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MATHEMATICAL AND NUMERICAL SIMULATION OF STRESSES AND 

DISPLACEMENTS LOCALIZATION PROBLEMS 

PhD.  Zirakashvili Natela 

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, Georgia

natzira@yahoo.com 

Abstract: Mathematical and numerical simulation of the non-classical problems, namely problems of localization of stresses and 

displacements in the elastic body, are obtained by the boundary element method. The current work examines two localization problems, 

which have the following physical sense: on the middle point of the segment lying inside a body parallel to the border half plane in first case 

a point force is applied, and we must find such value of the normal stress along the section of the border half plane, which will cause this 

point force, while in the second case, there is given a vertical narrow deep trench outgoing of this point, and we must find such value of the 

normal stress along the section of the border half plane, which will result in such a pit. By using MATLAB software, the numerical results 

are obtained and corresponding graphs are constructed. 

Keywords: NON-CLASSICAL PROBLEM, BOUNDARY ELEMENT METHOD, LOCALIZATION PROBLEM, HOMOGENEOUS 

ISOTROPIC HALF PLANE  

1. Introduction

In the present work, mathematical and numerical simulation of 

the problems of localization of stresses and displacements in a 

body, are gained by the boundary element method (BEM) [1]. In a 

certain sense, the problem of localization of stresses in the elastic 

body is the inverse problem to the delocalization problem [2]. The 

localization problem is defined as follows: to change a sufficiently 

uniform stressed-deformed state of a body for a sharply expressed 

non-uniform stressed-deformed state (in conditions of constant 

external perturbations) by changing and appropriate selection of 

parameters of the medium.  

In the theory of elasticity, there are a number of problems   [3]-

[10] that could be called non-classical due to the fact that boundary

conditions on a part of the boundary surface or on the entire

boundary surface are either over-determined or underdetermined, or

the conditions on the boundary are connected with the conditions

inside the body (so called non-local problems).

The current article sets and solves non-classical two-

dimensional elasticity problems by using BEM, and problems of 

localization of stress and displacement for a homogeneous isotropic 

elastic half-plane are formulated based on them. The present paper 

examines two localization problems, which have the following 

physical meaning: on the middle point of the segment lying inside a 

body parallel to the border half plane in first case a point force is 

applied, and we must find such value of the normal stress along the 

section of the border half plane, which will cause this point force 

(stresses localization), while in the second case, there is given a 

vertical narrow deep trench outgoing of this point, and we must find 

such value of the normal stress along the section of the border half 

plane, which will result in such a pit (displacements localization).  

Finally, there are test examples given showing the value of 

normal stress supposed to apply to the section of the half-plane 

boundary to obtain the pre-given localized stress or displacement at 

the midpoint of the segment inside the body. The numerical results 

of these problems are obtained and presented appropriate graphs, 

and mechanical and physical interpretations of the problems.  

2. Formulation of problems

Let us set some non-classical static problems for homogeneous 

isotropic half plane  (see. Fig.1). 

It is known that a homogeneous system of elastic static 

equilibrium in displacements in the Cartesian system of coordinates 

has the form [16] 

 
 

 D
u

y

x
in  

0v,

0,














  (1) 

where 
  

,
121 







E
  

 





12

E
 are Lamé constants, E  is 

elasticity modulus, and    Poissons’s ratio;      
yyxx ,,

 is a 

Laplacian, 
yx

uU
,,

vdiv 


 ;  v,uU 


is the displacement 

vector;   
 
x

x






, ,  
 
y

y






,
;  

 
2

2

,

x
xx




 ;  

 
2

2

,

y
yy




 .

Fig. 1 Illustration of localization problems of stresses and displacements for 

elastic half plane. 

2.1. Statement and solving of problem when normal stress 

is applied to segment inside half plane 

(a) Setting. Let us consider a non-classical problem for half

plane D  (see Fig. 1), when the tangent stress along the entire 

border and normal stress along boundary segment 0,  ycx

equal to zero. Along segment bycx  , inside the body, the 

value of normal stress 
yy

 is known. So, let us find the solutions to

the system of equilibrium equations (1) satisfying the following 

boundary conditions: 

  ),(:   and  for

  ,0:0   and  for

  ,0:0   and  for

0
xPbycx

ycx

yx

yy

yy

yx
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





where )(
0

xP is the sufficiently smooth function given along 

segment
 
 cc; .

We can formulate the set problem as follows: let us find the 

kind of distribution of normal stress 
yy

 along section 0,  ycx  

of the boundary of a half plane (see Fig. 1) so that the normal stress 

along segment bycx  ,  inside the body equals to the values of 

given function )(
0

xP . 

If we consider function of kind 
x

PxP
4

0
10)(





 constant P , which describes a force similar to the concentrated
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one, then we will have the following localization problem: we must 

find the kind of distribution of normal stress 
yy

  along segment 

11
BA  to obtain the concentrated force of the given value 

(localization of stresses) along section AB  (see Fig. 1). 

(b) Solution. Let us divide segments 0,  ycx  and 

bycx  ,  into N  segments (elements) of the same size 

a2 and smaller sizes (i.e. Nca /  ). We mean that constant 

normal stresses j

y
P  act on each j th element of length a2  with 

center )0;( jx
 
of  segment 0,  ycx . We need to find such 

values of these stresses, for which the values of the normal stresses 

in middle points ),( bx i 
 
of each i th segment with a length of a2  

along segment bycx  ,  inside body will equal to the given 

value of )(
0

ixP .  

Normal stress in the centre of the i
th element lying on segment 

bycx  ,  will equal to following sum: 
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where for the influence coefficients ijA  has the following formula 
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Thus, we obtain the following system of N linear algebraic 

equations with N  unknown quantities j

y
P , Nj ,,2,1  . 
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1
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                      (2)  

If solving (2) system in relation to unknown quantities j

y
P  by 

means of any standard method of numerical analysis (by method of 

Gauss in our case), then we can assume that the set problem is 

solved and NjP j

y

j

yy
,,1    ,  . 

After solving these equations, we can express the displacements 

and stresses at any point  ki yx ,  of the body by means of other 

linear combination of load j

y
P . For example, the stresses and 

displacements have the following form: 
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2.2. Statement and solving of problem when normal 

displacement is applied to segment inside half plane 

(a) Setting. Let us consider a non-classical problem, when 

along the entire border of half plane D  (see Fig. 1) the tangent 

stress is equal to zero, and normal displacement 
y

u on segment 

bycx  ,  lying inside the body is known. Also, normal stress 

along part 0,  ycx  of boundary is equal to zero. Thus, we 

have the following boundary conditions: 

  ),(:   and   when
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where )(
0

xU  is the sufficiently smooth function given along 

segment  cc, . 

We can formulate this problem as follows: let us find the 

distribution of normal stress 
yy

  along part 0,  ycx  of the 

boundary of the half plane when normal displacement along 

segment bycx  , lying inside half plane D equals to )(
0

xU . 

Let us consider this function of the following kind 

 constant   ,10)(
4

0



 P

x
PxU , which describes clearly 

expressed non-uniform normal displacement. Thus, we will have 

the following localization problem: let us find the distribution of 

normal stress 
yy

  along  segment 
11

BA   to obtain the pit of a given 

value along segment AB  (displacements localization) (see Fig. 1). 

(b) Solution. Let us divide segments 0,  ycx  and 

bycx  ,  into N  segments (elements) with equal a2  and 

smaller lengths. We mean that constant normal stresses j

y
P  act on 

each j th segment of segment 0,  ycx , each with the length of 

a2  and with centre )0,( jx . We must find such values of these 

stresses, for which the values of normal displacement in middle 

point ),( bx i 
 

of each i th element with length a2  of 

bycx  , segment inside the body should equal to the given 

value of )(
0

ixU . 

Normal displacement in the centre of the i th element lying on 

segment bycx  , will be computed with the following 

formula: 
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Thus, the set problem is reduced to solving the following system 

of linear algebraic equations ( N  equations with N  unknown 

values): 
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            (4) 

 If we solve system (4) in relation to unknown values j

y
P , then 

the set problem can be considered as solved, like the problem set in 

2.1. 

3. Numerical simulation 

By using MATLAB software, we obtained the numerical values 

of the normal stresses (problem of stresses localization) and 

displacements (problem of displacements localization) along 

segment AB (the given normal load and normal displacement) and 

distribution of normal stresses along segment A1B1 (the obtained 

normal stress) shown in Fig. 1 for the following data: c=1m, 2m, 

3m, 4m, 15m, 18m, 20m, 30m, and  b=5m, 6,5m, 8m, 10m, 15m 

18m, 20m, 30m; 120N ;  210 cmkgP  . Below are  graphs of 

some of the obtained results. Namely, Fig. 2 shows load  xP
0

 and 

Fig. 3, Fig. 4 shows normal displacement  xU
0

  along AB segment 

and distribution of obtained normal stress 
y

P  along 
11

BA  segment, 

when mc 1  and mmmmb 10 ,8 ,5,6 ,5 . 

 
Fig. 2 The load  xP

0
 along segment AB and distribution of obtained 

normal stress 
yyyy

P :  along segment 
11

BA , when mc 1 . 

 
Fig.3 Displacement  xU

0
 along segment AB and distribution of obtained 

normal stress 
yy

P  along segment 
11

BA , when mc 1  and 

22102 cmkgE  , 42.0  (technical rubber). 

 
Fig. 4 Displacement  xU

0
 along segment AB and distribution of obtained 

normal stresses 
yy

P  along segment 
11

BA , when mc 1  and 

26102 cmkgE  ,  3.0 (steel). 

Besides, represented 3D graphs of the distribution of stresses 

and displacements in the body section relevant to domain 

1030-  ,  ycxc , when mc 1 , mb 30 ; for steel 
26102 cmkgE  , 3.0  (see Fig. 5 and Fig. 8 for stresses 

localization problem, and Fig. 6 and Fig. 10 for displacements 

localization problem) and technical rubber 22102 cmkgE  , 

42.0  (see Fig. 9 for stresses localization problem, and Fig.7, 

Fig.11 for displacements localization problem). Formula (3) 

evidences that the stresses in the stress problems do not depend on 

Young's modulus and Poison's ratio. As for the displacements, the 

normal displacement less and tangential displacement is bigger in 

steel than in technical rubber. 

 
Fig. 5 Distribution of stresses in domain 1030-  ,  ycxc , 

when mc 1 , mb 30 ,  3.0  (in stresses for the problem, when 

x

PxP
4

0
10)(



 ). 

 

Fig. 6 Distribution of displacements for steel in domain 

1030-  ,  ycxc , when mc 1 , mb 30 , 

26102 cmkgE  , 3.0  (in stresses for the problem, when 

x

PxP
4

0
10)(



 ). 

 
Fig. 7 Distribution of displacements for technical rubber in domain 

1030-  ,  ycxc , when mc 1 , mb 30 , 

22102 cmkgE  , 42.0  (in stresses for the problem, when 
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x

PxP
4

0
10)(



 ). 

 
Fig. 8 Distribution of stresses in the part of the body of steel bordered by 

domain 1030-  ,  ycxc , when mc 1 , mb 30 , 

26102 cmkgE  , 3.0  (in displacements for the problem when 

x

PxP
4

0
10)(



 ). 

 
Fi. 9 Distribution of stresses in the part of the body of technical rubber 

bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
22102 cmkgE  , 42.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

 
Fig. 10 Distribution of displacements in the part of the body of steel 

bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
26102 cmkgE  , 3.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

 
Fig. 11 Distribution of displacements in the part of the body of technical 

rubber bordered by domain 1030-  ,  ycxc , when mc 1 , 

mb 30 , 
22102 cmkgE  , 42.0  (in displacements for the 

problem when 
x

PxP
4

0
10)(



 ). 

