 

𝐹(𝑖) is calculated in several steps. Firstly, the electronic density 𝜌𝑖  

is calculated as  

 

 𝜌𝑖 =  𝑓(𝑟𝑖𝑗 )𝑖,𝑗≠𝑖 , (5) 

 

where 𝑓(𝑟𝑖𝑗 ) is the local electron density in the atomic region of 

atom 𝑖, calculated through the following expression  

 

 𝑓(𝑟𝑖𝑗 ) =
𝑓𝑒𝑒

−𝛽 
𝑟
𝑟𝑒

  − 1 

1 +  
𝑟

𝑟𝑒
  −  𝜆 

20 , (6) 

 

that has the same form as the second term in formula (4) with the 

same values of parameters   and . Then the electronic density 

function 𝐹(
𝑖) should be calculated from three following equations, 

depending on the value of 
𝑖   

 

 𝐹 𝜌 =  𝐹𝑛𝑖  
𝜌

𝜌𝑛
− 1 3

𝑖=0 ,      𝜌 < 𝜌𝑛 ,     𝜌𝑛 = 0.85𝜌𝑒 , (7) 

 

 𝐹 𝜌 =  𝐹𝑖  
𝜌

𝜌𝑒
− 1 3

𝑖=0 ,      𝜌𝑛 < 𝜌 < 𝜌0,     𝜌0 = 1.15𝜌𝑒 , (8) 

 

 𝐹 𝜌 = 𝐹𝑒  1 − ln⁡(
𝜌

𝜌𝑒
)𝜂 ∙ (

𝜌

𝜌𝑒
)𝜂 ,      𝜌0 ≤ 𝜌. (9) 

 

 Such method for determining the electronic density function 

𝐹(
𝑖) is necessary for the realistic approximation of the embedding 

energy and for reproducing the properties of the material in a wide 

range of values .  

 The forces between different types of atoms can be calculated 

using the MEAM model for alloys [19]. Within mentioned approach 

the pair energy 𝑎𝑏 𝑟𝑖𝑗  between atoms of type 𝑎 і 𝑏 can be 

calculated as  

 

 𝑎𝑏 𝑟 =
1

2
 
𝑓𝑏 (𝑟)

𝑓𝑎 (𝑟)
𝑎𝑎 𝑟 +  

𝑓𝑎 (𝑟)

𝑓𝑏(𝑟)
𝑏𝑏 𝑟 . (10) 

 

 Thus, using equations (1)–(10), it is possible to investigate the 

dynamics of metallic nanoparticles under the external influences. 

 The description of changes in nanoparticle structure was based 

on the use of the Lindemann numerical parameter [20]. The local 

Lindeman index of the 𝑖-th atom was determined through the 

following formula: 

 

 𝑞𝑖 =
1

𝑁 − 1
 

  𝑟𝑖𝑗
2   −  𝑟𝑖𝑗  

2

 𝑟𝑖𝑗  
𝑗≠𝑖 , (11) 

 

where 𝑟𝑖𝑗  is the distance between 𝑖 and 𝑗 atoms; corner brackets are 

time averaging at a constant temperature value. 

 The quantitative characterization of the changes in the sample 

structure is carried out by the calculated radial density functions 

𝑔(𝑟𝑛), which are defined as the relative probability of finding a pair 

of atoms at some distance from each other. 𝑔 𝑟𝑛  was calculated 

through the equation [21]: 

 

 𝑔 𝑟𝑛 =
𝑉𝑕𝑛

2𝜋𝑁𝑚
2 𝑟𝑛

2Δ𝑟
, (12) 

 

where 𝑉𝑛  is the volume of the sample; 𝑕𝑛  is the number of atomic 

pairs (𝑖, 𝑗) for which the condition   𝑛 − 1 Δ𝑟 ≤ 𝑟𝑖𝑗 ≤ 𝑛∆𝑟  is 

satisfied; 𝑁𝑚  is the total number of atoms; ∆𝑟 – parameter of 

sampling of interatomic distances (∆𝑟 has sufficiently small values); 

𝑟𝑛 =  𝑛 − 1/2 ∆𝑟 is the value of the interatomic distances. 

 

3 Results 
 Temperature dependences of the Lindemann index calculated 

for the Au@Pd and Ag@Pd nanoparticles under investigation are 

shown in Fig. 2. As it can be seen from the figure, the obtained 

values on the dependences 𝑄(𝑇) and 𝐸(𝑇) increase monotonically 

in the temperature range 𝑇 ≤1 500 K. After that, the Lindemann 

index and the potential energy start to rise rapidly at a temperature 

value of 𝑇  1 600 K, which may be a start of the melting process. 

The value of the Lindemann index for the Ag@Pd nanoparticles 

was 𝑄𝑐   0.01 and for the Au@Pd nanoparticles was 𝑄𝑐   0.015. At 

temperatures 𝑇 >1 700 K, there is a slow, almost linear increase in 

the values of 𝑄 and 𝐸 (Fig. 2, Fig. 3). 

 

 

 To detect the changes in the structure of the nanoparticles, the 

radial distribution functions were calculated at the initial 

temperature of 300 K (Fig. 4, Fig. 5). As can be seen from the 

figure for Ag@Pd, at temperatures 𝑇 = 300 K and 𝑇 = 1 050 K, the 

sample has clearly expressed peaks corresponding to the crystalline 

structure of silver and palladium. At 𝑇 = 1 050 K, the 𝑔(𝑟𝑛) is 

Fig. 2. Temperature dependence of the Lindemann index for  

Au@Pd (top panel) and Ag@Pd (bottom panel) core-shell 

nanoparticles. 
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characterized by a decrease in the height (intensity) of the peaks. At 

𝑇 = 2 000, only the first peak corresponding to the equilibrium 

distance between atoms is visible on the radial distribution function, 

and there are no other peaks. This kind of radial distribution 

function is typical of an amorphous state. 

 The cross sections and general views of the Ag@Pd 

nanoparticle at the melting point and the maximum temperature of 

the computer experiment are shown in Fig. 6. As it follows from 

visual analysis, temperature growth lead to increasing spacing 

between atoms, resulting in destruction of the initial crystal 

structure. It is noticeable that above the melting temperature core-

shell structure of the nanoparticle is also destroyed, due to the 

increased velocity of the diffusion processes. 

 

4 Conclusion 
 In the work melting behavior of the bimetallic Ag@Pd, Au@Pd 

nanoparticles with core-shell structure investigated by classical 

molecular dynamic simulations. According to the simulation results, 

the numerical parameters were obtained for the samples and the 

dynamics of the structural changes were analyzed. The approximate 

melting point for nanoparticles was 1 600 K. At that point the 

Lindemann indexes exceed the critical values 𝑄𝑐   0.01 and 

𝑄𝑐   0.015 for Ag@Pd, Au@Pd respectively. Initial core-shell 

structure of the nanoparticle is preserved up to the melting point. 

With the temperature growth, the volume of the nanoparticle is also 

increasing due to the larger spacing between atoms, which lead to 

the destruction of the initial crystal structure and the core-shell 

diffusion became more intense. It should be noted that the model 

presented here allows us to investigate the behavior of nanoparticles 

of another chemical composition during heating and melting 

(depending on the presence of a parameterized interatomic 

interaction potential), size and shape. 
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Fig. 4. Radial distribution functions for Au@Pd core-shell 

nanoparticle at different temperatures. 

 

Fig. 3. Temperature dependence of averaged potential energy for 

Au@Pd (top panel) and Ag@Pd (bottom panel) core-shell 

nanoparticles. 

Fig. 5. Radial distribution functions for Ag@Pd core-shell 

nanoparticle at different temperatures. 

 

Fig. 6. Atomistic configurations of Ag@Pd core-shell nanoparticles 

at 1 210; 1 650; 2 950 K (from left to right): cross-section (top 

panel) and overall (bottom panel). 
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MATHEMATICAL MODELING OF ATOM-MOLECULAR DEPOSITION BY 

MAGNETRON SPUTTERING 

МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ НА АТОМНО-МОЛЕКУЛНО НАСЛОЯВАНЕ ЧРЕЗ 

МАГНЕТРОННО РАЗПРАШАВАНЕ 

Ass. Prof. Dr. Georgi Evt. Georgiev, Prof. Dr. Luben Lakov, Ass. Prof. Dr. Petio Ivanov, Dr. Michaela Alexandrova 
Institute of Metal Science, Equipment and Technologies with Hydro-aerodynamics Centre "Akad. A. Balevski"-BAS 

 

Abstract: The thickness distribution of thin films deposited by the magnetron sputtering technique is studied with the means of 

mathematical modelling. A mathematical model describing the process of atomic or molecular sputtering followed by deposition process in a 

RF/DC magnetron equipment is proposed. It has enough comprehensiveness to describe the sputtering of metals, insulating materials or 

semiconductors. An algorithm has been developed to solve the equations of the model, which is implemented in the form of a computer 

program. With the help of this program model solutions have been received and presented by different configurations and parameters of the 

magnetron system. An optimal solution has been also found, where the non-homogeneity of the coating is minimal. 

