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Pospoonenuii inmezpanvnuii memood Mo0en08aHHs
cucmemu GUMIPIOBAHHA 2YCMUHU NOMOKI8 iHPpauepso-
H020 BUNPOMIHIOBAHHS HA OCHOBL P0O36’A3AHHS 360POM-
HOi 3ada4i dunamixu 3a 00nomozor0 piensuus Bonvmepu
I poody 3 opienmauicro na eupimenns 3adaui ounamiu-
Hoi Kopexuyii. Po3e’azanns 3adaui cmpyxmyproi Kopexuii
OUHAMIMHUX XAPAKMEPUCMUK BUMIPIOBANLHOT cucmemu
2ycmunu nomoxie nonszae 6 no6ydosi ma suxopucmanui y
nepemeopioonomy Kanaai abo KoOHmypi cucmemu 0eaKo-
20 Gaoxy. Ileii 6a0x 3a80aKu ceoim cneyianvno chopmo-
8anuM OuUHAMIMHUM 8IACMUBOCMAM 3abe3nenye HAUKpawi
JuHamivHi xapaxmepucmuxu 6ciei cucmemu.

Anpo6oeano 3a 00noM02010 excnepumenmy cnocié xKom-
nencauii dunamiunoi noxuoxu. 3 uicro memoro 6yau npose-
OeHi excnepumenmu 3 6UMIPIOGAHHS 2YCMUHU HeCMAaUioHap-
H020 NOMOKY iHPPaA1ePE0H020 BUNPOMIHIOBAHHS 13 3A0AHUM
3AKOHOM 3MIHU, AKUU XApaKmepHuil 01 nPaAKMUMHUX YMOG
pobomu nputimadie. 3mina ycmunu nadarou0z20 NOMOKY
iHpauepeoH020 6UNPOMIHIOBAHHS 00CAANACH 34 PAXYHOK
obepmanns npulimana HAKOJL0 6iCi, WO NPOX0OUMs Uepes
cepeduny 1020 nPUUMAaIbLHOI NOBEPXHI, 6 NOJIL NOMOKY CMma-
uionapnoezo sunpomintoeaua. B pesyaromami excnepumenmy
ompumana HeNHIUHA anpoKcuMayis eKxcnepumeHmaivHo
ompumanoi nepexionoi xapaxmepucmuxu y éuznsndi eiozy-
Ky npuiimaua Ha CunycoidanvHuil nomix iHpparepeorozo
BUNPOMIHIOBAHHA.

Oco6u60 cid 3a3navumu, wo Pesyibmamu HUCe bHOZ0
MoOen0Banns i excnepumenmy noxasyonts 3a006inviy 306idic-
Hicmb, wo dae nidcmagy 3podumu BUCHOBOK npo me, wo GuUbIp
Modeni € npasunvium. Pospobaeni aneopummu 30amui 3aoes-
neuumu uUceNbHY Peanizauilo iHmezpanbHux mooeael i cay-
JHCUMU 0CHOB010 NPU NOGYO06i BUCOKONPOOYKMUBHUX CReyiai-
308aHUX MIKPONPOUECOPHUX Cucmem 0 podomu Y pexcumi
peanvroezo uacy. Ile dozeoauno ycniwno 30iiicnumu ounamiuny
KOpeKuito cucmemu 6UMIPIOBAHHA NOMOKIE iHPparepeonozo
BUNPOMIHIOBAHHSL T 3HAMHO NIOBUWUMU iT MOUHICHTD.

Cninvie uxopucmanns po3poonenozo memooy npu eupi-
WEeHHI MamemMamuiHux 3a0a4 3 6UKOPUCIMAHHAM KOMRIomep-
Hux 3aco0ie 3abe3neuunts MONCIUBICMb NIOGUEHNHA eeKmus-
Hocmi npouecie cunmesy i npoexmyseaHHs 00UUCTIOBATLHUX
npucmpois xopezyrouux 3acodie umiproeav

Kanrouosi cnosa: inmezpanvhe pieuanns Boavmepu, ingpa-
yepeoHe UNPOMIHIOBAHHS, CUCMEMA BUMIPIOBAHHS, OUHAMIY-
Ha KopeKuis
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1. Introduction