4. Conclusion 

The paper sets non-classical problems, and problems of 

localization of stress and displacement for a homogeneous isotropic 

elastic half-plane are formulated based on them. The essence of the 

problems is as follows: we must find the distribution of the normal 

stress along section 
11

BA  (see Fig. 1) of the border of the half plane 

so that normal stress 
yy

  or normal displacement 
y

u  along segment 

AB parallel to the border of a given length distanced from the 

border by b within the body should equal to the value of the given 

function. If we take the kind of this function, which describes the 

point-force applied to the middle point of section AB  (e.g. 

 constant   ,10)(
4

0




CCxU
x

), we will obtain the problem of 

localization of stresses and displacements. The set problems are 

solved by BEM [1].  

By using the MATLAB's software, we obtained the numerical 

results and plotted the corresponding graphs showing the values of 

normal stress to be applied to the part of the boundary of the half 

plane to obtain the point force or displacement in the middle point 

of a segment inside the body. The paper also presents 3D graphs of 

distribution of stresses and displacements within the parts of the 

bodies of steel and technical rubber bordered by domain . 

The problems considered in the work can be used in practice, 

e.g. in soils and rocks, materials that are susceptible to cracking and 

faulting when sheared, as well materials used to demolish military 

structures or in underground facilities. 
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Abstract:  The problems of continuous motion of a cylindrical body with a displaced center of mass along vibrating horizontal and 

inclined surfaces are considered. 

The analytical solutions of the motion equations were obtained by the method of partial discretization of nonlinear differential equations 

[1] and graphs of changes in the rotation angles of a cylindrical body were constructed for various cases. 

 
KEY WORDS: SOLID BODY, ROUGH SURFACE, AMPLITUDE, FREQUENCY, MOMENT OF INERTIA, DIFFERENTIAL 
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1. Introduction 
 

Vibration processes are widespread in industrial and 

technological systems. Vibrations are significant in the processes of 

vibrational movement, transportation, and also used in part process 

technologies. In general, the dynamics of vibrating machines and 

mechanisms are widely studied. In studies of vibrational processes, 

modeling plays a significant role. In this case, models of various 

levels ща complexity are used. The indicated models are reduced to 

the description of nonlinear differential equations system, the 

analytical solutions of which present known difficulties. Therefore, 

the construction of their analytical solutions is very relevant. 

 

2. Preconditions and means for resolving the 

problem 
 

The movement of a cylindrical body occurs under the action of 

gravity and the reaction of the surface applied at a point Р . 

Decompose the reaction into two components: vertical N and 

horizontal F (Fig. 1). 

Let the surface perform translational rectilinear harmonic 

oscillations according to the law  tsinA   , directed at an angle 


 
to the horizontal 

 

 
 

Fig.1 The movement of a cylindrical body on a vibrating horizontal 

surface 

 

Here: ,A
 
– amplitude and frequency of oscillations; t –time. 

The inertial properties of the body are characterized by mass and 

moment of inertia relative to the center of mass C. We will set the 

position of the body by the CC y,x  coordinates of the center of mass 

in the Oxy  coordinate system associated with a rough surface and 

the rotation angle  . 

The interaction of a solid body with a surface occurs through 

the action of a normal reaction N and friction force F  (rolling 

friction is neglected). Assume that friction obeys the Amonton-

Coulomb law: 

NfF  , 

 

where f
 
is the coefficient of sliding friction. In this paper, we 

consider continuous motion, 0N . 

The body is also under the influence of gravity force mg . In 

relative motion, to all forces it is necessary to add the portable 

inertia force: 

 

 tsinAm 2   . 

 

Non-slip rolling of a cylindrical body with a displaced center of 

mass on a horizontal surface is described by differential equations 

system arising from general theorems on the motion of the center of 

mass and on the change in the kinetic moment [2,3]: 

 

(1)  

  ,sinNrcosrRFJ

,sinmgNym

,cosFxm

C

C

C



















 

  

where m – mass of a body; CC y,x  – coordinate of center of mass С 

of the body; N

 

– normal reaction of the surface; CJ  – moment of 

inertia about an axis perpendicular to the surface of the body;   – 

body rotation angle; R – cylinder radius; r – distance from the 

geometric center to the center of gravity of the body; g – 

gravitational acceleration. 

Consider the system of differential equations (1) together with 

the initial conditions 

 

(2)  .t 00 ,:0       

  

For a more convenient recording, we consider positive the 

direction of the rotation angle counterclockwise. The coordinates of 

the center of mass C can be represented as: 

 

(3)   ,cosrRysinrxx CDC   ;
 

 

where Ry,x DD 
 
– coordinates of the center of curvature D,

CDr  .  

When rolling without sliding, the instantaneous center of 

velocity is at the point of contact Р, i.e. 0Р , or 

 

(4)  .yRx DD 0;   
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Using (3), (4), find: 

 

(5)  
 

.osrсsinry

sinrcosrRx

C

C

2

2;












 

  

The first two of the three differential equations of the body 

motion (1), taking into account (5), give the dependence of the 

components of the surface reaction on  ,  и  : 

 

(6)      

    

     .costsinmAsinrcosrRmF

,sintsinmAcossinrgmN





22

22









 

      

Substituting expressions (6) into the third of the differential 

equations of motion of the body (1), arrive at the equation 

describing the change in the rotation angle  t : 

 

(7) 
    

     .rcosRcostsinmA

gRmrsincosRrrRmJC

0

2

2

222







 

 
 

By entering the notation  

 

(8)       
 

,
cosRrrRmJ

m
tf

C 222 
  

  

obtain equations (7) in the form 

 

(9)            .rcosRcostsinAgRrsintf 2 02     

 

3. Results and discussion 
 

The last equation in its final form is not integrated. To solve 

problem (9)-(2) using the method of partial discretization of 

nonlinear differential equations,  obtain 

 

(10)      

        

       

        

      ,tttrcosRcos

tsinAgtRtrsintf

tttrcosRcostsinA

gtRtrsintftt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
1

2

1















 













        

 

where  t  – Delta Dirac function. 

The general solution of equation (10) has the expression 

 

(11)       

          

       

        

      ,ttHtrcosRcos

tsinAgtRtrsintf

ttHtrcosRcostsinA

gtRtrsintfttCt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
11

2

1















 













        

 

where   tH
 – Heaviside function, 1C  – arbitrary integration 

constant. 

Using the initial conditions (2), we have 

 

(12)     

          

       

        

      .ttHtrcosRcos

tsinAgtRtrsintf

ttHtrcosRcostsinA

gtRtrsintfttt

ii

i
2

iii

iii
2

n

i

iiiii

11

1
2

111

1

2
10

2

1















 













 

     

The general solution of equation (12) has the expression 

 

(13)     

          

        

        

       .ttHtttrcosRcos

tsinAgtRtrsintf

ttHtttrcosRcostsinA

gtRtrsintfttCtt

iii

i
2

iii

iiii
2

n

i

iiiii

111

1
2

111

1

2
120

2

1















 













 

 

With taking into account the initial conditions (2), the solution 

of equation (13) will have the form 

 

(14)    

          

        

        

       .ttHtttrcosRcos

tsinAgtRtrsintf

ttHtttrcosRcostsinA

gtRtrsintftttt

iii

i
2

iii

iiii
2

n

i

iiiii

111

1
2

111

1

2
100

2

1















 













  

In accordance with equation (14), expressions of the rotation 

angle  kt  and the angular velocity  kt  of the body at times 
kt  

will be: 

 

  ;0101   tt 
 

          

     .

2

1

11

2
1112101









trcosRcostsinA

gtRtrsintfttt

2



 

          

      ;

2

1

1211

2
11121002

tttrcosRcostsinA

gtRtrsintftttt

2

2







 
 

             

            

     .

2

1

2

1

22

2
222131

1
2

1112102













trcosRcostsinA

gtRtrsintftttrcosRcos

tsinAgtRtrsintfttt

2

2





 

          

      

          

        

      
    ;

2

1

2

1

2

1

233

3
2

33

324232

2
2

22213

1311

2
111210303

tttrcosRcos

tsinAgtRtrsin
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          

     
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Using the method of mathematical induction, construct analytical 

expressions of the rotation angle  kt  and the angular velocity 

 kt  at an arbitrary point nk 1, : 

 

          

      

        
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Figure 2 presents graphs of changes of the rotation angle   t  

of a cylindrical body located on a horizontal surface. System 

parameters correspond to the values: ,kgm 50  ,rad,5240

,m,R 50   ,rad,17500    00  .  

In this case, the center of mass of the cylindrical body is offset 

from the geometric center by half the radius, i.e. m,r 250 .  

 

 
а  

 
b  

Fig.2  Graphs of changes of the rotation angle  t : 

а) at ,m,А 10 srad3  ; b) at ,м,А 0010  srad10   
 

From graph 2a it follows that the nature of the beating occurs 

with the corresponding parameters ,m,А 10 srad3 .  

Figure 2b shows a graph of changes  t  at ,m,А 0010  

srad10 . As follows from this graph, the fluctuations of the 

rotation angle  t  obeys the harmonic law and has an established 

character. It should be noted that when ,m,r 250
 
the period of 

oscillation of the rotation angle increases, when  m,r 250  the 

period decreases. 

 

Consider the motion of a cylindrical solid with a displaced 

center of mass along a vibrating inclined surface (Fig. 3). 

 

 
Fig.3 The motion of a cylindrical solid on a vibrating inclined 

surface 

 

In this case, the system of differential equations (1) takes the 

following form 

 

(16)   

  .sinNrcosrRFJ
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C
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After some transformations, from the system of differential 

equations (16) obtain the values of the surface reaction components 

from  ,  и   in the form 

 

(17)

   
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Substituting expressions (17) into the third of the system of 

differential equations of body motion (16) and introducing the 

notation (8), obtain the expression for the change in the rotation 

angle  t
 in time: 

 

(18) 
      

   .rcosRcos

tsinArsinRsingrRsintf 2

0

2




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Similarly, by the above method, obtain an analytical solution in 

the form: 

(19)  
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Using the same transformations, define the expressions of the 

rotation angle  kt
 
and the angular velocity  kt

 
of the body at 

times kt  in the following form 
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Figure 3 shows the case when the inclination of the vibrating 

surface makes an angle with the horizontal: ,rad,1300
 
other 

parameters correspond to the values indicated in the previous case.  

        

 
а  

 
b  

Fig.3  Graphs of changes of the rotation angle  t : 

а) at ,m,А 10 srad3 ; b) at ,м,А 0010  srad10  
 

As can be seen from graph 3a, oscillations having the nature of 

a beating are preserved. 

As follows from graph 3b, the oscillations are harmonic, but 

due to the angle of inclination of the plane, the graph has the form 

of an offset. 

The research results show and this is evident from the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
 

The problems of continuous motion of a cylindrical body with a 

displaced center of mass along vibrating horizontal and inclined 

surfaces are considered. 

The analytical solutions of the motion equations are obtained by 

the method of partial discretization of nonlinear differential 

equations. 

Graphs of changes of the rotation angles  t  of a cylindrical 

body are constructed for various cases of changing the system 

parameters. 

In particular, changes were made to the distances of the 

displacement of the center of mass from the geometric center within 

m,r 10  до m,r 40 . 

It has been established that the nature of the oscillatory 

processes when the center of mass of the cylindrical body is 

displaced from the geometric center is significantly affected by the 

amplitude and frequency of the oscillations. 

It is shown that changes in the angle of inclination of the 

vibrating surface do not significantly affect the rotation angle of the 

body. 
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Abstract: In this paper we introduce, analyze and apply persistent homology, one of the main algorithms of TDA, on some real data 
sets from the bio-medical field. Topological data analysis (TDA) is a field which is a synergy between mathematics, data science and computer 
science. The main goal of TDA is studying the shape of data using topological techniques. TDA proposes new algorithms that deal with these 
problems based on tools or concepts from algebraic topology and pure mathematics. We analyze the results and give a topological 
characterization of the dataset and propose to use them in future work. 