KEY WORDS: MATHEMATICAL MODELLING, ATOM-MOLECULAR DEPOSITION, MAGNETRON SPUTTERING 

 
Резюме: Формирането на тънки материални слоеве с помощта на магнетронно разпрашаване е изследвано със средствата на 

математическото моделиране. Представен е математически модел на процеса на атомно или молекулярно разпрашаване, 

последвано от наслояване, протичащ във високочестотен или постоянно токов магнетрон. Моделът притежава достатъчна 

степен на общност за да опише наслояване на метали, изолационни материали или полупроводници. Създаден е алгоритъм за 

решаване на уравненията на модела във формата на компютърна програма. С нейна помощ са получени и представени моделни 

решения за процеса на наслояване при различни конфигурации и параметри на магнетронната система. Намерено е и оптимално 

решение, при което дебелината на слоя е с минимални разлики. 

 

КЛЮЧОВИ ДУМИ: МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ, АТОМНО И МОЛЕКУЛЯРНО НАСЛОЯВАНЕ, МАГНЕТРОННО 

РАЗПРАШАВАНЕ 

 

1. Увод 
Магнетронното разпрашаване е многофункционална 

техника за приготвяне на тънки филми за приложения в широк 

диапазон. Що се отнася до качеството на основния филм, от 

решаващо значение е постоянната дебелина на нанесеното 

покритие, тъй като пряко засяга физическите свойства и 

следователно производителността на устройството. 

Изработване на много равномерни покрития на големи 

отлагателни площи и контролирането на дебелината им е обект 

на изследване в много публикации [1-4]. 

Дебелината на покритието се определя основно от 

геометрията и взаимното разположение на мишената спрямо 

субстрата. През годините симулационните модели помогнаха 

да се промени разположението на целта спрямо субстрата за 

постигане на по-висока хомогенност. На Фиг.1 е показана 

схема на конструкцията на реален магнетрон в неговото 

напречно сечение. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В [6] е демонстрирано, че неаксиалният магнетронен източник 

и неговата ротация подобряват равномерността на дебелината 

на филма в сравнение с конвенционалните магнетронни 

източници, където източникът на разпрашаване споделя една и 

съща ос на симетрия със субстрата. 

Други фактори, влияещи върху разпределението на 

дебелината на нанесения филм са характеристиките на разряда 

(мощност, налягане и т.н.), източникът на магнетрона и 

относителните движения на източника спрямо субстрата [5]. 

През последните няколко десетилетия са извършени много 

изследвания на различни видове разпрашителни системи за 

прогнозиране на нееднородностите в дебелината на филма. 

Въпреки това, тъй като разпределението на дебелината на 

филма е функция от множество променливи, не е възможно да 

се изведе общо, не-интегрално уравнение, което описва 

разпределението на дебелината въз основа на всички основни 

фактори [5]. Въпреки това, компютърни симулации и полу-

емпирични формули са разработени въз основа на аналитични 

модели за по-добро обяснение на профилите за разпределение 

на дебелината. 

Симулационните модели също така спомогнаха за 

оптимизация на профила на магнитното поле, на геометрията и 

разположението на магнетронните източници за да се получи 

най-доброто използване на целта за хомогенизиране на слоя 

върху субстрата. 

В настоящата разработка е формулиран математичен модел 

за прогнозиране на разпределението на дебелината на 

покритието върху кръгов субстрат постредством радиочестотна 

(RF) кръгова магнетронна разпрашителна система. Разработена 

е специална компютърна програма за поучаване на решенията 

на модела. Предложеният подход може да бъде приложен и 

към други магнетронно разпрашителни системи.  

 

2. Математичен модел 
За целите на математичното моделиране геометрията и 

взаимното разположение на мишената и субстрата следва да 

бъдат подходящо дефинирани. Възприетата конфигурация е 

показана на Фиг.2. На нея са обозначени и основните 

определящи конфигурацията параметри. По време на процеса 

на разпрашаване, в мишената се формира ерозионен жлеб, 

чиято  форма   зависи  от   профила  на   магнитното   поле  на 

 
Фиг.1. Схема на RF/DC магнетрон в сечение. 
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 източника на разпрашаване. По време на процеса на 

разпрашаване ерозионният профил се променя и влияе върху 

разпределението на дебелината на покритието върху субстрата. 

В разглеждания случай формата на ерозионния жлеб е пръстен 

и неговият радиус е означен с 𝐴 на Фиг.2 и Фиг.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Основни положения 
В по-нататъшните разглеждания са възприети следните 

ограничения: 

1. Всички избити от ерозионния пръстен частици напускат 

мишената. Този пръстен е концентричен спрямо 

мишената и има постоянен радиус;  

2. Предполага се, че налягането в магнетрона е достатъчно 

ниско, така че средният свободен пробег на 

разпръскваните атоми става равен или по-голям от 

разстоянието до субстрата. Така, сблъсъците между 

разпръскваните атоми, аргоновите атоми или аргоновите 

йони могат да бъдат пренебрегнати. В резултат на това 

разпръснатите атоми се движат по права линия след както 

напуснат мишената. Ще предположим още, че средният 

свободен пробег на избитите от мишената атоми се дава 

от формулата:  

 

 =
1

𝜋𝑛 (𝑟1+𝑟2)2
     

 

където r1 и r2 са атомните радиуси на избитите от 

мишената атоми и атомите на газа, съответно. 𝑛 е 

числената плътност на газа; 

3. Предполага се, че бомбардиращите йони удрят мишената 

перпендикулярно; 

4. Дифузията, отражението и повторното избиване на 

разпръснатите атоми от повърхността на субстрата също 

се пренебрегват. 

 

2.2. Основни уравнения на модела 
Дебелината на покритието във всяка точка на субстрата е 

пропорционална на масовия поток от разпрашени частици, 

попадащ в тази точка. Ето защо задачата за разпределението на 

нанесеното покритие е тясно свързана с определяне именно на 

този поток. Схемата, използвана за неговото пресмятане е 

представена на Фиг.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Нека с 𝑁 да означим броя на частиците, напускащи площта 

𝑑𝜍 за единица време във всички посоки. Тогава броят на 

частиците, които преминават в пространствения ъгъл 𝑑Ω, 
определен от ъгълът 𝛼 за единица време, следва да се 

изчисли по формулата 
 

 dN = CN𝑓(𝛼)d    
 

където 𝑓(𝛼) е функция на разпределението на интензитета на 

разпръскваните частици по ъгъла . C е нормиращ множител, 

определен чрез уравнението 
 

  𝑑𝑁 = 𝑁,           (3) 
 

отразяващо закона за запазване на масата, който изисква 

сумата от частиците по всички направления да е равна на 

общия им брой N. Използвайки зависимостите 

d = d/R
2
, d = dS cos,  d 

𝑑𝑆𝑐𝑜𝑠𝛽

𝑅2         (4) 

където R е разстоянието от разглежданата точка на източника 

до точка P на субстрата и замествайки в (2) получаваме 

уравнението 
 

 
𝑑𝑁

𝑑𝑆
=

𝐶𝑁𝑓(𝛼)𝑐𝑜𝑠𝛽

𝑅2 ,          (5) 
 

което ни дава частиците, достигащи областта dS , сключваща 

ъгъл  с направлението на емисията при точка P. Потокът в 

точка P от целия диск на ерозията следва да се пресметне с 

интегриране по него, т.е. по азимутния ъгъл , както следва 
 

𝐹𝑙𝑜𝑐  𝑃 = 𝐶𝑁   𝑄(𝜌)
𝑓 𝛼 𝑐𝑜𝑠𝛽

𝑅2

2𝜋

0

𝐴

0
𝑑𝜌𝑑𝜑,       (6) 

където с Q() е означена функцията, представяща 

бомбардираната повърхнина на мишената. Ако субстратът се 

върти около своята централна ос, то всички точки на субстрата 

на разстояние 𝑟 от центъра ще получат същия поток. Така 

общият поток в даден момент ще има вида  
 

𝐹𝑙𝑢𝑥  𝑟 =
1

2𝜋
 𝐹𝑙𝑜𝑐  𝑃 𝑑𝜃 =

1

2𝜋
𝐶𝑁   𝑄(𝜌)

𝑓 𝛼 𝑐𝑜𝑠𝛽

𝑅2

2𝜋

0

2𝜋

0

𝐴

0

2𝜋

0
𝑑𝜑𝑑𝜃𝑑𝜌.  (7) 

 

където е азимутният ъгъл на dS. Тъй като дебелината на 

нанесения слой е пропорционална на потока, то тя следва да се 

представи от вида (7) с една нова константа отпред. Тогава 

обединявайки всички константи за дебелината на слоя можем 

да напишем 
 

𝑇ℎ 𝑟 = 𝐶𝑜𝑓    𝑄(𝜌)
𝑓 𝛼 𝑐𝑜𝑠𝛽

𝑅2

2𝜋

0

2𝜋

0

𝐴

0
𝑑𝜑𝑑𝜃𝑑𝜌.          (8) 

 

Константата Cof  най-често се определя чрез идентификация на 

базата на експериментални данни. За получаване на конкретни 

значения на функцията от (8) е разработена компютърна 

 

Фиг.2. Конфигурация на системата за магнетронно 

разпрашаване 

 
 

Фиг.3. Схема на конфигурацията 
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програма на езика FORTRAN. Тя пресмята значенията на Th(r) 

при конкретни значения на параметрите b, L, A и r, съгласно 

координатната система на Фиг.3. Ъгловото разпределение f() 

може да се задава както аналитично, така и чрез 

експериментални данни в дискретни точки. 