Over recent time, given a serious rise in energy cost, more
and more thermal equipment manufacturers are seeking
ways to effectively use the special features of infrared (IR)
radiation when supplying radiant energy [1]. However, wide
industrial implementation of the IR equipment faces serious
obstacles. On the one hand, these are the difficulties related
to growth, and on the other hand, the absence of specialized
research and development units that purposefully work
in this field. The creation of new modern IR installations
requires both analytical and experimental in-depth studies

into processes of energy transfer in absorbing environments,
as well as the processes of heat exchange via radiation [1, 2].
In this case, an important criterion is the economic and
performance characteristics of the designed equipment. In
contrast to standard convective systems, strict mathemati-
cal modelling of heating, for example in IR-ovens, is a chal-
lenging task [3, 4]. Analytical description of the dynamics
of heating an object by infrared radiation implies finding
relations between the density of IR radiation flows, the
maximally permissible temperature and heating rate (a very
important characteristic in the processes of polymerization).
In this event, the methodological basis of a model could be




a differential equation of energy balance [4]. By using this
equation, it is possible to establish the matching rules that
bind the interplay within the system “emitter-receiver”,
however, only for some particular cases and employing the
approximations that often reduce the practical value of solu-
tions. Moreover, a significant disadvantage of the approxi-
mated methods is the total absence of analytical connection
between the functions of temperature, as well as effective
flows of IR-radiation and optical properties and settings of
the mutual arrangement of elements in the system’s design
[5]. Under these conditions, it is a relevant task to devise
new methods for measuring or application of mathematical
methods to process measurement data in order to improve
the degree of its reliability.

The development and improvement of methods and mea-
suring tools results in the need for the construction and study
of mathematical methods for modelling and analysis of signals
as starting experimental data with a focus on computer imple-
mentation [5]. Accounting for the increasing requirements to
signal processing methods and tools, for the increased volume
of calculations, could be achieved by creating the methods of
mathematical modeling, as well as numerical algorithms and
software that implement mathematical models [6].

2. Literature review and problem statement

Paper [6] reports results of the new method for correction
of dynamic characteristics of sensors in measuring systems.
The effectiveness of the method is shown in comparison with
the classic algorithm of waiting for the end of a transitional re-
sponse in a measuring circuit. However, the research method
is applicable only for measurements at a constant temperature
of an object under the influence of the sensor’s stage.

Studies [7, 8] present the most important achievements
of modern IR-thermography when it is used in technical-sci-
entific, biomedical, and other fields. Authors considered
the application of IR thermography methods in two very
important areas of scientific research: temperature measure-
ment and non-destructive testing. However, the methods
for non-destructive testing and measurements based on
the effects of nonlinearity, inertiality, and their physical
characteristics, are not considered. Such methods of non-de-
structive testing, employed based on sending special test
signals, include methods that are based on calculating the
parameters of dynamic models.

Paper [9] proposed a new approach for modeling heat
exchange between receivers and a heat source, taking into
consideration losses by convection and radiation. This ap-
proach produces the mean values for a flow in terms of a
focal volume and time of observation, as well as substantial
dynamic errors. However, in some cases, for example when
measuring powerful radiation flows at solar furnaces [10], it
is also necessary to know the spatial and temporal distribu-
tion of density of the infrared radiation fluxes.

Work [11] considered building an integrated information
processing algorithm for a micro-electric-mechanical system,
which ensures high dynamic precision of the measuring sys-
tem. A mathematical model of the object being monitored is
constructed in the vector-matrix form in order to apply the
Kalman filter to deal with disturbances. The result of com-
puter simulation is the derived estimates for effectiveness of
the integrated system under conditions of interference. The

results obtained prove the efficiency of the implementation of
the integrated information processing at a varying intensity
of interference, for both the fast and slow measured processes.
However, there is a drawback that should be noted: tuning the
Kalman filter in this case requires conducting an additional
identification of the power of an interference and a signal.

Study [12] proposed an approach that would enable the
execution, in the automated system of evaluation of the vis-
ibility of objects in the infrared wavelengths, of transition
from the combined logic-linguistic models to the generalized
models. However, when analyzing a given work, there are
certain constraints for instability at dynamic correction and
numerical implementation.

