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Abstract – Uniform multi-dimensional designs of experiments 

for effective research in computer modelling are highly demanded. 

The combinations of several one-dimensional quasi-random 

sequences with a uniform distribution are used to create designs 

with high homogeneity, but their optimal choice is a separate 

problem, the solution of which is not trivial. It is believed that now 

the best results are achieved using Sobol’s LPτ-sequences, but this 

is not observed in all cases of their combinations. The authors 

proposed the creation of effective uniform designs with guaranteed 

acceptably low discrepancy using recursive Rd-sequences and not 

requiring additional research to find successful combinations of 

vectors set distributed in a single hypercube. The authors 

performed a comparative analysis of both approaches using 

indicators of centred and wrap-around discrepancies, graphical 

visualization based on Voronoi diagrams. The conclusion was 

drawn on the practical use of the proposed approach in cases 

where the requirements for the designs allowed restricting to its 

not ideal but close to it variant with low discrepancy, which was 

obtained automatically without additional research. 

 

Keywords – Computer designs of the experiment, generalized 

discrepancy, LP-sequence, parameterless additive recursive  

Rd-sequences, quasi-random expanding sequences, uniformity of 

distribution, Voronoi diagrams. 

I. INTRODUCTION 

Computer designs of experiment [1], by which we mean the 

numerical techniques of obtaining finite sequences of points 

that uniformly fill unit hypercube with an arbitrary number of 

its first elements, are characterised by significant applied 

capabilities. The general theoretical significance of this 

problem is confirmed by the extension of its field of application 

to such areas as stochastic global optimization [2], surrogate 

optimization [3], approximation of the Pareto set for multi-

criteria optimization [4], quasi-Monte Carlo simulation [5], 

cryptography, some computer graphics applications, etc. 

Despite considerable attention of researchers to the design of 

experiments, not all theoretical questions on their creation have 

been resolved. In particular, studies [6], in which questions of 

cost-optimal designs have been studied are of interest. 

Particularly great difficulties arise when creating 

multidimensional designs. Moreover, it is certainly relevant. 

                                                           
* Corresponding author’s e-mail: v.tychkov@chdtu.edu.ua 

II. RESEARCH ANALYSIS 

In the future, we will focus on applications to optimization 

problems, in which a point in the search space is associated with 

a certain set of variation parameters. Then the computer design 

of the experiment is a specification of points in hyperspace 

(points sampling), the selection strategy of which ensures the 

detection of global and local trends in the topology of the multi-

dimensional response surface. As an optimal design of 

experiment, we will consider one, which obtains the maximum 

amount of information concerning the response hypersurface by 

generating a set of points. Due to the fact that this information 

is not a priori usually known, it makes sense to ensure that unit 

hypercube is filled with points with high qualities of uniformity, 

since the transition by stretching to the multi-dimensional 

parallelepiped of the real factor space is simple and does not 

significantly change the quality of the distribution 

characteristics. The uniformity of the distribution increases the 

probability that at least some of the points fall into the region of 

extremes or inflections of the response hypersurface. For these 

reasons, the mathematical description of a multidimensional 

surface turns out to be more rigorous than if probing was carried 

out at points in a different way. With an increase in the 

dimension of space to more than three, the problem of 

constructing a design is significantly complicated. It is also 

important to make a compromise between the limited number 

of the used observation points and the amount of information 

that can be obtained using carefully selected points. Methods of 

generating one-dimensional quasi-random expandable 

sequences, characterised by a low generalized discrepancy and 

a reduced probability of local inhomogeneity, have been well 

processed by researchers [1]. It should be noted that quasi-

random sequences are used in cases where the preference is 

given to obtaining distributions of random numbers with a high 

degree of uniformity, and their correlation is not important. The 

discrepancy is a quantitative characteristic used to measure the 

deviation of the distribution of the existing sequence from the 

ideal uniform distribution, that is, it performs the function of a 

measure of inhomogeneity [7]. The smaller the discrepancy, the 

more homogeneous is the sequence. Using the discrepancy, we 

http://creativecommons.org/licenses/by/4.0
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can also characterise the multi-dimensional designs of 

experiments [8]. Most often, in the process of creating multi-

dimensional designs of experiments with low discrepancy 

certain combinations of several one-dimensional sequences are 

used, but their optimal choice is a separate problem, the solution 

of which is not trivial, that is noted, for example, in [9]. In the 

future, as effective we will consider the multi-dimensional 

design of the experiment if the choice of the set of vectors 

distributed in a single hypercube is realized without alternative, 

providing it with guaranteed low discrepancy without 

additional research on the composition of the combinations. 