 

2.3. Ъглово разпределение на бомбардиращите атоми 
Съществуват множество теоретични разработки, посветени 

на създаването на подходящ физически модел на ъгловото 

разпределение при магнетронното разпрашаване. От най-

значимите следва да се отбележи теорията на Зигмунд-Томпсън 

[8,9]. За някои конкретни процеси те са в добро съвпадение с 

експерименталните резултати [10]. Най-добро съвпадение с 

повечето експериментални резултати е показало предложеното 

от Ямамура [10,11]  
 

𝑓 𝛼 = cos 𝛼 [1 + 𝑘𝑐𝑜𝑠2 𝛼 ],           (9) 

където k е свободен за фитиране параметър. Видът на такова 

разпределение при k=-0.7 е показан на Фиг.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ямамура в своите теоретични разработки предлага и формула 

за пресмятане на параметъра k от вида 
 

𝑘 =
5

3
 
𝐸𝑝

𝐸
 

1
2

1−(
𝐸𝑝

𝐸
)

1
2

            (10) 

 

където E е енергията на бомбардиращия йон, Ep е енергетичния 

бариер за откъсване от повърхността на материала на 

мишената. 

3. Получени резултати 
За получаване на решения на изложения в т.2 

математичен модел бе създаден алгоритъм и бе изготвена 

компютърна програма на FORTRAN, която го реализира. С 

нейна помощ са получени решения за дебелината на 

покритието при различни набори от параметри на модела и 

ъглови разпределения на процеса на разпрашаване. Те са 

показани на Фиг.5-8. На Фиг. 5-8.1 са представени  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Използваните разпределения на Ямамура, при които са 

получени съответните резултати за дебелината на покритието, 

представени на Фиг. 5-8.2, съответно. Групата от използвани 

параметри е изобразена на самите фигури. Резултатите на 

Фиг.5.2 и Фиг.6.2 съответстват на Поозиция 1 на мишената в 

магнетрона (виж Фиг.1), а тези на Фиг.7.2 и Фиг.8.2 на Позиция 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Фиг.4. Разпределение по Ямамура 

 
Фиг.5.1. Разпределение на Ямамура. Позиция 1. 

 
 

Фиг.5.2. Разпределение на дебелината на покритието. 

Позиция 1. 

 
Фиг.6.1. Разпределение на Ямамура. Позиция 1. 

 
 

Фиг.6.2. Разпределение на дебелината на покритието. 

Позиция 1. 
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Въртенето на субстрата осигурява хомогенност на 

дебелината на покритието по азимутният му ъгъл на въртене, 

но при всички варианти от фигури 5-8 се наблюдава 

нехомогенност в радиална посока. С помощта на интерактивно 

– итеративен метод бяха варирани позицията на мишената и 

параметрите на модела, така, че да се получи най-хомогенно 

покритие. Такова бе намерено при варианта, показан на Фиг.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Заключение 
В настоящата разработка е представен математичен модел 

на разпрашаване чрез йонно бомбардиране в магнетрон. 

Използвани са фундаменталните закони и зависимости, 

публикувани в [1,6,7]. Създадена е компютърна програма, с 

която могат да се получават конкретни решения на модела. С 

нейна помощ при моделни значения на параметрите е намерен 

вариант с хомогенно разпределение на дебелина на покритието.  

Моделът може да намери приложение в различни 

съвременни технологии за оптимизация на процесите на 

нанасяне на метални и неметални покрития. Например, той би 

могъл да се приложи успешно както при формирането на 

силициеви покрития за полупроводникови изделия, така и за 

нанасянето на тънки изолационни покрития от керамични 

материали за нуждите на технологиите, предназначени за 

създаването на свръх мощни кондензатори за нуждите на 

енергетиката и автомобилостроенето. 
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Фиг.9. Вариант, осигуряващ максимално хомогенно 

покритие 

 
Фиг.7.1. Разпределение на Ямамура. Позиция 2. 

 
Фиг.7.2. Разпределение на дебелината на покритието. 

Позиция 2. 

 
Фиг.8.1. Разпределение на Ямамура. Позиция 2. 

 
 

Фиг.8.2. Разпределение на дебелината на покритието. 

Позиция 2. 
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DESIGN AND ANALYSIS OF A NOVEL SEALING UNIT  

FOR PACKING MACHINES 
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Abstract: Packaging machines using for wet wipes operate at high speeds and the demand for speed in the relevant market is constantly 

increasing. The most important difficulty to faster operation of these machines is the relative slowness of the units used for sealing the 

packages. In this study, it is aimed to design a unique mechanism that can work at 160 packages per min instead of sealing unit which is still 

operating at 120 packages per min, and to verify the design by mechanical analysis. For this purpose; instead of the existing sealing unit 

driven by a single servo motor, the horizontal and vertical movements are separated and driven by two servo motors to achieve %33 more 

speed. 

Keywords: PACKAGING MACHINES, WET WIPES, SEALING 

 

1. Introduction 

Nowadays, the standard application for sealing the packages in 

packaging machines is provided for a fixed time, at a constant 

temperature, with spring compression and due to the standard cam 

geometry, adhesive bonding under variable pressure forces during 

the application period. This results in higher energy consumption on 

the one hand, while limiting the type of material that can be bonded 

on the same machine. 

There is no automatic adjustable machine both in our company 

and in the global market. In this study, it is aimed to develop a user 

friendly and energy efficient machine which can work with all kinds 

of polymer packaging materials at high speed and efficiency. 

2. Definition of Problem 

The jaw unit in our standard packaging machine is capable of 

bonding at a constant time and pressure. This causes problems in 

the adhesion of some of the packaging materials developed recently 

and slows down the speed of the machine. Therefore D-Cam 

movement obtained by single servo motor in the jaw module of our 

standard packaging machine was improved. D-Cam movement will 

be provided by using 2 different cam movements by means of 2 

independent servo motors. One motor will be control the vertical 

movement of the jaws, while the other motor will control the 

horizontal movement, ie the synchronous movement with the 

package. To do this, it have been worked on formulating the jaw 

movement that was occur by using 2 different mechanisms on the 

automation side and added into the equation. Therefor an easily 

adjustable adjustment screen that can be understood by the operator 

was designed. 

Horizontal movement of the sealing jaws (movement in the 

direction of the flow of the package) was provided by separation of 

the horizontal and vertical movement.  

While the horizontal movement is limited to 60mm fixed value 

in the current system, it is planned to increase this movement up to 

100mm in the system to be developed and be able to change it from 

the operator panel without any mechanical adjustment.  

It is also aimed to increase the contact time of the sealing jaws 

to the package by increasing the horizontal movement and to 

achieve better adhesion quality at lower temperatures. 

 In the design of the movement mechanism of the jaw unit, the 

choice of cam bearing according to the loads to be formed, 

determination and design of the closed cam form, dimensioning the 

connecting mechanism to be designed according to the jaw stroke 

movement were studied.  

Both mechanical and automation measures was taken to protect 

the jaw unit against mechanical jams. When driving the horizontal 

movement of the jaw unit, torque limiter coupling was used in the 

system. 

Automation measures was taken in order to detect the phase 

misalignment that may occur in the system. So that the sealing jaws 

do not press on the wet wipes which do not center the package.  

A graphical image of the movements that can be obtained with 

standard D-Cam and adjustable D-CAM mechanisms is given in 

figure 1. 

 

 

Fig. 1 Standard and Adjustable Strok D-Cam 

 

The design of the movement obtained with a single servo motor 

in the jaw module of our standard packaging machine is shown in 

figure 2.  

 

 

Fig. 2 Isometric and front view of single servo motor in the jaw module 
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3. Variable Stroke Jaw Design 

While the horizontal movement is limited to 60mm fixed value 

in the current system, it is planned to increase this movement up to 

100mm in the system to be developed and be able to change it from 

the operator panel without any mechanical adjustment.  

It is aimed to increase the contact time of the sealing jaws to the 

package by increasing the horizontal movement and to achieve 

better adhesion quality at lower temperatures. 