As regards the development of new measurement proce-
dures, of particular importance are the methods for struc-
tural correction of dynamic errors in measuring transducers,
which are discussed in papers [13, 14]. However, despite the
advantages of these approaches, there is an unresolved issue
about correction of the dynamic characteristics of measuring
transducers using the tools of computational equipment.

An analysis of the above papers reveals how significantly
the role of modern mathematical apparatus and computational
tools has grown in the measuring information processing and
in the creation of fundamentally new measurement methods.
Of particular interest for measuring equipment are the math-
ematical methods for correcting the inertiality of the infrared
radiation non-stationary flow measurement systems. In this
case, the task on improving the accuracy and high-speed
performance can be solved by the development of methods
and algorithms for solving mathematical problems on signal
recovery that come down to solving the Volterra equation
of the first kind [15, 16]. This allows us to suggest that the
construction of an appropriate method would solve the task
on correcting the dynamic characteristics of the IR-radiation
flow measurement system by using advanced computer tools.

3. The aim and objectives of the study

The aim of this study is to construct an integrated
method for modeling a system to measure the density of
infrared radiation fluxes, which would make it possible to
implement the dynamic correction of the system and to
greatly improve its accuracy.

To accomplish the aim, the following tasks have been set:

- to construct a method and the algorithms to recover a
signal at the input of a measuring system by processing the
output signal based on solving the Volterra equation of the
first kind oriented to solve a task on dynamic correction;

- to verify theoretical results through the numerical im-
plementation of models using a computer.

4. Integrated method for modeling a system to measure
the IR radiation flows

The method under consideration implies the calcula-
tion of input signal y(t) based on the known output signal
/() and the assigned pulse transition characteristic k(%)
Moreover, the problem is reduced to solving the Volterra
equation of the first kind [16]

[(t=s)y(s)ds=F(t), M



where k is the dynamic characteristic of the system; f(t)
is the registered signal; y(t) is the restored signal at the
input to the system.

In order to synthesize corrective algorithms, it is neces-
sary to have an expression for function k(%), which can be de-
rived by differentiating the transition characteristic P.(t). We
derive function P.(f) as the response of the system to an input
signal in the form of a single function, the implementation of
which employs a stationary emitter based on a filament lamp
and a diaphragm with the shutter controlled by an electro-
magnet. The approximation of the nonlinear experimentally
received transition characteristic, which is one of the most
convenient forms of representation [16], takes the form

P(t)=P (t)=0,+e™ Y at™, i=1,M, (2)

where ay, a;, A are the constant coefficients that make it pos-
sible to find the value for parameters of the approximating
expression and to select its order 7 in such a way that the sum
of the mean square error in the assigned points of interpola-
tion is minimal. When 7n=7, the pulse transition function of
an IR-radiation receiver takes the form

k(t)=(0,562-0,376t+0,102t" -

-0,01198t* +0,000657t* —

-0,000016t” + 0,000000144‘56)6‘0'178‘. 3)

Therefore, the following integral equation should be solved

[0,562-0,376(t —s)+0,102(t —s)* —

ot—

-0,01198(t —s)’ +0,000657(t —s)" —
—0,000016(t —s)’ +0,000000144(t - 5)°| x
xe My (s)ds = f(t). 4)

Verification of the considered technique to compensate
for a dynamic error should be performed based on any charac-
teristic mode of receiver operation. To this end, we conducted
experiments to measure the density of a nonstationary flow
of infrared radiation under the assigned law of change char-
acteristic of the practical working conditions of receivers that
are used in the measuring equipment. In order to carry out the
experiments, we designed a pilot installation for measuring
the density of infrared radiation (Fig. 1), whose main elements
are a stationary emitter (1) and a measuring system.

The stationary emitter (1) is based on the lamp of IKZK
type, whose power is regulated by the thermostat “RIF-101”
and a diaphragm with a shutter (made of stainless steel and
covered with a ceramic coating), which is operated by an
electromagnet.