Currently, a number of quasi-random sequences with low 

discrepancy [8], [10] are known, including the van der Corput 

sequences, Halton sequences, Faure sequences, Sobol’s  

LPτ-sequences, Niederreiter sequences, etc. When generalizing 

to higher-dimensional designs, all of them have the need for an 

optimized choice of the so-called basic parameters (for 

example, guide numbers for Sobol’s sequences), which requires 

additional effort and is a disadvantage that makes their practical 

application difficult. 

Martin Roberts [11] proposed one of the new modern 

variants of quasi-random sequences with a qualitatively low 

discrepancy indicator – the parameterless additive recursive  

R-Kronecker sequence using irrational numbers, which in turn 

are obtained on the basis of the generalized Fibonacci sequence 

(golden ratio). It is shown that the R-sequence is characterised 

by a small amount of generalized discrepancy even with a 

significant increase in the sample volume of the generated 

points. However, in the author’s article, only the results of 

subjective studies of the quality of the uniform distribution of 

two-dimensional R2-sequences are presented; it is not 

convincing enough when using multi-dimensional designs. 

Therefore, the aim of the article is to study the creation of 

effective multi-dimensional computer designs of point 

sampling in unit hypercube using parameterless additive 

recursive Rd-sequences, their comparison with designs on 

combinations of LPτ-sequences, as the most effective among 

others, based on an analysis of objective numerical indicators 

of generalized discrepancy. 

III. DESIGNING COMPUTER EXPERIMENTS 

A recursive Rd-sequence in a d-dimensional space can be 

mathematically written as: 

( )  : = 
d d n

R t N ,       (1) 

where N is a number of design points N = 1, 2, 3, … ; 

α is an irrational number, 
2 3

1 1 1 1
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 
 =
 
 
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As a quantitative measure of the heterogeneity of the set of 

vectors that are distributed in unit hypercube, two varieties of 

discrepancy regarding L2 norm (the centred discrepancy and the 

wrap-around discrepancy), which are invariant by remarking 

and ordering factors and regarding the rotation of coordinates, 

are used. 

Discrepancy indicators for N design points in d-dimensional 

space are calculated in accordance with the ratios [12]: 
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b) wrap-around discrepancy 
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It is considered that a lower value of the discrepancy when 

comparing the designs of the experiment is characteristic of a 

more uniform, and, accordingly, a more desirable design. For 

greater clarity, we will also use a graphical representation of the 

generated data in the form of Voronoi diagrams. Firstly, two-

dimensional designs will be considered, on the basis of which 

it is easy to work out a reliable research methodology, which 

will subsequently be extended to three- and other multi-

dimensional spaces. In numerical experiments, the following 

initial data from Tables I and II were used. 

The set of sequences shown in Table 2 was chosen according 

to the results of numerical experiments for a visual 

demonstration of the most indicative designs described below 

in terms of their homogeneity. In the experiments, a complete 

iteration of combinations (ξi, ξj) i = 1…6, j = 1…20 for two-

dimensional designs and (ξi, ξj, ξk), i = 1…6, j = 1…20, 

k = 1…20 for three-dimensional designs was carried out. Four-

dimensional and five-dimensional designs were created 

similarly based on previously obtained two- and three-

dimensional plans, where (ξi, ξj, ξk, ξm), m = 1…20 and  

(ξi, ξj, ξk, ξm, ξl), l = 1…20. In this case, changes in the indices 

i, j, k were carried out within the previously specified limits. 
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TABLE I 