 In the design of the movement mechanism of the jaw unit, the 

choice of cam bearing according to the loads to be formed, 

determination and design of the closed cam form, dimensioning the 

connecting mechanism to be designed according to the jaw stroke 

movement were studied. Figure 3 shows the variable stroke jaw 

mechanism designed by us 

 

 

 

 

 

Fig. 3 Isometric and front view of single servo motor in the jaw module 

 

4. Variable Stroke Jaw Position Equations 

In order to provide axis movements in the two-motor design, the 

geometric positions formed during the movement of the mechanism 

must be calculated and formulated so that the automation system 

can control the positions. 

Figure 4 shows the initial state of the closed cam positions. 

 

Fig 4. Initial state of the closed cam positions. 

 

The calculations related to the location analyzes performed 

below are given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(+71 mm; added length of part connected to l4) 

;  

Position of the jaw on the x axis relative to the center α1 

C(x2 )=640-x2 
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;  

Position of the jaw on the x axis relative to the origin 

C(x)=640-(((100*COS(RADYAN(I2))+SQUAREROOT((-

100*COS(RADYAN(I2)))^2-4*(-59501)))/2)+71)-270 

 

; Position of the cam plate horizontally (x) relative to 

the origin 

 

((200*COS(RADYAN(A2))+SQUAREROOT((-

200*COS(RADYAN(A2)))^2-4*(-54009)))/2)-122 

 

Vertical movement of the jaw 

Fig 5. shows the vertical movement of the jaw 

 

Fig 5. Vertical movement of the jaw 

; The horizontal position of the jaw 

relative to the cam plate 

 

Region-I 

 

 

Region-II 

 

 

 

 

Region-III 

 

 

Region-IV 

 

 

 

 

Region-V 

 

 

To solve the problem, equations of origin moved to the center 

of the jaw stroke. Fig 6. shows the coordinates which origin moved 

to the center of the jaw stroke 

 

Fig 6. The coordinates which origin moved to the center of the jaw stroke 

 

C(x)=640-(((100*COS(RADYAN(I2))+SQUAREROOT((-

100*COS(RADYAN(I2)))^2-4*(-59501)))/2)+71)-320 

C(x)=(-50,+50)mm 

x_ç=C(x_2 )-P(x_1); The horizontal position of the jaw relative 

to the cam plate 

x_ç=(640-(((100*COS(RADYAN(J2))+SQUAREROOT((-

100*COS(RADYAN(J2)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN(A2))+SQUAREROOT((-

200*COS(RADYAN(A2)))^2-4*(-54009)))/2)-122)) 

It is the combined state of the equation that gives the jaw y 

values according to the cam plate. U2 represents the main formula 

xç. By entering U2 into the equation, the equation that gives the jaw 

height to A2 EXCEL (X, Y) formula; Equation that gives 

coordinates in form (X, Y).  As a result, a single equation in excel 

were created as follows. 

="("&ROUNDUP(((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

320));2)&":"&ROUNDUP(IF((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))<52,84;100+29;IF(VE((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))>52,84;(640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))<91,8);SQUAREROOT(3481-((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-122))-

52,84)^2)+41+29;IF(VE((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-
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100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))>91,8;(640-(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))<167,3);(167,3-(640-

((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122)))*(TAN(RADYAN(41,33)))+18,93+29;IF(VE((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))>167,3;(640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))<217,48);76-SQUAREROOT(5776-((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-122))-

217,48)^2)+29;IF((640-

(((100*COS(RADYAN(B1))+SQUAREROOT((-

100*COS(RADYAN(B1)))^2-4*(-59501)))/2)+71)-

(((200*COS(RADYAN($A309))+SQUAREROOT((-

200*COS(RADYAN($A309)))^2-4*(-54009)))/2)-

122))>217,48;29;0)))));2)&")" 

As a result of all the location analyzes and calculations 

performed in excel, point cloud showing the position status in excel 

environment was created. Figure 7 shows a graphical representation 

of these points.  

 

Fig 7. A graphical representation of cloud showing the position status 

5. FEM Analysis 

In the study, mechanical analysis of the critical loads was 

performed. This ensures safe operation of the machine parts. Figure 

8 shows examples of analysis of the selected carrier pin and pin 

socket. 

 

Fig 8. a. Carrier pin socket 

 

 

Fig 8. a. Carrier pin 

Fig 8. Examples of analysis of the selected carrier pin and pin socket 

6. Conclusion 

In this study, instead of the existing sealing unit driven by a 

single servo motor, the horizontal and vertical movements were 

separated and driven by two servo motors. To have position control 

it has been analyzed the geometric positions and to have stiffness 

mechanical analyses were performed for critical parts of machine. It 

is designed a unique mechanism for sealing unit that can work at 

160 packages per min instead of 120 packages per min. 
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MATHEMATICAL MODELLING OF THE CRYSTALLIZATION OF AN 

ALUMINIUM CASTING MODIFIED WITH NANOPARTICLES 

МАТЕМАТИЧНО МОДЕЛИРАНЕ НА КРИСТАЛИЗАЦИЯТА НА ОТЛИВКА ОТ АЛУМИНЕВА 

СПЛАВ, МОДИФИЦИРАНА С НАНОЧАСТИЦИ 

Ass. Prof. Sasho Popov, Ass. Prof. Georgi Evt. Georgiev, Ass. Prof. Valentin Manolov, PhD Pavel Kuzmanov,  

Chief Assistant Angel Velikov 
Institute of Metal Science, Equipment and Technologies with Hydro-aerodynamics Centre "Akad. A. Balevski"-BAS 

 

Abstract: The insertion of nanoparticles into the melt of the metal alloys leads to an increase in the mechanical properties and 

fragmentation of the macro- and microstructure To give the answer the question what is the mechanism of interaction between nanoparticles 

and alloy during the transition from liquid to solid state is a priority for scientists working in this field.. In this paper, a mathematical model 

for heat transfer and crystallization of an aluminium alloy casting with nanoparticles inserted therein is presented. As a result of the model 

solution and the application of the MAGMASOFT software package, the dependences of the temperature field, the average grain size and the 

values of the undercooling are obtained. The influence of the number of crystallization centres on these quantities is investigated. 

KEY WORDS: MATHEMATICAL MODELLING, CRYSTALLIZATION OF ALLOYS, NANOMODIFICATION  

 

Резюме: Въвеждането на наноразмерни частици в металните сплави води до повишаване на механичните свойства и 

издребняване на макро- и микроструктурата. Да се отговори на въпроса какъв е механизмът на взаимодействие на наночастиците и 

сплавта в процеса на преход от течно в твърдо състояние е приоритет на учените, работещи в тази област.В настоящата работа е 

представен математичен модел за топлобмен и кристализация на отливка от алуминиева сплав с въведени в нея наночастици. В 

резултат от решаването на уравненията на модела и съвместното с използване на софтуерния пакет MAGMASOFT са получени 

зависимостите на температурното поле, средния радиус на зърната и преохлаждането. Изследвано е влиянието на броя на 

центровете на кристализация върху посочените величини. 

 

КЛЮЧОВИ ДУМИ: МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ, КРИСТАЛИЗАЦИЯ НА ОТЛИВКИ, НАНОМОДИФИЦИРАНЕ 

 

1. Въведение 
Въвеждането на различни видове наночастици в металните 

сплави води до повишаване на механичните свойства и 

издребняване на макро- и микроструктурата [1,2,3]. За 

разкриване на механизма на взаимодействие на наночастиците 

и сплавта се използват както експериментални така и 

теоретични, моделни изследвания. В настоящата работа е 

представен математичен модел, отчитащ влиянието наличните 

наночастици върху зародишообразуването по време на 

кристализацията. Това позволява да се анализира тяхното 

влияние върху формирането на структурата на сплавта. 

 

2. Описание на математичния модел 
В работа [4] е представен подхода за формулиране на 

математичния модел. Тук ще приведем основните уравнения, 

които са включени в него. 

2.1. Уравнение за топлообмен в интервала от началната 

температура 
0T  до температурата на ликвидуса 

LT  

pCR

q

dt

dT

0

 .     (1) 

2.2. Уравнение за топлообмен и кристализация в интервала от 

LT  до температурата на евтектиката 
ET  

p

E

p CR

q

dt

df

C

L

dt

dT

0

 .   (2) 

2.3. Уравнения за топлообмен и кристализация в интервала от 

ET  до температурата на пълно затвърдяване ST , която се 

определя от условието 1 Efff 
 

p

E

p

E

CR

q

dt

df

C

L

dt

dT

0

 .   (3) 

2.4. Уравнение за топлообмен на сплавта след нейната 

кристализация в интервала от ST  до fT . Тук се използва 

уравнвние (1). 

Уравнения (1)-(3) са получени за случая на относително 

малък обем метал Vo, за който е в сила обемна неизотермична 

кристализация и температурата му зависи само от времето. Тук 

величините 
f , 

Ef  и f  означават съответно относителните 

обеми на  -твърдия разтвор, на евтектиката и на сумарната 

твърда фаза в интервала от 
LT  до 

ST . 