The infrared radiation measuring system includes a
chamber of vacuum installation the type of VUP-5 (2),
whose inner surface hosts a screen with a homogeneous
absorbing surface (3) (absorption coefficient is not less
than 0.98). We used, as a heat flow meter (4), the infrared
thermometer MLX90614xAA, which is located on a ro-
tating device (5) with an electric drive of engine the type
of DSh-2. A window (6), used to let the IR radiation in,
was made of glass for the IR spectrum, the brand TBF512
(OST 3-3442-83 “Optical oxygen-free glass. TU”). Sensor
(4) is connected to the microcontroller ATMEGA 328A,

data transfer (information about the current temperature
of the emitter) is executed via a serial SM Bus.

We changed density of the incident flux of infrared
radiation by rotating the receiver around an axis running
through the middle of its receiving surface in the field of a
stationary emitter, as shown in Fig. 1.
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Fig. 1. Pilot installation to measure density of the infrared
radiation flows: 1 — emitter; 2 — chamber of a vacuum
installation; 3 — internal screen with a homogeneous absorbing
surface; 4 — thermal counting device (sensor); 5 - rotating
device; 6 — window to let the IR radiation in

Based on the results of preliminary stationary measure-
ments, we established that a change in the radiation flux
density at the rotating receiver is described by a sinusoidal
dependence with a maximum variation of 2.5 %. The re-
quired uniformity of the receiver’s rotation during measure-
ments was enabled by the paper feeder mechanism of the
recorder N-37. To exclude the influence of convection, the
receiver along with a rotating device was put into the cham-
ber of the vacuum installation. A characteristic response of
the receiver to the sinusoidal flux of infrared radiation at a
period of 28 s is given in Table 1. The derived experimental
dependence f.(t;) defines the examined regime and rep-
resents the right side of equation (1).

Table 1

Results of the experiment to measure the density of a
nonstationary flow of infrared radiation

N | ti,s | fa(ti) | N | ti,s | fe(ti) | N | ti,s | fe(ti)
1 ] 0.00 0.00 11 ] 5.00 | 10.20 | 21 | 10.0 12.44
2 1050 | 051 | 12| 550 | 1093 | 22 | 105 | 11.78
3 | 1.00 0.79 13 ] 6.00 | 11.58 | 23 | 11.0 11.35
4 | 150 | 206 | 14| 650 | 12.23 | 24 | 115 | 10.87
5 | 2.00 3.60 15| 7.00 | 12.75 | 25 | 12.0 10.22
6 | 250 | 476 | 15| 7.50 | 13.14 | 26 | 125 | 9.48

7 | 3.00 5.84 17 | 8.00 | 13.30 | 27 | 13.0 8.60

8 [ 350 | 691 | 18| 850 | 1333 | 28 | 135 | 7.59

9 | 4.00 8.01 19 1 9.00 | 13.19 | 29 | 14.0 6.11

10 | 4.50 9.16 20 | 9.50 | 12.89 - - -

Now we have sufficient information in order to numerical-
ly implement integral equation (1), that is, we know the form
of the kernel (3) and a value for the right part (Table 1). For
computer simulation, we have chosen, as a numerical method
to solve equation (1), a quadrature method [16], according to



which an integral is replaced with the resulting amount that
leads to a system of algebraic equations

iAjf((ti—tj)y(tj)zf(ti), i=1 2., )

where A; are the coefficients of a quadrature formula,
t;=(i—1)h, h is the sampling step.

The application of trapezium formula at constant step
h=const to equation (1) makes it possible to obtain a recur-
rent ratio in the form

5(0)= f;(o)) i [—st(0)+4f3(h)—f3(2h)]/2h’

0= | Pl Sak(s -6)3(0)| ®

Expression (6) shows that the number of operations
performed at each step is continuously increasing with an
increase in the numbers of discretization nodes and, accord-
ingly, there is a growth of the required memory for computer
implementation. It is therefore advisable to use a modified
algorithm of the numerical solution to integral equation (1),
based on the kernel separability property. In this case, the
kernel of equation (1) is represented in the following form:

K(t=s)= Yo, (1B, (s), 1=Lm. @)

If we represent the kernel in equation (3) in the form (7),
equation (4) takes the form

[BR,+B, (tR, ~R,)+B, ('R, - 2R, +R, )+

+B,(t°R, —3t'R, +3tR, —R, )+

+B;(t'R, —4t’R, +6t'R, —4tR, +R; )+

+B, ('R, —5t'R, +10t°R, ~10¢°R , +5tR; —R )+
t6R1 - 6t5R2 + 15t4R3 - ]| e 0178t _ f(t), (8)

+B, 5 ,
—20t°R, +15t°R, —6tR, +R,

where
B1=0.562; By=—0.376; B3=0.102;
B4=-0.01198; B5=0.000657;

B¢=-0.000016; B7=0.000000144;

t

R, :-[60,1785514—1},(5)(15y k :L—7.