 

Keywords: PERSISTENT HOMOLOGY, TOPOLOGICAL DATA ANALYSIS, ALGEBRAIC TOPOLOGY, DATA SCIENCE, 
COMPUTATIONAL TOPOLOGY 

 

1. Introduction 

 

       Topology is a mathematical field that studies properties of 
topological spaces, such as connectedness and compactness, 
invariant of continuous deformations. Algebraic topology studies 
topological spaces using techniques from algebra by associating 
algebraic objects such as groups with topological spaces. One of the 
main tools of algebraic topology is homology. Homology is a 
mathematical tool which associates sequences of algebraic objects 
with topological spaces. One way to study a topological space is to 
find and compute its homology groups. The motivation behind 
defining homology groups was that two shapes can be distinguished 
by examining their holes. For example, a disk is different from a 
circle, or a disk is not a circle, because the disk is solid while the 
circle has a hole through it. Homology groups are set of invariants of 
a topological space. These invariants characterize the topological 
space. The number of structures for some dimension k is the rank of 
the 𝑘-dimensional homology group of the topological space. The 
number of such structures is known as a Betti number (𝛽௞) of 
dimension 𝑘. 

       The main idea of Topological Data Analysis is application of 
these mathematical concepts on real data. Persistent homology is an 
algorithm from TDA that use homology as main idea. The algorithm 
computes topological features of a space. 

       

2. Mathematical Background 

 

The starting point is to construct a topological space from a given 
dataset. We will define some necessary mathematical concepts. 

Definition 1. A 𝒌-simplex is a convex hull of 𝒌 + 𝟏 affinely 
independent points 𝑺 = {𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}  ⊆ ℝ𝒅 . The points of S are 

vertices of the simplex. 
The low dimensional simplices (plural: simplices or simplexes) 

have special names: 

- a 0-simplex is  called a vertex; 

- a 1-simplex is called an edge; 

- a 2-simplex is called a triangle: 

-  
Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex 

 

Definition 2. Let σ be a k-simplex defined 𝒐𝒏 𝑺 =
{𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}. A simplex 𝝉 defined by 𝑻 ⊆  𝑺 is a face of 𝝈 and 
has 𝝈 as a coface. The relationship is denoted with 𝝈 ≥  𝝉 and 𝝉 ≤
 𝝈. 

      Definition 3. Let K be a set. Simplicial complex S is a collection 
of subsets of 𝑲 called simplices such that:  

1. For all 𝒙 ∈  𝑲, {𝒙}  ∈  𝑺.  

2. If τ ⊆ σ ∈ S, then τ ∈ S. 

 
Figure 2.  An example of a simplicial complex 
 

We call the sets {x} the vertices of K. Definition 3 gives a more 
abstract definition of simplicial complex that can be applied to a data 
where vertices will be the data points. Topological invariants of the 
space, such as holes and number of connected components, can be 
computed from a simplicial complex, see Figure 2. One of the key 
ideas of TDA is to construct a simplicial complex from a dataset. 
There are a few ways to construct such a simplicial complex [1].  In 
other words simplicial complexes are high dimensional analogues of 
graphs. We will explain the steps of the process. 

1. Construction of a topological space from a given point cloud 

The open (metric) ball of radius  ε >0 centered at a point 𝑚 ∈ 𝑀, 
usually denoted by 𝐵(𝑚; ε) is defined by 
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𝐵(𝑚; ε) = {n ∈ 𝑀 | 𝑑(𝑚, 𝑛) ≤ ε} 

Let 𝑴 be a point cloud in ℝ𝒅 and 𝜺 > 𝟎. The 𝜺 −neighborhood of the 
point cloud 𝑴 is the set 𝑺(𝒎; 𝜺), defined as  

 

𝑺(𝒎; 𝛆) = ራ 𝑩

𝒎𝛆𝐌  

(𝒎, 𝛆), 𝛆 ≥ 𝟎. 

It is known that every 𝛆 −neighborhood is a topological space. 
PH gives a summary of a sequence of such topological spaces for 
different values for 𝛆. The key idea here is to see how topological 
characteristics are changing and which features are the same as 𝛆 
increases. 

2. Construction of a simplicial complex from topological space  

In our experiments we will use Vietoris-Rips complexes. For a 
given point cloud 𝑴 and 𝛆 ≥ 𝟎 we construct Vietoris-Rips complex 
denoted as 𝑽𝑹(𝑴; 𝛆). 𝑽𝑹(𝑴; 𝛆) is defined as: 

𝑽𝑹(𝑴; 𝛆) = ራ 𝑽𝑹(𝑴; 𝛆)𝒏 

𝒏ஹ𝟎

 

𝑽𝑹(𝑴; 𝛆)𝒏

= ቄ(𝒎𝟎, … , 𝒎𝒏)ቚ𝒅൫𝒎𝒊𝒎𝒋൯ ≤ 𝛆, 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐢, 𝐣 ∈ {𝟏, 𝟐, … , 𝐧}ቅ 

Note that 𝑽𝑹(𝑴; 𝛆)𝒏 is the set of all n-simplexes of the simplicial 
complex. The simplicial complex constructed from the topological 
space is the approximation of the topological space. Hence, every 
simplicial complex is a topological space which is why we can 
analyze its topological features. 

3. Computing and representing homology groups 

Linear algebra is used for computing homology groups of a given 
simplicial complex. The 𝒌𝒕𝒉 homology group 𝑯𝒌(S) of a simplicial 
complex 𝑺 is defined as abelian quotient group. The rank of the 𝑯𝒌,
𝒓𝒂𝒏𝒌(𝑯𝒌(𝑺)), is called 𝒌𝒕𝒉 Betti number of 𝑺. It gives a measure of 
the number of k-dimensional holes in S. The homology groups are 
computed for every simplicial complex derived from the topological 
space for each 𝛆. Thus, by increasing 𝛆 we can trail elements of 
homology groups of the corresponding complex 𝑽𝑹(𝑴; 𝛆).  We can 
visualize the existence of homology groups as 𝛆 increases using a 
persistent barcode. Persistent barcode is a topological summary of a 
topological space. When an element shows at some 𝛆, we say that an 
element is born and denote that 𝛆 as  𝛆𝒃𝒊𝒓𝒕𝒉. When the element 
disappears at some 𝛆 (it is mapped to 0), we say that the element has 
died and we denote that 𝛆 as  𝛆𝒅𝒆𝒂𝒕𝒉. Every element is represented 
with a “bar” (a line in the persistent barcode) on the interval 
[ 𝛆𝒃𝒊𝒓𝒕𝒉.  𝛆𝒅𝒆𝒂𝒕𝒉). For example, in 𝑯𝟎 , this will correspond to the 

formation of a connected component in the simplicial complex at 

 𝛆𝒃𝒊𝒓𝒕𝒉 and connecting that component with others in a way that they 
will form a circle in  𝛆𝒅𝒆𝒂𝒕𝒉, see Figure 3. If we observe the Figure 3, 
we can see that the orange line is a bar which corresponds to an 
element of a homology group of dimension 1, which appears near  𝛆𝟐. 
It clearly be seen that there is one circle at the last simplex. Also, we 
can see that near  𝛆𝟐 there is one violet line which means that we have 
one connected component which corresponds with the given simplex.  

 

3. Diabetes datasets 

 

      For this case study we picked two diabetes datasets. First dataset 
is the Miller-Reaven dataset. Reaven and Miller (1979) examined the 
relationship among blood chemistry measures of glucose tolerance 
and insulin in 145 non-obese adults [10]. They used the PRIM9 
system to visualize the data in 3D, and discovered a peculiar pattern 
that looked like a large blob with two wings in different directions. 
In this dataset, the data is split up in three categories. Data from non-
diabetic patients, data from patients with diabetes classified as overt 
and data from patients with diabetes classified as chemical diabetes. 
Overt diabetes is the most advanced stage, characterized by elevated 
fasting blood glucose concentration and classical symptoms. 
Preceding overt diabetes is the latent or chemical diabetic stage, with 
no symptoms of diabetes but demonstrable abnormality of oral or 
intravenous glucose tolerance. There are 145 observations on the 
following 6 variables: 

       relwt 

relative weight, expressed as the ratio of actual weight to 
expected weight, given the person's height, a numeric vector 

glufast 

fasting plasma glucose level, a numeric vector 

glutest 

test plasma glucose level, a measure of glucose intolerance, a 
numeric vector 

instest 

plasma insulin during test, a measure of insulin response to oral 
glucose, a numeric vector 

sspg 

Figure 3. An example of Vietoris-Rips filtration of a space. There are different complexes for different 
values for ε. Violet horizontal lines shows barcodes in dimension 0 and orange line shows barcode for 
dimension 1. 
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Figure 6. Persistent for non-diabetic group 

Figure 9. Persistent barcode for diabetic data 

steady state plasma glucose, a measure of insulin resistance, a 
numeric vector 

group 

diagnostic group, a factor with levels Normal, Chemical_Diabetic, 
Overt_Diabetic. 

 

4. Preliminary results and discussion 

      First, we apply persistent homology for each diabetic group of 
data. For the Chemical_Diabetic group the results are given in Figure 
4 and for Overt_Diabetic group the results are given in Figure 5.  

    We can see that the persistent barcodes are different. In Figure 4, 
the persistent barcode has more red bars, which means that there are 
more circles in the simplex constructed from the data for the 
Chemical_Diabetic group. In this case, there is significant 
topological difference in the simplexes which means the shape of the 
data of the two groups is different. A question that arises here is 
which physical or real factor makes the difference? These factors 
may be crucial for better understanding the different types of 
diabetes.  

     Next, we apply persistent homology on both the diabetic group 
and the non-diabetic group. The results are given in Figure 6 and 
Figure 7.  

According to the barcodes in Figure 6 and Figure 7, we can 
conclude that topological characteristics in the data of diabetic and 
non-diabetic groups are obvious. In the second persistent barcode, 
there are circles which are present most of the time.  

We apply persistent homology on the second dataset which 
contains data from diabetic and non-diabetic patients. This dataset is 
originally from the National Institute of Diabetes and Digestive and 
Kidney Diseases. The objective of the dataset is to diagnostically 
predict whether or not a patient has diabetes based on certain 
diagnostic measurements included in the dataset. Several constraints 
were placed on the selection of these instances from a larger database. 
In particular, all patients in this dataset are females at least 21 years 
old and of Pima Indian heritage. The results are given in Figure 8 and 
Figure 9. 

 

5. Further work and application in bio-medical field 

 

The main goal is to link the differences of the topological 
characterizations of the two types of diabetes to real factors. 
Persistent homology, and in general, TDA, can be applied in the bio-
medical field in many areas. The application of statistics allowed 
significant progress in understanding diseases. Knowing that, and the 
fact that TDA gives a new way of analyzing the data, specifically, 
analyzing the shape of the data, we think that TDA will be useful for 
medicine. It can be used to see how one factor changes the 
topological characteristics of the topological space underneath the 
given data, and how it is related to a disease. If we work in three 
dimensional Euclidean space, we may find some structural 
deformations of a system in the body. For example, to observe the 
deformations of the vasculature of some organ or tissue. In the future, 
we will investigate how persistent homology can be applied to 
characterize retinal and liver vasculature networks. TDA can also be 
applied on big data from the healthcare field. 
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Figure 4. Persistent barcode for the Chemical_Diabetic group 

Figure 5. Persistent barcode for the Overt_Diabetic group 

Figure 7. Persistent for diabetic groups 

Figure 8. Persistent barcode for non-diabetic data 
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Abstract: A multiparameter metamodel of the eddy current probe with the volumetric excitation structure is constructed. As variable 

parameters of the metamodel, the spatial coordinates of the testing zone, the radii of the excitation coils and the height of their location 

above the testing object were used. Due to the use of hybrid construction of multiple neural networks using decomposition of the search 

space, an acceptable metamodel’s error of the eddy current probe with volumetric excitation structure is obtained. 