Величината  tq  е топлинния поток от обема метал към 

околната среда, L е топлина на кристализация на сплавта, LE е 

топлна на евтектическата кристализация, Cp - топлинен 

капацитет, 
0R  е отношението на обема Vo   на метала към 

неговата повърхност,   - плътност на сплавта, t - време, T - 

температура. 

Според Колмогоров [5] обемът на кристализиралия метал V 

при време t  може да се определи от: 

   exp10VV     (4) 

 
3

0













 

t

duN  ,    (5) 

където   е параметър на формата на кристала, като за 

сферичен кристал 𝜑 = 4/3𝜋, 𝑢(𝜏) e скорост на 

кристализацията, N е броят на центровете на кристализация. 

Скоростта на кристализация при зародиш с радиус R(t) е: 

TK
dt

dR
u V ,     (6) 

където KV е коефициент, равен на линейната скорост на 

нарастване на кристала при преохлаждане 1оС. Така 

получаваме: 

а) За интервала 
EL TTT   уравненията 

 TTK
dt

dR
u L  

     (7) 









 3

3

4
exp1  NRf

    (8) 
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   TTRfNK
dt

df
L  214 

     (9) 

б) За интервала 
SE TTT   уравненията 

 TTK
dt

dR
u EE

E      (10) 

 








 33

3

4
exp1  RRNf EE

   (11) 

   








 332

3

4
exp4  RRNTTKNR

dt

df
EEEE

E  (12) 

Тук с  tR
 и  tRE

 са означени радиусите на кристалното 

зърно за -твърд разтвор от R=0 до R=R(t) и за евтектиката от 

R(t) до RE(t) съответно. В [6] също е използвано 

приближението за сферични кристали, които нарастват по 

закона (7). 
 

3. Метод на решение на математичния модел 

съвместно със софтуерния пакет MAGMASOFT 
Математичният модел (1)-(12) се решава съвместно с 

софтуерния пакет MAGMASOFT за съответния обект на 

изследване. В нашия случай това е отливка от сплав AlSi7Mg с 

условно наименование "Клема". На Фиг. 1 е показан общият 

вид на отливката. След това тя е разрязана на определена 

височина, показана на Фиг. 1 и от метала е изработено пробно 

тяло за определяне на средния диаметър на макрозърната чрез 

количествена металография. Така е получена информация за 

тази величина за отливка без въведени наночастици и за 

отливка с въведени наночастици. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Както е известно MAGMASOFT е програмен продукт, 

който служи за пресмятане на спрегнати задачи за топлобмен и 

кристализация на отливки от различни сплави и сложна 

тримерна форма. В резултат от решаването им се получава 

информация за разпределението на температурата, на средния 

размер на кристалните зърна и на много други величини, 

характеризиращи леярския процес. В последно време с цел 

издребняване на структурата в технологиите за леене се 

прилага модифициране на стопилката чрез въвеждане на 

наноразмерни частици. Очаквано е част от тях да изпълнят 

функцията на нови кристализационни зародиши. В резултат на 

това, общия брой на зародишите нараства (нови + 

съществуващи естествено). Така по-големият брой зародиши 

води до издребняване на кристалните зърна в сравнение с тези 

в немодифисираната структура. MAGMASOFT не предлага 

възможност да извърши пресмятане на затвърдяването на 

отливка, в която са въведени допълнителни центрове на 

кристализация. Математичният модел (1)-(12) може да даде 

информация за влиянието на броя на въведените наночастици 

върху средния диаметър на зърната, ако се интегрира с 

MAGMASOFT.  

От решението на задачата за топлообмен и кристализация 

на отливката с използване на MAGMA може да се получи 

топлинният поток q , който присъства в уравнения (1)-(3). Това 

позволява да получим за всяка точка от отливката зависимостта 

на температурата от времето и функциите RRE(t), f(t), 
fE(t), и T(t). 

Математичният модел (1)-(12), представен по-горе, описва 

процеса на непрекъснато охлаждане на сплавта, включващ 

както нейното течно състояние, така и кристализацията й. За 

численото решаване на диференциалните уравнения е 

използван метода на Рунге-Кута, реализиран чрез оператора 

“dsolve” от програмата Maple. Първо се решава уравнение (1) с 

начално условие T(0) = T0  

.От него намираме кога се достига температурата на ликвидуса 

TL, т.е. определяме момента време tL. 

За интервала 
EL TTT   използваме уравнение (2), което, за 

случая на многокомпонентна сплав, може да се преобразува 

във вида 

dt

d
eCek

C

L

CR

q

dt

Td

i

ii

k

PP






 












2))(1(

      (13) 

F

V
R 0

, 
3














 

t

t

V

L

TdKN 
, 

където  - коефициент на топлопредаване; Tf - температура на 

формата; F - площ на отливката; Ci - концентрация на i-та 

компонента в сплавта; TA - температура на топене на чистия 

метал; i - модул на коефициента на наклона на линията на 

ликвидуса от диаграмата на състояние за i-та компонента и 

основния метал, k - коефициент на разпределение. Тук 

индексът f  на Tf се отнася за топлофизичните характеристики 

на формата. 

За начално условие на уравнението (13) е избрано 

0)(  LtT ,     (14) 

където tL е времето, при което стопилката достига 

температурата на ликвидуса TL. 

За решаване на уравнение (13) с начално условие (14) се налага 

да се направи смяна на зависимата променлива T , тъй като 

дясната страна на (13) съдържа интеграли от T . За целта е 

въведена нова зависима променлива съгласно формулата 



t

tl

TdQ  .     (15) 

Следователно за  и нейната производна имаме 

33QNKV  ,    
dt

dQ
QNK

dt

d
V

233



,   (16) 

а (15) води до 

dt

dQ
T 

 и 
2

2

dt

Qd

dt

Td


 .    (17) 

След заместване на получените величини в (13) се получава 

следното диференциално уравнение от втори ред 

.3)1( 33)2(

)1(

2

2

3333

33

dt

dQ
QNKeCek

C

L

Ce
dt

dQ
TT

CRdt

Qd

V

QNK

i

ii

QNKk

P

i

ii

QNKk

fA

P

VV

V






































    (18) 

Отчитайки (15) и (17) за началните условия на уравнение (18) 

имаме 

  0 
l

l

t

t

l TdtQ 
  и  0)( 



l

tt

tT
dt

dQ

l

.  (19) 

След численото решаване на уравнение (18) при начални 

условия (19) определяме функцията Q(t), а чрез нея и 

температурата T(t). За целта използваме формула (вж. [7]) 

 
 

Фиг.1 Общ вид на отливка ,,Клема‟‟ 
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
i

ii

k

lA CfTTT 1 , 

която вече има вида 





i

ii

QNKk

A Ce
dt

dQ
TT V  33)1( . 

За интервала 
SE TTT   решаваме системата от три 

диференциални уравнения с неизвестни функции T(t), RE(t) и 

fE(t), т.е. уравнения (3), (10) и (12). Началните условия тук са: 

  EE TtT  ,   RtR EE  ,   0EE tf , 

където 

    dTTKR
E

L

t

t

L 
. 

За интервала 
fS TTT   използваме уравнение (1) с начално 

условие   SS TtT  . 

4. Резултати от математичното моделиране. 
Задачата, включваща уравнения (1)-(12) е решена при 

следните значения на физическите константи: V=8 10-9m3, S=2.4 

10-7m2, R=3.33 10-4m,  =2500kg/m3, C=1220 J/(kgK), To=988K, 

TL=886.8K, L=430518 J/kg , 34  , N=2.7 1010 1/m3 и 2.7 

1091/m3  KV=0.001 m/(s⋅K),, TA=933K, TE=850K, 
SiL =3.2 105 J/kg, 

rp=0.5 10-7, KE=0.005 m/(s⋅K).  

На Фиг.2 е показано разпределението на температурата на 

отливката в сечение перпендикулярно  на вертикалната ос z на 

отливка „Клема“ при t=10сек., получено посредством 

компютърно симулиране на затвърдяването на отливката със 

софтуера MAGMAsoft.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вижда се, че централната част на обема на отливката има най-

висока температура. Подобно е температурното поле и при 

t=18сек., показано на Фиг.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В резултат на топлообмена между по-студената метална форма 

и отливката температурата на отливката се понижава. На Фиг.4 

е показано надлъжно сечение на отливката и нейното 

температурно поле. Вижда се, че най-висока е температурата в 

зоната на мъртвата глава, която има функция да подхранва 

затвърдяващите слоеве под нея. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

На следващата Фиг.5 е показана температурната зависимост  от 

времето в точката, обозначена на Фиг.3 и Фиг.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пресмятането е извършено със системата уравнения (1)-

(12) и с използване на топлинния поток q(), определен от 

решението за затвърдяване на отливката с MAGMAsoft. 