THE INITIAL DATA FOR RD-SEQUENCES OF DIMENSION D 

No. 
R2:  d = 2 R3:  d = 3 R4:  d = 4 

x2 y2 x3 y3 z3 x4 y4 z4 q4 

1 0.255 0.07 0.319 0.171 0.05 0.357 0.234 0.129 0.039 

2 0.009755 0.64 0.138 0.842 0.599 0.213 0.968 0.757 0.577 

3 0.765 0.21 0.958 0.513 0.149 0.07 0.702 0.386 0.116 

4 0.52 0.779 0.777 0.184 0.699 0.927 0.436 0.015 0.654 

5 0.274 0.349 0.596 0.855 0.249 0.783 0.169 0.644 0.193 

6 0.029 0.919 0.415 0.526 0.798 0.64 0.903 0.272 0.732 

7 0.784 0.489 0.234 0.197 0.348 0.497 0.637 0.901 0.27 

8 0.539 0.059 0.053 0.868 0.898 0.353 0.371 0.53 0.809 

9 0.294 0.629 0.873 0.539 0.447 0.21 0.105 0.158 0.347 

10 0.049 0.198 0.692 0.21 0.997 0.067 0.839 0.787 0.886 

… … … … … … … … … … 

120 0.085 0.881 0.801 0.025 0.464 0.301 0.567 0.945 0.132 

121 0.84 0.451 0.62 0.696 0.014 0.158 0.301 0.574 0.67 

122 0.595 0.021 0.439 0.367 0.563 0.014 0.035 0.202 0.209 

123 0.35 0.59 0.258 0.038 0.113 0.871 0.769 0.831 0.747 

124 0.105 0.16 0.077 0.709 0.663 0.728 0.503 0.46 0.286 

125 0.86 0.73 0.897 0.38 0.213 0.584 0.236 0.088 0.825 

126 0.615 0.3 0.716 0.051 0.762 0.441 0.97 0.717 0.363 

127 0.369 0.87 0.535 0.723 0.312 0.298 0.704 0.346 0.902 

128 0.124 0.44 0.354 0.394 0.862 0.154 0.438 0.974 0.44 

TABLE II 

THE INITIAL DATA OF LP-SEQUENCES (N = 128) [13] 

1
  

2
  

3
  

4
  

6
  

7
  

9
  

10
  

11
  

13
  

20
  

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.25 0.75 0.25 0.75 0.75 0.25 0.25 0.75 0.25 0.25 0.75 

0.75 0.25 0.75 0.25 0.25 0.75 0.75 0.25 0.75 0.75 0.25 

0.125 0.625 0.875 0.875 0.125 0.375 0.875 0.625 0.625 0.875 0.125 

0.625 0.125 0.375 0.375 0.625 0.875 0.375 0.125 0.125 0.375 0.625 

0.375 0.375 0.625 0.125 0.875 0.125 0.625 0.375 0.875 0.625 0.875 

0.875 0.875 0.125 0.625 0.375 0.625 0.125 0.875 0.375 0.125 0.375 

0.0625 0.9375 0.6875 0.3125 0.0625 0.4375 0.8125 0.6875 0.0625 0.4375 0.9375 

0.5625 0.4375 0.1875 0.8125 0.5625 0.9375 0.3125 0.1875 0.5625 0.9375 0.4375 

0.3125 0.1875 0.9375 0.5625 0.8125 0.1875 0.5625 0.4375 0.3125 0.1875 0.1875 

… … … … … … … … … … … 

0.117188 0.117188 0.664063 0.648438 0.523438 0.929688 0.960938 0.210938 0.773438 0.257813 0.617188 

0.617188 0.617188 0.164063 0.148438 0.023438 0.429688 0.460938 0.710938 0.273438 0.757813 0.117188 

0.367188 0.867188 0.914063 0.398438 0.273438 0.679688 0.710938 0.960938 0.523438 0.0078125 0.367188 

0.867188 0.367188 0.414063 0.898438 0.773438 0.179688 0.210938 0.460938 0.023438 0.507813 0.867188 

0.242188 0.742188 0.289063 0.273438 0.648438 0.554688 0.085938 0.585938 0.398438 0.632813 0.742188 

0.742188 0.242188 0.789063 0.773438 0.148438 0.054688 0.585938 0.085938 0.898438 0.132813 0.242188 