Keywords: EDDY CURRENT PROBE, UNIFORM SENSITIVITY, VOLUMETRIC EXCITATION STRUCTURE, EDDY 
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1. Introduction 

Some difficulties associated with the non-uniform sensitivity of 

the probe in the testing zone are characteristic for the defectometry 

problems solution by the eddy current method. The non-uniform 

sensitivity is due to the exponential eddy currents density 

distribution (ECDD) in the testing object (TO) and is inherent in 

any type of excitation coils, so their using in this case is not 

effective. In defectometry the best sensitivity characteristic in the 

testing zone is considered to be uniform, the so-called P-shaped. In 

this case, the effect of the dependence of the probe sensitivity to the 

location of the defect in the testing zone is reduced. Thus, there is a 

need to create eddy current probes (ECP) with uniform sensitivity, 

and, consequently, the uniform ECDD in the TO zone. One of the 

ways to solve this kind of problem is the optimal surrogate 

synthesis of the excitation system (ES) of ECP. Using parametric 

non-linear synthesis, a sectioned excitation coil system is created 

and takes into account the shape, electrophysical parameters of the 

TO and a priori given uniform sensitivity characteristic. 

In [1] the problem of the linear synthesis of ECP with a given 

structure of the excitation field in the TO zone is considered. In 

addition, since the linear values of the ECDD were obtained with 

the help of linear synthesis, the practical implementation of such 

ECP’s is complicated. The cases, when the given field structure is 

obtained with non-linear parameters of the probe are not considered 

in these work. 

The non-linear synthesis problem was solved in [2]. The 

problem solution for the optimal placement of the section coils and 

their geometric dimensions provided the fixed value of the 

excitation current density in them is obtained. The structural-

parametric synthesis method of the source of the electromagnetic 

field [3] allows us to solve the problem of choosing the structure of 

the ES ECP. However, the presence of a conductive medium and 

the speed effect, i.e. at motionless ECP relatively TO is not taken 

into account. 

2. Background and means to solve the problem 

A number of works by the authors of [4–6] are devoted to 

solving the problems of the non-linear, in the general case, synthesis 

of non-coaxial circular EDP’s with a planar ES structure. A 

characteristic feature of a planar ES structure is the presence of M 

coils of radii rk (k = 1...M) with their uniform ∆r = const or non-

uniform ∆r = var arrangement, which are at the same height z0 

above the TO [7] and switched on counter or consensually “across 

the field” (Fig. 1). For such task the synthesis parameters are three 

variables = ( , , )J f x y r : spatial coordinates x, y of the testing zone 

and the radii of the excitation coil sections r. 

Moreover, the obtained ES of planar design with a uniform or 

un- uniform arrangement of coils provides a value of the reduced 

error in the uniform of the ECDD in the testing zone from 9 to 

11 %, which is not an entirely acceptable result, and leaves the 

desire to further improve the structure of the ES [4-8]. 

 

a) 

 

b) 

Fig. 1 Variants of the arrangement of the coil sections of the surface ECP 

with a planar ES structure: a) uniform ∆r = const; b) un-uniform ∆r = var; 
MC - measuring coil 

3. The solution to the problem 

As a result, there is a need to study probes with a volumetric 

structure of ES, both of a homogeneous and heterogeneous structure 

(Fig. 2). 

The arrangement of coils of surface ECP’s of a volumetric ES 

can be either uniform when ∆r = const, z1 = zk = const, or non-

uniform ∆r = const, z1 ≠ zk (Fig. 3). 

In contrast to the planar structure of the ES, the number of 

parameters of the synthesis problem increases, i.e. the height of the 

coils above TO z0 is added 
0

= ( , , , )J f x y r z . As in the simpler case 

of the planar design of the probe, one cannot do without the ECP 

metamodel
0

ˆ= ( , , , ),J f x y r z  which significantly reduces the 

calculation time and it becomes possible to solve the synthesis 

problem. 
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a) 

 

b) 

Fig. 2 Volumetric structures of ES ECP: a) homogeneous; b) heterogeneous 

 

a) 

 

b) 

Fig. 3 Arrangement of sections of coils of surface ECP’s of a volumetric 
homogeneous structure ES: a) uniform ∆r = const, z1 = zk = const; b) un-

uniform ∆r = const, z1 ≠ zk 

The aim of the work is constructing a multiparameter hybrid 

RBF-metamodel of eddy current probes with volumetric 

homogeneous excitation structure. 

On the basis of a mathematical model of a moving surface ECP, 

which was obtained analytically by solving the direct problem of 

electrodynamics in the form of Maxwell’s differential equations [6], 

a neural network metamodel that takes into account the change in 

four parameters simultaneously 
0

ˆ= ( , , , )J f x y r z  was constructed. 

The metamodel for the moving structure of the ES ECP in the form 

of ampere-coils located at different heights above the TO (Fig. 3) 

with the following initial data: TO thickness d = 10 mm; excitation 

current frequency f = 5 kHz; electrophysical parameters of the 

material TO  = 3,745107 Sm/m, r = 1, the speed of the probe 

relative to TO  40,0,0   m/s was constructed. Variable model 

parameters are: spatial coordinates of the testing zone x = -

 45 ... 45 mm; y = 0 ... 35 mm; the radii of the coils ES 

r = 2 ... 15 mm; their height above TO z0 = 2 ... 5 mm. 

Next, the construction of a metamodel of a moving surface ECP 

in accordance with the algorithm proposed in [6, 7] is performed. It 

is advisable to approximate the multidimensional response surface 

using the heuristic method based on artificial neural networks. This 

method has some significant advantages in comparison with to 

well-known methods [9]. An RBF-neural network with a Gaussian 

activation function as a multidimensional approximator was used. 

However, unlike the simpler case of an optimization problem with 

three variables, a number of difficulties arise in this case. Firstly, 

the response surface has a complex topography, which imposes 

certain limitations associated with the need to use a big data array in 

the procedure of training a neural network. Secondly, there is a big 

range of ECDD values in the range of radius changes. This is 

especially true for the region beyond the ES, which entails an un-

uniform distribution of the ECDD values at the points of the 

experiment plan (Fig. 4), which necessitates the decomposition of 

the search space. All this greatly complicates the constructing of a 

multiparameter metamodel and it is almost impossible to implement 

it on the simplest, so-called single RBF-neural networks. 

 

Fig. 4 Normalized ECDD values for the subregion Iz - ІIIr of the testing zone 

beyond the ES 

The decomposition along the height of the probe and along the 

radius manages to partially level a number of these difficulties. The 

decomposition along the height of the probe above the TO is 

performed into three subregions: Iz (2  z 3 mm), 

IIz (3 < z  4 mm), IIIz (4 < z  5 mm). The decomposition along 

the radius of the coil turns is performed into six subregions: 

Іr (2  r  3 mm), ІІr (3 < r  5 mm), ІIIr (5 < r  8 mm), 

ІVr (8 < r  10 mm), Vr (10  r  12 mm), VІr (12 < r  15 mm). 

Additionally, if necessary, the radius of the search space is further 

divided into two subregions - directly under the turns of the coil 
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sections and beyond them.  In order to construct the metamodel as 

accurately as possible, the number of points of the experiment plan 

at which the eddy current density is calculated is set different for the 

area under the turns of the coil sections and beyond them. Thus, it is 

possible to simplify the architecture of a single RBF-neural network 

and achieve a certain balance between the accuracy of the 

construction of the metamodel and the number of points in the 

experiment plan of the Ntraining. In this case, not classical methods of 

experiment planning are used, but computer methods of 

homogeneous filling with search points of hyperspace, namely, 

points of the Sobol’s LP-sequence ξ1, ξ2, ..., ξ52 [10]. So, for 

example, for the subregion Iz0 and all subregions along the radius 

Ir - VІr where such LP-sequences as ξ1, ξ2, ξ3, ξ4 in the region 

immediately under the coil sections, and ξ1, ξ3, ξ4, ξ2 realized 

beyond it. Those, we have the arrangement of points of the LP-

sequence in a multifactorial space, respectively, in the x and y 

coordinates of the testing zone, in the radius r of the excitation coils 

and the height of their location above the TO z0 (Fig. 5). The 

number of points for each subregion is set individually depending 

on the size of the excitation coil and, accordingly, the size of the 

region under it. Accounting the symmetry of the ECDD concerning 

to the coordinate axes also influences the choice of the number of 

points, i.e. for a moving probe they are specified for I and II 

quadrants. For example, for Iz - IIr the size of the testing area 

directly under the coil is x = - 17...17 mm; y = 0...13.5 mm. For the 

most accurate description of the behavior of the response surface, 

the number of points for the training sample was chosen 

Ntraining = 1749 (Fig. 6), while beyond the region - Ntraining = 1198. 

 

Fig. 5 Arrangement of points of the LP-sequence ξ1, ξ3, ξ4, ξ2 in three-

dimensional factor space for r = 5...6 mm at a fixed height z = 2 mm 

 
а)                                               b) 

Fig. 6 A training sample, presented in the form of lines of ECDD, with 

points of the LP-sequence for the Iz - IIIr subregion: a) r = 6 - 7 mm; b) 
r = 7 – 8 mm 

Acceptable accuracy of the metamodel was obtained using 

hybrid neural network construction. This implies the construction of 

several cascades of neural networks with subsequent additional 

application at each committees cascade (Fig. 7) [6]. As a function 

of activation of neurons in a hidden layer of an RBF-network the 

Gauss function is used. Then the output of the neural network is 

formed by a linear combination of the outputs of the neurons of the 

hidden layer and is described by the formula: 

       
2 2 2 2

2
1

ˆ( , , , ) exp ,i i i i

m
x y r z

i

i i

x c y c r c z c
J x y r z w

a

       
   
 
 
 


 

where m is the number of neurons in the hidden layer; iw  is the 

weighting coefficient of the output neuron with the i-th neuron of 

the hidden layer; cxi, cyi, cri, czi are coordinates of the center of the i-

th neuron; ai - the width of the i-th neuron. 

 

Fig. 7 Hybrid construction of a neural network metamodel 

For the network’s committee only networks with the 

productivity of the training, testing, and controlling samples of 

more than 90 % are used. The number of cascades is determined by 

the obtained value of the mean absolute percentage error MAPE, %. 

The best models were selected according to a combination of 

objective statistical indicators [10] and a subjective assessment of 

dispersion diagrams and histograms of residues. 

Table 1 shows the obtained values of MAPE, % at the stage of 

training and reconstitution of neural networks for several 

decomposition subregions. 

4. Results and discussion 

Verification of the metamodel was carried out by checking the 

correctness of reconstitution of the response surface in all 

subregions on the sample, which has a bigger number of points than 

during training, i.e. Nreconstitution > Ntraining. To illustrate this, Fig. 8 

shows the dispersion diagrams of the values of the 

multidimensional approximation function for one of the Iz-IIIr 

subregions at the stages of training the neural network and its 

reconstitution. 
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a) 

 
b) 

Fig. 7 Diagram of the dispersion of the values of the multi-dimensional 

approximation function for the subregions Iz-IIIr: a) the stage of training the 
neural network; b) the stage of reconstitution 

The adequacy of the obtained metamodel was evaluated 

according to the statistical F-criterion based on the following 

indicators: the sum squares of the regression and residues ones; the 

average  square of the regression and residuals at a significance 

level of 5 % [10]. The information content of the constructed 

metamodel is controlled by the coefficient of determination. 

Table 1: Values of MAPE,% of the obtained multi-parameter hybrid neural 

network metamodel of ECP for several decomposition subregions. 