Температурната крива има следните характерни области: 

първа- бързо понижение на температурата до ликвидуса, втора-

забавяне на темпа на охлаждане с отделяне на топлината на 

кристализация на -твърдия разтвор в интервала [TE,ТL], трета- 

почти постоянна с температура равна на TE , когато се отделя  

топлината на кристализация на евтектиката и последна - област 

на охлаждане на твърдата фаза.  

 

На следващата Фиг.6 е предствено влиянието на броя на 

центровете на кристализация върху величината на минимума 

на температурата на сплавта при ликвидуса или величината на 

преохлаждането  в резултат на който започва нарастването на 

твърдата фаза върху центровете на кристализация. Вижда се, че 

с увеличаване на броя на центровете N=2.7.109 1/m3 до 

N=2.7.1010 1/m3 преохлаждането намалява. 

 

Както беше казано, от математичния модел може да се 

определи средния радиус на кристалните зърна при 

 

Фиг. 2 Температурно поле в напречен разрез на 

отливка „Клема“ при t=10сек., С черна точка е маркирано 

положението на чувствителния край на термодвойката 

 

Фиг. 3 Температурно поле в напречен разрез 

(z=38mm) на отливка „Клема“ при t=18сек. 

 

Фиг. 4 Температурно поле в надлъжен разрез на 

отливка „Клема“ при t=10сек., получено посредством 

компютърно симулиране на затвърдяването на отливката 

със софтуера MAGMAsoft.  

 

 

Фиг.5 Зависимост на температурата от времето на 

малък обем от отливката, изчислена с използване на 

математичния модел (1)-(12). 
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предположение, че те имат сферична форма. От решението на 

модела с а определени зависимостите R() за двата разгледани 

случаи за N. Те са показани на Фиг. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

От графиката се вижда, че на по-големия брой зародиши 

съответства по-малка стойност на R(). На същата фигура е 

показана зависимостта от времето на частта на твърдата фаза в 

двуфазната зона f(t). Тя е получена от решението на системата 

уравнения(1)-(12). Функцията f(t) се изменя от 0 до 1 и има 

почти линеен характер. Момента от време, в който е затвърдял 

целия обем Времето на пълна кристализация на обема стопилка 

се определя от условието f()=1. В нашия случай това е t=21сек.  

 

От две отливки ,, клема „‟, отляти при еднакви начални 

условия без и с наночастици и чрез металография са 

определени средните диаметри и съответно средните радиуси  

на кристалите Rmet, mm  в съответното сечение. В таблицата по-

долу са показани изчислените с модела средни радиуси RE,на 

зърната за две значения на N и измерените радиуси Rmet чрез 

количествена металография.  

 

Табл. 1 Радиуси на зърната, измерени чрез металлография Rmet, 

и изчислени с модела (1)-(12) RE при различен брой центрове 

на кристализация и среден размер на зърната D, прогнозиран от 

MAGMAsof.  
 

N, 1/m3 RE, mm Rmet, mm D,mm 

2.7 1010 0.2305 0.196 с наночастици  

2.7 109 0.4967 0.283 без наночастици 0.802 

 

В същата таблица е показан прогнозирания с помощта на 

програмата MAGMAsoft срсден размер D на зърната. Вижда се, 

че порядъка на величините е един и същ, но измерените 

величини са по-малки от изчислените. Въпреки тази разлика 

може да се счита, че е разработен математичен модел даващ 

възможност да се прогнозират размерите на кристалните зърна, 

температурната зависимост от времето и преохлаждането в 

зависимост от броя на кристализационните центрове в 

стопилката. 

6.Заключение 
Предложен е математичен модел за кристализация на 

отливка от сплав А356, модифицирана с наноразмерни 

частици. Моделът е интегриран със софтуерния продукт 

MAGMAsoft. Изчислени са зависимостите на температурата от 

времето, частта на твърдата фаза в двуфазната зона, средния 

радиус на кристалните зърна и преохлаждането. Изследвано е 

влиянието на броя на наночастиците върху преохлаждането и 

средния радиус на зърната. Направено е сравнение на 

изчислените размери на зърната с експериментално 

определените размери на зърната чрез металография на 

образци от отливки ,,клема‟‟ без и с наночастици. Получено е 

удовлетворително съвпадение. 
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Фиг.6 Част от температурната крива на Фиг.5, 

показваща промяната на величината на преохлаждането 

(дълбочина на минимума) при две значения на центровете 

на кристалуизация N=2.7 1091/m3 и N=2.7 1010 1/m3. 

 

Фиг.7. Величините f(t) и R() за N=2.7 1091/m3 и N=2.7 

1010 1/m3 са изчислени с помощта на математичния модел 

(1)-(12). 
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Abstract. The main disadvantages of transplanting machine are presented in the article and the mathematical modeling of the operating 

system of the carousel type transplanting machine with a new method of calculation of the design parameters of the system is proposed. As a 

result of theoretical research of the operating system of carousel type transplanting machine the rule of motion of the point F and the 

mathematical model for determining initial velocity V0 of the falling seedling have been obtained. 

KEYWORDS: TRANSPLANTING MACHINE, SEEDLING, CAROUSEL TYPE, OPERATING SYSTEM, QUADRILATERAL, INITIAL 

VELOCITY.   

 
Introduction                                                                                                                                   

The improvement and modernization of agricultural 

machinery and equipment is under constant development, where 

increasing the working speed of machines is one of the main trends 

in improving their construction. 

For transplanting machines, increasing the speed of work is 

also a very important matter in increasing the working capacity of 

the planting units [1, 2]. The main disadvantages of the known 

semiautomatic machines for planting seedlings are: 

- reduced working capacity; 

- low quality of planting at a higher speed of the planting unit. 

In order to solve these problems, an improved construction of 

the carousel type transplanting machine was proposed [1]. The 

research of the operating system of the perfected transplanting 

machine is of particular importance when optimizing the main 

parameters of the machine. That is why determining the law of the 

vertical rod end movement to push the fasteners on the carousel of 

the transplanting machine is the basic problem of the given work. 

 

Material and method 

The drive mechanism of the carousel type transplanting 

machine is designed based on the quadrilateral with two arms for 

rotating the interminable movement mechanism, the transport of the 

seedlings from the coulter to the gripper, water dosing and 

distribution in portions. 

The OACB quadrilateral (fig. 1) is joined by a slider type 1-2, 

which transforms the circular  motion of the support wheel and 

drive of the planting machine into the "go-come" movement of the 

exit point 3. On the connecting rod 4 a sprocket for pushing the 

seedlings (point M) is arranged, and the vertical actuating rod (point 

F) of the transplanting machine carousel [3, 4] is arranged on the 

driven rocker 5. 

 
Fig.1. Kinematic diagram of the operating system of the 

transplanting machine: 

AC - lower rod; CB - vertical rod; A - the output point of the drive 

mechanism; M - the end of the push pad; F - the end of the vertical 

rod. 

 

 

 

Rezults and discussions 

Let  the following parameters of the drive mechanism be 

known: the coordinates x0, y0  and xB,  yB  of O and B joints, the 

length of the rockers l0=l3 and lB= l5, the initial φi and final φf 

angles of the driving rocker’s return 3 with coordinates  x
'
M   and  

y
'
M  of the point M  located on the connecting rod 4 relative to the 

joint in point O. The coordinates  xC (φ) and  yC (φ) of the inner 

joint C, which belongs to the dyad ACB (or 3-4), are determined 

according to the turning angle φ of the driving rocker, through the 

system of equations of the circumferences with the radii lAC and lB 

[4, 5]: 

       
 AB

ABCABABBAC
C

xx

yyyyyxxll
x






2

2222222 ;       (1) 

            

A

ACBB
y

C




2 ;                                        (2) 

where:   A = F
2 
+ I;  

 B = FG - FxA + yA; 

 C = (G – xA)
2
 + y

2
A - lAC .                                                  

In order to determine the law of motion of the end of the 

vertical pushing rod (point F) it is necessary to express the ratio of 

the average speeds to the free and full stroke by moving the  SF of 

the vertical pushing rod (point F): 

     

..5

.5

..5

.5

..

.

/

/

lc

pc

pcF

lcF
F

cpmed

F
clmed

T

T

TS

TS

V

V
k 

;                     (3) 

where T5c.p.  and T5c.l.  -  the period of time respectively at the full 

race and at the free race of the element 5, s.  

If the crank angular velocity  ω1 is constant: 

                       

lc

pc

lc

pc

T

T

.1

.1

.5

.5






;                                     (4) 

where 
..1 pc

  and 
..1 lc

 -  the values of the turning angles of the 

crank respectively to the full and free stroke, so   

 2
..1..1


lcpc

. 

It is obvious that the periodicity of movement of the driving 

element 3 and the driven element 5 is equal T5c.p.= T3c.p. and T5c.l. 