0

Calculation expression (6) then takes the following
form

s)=2 M S Sas s} ©

where

m

0=3 0, (t,)B, (t,)=k(t,~t,)=k(0).

1=t

Thus, in expression (9) the number of computational

operations does not depend on the number of the sampling
i—1

nodes, since components ZA/BI (tj)y(tj) depend only on a

single free variable ;. Results of solving the equation (8)

are given in Table 2.

Table 2

Solving results at various steps of quadrature

| Zomce [P 1150 6 | _gE ) =10 ni=15(0)
0.0| 2.224 | 0.392 1.424 | 7.5 18.837 - 17.525
0.5 2.189 - - 8.0 | 17.484 | 17.343 -
1.0] 1.870 | 2.973 - 8.5 | 16.938 - -
1.5] 9.858 - 4518 9.0 | 15.248 | 15.356 | 14.946
2.0{ 9.805 | 10.426 - 9.5 | 13.972 - -
2.5( 11.114 - - 10.0| 12.141 | 12.270 -
3.0 12.694 | 11.244 | 11.397 |10.5] 9.940 - 10.614
3.5] 14.321 - - 11.0| 10.672 | 9.567 -
4.0| 16.078 | 15.347 - 11.5| 8.187 - -
4.5| 17.858 - 14991 |12.0| 6.969 | 7.385 7.661
5.0| 18.498 | 17.887 - 12.5| 5.198 - -
5.5| 18.067 - - 13.0| 3.332 | 3.717 -
6.0| 19.067 | 17.814 | 17.126 |13.5| 1.361 - 2.578
6.5 19.378 - - 14.01 3.189 | 1.299 -
7.0| 19.120 | 18913 - - - -

It should be noted that the quadrature method is matched
with the regularizing algorithm, in which the regularization
parameter is a step in the quadrature.

Fig. 2 shows the restored input signal at different values
for the step. One can see that an increase in step increases
the stability of the obtained solution that reflects the signif-
icant influence of step % on solving the equation (1).

In order to derive a more stable solution, we shall apply,
when implementing the model, the method of Lavrentyev
regularization [17], according to which we solve, instead of
equation (1), the following equation

o+ [K(t=s)y(s)ds =1 (1) (10)

To determine the regularization parameter a, we shall
use a method of model examples, applying it to the Volterra
equation of the first kind [15].

According to the above experiment, we determined a
reaction of the system on a sinusoidal infrared flux (Fig. 3,
curve 1). The period and amplitude of the input sinusoidal
signal are given the values, respectively, 28 s and 18.01 mV.
Therefore, according to the technique of model examples,
considering yo(t)=18.01sin(2m/28)¢, (¢ € [0, T]), we compute
the integral



t)=[R(t- s)ds, 11)
0
by the quadrature method.
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Fig. 2. Graph of the recovered input signal

fo(@®) (Fig. 3, curve 2), derived in this case, is disturbed
by a certain error &, such that condition /" (£)=/o(¢)+€/o(t)
is satisfied. By applying the regularization method by
Lavrentyev [17], we obtain

ayQu(t)+jK(t—s)yQa(s)ds:f*(t), 12)

where /*(¢) is the function f(¢), disturbed with a certain error.
To determine agpeq, equation (12) was solved repeat-
edly by a computer applying the quadrature method. A

minimum of the functional

m

>y, (6)-vo (6]

which matches aqpig, is the only one. The resulting value
for aqpe was employed to solve equation (10). Fig. 4 shows
several variants of the recovered input signal, obtained when
solving integral equation (10) (at a=apq) at different val-
ues for the disturbance of the right side of a model example:

—at £=2 % = dypip=0.0049;

—at £=3 % = aopip=0.0124;

— at E=5 % = Qopi=0.0207.