Decomposition 

subregions 

Ntraining / 

Nreconstitution 

MAPЕ,% 

stage 
training 

stage 
reconstitution 

Iz-ІIIr (beyond coil) 1198/2186 16,72 21,17 

Iz-ІIIr (under coil) 1749/3680 19,09 21,31 

IІz-Іr (under coil) 900/1250 4,35 6,22 

Thus, due to the use of hybrid construction of multiple neural 

networks using decomposition of the search space, an acceptable 

error in the metamodel of the volumetric structure of the ES EDP is 

obtained. 
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1. Introduction 

When data is transmitted through or stored on some medium, 

due to the noises in the medium or other external influences, there is 

a possibility of errors. This means that the data received by the 

recipient may not be identical to those sent through the 

communication channel or data recorded on the storage. Therefore, 

there is a need to check that the data is correct. Checking is done 

using the codes for error control. There are two basic types of these 

codes: error-correcting and error-detecting codes. While the first 

ones have ability to correct up to some number of incorrectly 

transmitted bits, there are slower in their work. The error-detecting 

codes are faster and are in advantage in networks where errors 

rarely occur. There are various error-detecting codes: from very 

simple as parity bit ([1]) and repetition code ([2]) to more complex 

as checksum ([3], [4]), CRC ([5], [6]), etc. In our previous work we 

have also defined some error-detecting codes ([7], [8], [9]).   

All error-detecting codes add redundant symbols on the input 

blocks, which are later used by the receiver in order to check 

whether there are errors in transmission. If the code detects that 

some data is incorrectly transmitted, it asks for retransmission of 

that data [10]. 

For every error-detecting code it is possible that there will be 

errors in transmission that the code will not detect. Therefore, 

before any code is implemented, it is important to know the ability 

of the code to detect errors. In this regard, it is important to know up 

to which number of incorrectly transmitted bits, the code will detect 

the error for sure. In this paper we will analyze an error-detecting 

code in the light of this parameter - the number of errors that the 

code surely detects. The number of errors that the code surely 

detects is the maximum number of incorrectly transmitted bits up to 

which the code will surely detect the error in transmission.    

2. Definition of the Error-Detecting Code 

Let A and B be non-singular binary matrices of order ss, and 

let C be a binary matrix of order 1s. The alphabet is={0, 1, …, 

2s-1}. We choose the parameter r of the model, which should be a 

non-negative integer.   

Let the input block be a0a1…an-1, where all symbols ai are from 

the alphabet . Then the redundant symbols are defined using the 

following equation:  

(1) 𝒅𝒊 = 𝒂𝒊𝐴
𝑛−2 +  𝒂𝒊+𝒋𝐵𝐴𝑛−𝑗−2 + 𝐶  𝐴𝑗𝑛−3

𝑗=0
𝑛−2
𝑗 =1 ,  i=0, 1, …, r 

where n is the length of the input block, r is the model’s parameter 

that is an integer which satisfies the condition 1rn-1. Bolded 

symbols are the binary representations of the corresponding 

symbols as 1r vectors, i.e., 𝒂𝒊 is the binary representation of the 

information symbol 𝑎𝑖 , i=0, 1, …, n-1, while 𝒅𝒊 is the binary 

representation of the redundant symbol 𝑑𝑖 , i=0, 1, …, r. A, B and C 

are the binary matrices that are used for coding. The operation + is 

binary addition and all operations in indexes are modulo n. 

After calculating the redundant symbols, the binary form of the 

input block a0a1…an-1 is extended into a block a0a1…an-1d0d1…dr. 

With this is obtained the binary form of the coded block, which is 

transmitted through the binary symmetric channel. 

From the above definition of the model we can see that this 

code always adds r+1 redundant symbol on each input block, 

regardless of its length. As we can see from the constrains for the 

parameter of the code r, the length of redundancy must not exceed 

the length of the input block.  

When the receiver receives the output block, in order to ensure 

that it has a correct block, it calculates the redundant symbols using 

equation (1). If the calculated symbols are identical with the 

received ones, it accepts the block as correctly transmitted. In 

opposite, the receiver concludes that the block is not correctly 

transmitted. It that situation, the receiver asks the sender to send the 

block once again. But, there is always a small chance to have errors 

in transmission and at a same time the calculated by the receiver 

symbols to be equal to the received redundant symbols. This means 

that it is possible to have undetected errors in transmission. 

Therefore, it is important to know up to which number of 

incorrectly transmitted bits, the code will surely detect the error, 

which is exactly the subject of this paper. 

But, first let see the coding procedure in the following example.  

Example: In this example we will demonstrate the coding 

procedure. Let the following binary matrices of order 33 are used 

for coding: 

𝐴 =  
1 0 1
0 1 1
1 1 1

 , 𝐵 =  
0 1 1
1 1 1
1 0 1

 , 𝐶 = [0 0 0] 

The alphabet is ={0, 1, 2, 3, 4, 5, 6, 7}. 

Let suppose that the parameter of the model is r=2 and input 

block a0a1a2a3a4=46320 of length n=5 symbols from the alphabet is 

coded. Then, the binary representations of the information symbols 

are a0=[1 0 0], a1=[1 1 0], a2=[0 1 1], a3=[0 1 0] and a4=[0 0 0]. The 

redundant symbols are calculated using (1), i.e.: 

di=aiA
3+ ai+1BA2+ai+2BA+ai+3B, i=0, 1, 2. 

First, we obtain the matrices: 

𝐴3 =  
0 1 1
1 0 1
1 1 1

 , 𝐵𝐴2 =  
1 0 1
1 1 1
0 1 1

 , 𝐵𝐴 =  
1 0 0
0 0 1
0 1 0

  

Now,  

d0=a0A
3+ a1BA2+a2BA+a3B=[1 0 0]  

0 1 1
1 0 1
1 1 1

 + 

[1 1 0]  
1 0 1
1 1 1
0 1 1

 +[0 1 1]  
1 0 0
0 0 1
0 1 0

 +[0 1 0]  
0 1 1
1 1 1
1 0 1

 = 

=[1 0 1] 

d1=a1A
3+ a2BA2+a3BA+a4B=[1 1 0]  

0 1 1
1 0 1
1 1 1

 + 
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[0 1 1]  
1 0 1
1 1 1
0 1 1

 +[0 1 0]  
1 0 0
0 0 1
0 1 0

 +[0 0 0]  
0 1 1
1 1 1
1 0 1

 = 

=[0 1 1] 

d2=a2A
3+ a3BA2+a4BA+a0B=[0 1 1]  

0 1 1
1 0 1
1 1 1

 + 

[0 1 0]  
1 0 1
1 1 1
0 1 1

 +[0 0 0]  
1 0 0
0 0 1
0 1 0

 +[1 0 0]  
0 1 1
1 1 1
1 0 1

 = 

=[1 1 0] 

The redundant symbol d0 over the alphabet  is d0=5, the 

symbol d1 over the alphabet  is d1=3 and the symbol d2 is d2=6. 

With this we obtained the coded block a0a1a2a3a4d0d1d2=46320536, 

while the binary form is 

a0a1a2a3a4d0d1d2=100110011010000101011110. This coded block 

in binary form is transmitted through the binary symmetric channel.  

Let suppose that the 14th information bit is incorrectly 

transmitted. This means that if we denote the output block that 

receiver receives with a0’a1’a2’a3’a4’d0’d1’d2’, then a0’=a0, a1’=a1, 
a2’=a2, a3’=a3, a4’=[0 1 0] a4, d0’=d0, d1’=d1, d2’=d2. The receiver 

checks whether the block is correctly transmitted, i.e., using (1) it 

calculates the redundant symbols for the received block 

a0’a1’a2’a3’a4’. 

d0’=a0’A
3+ a1’BA2+a2’BA+a3’B=[1 0 1] 

d1’=a1’A
3+ a2’BA2+a3’BA+a4’B=[1 0 0] 

d2’=a2’A
3+ a3’BA2+a4’BA+a0’B=[1 1 1] 

Since d1d1’ (also d2d2’), the receiver concludes that there are 

errors in transmission, i.e., the received block is not identical with 

the block sent by the sender. Therefore, it demands retransmission 

of the block. 

3. Results from the Simulation Procedure 

In this paper, using simulations we will obtain the number of 

errors that the code surely detects. In the simulation process for a 

given n and r, we transmit through a simulated binary symmetric 

channel a large number of coded input blocks of length n over the 

alphabet . For each i from 1 to the length of the coded input 

blocks in binary form, we calculate the percentage of transmitted 

coded blocks with i incorrectly transmitted bits in which the error in 

transmission is not detected. The number of errors that the code 

detects for sure is the largest integer v such that the percentage of 

incorrectly transmitted coded blocks with i incorrectly transmitted 

bits in which the error is not detected is equal to 0% for all i from 1 

to v. In order to obtain reliable and accurate results, we chose the 

probability of bit-error in the simulated binary-symmetric channel 

such that the number of incorrectly transmitted coded blocks with i 

incorrectly transmitted bits to be large number for small values of i, 

i.e., values of i smaller than or equal to v. 

In the coding procedure, we use the following binary matrices 

A, B and C: 

𝐴 =  
1 0 1
0 1 1
1 1 1

 , 𝐵 =  
0 1 1
1 1 1
1 0 1

 , 𝐶 = [0 0 0] 

The alphabet is ={0, 1, 2, 3, 4, 5, 6, 7}. We will consider the 

cases when the parameter of the model r=2, r=3 and r=4.  

Since the length of the redundancy is r+1 symbol, follows that 

in the case when r=2, the length of the redundancy is 3 symbols 

from the alphabet .  Since the length of the input block must be 

greater than or equal to the length of the redundancy, in this case the 

length of the input block n must be greater than or equal to 3 

symbols from the alphabet  (Fig. 1). Each element from the 

alphabet of order 8 is presented with 3 bits in the binary 

representation. Therefore, in this case the redundancy has length 9 

bits. 

 

 

 

Fig. 1 Percentage of undetected incorrectly transmitted coded blocks with i 
incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 9 bits. 

In Fig. 1 are given the percentages of incorrectly transmitted 

coded blocks in the simulation process in which i6 bits are 

incorrectly transmitted and the error in transmission is not detected 

in the case when the redundancy is 9 bits (r=2). The length of the 

input blocks n is expressed in a number of symbols from the 

alphabet . Please note that the scaling of the y-axis is different on 

the three graphs. For small values of the length of the input block n, 

the percentages of undetected incorrectly transmitted blocks with i 

incorrectly transmitted bits are very small. In order the results to be 

visible they are separated in the first figure from Fig. 1. Since the 

percentages of undetected incorrectly transmitted blocks with i 

incorrectly transmitted bits increase when n increases, the scaling of 

the second and third image from Fig. 1 is adjusted accordingly.      

As we can see from Fig. 1, when the length of the input blocks 

is n=3 symbols from , the percentage of undetected incorrectly 

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

3 4 5 6 7

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8 9 10 11 12 13 14 15 16 17 18 19 20

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

24 28 32 36 40 44 48 52 56 60 64 68 72

lenght of input block n

i=1 i=2 i=3 i=4 i=5 i=6

 

MATHEMATICAL MODELING 4/2019

118



transmitted blocks with i incorrectly transmitted bit is different than 

0% only for i=3. Since the code detected all incorrectly transmitted 

blocks with 1 or 2 incorrectly transmitted bits, but there are blocks 

with 3 incorrectly transmitted bits in which the error is not detected, 

the number of errors that the code surely detects when the length of 

the input blocks is n=3 symbols from  is 2. Also, in the case when 

the length of the input blocks is n=4, the smallest value of i for 

which the percentage of undetected incorrectly transmitted blocks 

with i incorrectly transmitted bits is different than 0% is 3. 

Therefore, we conclude that in this case the code surely detects also 

up to 2 incorrectly transmitted bits. The same conclusion holds also 

in the cases when the length of the input block n is 5 or 6 symbols 

from the alphabet . For input blocks with length greater than or 

equal to 7 symbols, the percentage of undetected incorrectly 

transmitted blocks with 2 incorrectly transmitted bits is positive 

(there is the orange pillar), from where follows that in this case the 

code surely detects 1 incorrectly transmitted bit. 

 

 

 

Fig. 2 Percentage of undetected incorrectly transmitted coded blocks with i 

incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 12 bits. 