= T3c.l.  As a result, the coefficient of change of the average speed 

k is determined only by a part of the transmission mechanism, and 

namely, crank-slide. On the other hand, the coefficient k can be 

determined by the angle β between the extreme positions of the 

slide: 

                             








k

;                                         (5)  

The k coefficient limit is the maximum value of the 

acceleration  aMmax of the seedling thrust pack from the coulter in 
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the gripper. At the uniform rotation of the crank with the angular 

velocity ω1, the acceleration  aM  is equal: 

                          
MM

a   2
1

, m/s2                                       (6) 

where 

2
1

2




d

xd M
M


 - the analog of the point M acceleration, which 

moves horizontally. 

As             
 33

11

3

3
2
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d

d

d

dx

d

d
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






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






        (7) 

where: 
3M

v  - the analog of the velocity of point M compared to 

element 3 of the OACB quadrilateral; 

           
3

v  - the analog of the speed of the cranked part of the drive 

mechanism. 

Taking into account that the derivative  dvM3 /dφ3 =αM3 is 

analogous to the acceleration of the point M with respect to element 

3, and  dvM3 /dφ1 =φ3  is analogous to the acceleration of the 

slider, at the result of the derivation will be obtained: 
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333

2
3 MMM

vv   .                                      

Finally, the acceleration of point M  becomes: 

         333
2
3

2
1 MMM

vva   .                            (8) 

The kinematic characteristics of the slider as part of the 

driving mechanism of transplanting machine can be chosen from 

manuals, guidance etc [3, 4].  

Then the relationship can be used to determine the velocity 

analog v3: 

               
 31

3

1
3

cos  
l

l
v

;                                  (9)  

where:  l3 - the length of the slide; 

            φ3 -  the angle of return of the slide. 

The variable parameters l3 and φ3 are determined from the 

relation: 

         
110
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2
03

sin2 lllll  ;                        (10) 
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arctg
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.                          (11)  

The analog of the slide acceleration 
3

 is equal: 

          3311323
 /sin llk   ;              (12) 

where k
32

  - the analog of the Cariolis acceleration, which is 

determined by the relation: 

                  
33232

2 vvkk  ;                                     (13) 

where  31132
sin   lvk  - the analog of the relative sliding 

speed of the slide 3 on element 2. 

From this 

                         331133
 / sin2 llv   .                        (14) 

When passing to the next dyad 4-5, it is necessary to take into 

account the given length lA of the leading rocker OA and its 

position dislocated relative to the slide with a constant angle 
3 : 

                   
333

  .                                     (15) 

The formulas for determining the analogs of the angular 

speeds of the transmission functions  v43, v53  and the analogues of 

the respective angular accelerations 
5343

 , of the connecting rod 

4 and of the driven rocket 5 relative to the driving one are: 

             
 544

53
43

sin

sin










l

l
v A

;      

              
 455

43
53

sin

sin










l

l
v A

;                             (16) 

     
 544

544
2
435

2
5353

43
sin

coscos











l

lvlvlA
;        (17)                     

   
 455

455
2
534

2
4343

53
sin

coscos











l

lvlvlA
.           (18) 

The angular positions 
4

  and 
5

 in relations (17) and (18) 

are determined as follows: 
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;                            (19) 

From the analogs of the angular characteristics of the OACB 

quadrilateral it is easy to move to the true values of the angular 

velocities 
4

 and 
5

 of the angular accelerations 
4
 and 

5
 of  

elements 4 and 5: 

4334
v ;         

5335
v ;                        (20) 

43343
2
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53353

2
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v  .      (21) 

Then the speed of point F of the vertical rod becomes equal: 

               
 45

43

5
35

sin

sin











l

l
llV A
FFF

;             

                      
 45

43

5 sin

sin











l

ll
V AF

F

 .                    (22) 

Parameter VF drives the process of dropping the seedling 

from the bucket into the coulter by means of the initial horizontally 

oriented velocity V0 . Let AB be the displacement path of the point 

F of the vertical rod (fig. 2).  

 
 

Fig.2. The displacement path of point F and the velocities 

diagram 

 

Then the horizontal projection of the velocity of point F will 

be: 

                        
5

 cos
F

x
F

VV ;                                 (23) 

where 
5

   - the angle that determines the direction of the 

velocity vector VF with respect to the x-axis. 

From Fig. 2 it is obvious that φ'5 is equal: 

5
max
55

 d  

where: γ –  the displacement angle of the FC rod in the end 

position relative to the vertical one, rad. 
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     dφ5 – changes within the limits max
5

...0  . 

The function that describes the displacement path of point F is 

the folloing: 

              5
max
55  cos  dVV

F
x
F

 .                 (24) 

Since the angular velocity of any point on the carousel (fig. 3) 

is equal to 
car

 , then    
carrf

  , where 
f

 and 
r

 are 

respectively the angular velocities of the fastener of the 

interminable movement mechanism and of the seedling from the 

seedling cup , s-1. 

 
Fig.3. The diagram of the carousel during the operation of  

the vertical rod on the fastener 

 

That's why the following relation is true: 
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;                    (25) 

where: Vf  – fastener speed, m/s 

                  r – radius to the center of the cups on the carousel, m 

            r
'  – radius of the fasteners arrangement, m. 

Taking into account the fact that the seedling begins its fall from the 

cup with an advancement equal to the angle   and velocity Vo≠ 0: 
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                        (26) 

where n – number of seedling cups arranged on the carousel. 

The angle of the advance   of the seedlings fall  from the 

carousel cup into the coulter can be changed in the interval 

 0  ;/2 n . 

Substituting (24) and (26) into (25) the  following function is 

obtained:    

   




















n
r

rV
V F

cos

 cos 
, 5

max
5

50

;              (27) 

where max
5

 - the maximum return angle of element 5 compared 

to its initial position, rad. 

Suppose that   is the forward angle in the vertical plan, 

which finds the position of point F at a forward opening of the cup 

equal to the angle  , then 

                max
55

d                         (28) 

where:   - the angle until point F contacts the fixer, rad; 

                      max
5

 - the rotary phase of the carousel, rad. 

In order to express   through  , the following relation is used: 
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Substituting 
5

 in (27) it is obtained: 
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As according to the projected construction the forward angle 

is equal to 
0

 , the theoretical mathematical model for determining 

the initial velocity V0 of the seedling at its movement from the seed 

cup into the coulter of the machine has the form: 
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.    (32) 

The importance of performing the synthesis of the elaborated 

transplanting machine’s operation system consists in the possibility 

of using the methodology and modeling of the operating system  

obtained as the result of the research. 

 

Conclusions 

1. The research of the operating system of the carousel type  

transplanting machine allows the determination and optimization of 

the essential design parameters of the improved machine. 

2. There was established the law of the movement of the 

pushing vertical rod end of the fasteners on the carousel of the 

planting machine and the theoretical mathematical model for 

determining the initial velocity  V0 of the seedling at its movement 

from the seedling cup into the coulter of the machine. 

3. The proposed mathematical modeling of the operating 

system of the carousel type transplanting machine can be used in 

the researching processes of the drive systems of carousel-type 

planters with an intermittent carousel movement.                                                                                               
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Аннотация. Исследование процесса возникновения оползней осадочных горных пород, находящихся на поверхности 

возвышенности проведено методом механико-математического моделирования, в результате  которого получена 

математическая задача о квазилинейном уравнении параболического типа. Для решения полученной математической задачи 

использован конечно-разностный метод; была выбрана нелинейная неявная расчетная схема, на основе которой сформулирован 

алгоритм решения задачи и разработана компьютерная программа. Проведено компьютерное моделирование рассматриваемого 

процесса,  в результате проведен численный эксперимент для различных возможных вариантов; в качестве исходных данных 

физических параметров взяты механические характеристики глинистых пород. Результаты  исследования представлены в виде 

графиков и таблиц.  

КЛЮЧЕВЫЕ СЛОВА: ОСАДОЧНЫЕ ПОРОДЫ, РЕОЛОГИЧЕСКИЕ СВОЙСТВА, ПОЛЗУЧЕСТЬ, МЕХАНИЗМ 

ВОЗНИКНОВЕНИЯ ОПОЛЗНЕЙ, МАТЕМАТИЧЕСКАЯ И КОМПЬЮТЕРНАЯ МОДЕЛЬ.  

 
1. Введение 

 
Одной  из актуальных проблем для горных районов  

являются исследования, связанные с таким явлением  как 

оползни, возникающие в высокогорных областях вследствие 

различных причин, в частности, изменения вязкостных свойств 

материалов из-за природных или климатических процессов. 

Предполагается, что происходит движение некоторого верхнего 

слоя, состоящего  из рыхлого грунта, который не способен 

выдерживать нагрузку собственного веса, поэтому происходит 

смещение. Такое геолого-горное явление представляет 

определенную угрозу сооружениям и населению, находящимся 

в таких районах.  