0.492188 0.492188 0.039063 0.523438 0.398438 0.804688 0.335938 0.335938 0.148438 0.882813 0.492188 

0.992188 0.992188 0.539063 0.023438 0.898438 0.304688 0.835938 0.835938 0.648438 0.382813 0.992188 

0.00390625 0.996094 0.308594 0.574219 0.347656 0.675781 0.035156 0.097656 0.449219 0.074219 0.253906 

IV. THE RESULTS OF NUMERICAL EXPERIMENTS 

The research results are illustrated (Figs. 1–3) first for two-

dimensional and three-dimensional designs, respectively. 

The obtained indicators of centred discrepancy (2) and wrap-

around discrepancy (3) for two-dimensional designs, namely, 

for parameterless R2-sequences and some combinations of  

LPτ-sequences are given in Table III. 

Figure 1 contains Voronoi diagrams of design variants of 

experiments with the best indicators of discrepancy based on 

LPτ-sequences and R2-sequences. Note that for designs of 

experiments with close homogeneity based on LPτ-sequences 

the evaluation of the results for both indicators of discrepancy 

is not always unambiguous. At the same time, the associative 

relationship on the homogeneity of the distribution between 

graphic images and numerical indicators is not always clearly 
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seen, as it is demonstrated by examples of R2- and (4, 9)  

LPτ-sequences. Although two-dimensional LPτ-sequences refer 

to sequences with a small discrepancy, there are combinations 

of them that do not demonstrate it, for example, the 

combinations shown in Fig. 2. Therefore, the selection of the 

“best” and “worst” pairs of LPτ-sequences requires additional 

studies, the time costs for which to obtain positive results are 

difficult to assess due to chance. The results of the calculation 

of the discrepancy indicators regarding L2 norm for two-

dimensional designs (Table III) and the visual analysis of 

Voronoi diagrams make it possible to verify that there are 

combinations of LPτ-sequences that have both better and 

slightly worse indicators of generalized discrepancy compared 

to parameterless R2-sequences. 

The indicators of centred discrepancy and wrap-around 

discrepancy for three-dimensional designs are obtained and 

given in Table IV. 

TABLE III 

INDICATORS OF GENERALIZED DISCREPANCY FOR TWO-DIMENSIONAL DESIGNS 

Indicators 

Quasi-sequences 

R2 
LPτ 

( )
1 2
,   ( )

1 7
,   ( )

4 11
,   ( )

2 10
,   ( )

3 13
,   ( )

2 20
,   ( )

4 9
,   

Centred discrepancy ·10-4 5.261 0.7805 0.9471 0.6876 65.55 4.588 7.141 5.102 

Wrap-around discrepancy 3.555938 3.555628 3.555688 3.555708 3.557398 3.557328 3.556283 3.556143 

 

 
a) R2-sequence 

 
b) LPτ-sequences ( )

1 2
,   

 
c) LPτ-sequences ( )

1 7
,   

 
d) LPτ-sequences ( )

4 11
,   

Fig. 1. Visualization of the uniformity of two-dimensional designs in the form of Voronoi diagrams. 
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a) ( )

2 10
,   

 
b) ( )

3 13
,   

 
c) ( )

2 20
,   

 
d) ( )

4 9
,   

 
Fig. 2. Visual analysis of the uniformity of two-dimensional designs in the form of Voronoi diagrams formed by LPτ-sequences. 

TABLE IV 

INDICATORS OF GENERALIZED DISCREPANCY FOR THREE-DIMENSIONAL DESIGNS 

Indicators 

Quasi-sequences 

R3 

LPτ 

( )
6 7 12
, ,    ( )

3 4 9
, ,    

Centred discrepancy ·10-4 7.859 1.769 80.93 

Wrap-around discrepancy 4.741793 4.741183 4.744208 

 

   

a) R3-sequence 
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b) Combinations of LPτ-sequences ( )

6 7 12
, ,    

 
  

c) Combinations of LPτ-sequences ( )
3 4 9
, ,    

Fig. 3. Voronoi diagrams for projections of three-dimensional designs. 