The results when r=3 are given in Fig. 2. In this case the length 

of the redundancy is 4 symbols from the alphabet  (i.e., 12 bits in 

the binary representation). Therefore, in this case the length of the 

input block must be greater than or equal to 4 symbols from . 

From Fig. 2, we can see that in the case when the redundancy is 12 

bits, the code surely detects up to 4 incorrectly transmitted bits 

when the length of the input block is 4 or 5 symbols from . When 

the input block has length 6 symbols, the code surely detects up to 3 

incorrectly transmitted bits, while when the input block has length 7 

symbols, the code surely detects up to 2 incorrectly transmitted bits. 

When the input block has length greater than or equal to 8 symbols, 

the code surely detects 1 incorrectly transmitted bit. 

 

 

 

Fig. 3 Percentage of undetected incorrectly transmitted coded blocks with i 

incorrectly transmitted bits when input blocks have length n symbols from 

the alphabet  in the case when the redundancy is 15 bits 

Similarly, when the parameter r=4, the redundancy is 5 symbols 

from  (i.e., 15 bits in the binary representation) and the length of 

the input blocks n5 (Fig. 3). When the length of the input block is 

5 symbols, the code surely detects up to 5 incorrectly transmitted 

bits, while when the length of the input block is 6 symbols, the code 
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surely detects up to 4 incorrectly transmitted bits. For input blocks 

with length 7 or 8 symbols, the code surely detects up to 2 

incorrectly transmitted bits. When the length of the input block is 

greater than 8 symbols, the code detects for sure 1 incorrectly 

transmitted bit. 

 

Fig. 4 Number of incorrectly transmitted bits that the code surely detects 

when the length of the input blocks is n symbols from the alphabet  and the 

redundancy is 9, 12 and 15 bits. 

In Fig. 4 and Fig. 5 are presented the numbers of incorrectly 

transmitted bits that the code surely detects when the redundancy is 

9, 12 and 15 bits. On x-axis in Fig. 4 is given the length of the input 

block, on y-axis is given the number of errors that the code surely 

detects, while the color of each pillar represents the length of the 

redundancy.  

From Fig. 4 we can see that when the length of the input 

block is fixed, if longer redundancy is added to the input blocks, 

then the number of incorrectly transmitted bits that the code 

detected for sure is greater or at least equal to the number of 

surely detected incorrectly transmitted bits when a shorter 

redundancy is added. This is expected result since longer 

redundancy means that each information symbol is controlled by 

more redundant symbols. 

 

Fig. 5 Number of incorrectly transmitted bits that the code surely detects 

when the length of the input blocks is n symbols from the alphabet  and the 

redundancy is 9, 12 and 15 bits. 

On Fig. 5 on x-axis is given the length of the redundancy, while 

the length of the input blocks n is represented with the color of the 

pillars. As we can see from Fig. 5, regardless of the length of the 

redundancy, when the length of the input block increases and 

the length of the redundancy is fixed, the number of errors that 

the code surely detects decreases or remains the same. 

As we can see from Fig. 4 and Fig. 5, the best result from 

the aspect of the number of errors that the code surely detects is 

achieved when the length of the input blocks is 5 symbols from 

the alphabet  and the redundancy has length 15 bits. This 

means that from the aspect of the number of errors that the code 

surely detects, it is best to divide the input message into blocks 

of length 5 symbols from  and to code these blocks such that 

the redundancy is 15 bits (i.e., to choose the parameter r in the 

model to be 4). In this case the code will detect for sure every 

incorrectly transmitted coded block with up to 5 incorrectly 

transmitted bits.     

4. Conclusion 

The results for the number of errors that the code surely detects 

when the given binary matrices A, B of order 33 and zero matrix C 

of order 13 are used for coding are the following: 

In the case when the redundancy has length 9 bits, the code 

surely detects up to 2 incorrectly transmitted bits when the length of 

the input block is smaller than or equal to 6 symbols from . For 

input blocks with length greater than or equal to 7 symbols, the 

code surely detects 1 incorrectly transmitted bit.  

When the redundancy is 12 bits, the code surely detects up to 4 

incorrectly transmitted bits when the length of the input block is 4 

or 5 symbols from the alphabet , up to 3 incorrectly transmitted 

bits when the input block has length 6 symbols, up to 2 incorrectly 

transmitted bits when the input block has length 7 symbols and 1 

incorrectly transmitted bit when the input block has length greater 

than or equal to 8 symbols. 

When the redundancy has length 15 bits, the code surely detects 

up to 5 incorrectly transmitted bits when the length of the input 

block is 5 symbols, up to 4 incorrectly transmitted bits when the 

length of the input block is 6 symbols, up to 2 incorrectly 

transmitted bits when the length of the input blocks is 7 or 8 

symbols. The code surely detects 1 incorrectly transmitted bit when 

the length of the input block is greater than or equal to 9 symbols.  

When the length of the input blocks is fixed, the number of 

errors the code surely detects does not decrease with increasing 

redundancy length.  If the length of the redundancy is fixed, then 

when the length of the input block increases, the number of errors 

that the code surely detects decreases or remains the same. 

In order to achieve largest number of surely detected incorrectly 

transmitted bits, the input message should be divided into blocks of 

length 5 symbols and each block to be coded separately such that 

the parameter of the model is r=4.  
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1. Introduction 
Despite the widespread use of polymeric, paper, and ceramic 

materials in engineering, powder filter materials compete worthy 

with them, especially in cases where it is necessary to realize the 

physico-chemical properties typical for metals and alloys from 

which PFMs consist. PFMs are successfully used to solve various 

problems: for aeration of the air flow in order to saturate the air-

culture fluid with oxygen when growing aerobic microorganisms in 

bioreactors; for dispergation of the ozone-containing air mixture 

flow in order to decontaminate the fish habitat (including young 

fish) in recirculating aquaculture systems (RAS) and uniform 

distribution of vapor flow over the volume of coolant (water) to 

control the temperature in working tanks during heat treatment of 

milk, milk mixtures and technological media used in milk 

treatment; air, water vapor, and oil purification, as well as for other 

purposes [1–5]. 

In practice, two-layer materials are widely used to increase the 

operational properties of PFM. One layer is formed by fine particles 

and provides the necessary fineness of cleaning. The second layer if 

formed by coarse particles and provides sufficient strength and high 

permeability of PFM [6, 7]. The problem in this case is the 

appearance of the intermediate layer at the boundary of the layers, 

the so-called “overlap area”, in which smaller particles fill the pore 

space formed by coarse particles [8]. One of the effective ways to 

improve the properties of two-layer PFMs is to reduce the thickness 

of the fine layer [8]. In this regard, the calculation of the influence 

of the overlap area on the properties of two-layer PFMs is of great 

interest. 

The purpose of this work is modeling of PFM “overlap area” and 

calculation of the permeability of this area. 

 

2. Results and discussion 
When two-layer materials are produced by co-molding powders of 

different fractions in the area of the layer boundary, smaller powder 

particles partially fill the pore space formed by larger particles, 

making, as noted above, an intermediate layer (overlap area). 

Figures 1 and 2 illustrate examples of the formation of such 

structures in the production of two-layer materials based on titanium 

and copper powders. We determine the effect of the overlap area on 

the permeability of two-layer PFMs. 

To calculate the permeability taking into account the overlap area, 

we consider the case when the porous material consists of two 

layers and the overlap area. The first and second layers are 

respectively formed from powder particles with sizes D1 and D2, 

with D1> D2. The overlap area (conditionally it can be considered 

as the third layer), located between the first and second layers. It 

consists of particles of these two sizes. Small particles with sizes D2 

are located between large particles with size D1. We denote the 

thicknesses of the first layer (substrate), the intermediate layer 

(overlap area) and the second layer (fine powder) by h1, h12 and h2, 

and the flow rate of the filtered medium through the PFM per unit 

time by Q. 

 

 
 

Fig. 1 The structure of a two-layer PFM made of titanium 

powders with a particle size of (minus 1000 + 400) and  

(minus 100 + 40) µm 

 

 
 

Fig. 2 The structure of a two-layer PFM made of copper 

powders with particle sizes (minus 315 + 200) and  

(minus 80 + 40) µm  

 

Considering the flow of a liquid or gas through the whole material, 

it is possible to write the following according to Darcy’s law [9]:  

 

S
h

pk
Q




 ,     (1) 

 

where k – coefficient of permeability; р – differential pressure on 

PFM; S – filtration area;  – viscosity of filtered medium;  

h – thickness of PFM. 
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For each layer separately, equation (1) can be written as follows: 
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where р1, р12, р2, - respectively, differential pressure on each of 

the layers with thicknesses h1, h12, h2; 

S – the filtration area of all layers (the first layer is the substrate; 

the intermediate layer is the overlap area and the second layer is 

fine powder).  

Obviously, the flows of the filtered medium passing through the 

whole material Q and through each layer separately Q1, Q12, Q2, are 

equal to each other: 

 

Q = Q1 = Q12 = Q2,   (5) 

 

and differential pressure on PFM and its thickness are: 

 

р = р1 + р12 + р2,    (6) 

 

h = h1 + h12 + h2.    (7) 

 

Based on (1–4), taking into account (5–7), it is possible to 

obtain the following equations: 
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Summing up the left and right sides of equations (8–10), we obtain 

the equation for calculating k: 
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from which: 
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To determine the coefficient of permeability in the overlap area, we 

have the following considerations. Surface sections blocked by 

large particles with sizes D1 are excluded from the filtering process 

of this layer, and therefore its throughput capacity is determined by 

the pore space areas of the substrate filled with fine powder with an 

area of S12 < S. Accordingly, the coefficient of permeability of these 

areas can be taken equal to k2. 

Then, on the basis of the continuity condition of the flow (5), the 

value of Q12 can be represented as: 
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Equating the right sides of equations (3) and (13) to each other, we 

obtain: 

 

S
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To calculate S/S12 value, we use the elementary cell model, 

according to which the properties of each PFM element are 

determined by the elementary cell parameters in the form of a 

parallelepiped selected from the regular laying of 8 powder particles 

joined by interparticle contacts [9]. Then the value of S12 within 

such a cell varies from a minimum value equal to: 
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to the maximum value: 

 
2
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To calculate S12, we take the average value of this quantity: 
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Given that: 
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The resulted equations (11), (14) and (15) make it possible to 

calculate the coefficient of permeability of a two-layer PFM taking 

into account the overlap area between layers, knowing the values of 

the coefficients of permeability of the substrate and the fine layer. 

Table 1 shows the results of calculations of the PFM permeability 

coefficients for two-layer materials, the structures of which are 

shown in Figures 1 and 2, and their experimental values. The values 

of the permeability coefficients of the substrate and the fine layer, 

as well as the thickness of the overlap layer are determined 

experimentally. 

 

Table 1 

The calculated and experimental values of the permeability 

coefficients of two-layer PFMs 

 

Initial 

material 

Powder particle 

size, µm 
Thickness, mm 

Coefficient of permeability,  

m2, 1013 

Sub-

strates 

of fine 

layer 

Sub-

strates  

of 

overlap 

area 

of fine 

layer 

Experimental values 

The calculated 

value of two-

layer PFM 

Sub-

strates 

of fine 

layer 

of two-

layer 

PFM 

with 

over

-lap 

area 

without 

overlap 

area 

Titaniu

m 

powder 

 

minus 

1000 

+400 

minus 

100 +40 
3 1,0 1,5 180,0 7,0 14,2 11,8 23,3 

Copper 

powder 

minus 

315 

+200 

minus 80 

+40 
1,7 0,3 1,0 70,0 2,16 4,17 4,19 6,1 

 
The analysis of the data presented in the table shows, firstly, a 

satisfactory coincidence of the calculated and experimental data 

and, secondly, a significant negative effect of the overlap area on 

the permeability of two-layer PFMs: its presence reduces the 

permeability by 1.46 – 1.98 times when comparing the resulted 

calculations and by 1.46 – 1.64 times when comparing the results of 
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calculations with experimental values. This effect can be reduced by 

reducing the thickness of the fine layer. 