При сохранении определенных геологических и 

климатических условий, в таких местах достаточно долгое 

время сохраняется устойчивое положение грунтовых 

материалов. Однако часто имеет место увлажнение и размытие 

горных пород дождевой или талой водой, что  приводят к 

изменению вязкостных свойств материалов, составляющих 

верхние слои грунта.  Либо под влиянием тектонических или 

техногенных процессов могут возникать ползущие движения 

верхних слоев возвышенностей под воздействием собственной 

тяжести.  Исследования такого явления является актуальным 

по известным причинам [1,2].  

Многолетние наблюдения и изучение таких процессов 

показывали [3,4,5], что осадочные горные породы, которые 

покрывают более 75% поверхности земной суши, обладают 

свойством ползучести.  «Ползучесть – явление постепенного 

роста деформации во времени при постоянном напряжении и 

снижением прочности при длительном нагружении» [5, стр. 

36]. Учитывая, что ползучесть является причиной таких 

явлений, как оползни, селевые потоки, течения ледников и 

других, в данной работе приведено теоретическое исследование 

их с помощью математического и компьютерного 

моделирования. 

 Данная работа посвящена компьютерному 

моделированию одного из вариантов механизма возникновения 

оползней, когда  происходит опускание грунтов под 

воздействием собственного веса при изменении их 

реологических свойств.  Здесь используется  физическая модель 

«ползущих» течений в вязком слое [3,4], а для исследования 

рассматриваемого процесса - метод  математического и 

компьютерного моделирования с проведением численного 

эксперимента. 

 

 

 

2. Математическая модель задачи  

 
В данном случае рассматривается вязкий слой 

определенной толщины (мощности), покоящийся на 

поверхности возвышенности и в начальный момент времени 

этот слой находится в устойчивом положении, отсутствует в 

нем какое-либо движение (Фиг.1).  

 
Фиг.1 – Начальное положение возвышенности 

 
Предполагается, что происходит снижение значения 

динамического  коэффициента  вязкости  слоя, и из-за этого 

происходит движение материалов слоя вниз по склону 

возвышенности под воздействием собственного веса.  

Возникает необходимость создания математической модели 

этого процесса, и сформулировать математическую задачу. 

Для создания математической модели 

рассматриваемого процесса определяются основные его 

параметры и вводятся соответствующие обозначения.  Здесь  

принята прямоугольная система координат, в которой    и   - 

горизонтальные координаты, а    вертикальная координата;  

ось   направлена вверх, обратно направлению вектора силы 

тяжести  .   

Для упрощения были использованы известные из 

гидродинамики допущения о «мелкой воде»  [4]. Для 

проведения расчетов на компьютере использованы 
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безразмерные параметры, для чего осуществлен переход к 

безразмерным параметрам. Проведен анализ слагаемых в 

безразмерных уравнениях, получены упрощенные 

математические зависимости, совокупность которых явилась 

математической моделью изучаемого процесса. Для описания 

свободной поверхности вязкого слоя получено следующее 

квазилинейное дифференциальное уравнение параболического 

типа в безразмерных переменных:  
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Основание вязкого слоя описано следующей функцией 

[6-8]:  
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где f первоначальная толщина вязкого слоя.  

В уравнении (1) имеется единственный безразмерный 

параметр 
UL

gH
ER




3

 , который зависит от физических и 

геометрических свойств вязкого слоя; где  плотность 

материала и  динамический коэффициент вязкости слоя, 

g ускорение силы тяжести, LHU ,, характерные величины: 

скорость, вертикальный и горизонтальный размеры  слоя 

соответственно.  

Решение уравнения (1)  позволяет вычислить значения 

скоростей движения материалов слоя по  следующим 

формулам:  
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Предполагается,  что в  начальный момент времени 

(при 0t ),  когда вязкий слой находился в состоянии 

устойчивого положения, его свободная поверхность  была 

описана следующей безразмерной функцией:  
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Из допущения о малости характерного вертикального 

размера слоя  в сравнении с его характерным горизонтальным 

размером,  можно  с достаточно большой точностью 

предположить выполнение следующего условия:   

(5) 0u  при условии .,  yx  

Приняты следующие  граничные условия: 
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Сформулирована постановка математической задачи 

(1)-(6). В качестве метода решения данной задачи использован 

конечно-разностный метод и алгоритм нелинейной расчетной 

схемы  [9]:  
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где  

n количество точек по  ,x  а m  по .t  

 
3. Алгоритм решения задачи 

 
В качестве нулевого приближения для метода 

итерации используется значение искомой функции на 

предыдущем слое.  

Внутри итерации будут выполнены следующие 

операции: 

10.Определены значения коэффициентов системы 

уравнений (8) по формулам (9). 

20. В прямой прогонке определены неизвестные 

коэффициенты прогонки с помощью следующих 

формул:  
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30. В обратной прогонке определены значения 

искомой функции по  формулам:  

(12) 
.1,...,2,1

,111,0





nni

iiuiiunu 
                                          

40. Итерационный процесс продолжался до тех пор, 

пока не было выполнено условие точности: 

(13) ,|}][][max{|  iwiu                                                                                    

где     малое положительное число.  

 
4. Численная реализация алгоритма 

 
Проведен численный эксперимент с помощью 

разработанной компьютерной программы. В данном случае 

решение  задачи зависит только от одного безразмерного 

параметра .ER   Элементарные расчеты показали, что для 

большинства осадочных пород, в том числе, глинистых, 

покрывающих значительную часть земной поверхности, 

порядок значений безразмерного параметра ER  могут быть в 

пределах  0,01; 0,1; 1,0; 10. Для этих значений данного 

параметра были проведены расчеты. 

В план численного эксперимента включены 

следующие данные: 

- для безразмерной величины ER приняты четыре 

значения: ;01,0ER  ;10;0,1;1,0  ERERER   

- шаги по независимым переменным: ;02,0h   

;0001,0       

- первоначальная толщина слоя принята постоянной и 

равной ;3,0f    

- для определения точности вычислений принято 

;0001,0   

- расчеты проводились для моментов времени 

100  t ; 

- промежуток по горизонтальной переменной составил 

.33  x  

 
4.1. Результаты численного решения задачи 

 
В результате численной реализации алгоритма 

решения данной задачи получены результаты,  которые 

представлены в виде графиков. Определены положения вязкого 

слоя для различных моментов времени в промежутке 

100  t  для разных значений безразмерного параметра .ER   

Из-за того, что при 01,0ER , когда динамический 

коэффициент вязкости имеет достаточно большое значение, 
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изменение первоначального положения вязкого слоя оказалось 

незначительным, график для этого случая здесь не представлен.  

На фиг.2-4 показаны некоторые положения вязкого 

слоя в момент времени 10t  для значений  параметра :ER  

.10;0,1;1,0  

 

 
Фиг. 2 – Положение вязкого слоя при 10t  для  1,0ER  

 

 
Фиг. 3 – Положение вязкого слоя при 10t  для  1ER  

 

 
Фиг. 4 – Положение вязкого слоя при 10t  для  10ER  

 

 

5. Анализ результатов 

 
В связи с тем, что основным параметром, влияющим 

на рассматриваемый процесс, является изменение значения 

динамического коэффициента вязкости, изменение этого 

параметра было учтено в качестве основного  фактора при 

исследовании данного процесса. Следовательно,  значения 

параметра ER , зависящего обратно пропорционально от 

динамического коэффициента вязкости, были использованы для 

численного эксперимента.  

Из анализа  численных результатов следует, что при 

достаточно большом значении динамического коэффициента 

вязкости рассматриваемого слоя ( 1,0ER  и 01,0ER ) 

изменение первоначального состояния слоя будет 

незначительным. В самом деле, опускание максимальной точки 

(вершины) внешней поверхности слоя за промежуток времени 

10t  составляет для случая, когда 1,0ER , всего на 6,15% 

(уменьшение от 1 до 0,9385), а для случая, когда 01,0ER , 

всего на 1.09% (то же самое, от 1 до 0,9891). Для сравнения 

можно привести данные для 1ER  и .10ER  В двух 

последних случаях коэффициент вязкости будет иметь 

сравнительно небольшие значения. Опускание материалов 

вязкого слоя при этом будет значительным; опускание вершины 

слоя составит: для случая 1ER  около 18%, а для 10ER  - 

26%.  

Кроме этого  следует отметить, что из-за опускания 

вниз материалов слоя происходит утонение верхних частей 

(Фиг.4),  и за счет этого процесса происходит утолщение 

нижних частей рассматриваемой области, где накапливаются 

осадочные породы, толщина которых достигает значительных 

размеров. Утолщение слоя осадочных пород на самом нижнем 

уровне (на подошве) возвышенности для различных вариантов 

составляли значения от 13,6 %  до 84,2 %. 

 

6. Заключение 
Следует отметить, что результаты решения данной 

задачи позволяет теоретическое (математическое) описание 

механизма возникновения оползней, залегающих на 

возвышенных местностях. Проведена оценка изменений, 

происходящих из-за оползней при уменьшении коэффициента 

вязкости осадочных пород. Полученные результаты  

исследования позволяют оценить масштабы катастрофических 

последствий из-за возникновения оползней.   
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