One can see that the application of regularization pro-
vides for a more stable solution.
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Fig. 3. Graph of curves f(t) and fQ(t)
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Fig. 4. Graph of the input signal recovered by the Lavrentiev
regularization method

5. Discussion of results of modelling the system to
measure the density of infrared radiation flows

The obtained results of numerical modelling of the system
to measure the density of infrared radiation fluxes (Fig. 2-4)
based on solving the inverse problem of dynamics applying
the Volterra equation of the first kind (1) demonstrated the
feasibility of constructing correcting computational devices.

Fig. 2 shows the restored input signal at different values for
astep. One can see that an increase in step improves stability of
the derived solution, which demonstrates a significant impact of
step i on solving the equation (1). Application of the Lavrentiev
regularization method [16] provides a possibility to derive a
more stable solution when implementing the model (1).

Based on the experiment that we conducted to measure the
density of a nonstationary flow of infrared radiation under the
assigned law of change, characteristic of the practical working
conditions of receivers, we determined a reaction of the system
to the sinusoidal infrared flux (Fig. 3, curve 1). The dependence
Jfo@ (Fig. 3, curve 2), derived in this case, is disturbed by a
certain error &, such that /*(¢)=/o () +€/o(?) is satisfied.

Fig. 4 shows several variants of the recovered input signal,
received when solving integral equation (10) (at a=opq) for
different values of disturbance in the right part of a model
example. The figure shows that the application of regulariza-
tion provides for a more stable solution.

The results of modelling the system for measuring the
density of infrared radiation flows, as well as the experiment,
demonstrate a satisfactory agreement, which allows us to
argue about the correct choice of the model’s structure. The
proposed algorithms could enable the numerical implemen-
tation of integrated models and form the basis for building
high-performance, specialized microprocessor systems in real
time in order to successfully implement the dynamic correc-
tion of a measurement system.

Despite a certain specificity of the model (1) that de-
scribes the task on restoring a signal without feedback, at
present there is a rather wide choice of methods to solve them
[16]. In this case, capabilites of analytical and operational
methods are quite limited, and the choice of a specific numeri-
cal method depends on the character and purpose of the prob-
lem that is being addressed. When solving tasks on modeling
or designing the systems of measurement, there are no strict



requirements for time costs, which is why it is possible to em-
ploy both the high-precision computational schemes and the
iterative procedures. When designing algorithms for solving
tasks on recovery of the input signal from a measurement sys-
tem and the dynamic correction in the systems of operational
measurements, management, and control, it is necessary to
take into consideration a real-time mode.

6. Conclusions

1. The constructed integrated method for modeling a
system to measure density of the infrared radiation fluxes
based on solving the inverse problem of dynamics using the
Volterra equation of the first kind has demonstrated the fea-
sibility of construction of correcting computational devices.
The developed algorithms are capable of enabling the numer-
ical realization of integrated models and could form the basis
for building high-performance specialized microprocessor
systems under a real-time mode.

It should be noted that solving a problem on the structural
correction of the dynamic characteristics of the infrared radi-
ation flow density measuring system implied the construction
and application of a certain unit in the transforming channel or

in the system’s circuit. Owing to its specially created dynamic
properties, this unit ensured the best dynamic characteristics of
the entire system. That makes it possible to successfully imple-
ment dynamic correction of the system to measure the infrared
radiation fluxes and to greatly improve its accuracy.

2. The technique for the dynamic error compensation
has been verified experimentally. To this end, we conducted
experiments to measure the density of a nonstationary flow
of infrared radiation under the assigned law of change, char-
acteristic of the practical operating conditions of receivers.
A change in the density of the incident flux of infrared ra-
diation was achieved through the receiver’s rotation around
an axis, running through the middle of its receiving surface,
in the field of a stationary emitter’s flow. The result of the
experiment is the derived approximation of the nonlinear ex-
perimentally obtained transitional characteristic in the form
of the receiver’s response to the sinusoidal flux of infrared
radiation. The results of numerical simulation of the infrared
radiation flow density measuring system using a computer
reveal a satisfactory agreement with the experimentally
acquired data. This suggests that the constructed method
could be used as a tool for computer simulation in tasks on
studying the systems to measure the density of infrared
radiation flows.
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