Figure 3 shows the calculated dependences of the permeability 

coefficients of two-layer PFMs based on titanium (1) and copper (2) 

powders on the layer thickness of fine powder at a constant total 

thickness of the porous material, which, when compared with the 

calculated data presented in the table, indicate that, for example, a 

three-fold decrease in the thickness of the fine layer leads to an 

increase in the permeability of PFM based on titanium by 1.4 times, 

and based on copper – by 1.8 times. In the second case, the 

permeability coefficient of the material is higher than the value of 

the permeability coefficient of PFM with the initial thickness of the 

fine layer, calculated without taking into account the overlap area. 

 

 
 

Fig. 3 The dependence of the permeability coefficient of two-layer 

PFM on the thickness of the fine layer: 

1 – titanium-based PFM, 2 – copper-based PFM 

 

4. Conclusion 
With reference to the abovementioned, it is possible to state that the 

quotation obtained for calculating the permeability coefficient of 

two-layer PFMs with the overlap area satisfactorily agrees with 

experimental data. The negative effect of this area on the 

permeability coefficient of the porous material is shown, which, due 

to its presence, decreases by more than 1.46 times. It was found that 

this effect can be compensated by a decrease in the fine powder 

layer. 
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Abstract. The main disadvantages of transplanting machine are presented in the article and the mathematical modeling of the operating 

system of the carousel type transplanting machine with a new method of calculation of the design parameters of the system is proposed. As a 

result of theoretical research of the operating system of carousel type transplanting machine the rule of motion of the point F and the 

mathematical model for determining initial velocity V0 of the falling seedling have been obtained. 

KEYWORDS: TRANSPLANTING MACHINE, SEEDLING, CAROUSEL TYPE, OPERATING SYSTEM, QUADRILATERAL, INITIAL 

VELOCITY.   

 
Introduction                                                                                                                                   

The improvement and modernization of agricultural 

machinery and equipment is under constant development, where 

increasing the working speed of machines is one of the main trends 

in improving their construction. 

For transplanting machines, increasing the speed of work is 

also a very important matter in increasing the working capacity of 

the planting units [1, 2]. The main disadvantages of the known 

semiautomatic machines for planting seedlings are: 

- reduced working capacity; 

- low quality of planting at a higher speed of the planting unit. 

In order to solve these problems, an improved construction of 

the carousel type transplanting machine was proposed [1]. The 

research of the operating system of the perfected transplanting 

machine is of particular importance when optimizing the main 

parameters of the machine. That is why determining the law of the 

vertical rod end movement to push the fasteners on the carousel of 

the transplanting machine is the basic problem of the given work. 

 

Material and method 

The drive mechanism of the carousel type transplanting 

machine is designed based on the quadrilateral with two arms for 

rotating the interminable movement mechanism, the transport of the 

seedlings from the coulter to the gripper, water dosing and 

distribution in portions. 

The OACB quadrilateral (fig. 1) is joined by a slider type 1-2, 

which transforms the circular  motion of the support wheel and 

drive of the planting machine into the "go-come" movement of the 

exit point 3. On the connecting rod 4 a sprocket for pushing the 

seedlings (point M) is arranged, and the vertical actuating rod (point 

F) of the transplanting machine carousel [3, 4] is arranged on the 

driven rocker 5. 

 
Fig.1. Kinematic diagram of the operating system of the 

transplanting machine: 

AC - lower rod; CB - vertical rod; A - the output point of the drive 

mechanism; M - the end of the push pad; F - the end of the vertical 

rod. 

 

 

 

Rezults and discussions 

Let  the following parameters of the drive mechanism be 

known: the coordinates x0, y0  and xB,  yB  of O and B joints, the 

length of the rockers l0=l3 and lB= l5, the initial φi and final φf 

angles of the driving rocker’s return 3 with coordinates  x
'
M   and  

y
'
M  of the point M  located on the connecting rod 4 relative to the 

joint in point O. The coordinates  xC (φ) and  yC (φ) of the inner 

joint C, which belongs to the dyad ACB (or 3-4), are determined 

according to the turning angle φ of the driving rocker, through the 

system of equations of the circumferences with the radii lAC and lB 

[4, 5]: 

       
 AB

ABCABABBAC
C

xx

yyyyyxxll
x






2

2222222 ;       (1) 

            

A

ACBB
y

C




2 ;                                        (2) 

where:   A = F
2 
+ I;  

 B = FG - FxA + yA; 

 C = (G – xA)
2
 + y

2
A - lAC .                                                  

In order to determine the law of motion of the end of the 

vertical pushing rod (point F) it is necessary to express the ratio of 

the average speeds to the free and full stroke by moving the  SF of 

the vertical pushing rod (point F): 

     

..5

.5

..5

.5

..

.

/

/

lc

pc

pcF

lcF
F

cpmed

F
clmed

T

T

TS

TS

V

V
k 

;                     (3) 

where T5c.p.  and T5c.l.  -  the period of time respectively at the full 

race and at the free race of the element 5, s.  

If the crank angular velocity  ω1 is constant: 

                       

lc

pc

lc

pc

T

T

.1

.1

.5

.5






;                                     (4) 

where 
..1 pc

  and 
..1 lc

 -  the values of the turning angles of the 

crank respectively to the full and free stroke, so   

 2
..1..1


lcpc

. 

It is obvious that the periodicity of movement of the driving 

element 3 and the driven element 5 is equal T5c.p.= T3c.p. and T5c.l. 

= T3c.l.  As a result, the coefficient of change of the average speed 

k is determined only by a part of the transmission mechanism, and 

namely, crank-slide. On the other hand, the coefficient k can be 

determined by the angle β between the extreme positions of the 

slide: 

                             








k

;                                         (5)  

The k coefficient limit is the maximum value of the 

acceleration  aMmax of the seedling thrust pack from the coulter in 
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the gripper. At the uniform rotation of the crank with the angular 

velocity ω1, the acceleration  aM  is equal: 

                          
MM

a   2
1

, m/s2                                       (6) 

where 

2
1

2




d

xd M
M


 - the analog of the point M acceleration, which 

moves horizontally. 

As             
 33
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dx
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




 








        (7) 

where: 
3M

v  - the analog of the velocity of point M compared to 

element 3 of the OACB quadrilateral; 

           
3

v  - the analog of the speed of the cranked part of the drive 

mechanism. 

Taking into account that the derivative  dvM3 /dφ3 =αM3 is 

analogous to the acceleration of the point M with respect to element 

3, and  dvM3 /dφ1 =φ3  is analogous to the acceleration of the 

slider, at the result of the derivation will be obtained: 
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333

2
3 MMM

vv   .                                      

Finally, the acceleration of point M  becomes: 

         333
2
3

2
1 MMM

vva   .                            (8) 

The kinematic characteristics of the slider as part of the 

driving mechanism of transplanting machine can be chosen from 

manuals, guidance etc [3, 4].  

Then the relationship can be used to determine the velocity 

analog v3: 

               
 31

3

1
3

cos  
l

l
v

;                                  (9)  

where:  l3 - the length of the slide; 

            φ3 -  the angle of return of the slide. 

The variable parameters l3 and φ3 are determined from the 

relation: 
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2
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The analog of the slide acceleration 
3

 is equal: 

          3311323
 /sin llk   ;              (12) 

where k
32

  - the analog of the Cariolis acceleration, which is 

determined by the relation: 

                  
33232

2 vvkk  ;                                     (13) 

where  31132
sin   lvk  - the analog of the relative sliding 

speed of the slide 3 on element 2. 

From this 

                         331133
 / sin2 llv   .                        (14) 

When passing to the next dyad 4-5, it is necessary to take into 

account the given length lA of the leading rocker OA and its 

position dislocated relative to the slide with a constant angle 
3 : 

                   
333

  .                                     (15) 

The formulas for determining the analogs of the angular 

speeds of the transmission functions  v43, v53  and the analogues of 

the respective angular accelerations 
5343

 , of the connecting rod 

4 and of the driven rocket 5 relative to the driving one are: 
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The angular positions 
4

  and 
5

 in relations (17) and (18) 

are determined as follows: 
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;                            (19) 

From the analogs of the angular characteristics of the OACB 

quadrilateral it is easy to move to the true values of the angular 

velocities 
4

 and 
5

 of the angular accelerations 
4
 and 

5
 of  

elements 4 and 5: 

4334
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5335
v ;                        (20) 

43343
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53353

2
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Then the speed of point F of the vertical rod becomes equal: 
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Parameter VF drives the process of dropping the seedling 

from the bucket into the coulter by means of the initial horizontally 

oriented velocity V0 . Let AB be the displacement path of the point 

F of the vertical rod (fig. 2).  

 
 

Fig.2. The displacement path of point F and the velocities 

diagram 

 

Then the horizontal projection of the velocity of point F will 

be: 

                        
5

 cos
F

x
F

VV ;                                 (23) 

where 
5

   - the angle that determines the direction of the 

velocity vector VF with respect to the x-axis. 

From Fig. 2 it is obvious that φ'5 is equal: 

5
max
55

 d  

where: γ –  the displacement angle of the FC rod in the end 

position relative to the vertical one, rad. 
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     dφ5 – changes within the limits max
5

...0  . 

The function that describes the displacement path of point F is 

the folloing: 

              5
max
55  cos  dVV

F
x
F

 .                 (24) 

Since the angular velocity of any point on the carousel (fig. 3) 

is equal to 
car

 , then    
carrf

  , where 
f

 and 
r

 are 

respectively the angular velocities of the fastener of the 

interminable movement mechanism and of the seedling from the 

seedling cup , s-1. 

 
Fig.3. The diagram of the carousel during the operation of  

the vertical rod on the fastener 

 

That's why the following relation is true: 
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;                    (25) 

where: Vf  – fastener speed, m/s 

                  r – radius to the center of the cups on the carousel, m 

            r
'  – radius of the fasteners arrangement, m. 

Taking into account the fact that the seedling begins its fall from the 

cup with an advancement equal to the angle   and velocity Vo≠ 0: 
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where n – number of seedling cups arranged on the carousel. 

The angle of the advance   of the seedlings fall  from the 

carousel cup into the coulter can be changed in the interval 

 0  ;/2 n . 

Substituting (24) and (26) into (25) the  following function is 

obtained:    
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where max
5

 - the maximum return angle of element 5 compared 

to its initial position, rad. 

Suppose that   is the forward angle in the vertical plan, 

which finds the position of point F at a forward opening of the cup 

equal to the angle  , then 

                max
55

d                         (28) 

where:   - the angle until point F contacts the fixer, rad; 

                      max
5

 - the rotary phase of the carousel, rad. 

In order to express   through  , the following relation is used: 
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Substituting 
5

 in (27) it is obtained: 
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As according to the projected construction the forward angle 

is equal to 
0

 , the theoretical mathematical model for determining 

the initial velocity V0 of the seedling at its movement from the seed 

cup into the coulter of the machine has the form: 
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The importance of performing the synthesis of the elaborated 

transplanting machine’s operation system consists in the possibility 

of using the methodology and modeling of the operating system  

obtained as the result of the research. 

 

Conclusions 

1. The research of the operating system of the carousel type  

transplanting machine allows the determination and optimization of 

the essential design parameters of the improved machine. 

2. There was established the law of the movement of the 

pushing vertical rod end of the fasteners on the carousel of the 

planting machine and the theoretical mathematical model for 

determining the initial velocity  V0 of the seedling at its movement 

from the seedling cup into the coulter of the machine. 

3. The proposed mathematical modeling of the operating 

system of the carousel type transplanting machine can be used in 

the researching processes of the drive systems of carousel-type 

planters with an intermittent carousel movement.                                                                                               
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Abstract: In modern industry self-powered devices are an important component. For such devices, the most important component is the 

energy storage device used, most often based on lithium-ion technology. The article presents an equivalent circuits of lithium-ion batteries 

and a mathematical description of charge-discharge processes. Investigated in Matlab / SimPowerSystems built-in library component of 

lithium-ion battery. Mathematical models of equivalent circuits of different types of lithium-ionic batteries have been analyzed. 