Here, it is possible to observe a clearly expressed 

unambiguity in estimates of inhomogeneity with the help of 

numerical indicators of discrepancy for plans of experiments 

with close homogeneity based on R3- and (6, 7, 12)  

LPτ-sequences, and even more for “worse” design (3, 4, 9). 

The same conclusions can be drawn from an analysis of the 

corresponding Voronoi diagrams. In conclusion, we will try to 

summarise the research results in compliance with the 

previously proposed paradigm for creating multi-dimensional 

designs of experiments. Tables V and VI contain the calculation 

results. 

TABLE V 

INDICATORS OF GENERALIZED DISCREPANCY FOR FOUR-DIMENSIONAL DESIGNS 

Indicators 

Quasi-sequences 

R4 

LPτ 

1 2

5 7

, ,

,

 

 

 
 
 

 1 2

3 5

, ,

,

 

 

 
 
 

 6 7

12 14

, ,

,

 

 

 
 
 

 1 2

10 19

, ,

,

 

 

 
 
 

 2 6

20 10

, ,

,

 

 

 
 
 

 1 2

10 15

, ,

,

 

 
 
 
 

 

Centred discrepancy ·10-4 3.613 0.5245 0.4528 0.4573 8.248 10.143 8.092 

Wrap-around discrepancy 6.326442 6.322127 6.322074 6.32235 6.325789 6.330247 6.325179 

TABLE VI 

INDICATORS OF GENERALIZED DISCREPANCY FOR FIVE-DIMENSIONAL DESIGNS 

Indicators 

Quasi-sequences 

R5 

LPτ 

1 2

3 5

7

, ,

, ,

 

 



 
 
 
 
 

 
1 2

3 5

6

, ,

, ,

 

 



 
 
 
 
 

 
6 7

12 14

3

, ,

, ,

 

 



 
 
 
 
 

 
1 2

5 7

10

, ,

, ,

 

 



 
 
 
 
 

 
1 2

10 19

16

, ,

, ,

 

 



 
 
 
 
 

 
2 6

20 10

16

, ,

, ,

 

 



 
 
 
 
 

 

Centred discrepancy ·10-4 1.959 0.973 0.946 0.971 9.391 11.113 12.357 

Wrap-around discrepancy 8.431419 8.430584 8.430845 8.430928 8.435925 8.44094 8.446635 

A comparison of obtained results of discrepancy does not 

allow drawing conclusions regarding the unambiguous choice 

of designs when using at the same time a combination of two 

indicators, as evidenced, for example, by comparing pairs of R4- 

and (1, 2, 10, 15) LPτ-sequences for four-dimensional design 

or (1, 2, 3, 5, 7) and (6, 7, 12, 14, 3) LPτ-sequences and 

others for five-dimensional designs. It can be argued that, based 

on the LPτ-sequences, it is possible to create the best multi-

dimensional designs of experiment in terms of homogeneity. 

However, an arbitrary combination of vectors in the design does 
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not automatically lead to the desired result. At the same time, if 

the requirements for the design allow us to restrict ourselves to 

its not ideal variant with a guaranteed low discrepancy, then this 

can be done using Rd-sequences without the risk of obtaining 

“anomalous” varieties, as is the case with LPτ-sequences. 

V. CONCLUSIONS 

For multi-dimensional designs with an increase in the 

dimensionality of space, it is increasingly difficult to find 

combinations of LPτ-sequences that have the best indicators of 

generalized discrepancy and require significant time resources. 

However, the use of combinations of LPτ-sequences still shows 

the best results due to a successful choice of guide numbers. 

To summarise, we can draw conclusions regarding the 

concept of rational use of designs for a multi-dimensional factor 

space based on a combination of parameterless additive 

recursive one-dimensional R-sequences. In the case of an 

increase in the dimensionality of space, the concept provides 

the automatic creation of new versions of experimental designs 

with quite acceptable, but not the best characteristics of 

homogeneity by the formation of new vectors without 

additional research to determine the value of the discrepancies. 

Discrepancy indicators will be considered acceptable ones 

when they are worse than the best ones obtained using  

LPτ-sequences in successful designs, but better than in their 

unsuccessful varieties. 
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