KEYWORDS: CHARGE-DISCHARGE CHARACTERISTICS, SIMULATION, LITHIUM-ION TECHNOLOGY, ENERGY STORAGE. 

 

 
1. Introduction 

 

Lithium-ion batteries are one of the most popular energy 

sources for a wide range of autonomous devices from mobile 

phones to electric vehicles [1]. At the same time mathematical 

models of lithium-ion batteries are one of the key issues in the 

modeling of autonomous devices, as they determine the capacity 

and time of the batteries, voltage stability during discharge, as well 

as the battery charge rate [2]. 

Nowadays, electric vehicles are attracting a lot of attention 

from researchers because of their properties, such as reducing fuel 

consumption and greenhouse gas emissions [3, 4]. 

As an energy storage, the battery is one of the basic elements 

on which the development of electric vehicles depends. The 

lithium-ion battery is known for its advantages such as high energy 

density, high charge and discharge speed, safety, etc. [5]. 

Until recently, a major drawback of electric vehicles was the 

high cost of lithium-ion batteries. However, there is a tendency to 

reduce the cost of lithium-ion batteries (Fig. 1). So, by the year 

2030, the cost of 1 kW·h of a lithium-ion drive will cost $ 62 [6]. 

 

 
 

Fig. 1. The existing trend and forecast for the decrease in the cost 

of lithium-ion batteries 

 

Due to the increasing research in simulation processes in 

lithium-ion batteries of electric vehicles, it is important to ensure a 

high accuracy of charge and discharge modeling [7, 8]. 

The purpose of this work is to analyze to validity of 

mathematical models of lithium-ion batteries on the example of the 

battery type NCR-18650b, namely, with the characteristics stated in 

the documentation for the battery. 

 

2. Volt-ampere characteristics of lithium-ion 

batteries in the charging process 

 

Fast charging depends on the transfer of energy to the battery 

at very high power levels. It is not only the chemical composition of 

the battery that determines the power level at which the cell can 

take charge, but also the method used to charge the battery [9]. 

The most popular battery charging procedure is the CC–CV 

(Constant Current – Constant Voltage) [10] (Fig. 2). 

 

 
 

Fig. 2. The charging characteristics of the battery 

 

The main idea behind the CC–CV method is that the battery 

charges a constant maximum current, usually determined by the 

element manufacturer, to some cut-off voltage and then charges at 

that voltage until current consumption decreases to about 0.1C or 

less, providing full charge [11, 12]. 

The discharge characteristics of the NCR-18650b battery 

according to the technical documentation are shown in Fig. 3. 

 

 
 

Fig. 3. The discharge characteristics of the 

NCR-18650b battery at load current: 

1 – 0.65 A; 2 – 3.2 A; 3 – 6.5 A 

 

3. Equivalent circuits and mathematical models of 

lithium-ion storages 

 

There are various mathematical models and equivalent circuits 

describing the processes in lithium-ion batteries, such as an active-

resistive battery model, a dynamic resistive-capacitor model, the 

first and second order Thevenin model and others [13, 14]. These 
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models give different accuracy in the description of charge-

discharge characteristics. 

A model of a lithium-ion battery that takes into account the 

active resistance of the battery (active-resistive model of the 

battery) is shown in Fig. 4. 

 

 
 

Fig. 4. Active-resistive battery model taking 

into account power loss 

 

There are various options for implementing the model, in 

which the value of the internal resistance of the battery is either 

constant Rint = const, or depends on the percentage of battery charge 

Rint = f (SoC), where SoC is the state of charge, the percentage of 

battery charge. Similarly, in various models, the internal EMF of 

the battery can be constant Uoc = const, or it can depend on the 

percentage of battery charge Uoc = f (SoC). 

In the case where the Uoc voltage and resistance depend on the 

percentage of charge, the output voltage at the battery terminals are 

expressed as [15]: 

 

   

 

 

0

;

;

,

t oc int

oc

int int r
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
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
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                   (1) 

 

where I is the battery current; U0 is the open circuit voltage when 

the battery is fully charged; k, kr are the empirically derived 

coefficients. 

Of the drawbacks, the model does not reduce throughput when 

the load increases, so it is not suitable for dynamic systems or 

transition states [16]. 

Based on the dynamic characteristics and operating principles 

of the battery, an equivalent circuit model was developed using 

resistors, capacitors as voltage sources (resistive-capacitor model) 

(Fig. 5). 

 

 
 

Fig. 5. Resistive-capacitor battery model 

 

This model includes the capacitor Ca, which represents the 

accumulated capacitance, the series resistance Ra, which represents 

the polarization effect, the capacitor Cp, and the current-dependent 

resistance Rp, which simulates the effects of polarization and power 

dissipation on the internal resistance Rint. The Cp value is very 

small, while the Ca value usually takes on very large values. The 

SoC value is represented by the change in voltage across the 

capacitors Ca and Cp. 

The disadvantage of this model is that the description of the 

discharge process has sufficiently large errors in the full discharge 

zone. The SoC zone of 20…80 % is described quite accurately by 

this model. 

Equations that describe battery operation: 

 

2

;

;

;

/ 2;

/ .

t Cp Cp p int

t Ca Ca a int

Cp Ca

C

C

U U I R I R

U U I R I R

I I I

E C U

I C dU dt

     


    


 


 
  

                   (2) 

 

The first-order Thevenin model describes charge-discharge 

characteristics as an active-resistive model with an additional RC 

circuit, which are connected in parallel. RC parameters depend on 

SoC, current and temperature. The first-order Thevenin model is 

shown in Fig. 6. 

 

 
 

Fig. 6. Equivalent scheme of the first-order Tevenin model 

 

The equations that describe the processes of charge-discharge 

of the battery are expressed as: 
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            (3) 

 

where R0 is the ohmic resistance; Rp is the polarization resistance; 

Cp is the polarization capacity, which is used to describe the 

transient during the charge-discharge of the battery. 

Resistor R0 provides the internal resistance of an element 

affected by SoC, temperature, and aging. 

For a more accurate description of charge-discharge processes, 

the second-order Tevenin model is used (Fig. 7). 

 

 
 

Fig. 7. Equivalent scheme of the second-order Tevenin model 

 

The second-order Thevenin model has one additional RC 

component compared to the first-order model. With the optional RC 

component, a second-order model can achieve greater accuracy in 

terms of describing the transient behavior of the cell, but at the 

same time, the processing power increases. 

The first RC circuit has a low time constant for describing 

short-term transient effects. These transient effects are associated 

with electrochemical and concentration polarization effects, 

including charge transfer, diffusion, and other factors. 

The equations that describe the operation of the second-order 

Tevenin model are expressed as: 
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            (4) 

 

Thus, the second-order Thevenin model is more accurate and 

at the same time quite simple. In accordance with the requirement 

for model accuracy, the number of RC components added to the 

model can be increased even to infinity. However, as indicated 

above, the complexity of the model increases with the number of 

RC components. A model is always selected based on a 

compromise between accuracy and computational complexity [17]. 

 

4. Mathematical model of lithium-ion battery in 

the Matlab program 

 

In Matlab / Simulink / SimPowerSystems, there is a library 

component of the lithium-ion battery (Fig. 8, a). The block diagram 

of the battery block is shown in Fig. 8, b. 

 

 
a 

 
b 

 

Fig. 8. Component of the lithium-ion battery: 

а – the appearance; b – the internal structure of the subsystem 

 

The subsystem is the equivalent circuit of a simple linear 

battery model in which the internal resistance is not variable and 

does not depend on SoC. 

In Fig. 8, b the following notation is inserted: Ebatt is the 

nonlinear voltage; Exp (s) is the dynamic exponential zone; Sel (s) 

is the battery mode (Sel (s) = 0 during discharge, Sel (s) = 1 during 

charge). 

The charge and discharge characteristics of the lithium-ion 

battery, which is given in Matlab, is described are expressed as: 

 

                    f1 (it, i*, i) = E0 – K·Q / (Q – it)·i* – 

                     – K·Q / (Q – it)·it + A·exp (–B·it) ;                (5) 

 

                f2 (it, i*, i) = E0 – K·Q / (it + 0,1·Q)·i* –  

                    – K·Q / (Q – it)·it + A·exp (–B·it) ,                 (6) 

 

where it is the amount of charge consumed, A·h; i* is the low-

frequency component of the current, A; i is the battery current, A; 

E0 is the constant voltage, V; K is the polarization constant, V/A·h, 

it is also the polarization resistance, Ohm; Q is the maximum 

battery charge, A·h; A is the exponential voltage, V; B is the 

capacity in the exponential zone, A·h-1. 

 

5. Simulation research of lithium-ion battery in 

the Matlab program 

 

The main specifications of the battery type NCR-18650b, 

stated in the datasheet are shown in Table 1 [10]. 

 

Table 1 
The main specifications of the battery type NCR-18650b 

Characteristic Value 

Nominal capacity, A·h 3.2 

Nominal voltage, V 3.6 

Full charge time, h 4 

Weight, g 48.5 

Temperature, ℃ charge 0…+45 

discharge –20…+60 

Energy density, W/kg 243 

 

Setting discharge parameters in the battery block in 

Matlab / Simulink is shown in Fig. 9. 

 

 
 

Fig. 9. Setting discharge parameters in the battery block 

 

The characteristics of the battery discharge at different load 

currents obtained in Matlab / Simulink are shown in Fig. 10. 

 

 
 

Fig. 10. Setting discharge parameters in the battery block: 

1 – 0.65 A; 2 – 3.2 A; 3 – 6.5 A 
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Errors of the discharge characteristics of the lithium-ion 

battery NCR18650-b of the mathematical models considered and 

the built-in Matlab model against the data presented in datasheet are 

shown in Table 2. 

 

Table 2 

Errors of discharge characteristics of mathematical models of lithium-ion battery NCR-18650b 

Capacity testing The relative error is given 

At discharge current 0.65 А At discharge current 3.2 А At discharge current 6.5 А 

Depth of discharge range, % 0…5 5…85 85…100 0…5 5…85 85…100 0…5 5…85 85…100 

Deviation of battery Matlab-model data 

against Datasheet 

4.5 13.3 11.1 9.4 18.2 5.9 17 23 30 

Active-resistive model 2.2 4.3 16.1 3.1 5.8 18.0 4.2 6.4 18.6 

Resistive-capacitor model 7.7 1.7 63.6 7.1 2.1 58.1 6.8 3.2 54.2 

Model Tevenin 2.1 0.8 21.4 2.0 1.1 20.1 2.0 4.3 19.7 

 

6. Results and discussion 

 

Analysis of the data in Table 2 showed that the most accurate 

is the Tevenin model in the range of 0…85 %. That is, in the range 

where the battery is almost completely discharged, the existing 

mathematical models quite accurately describe the value of the 

voltage on the battery. In the range of discharge 85…100 % more 

accurately describes the battery voltage active-resistive model. 

The high error of modeling of the discharge characteristics in 

the built-in Matlab model of the Battery block is caused, first of all, 

by a non-ideal mathematical model that describes an equivalent 

circuit of a linear model in which the internal resistance is a 

constant and the value of the internal EMF depends on the 

magnitude of the discharge. 

Therefore, to improve the accuracy of process modeling in 

lithium-ion batteries, it is recommended to use other substitution 

circuits that more accurately describe the actual behavior of the 

battery, such as the resistive-capacitor model, the Tevenin model, 

etc. 

 

7. Conclusion 

 

The article presents equivalent circuits of lithium-ion batteries 

and a mathematical description of charge-discharge processes. 

In addition, the built-in library component of the lithium-ion 

battery was investigated. 

An analysis of mathematical models of equivalent circuits of 

different types of lithium-ion batteries was carried out, which 

showed that the most accurate are the resistive-capacitor model and 

the Tevenin model. 
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