Міністерство освіти і науки України

Черкаський державний технологічний університет

Кваліфікаційна наукова

праця на правах рукопису

ТРЕМБОВЕЦЬКА РУСЛАНА ВОЛОДИМИРІВНА

УДК 004.67:620.179.147

ТЕОРІЯ ОПТИМАЛЬНОГО СИНТЕЗУ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ ДЛЯ КОМП'ЮТЕРНИХ СИСТЕМ НЕРУЙНІВНОГО КОНТРОЛЮ

05.13.05 – Комп'ютерні системи та компоненти

Подається на здобуття наукового ступеня доктора технічних наук

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело

____Р.В.Трембовецька

Науковий консультант:

Гальченко Володимир Якович доктор технічних наук, професор

Черкаси-2021

АНОТАЦІЯ

Трембовецька Р.В. Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю. – На правах рукопису.

Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.13.05 – комп'ютерні системи та компоненти. – Черкаський державний технологічний університет Міністерства освіти і науки України, Черкаси, 2021.

B сучасних умовах розвитку промисловості галузі В важкого машинобудування, підприємств чорної металургії, де широко використовується неперервне лиття заготівок, холодний та гарячий прокат металопродукції, досить гострою є проблема контролю якості продукції засобами автоматизованого неруйнівного контролю в «потоці», коли об'єкт переміщується з певною швидкістю. Значні успіхи в забезпеченні необхідного рівня якості продукції останнім часом досягнуто використанням комп'ютерних систем неруйнівного контролю, зокрема електромагнітного із застосуванням накладних вихрострумових перетворювачів. Сучасні вимоги до систем неруйнівного контролю потребують не тільки виявлення різноманітних дефектів, зокрема дефектів порушень суцільності та структури матеріалів й виробів, але також встановлення їх форми, допустимих розмірів, прийнятності структурних відхилень, що є значно складнішою проблемою та є неможливим без застосування цифрових технологій. Ефективне виконання ідентифікації дефектів значно скорочує перебраковку як матеріалів на підготовчому етапі виробництва, так і вже готових виробів при визначенні їх придатності до експлуатації або в її процесі, що суттєво впливає на кінцеві матеріальні затрати виробництва. Ідентифікація дефектів є неможливою без перетворювачів із досконалими характеристиками, спотворений через неоднакову чутливість до дефекту сигнал яких вже не можна виправити навіть надсучасними засобами вторинної обробки, в тому числі й цифрової. В останні роки спостерігається певна інтенсифікація зусиль дослідників в напрямку проектування вдосконалених конструкцій вихрострумових перетворювачів, що обумовлена

розвитком сучасної обчислювальної техніки, новими можливостями застосування більш досконалого математичного апарату та програмного забезпечення. Зусилля науковців спрямовано на створення методів оптимального синтезу систем збудження вихрострумових перетворювачів, які генерують рівномірний розподіл густини вихрових струмів в об'єктах контролю. Такий розподіл забезпечує однорідну чутливість до дефектів суцільності та локальної структури. Але в усіх цих дослідженнях розглядалися статичні об'єкти контролю, ефект швидкості, наявність якого властива для рухомих об'єктів та суттєво впливає на розподіл густини вихрових струмів в них, не враховувався. З цієї причини теоретичні здобутки попередників не можуть бути використано для оптимального синтезу рухомих вихрострумових перетворювачів, що забезпечують однорідний розподіл густини вихрових струмів вздовж всього тіла дефекту.

Наразі спостерігається наявна **суперечність** між необхідністю створення однорідного розподілу густини вихрових струмів в зоні контролю об'єкта, що призводить до однорідної чутливості перетворювачів до дефектів, та між використанням класичних систем збудження вихрострумових перетворювачів, яким притаманний неоднорідний розподіл густини вихрових струмів.

Тому актуальною є **науково-прикладна проблема** створення теорії оптимального параметричного синтезу всього класу рухомих вихрострумових перетворювачів з однорідною чутливістю в зоні контролю для забезпечення необхідних умов щодо ідентифікації дефектів порушень суцільності матеріалів й виробів при використанні комп'ютерних систем неруйнівного контролю.

У *вступі* розкрито суть та стан наукової проблеми, обґрунтовано актуальність дисертаційної роботи, сформульовано мету та завдання щодо досліджень, розкрито наукову новизну та практичну цінність отриманих результатів, наведено дані про публікації та апробацію роботи.

У *першому розділі* проведено аналіз науково-прикладної проблеми, вивчено сучасний стан розвитку комп'ютерних систем неруйнівного електромагнітного контролю. На основі аналізу комп'ютерних систем неруйнівного контролю визначено, що їх невіддільним компонентом, від якого значною мірою залежить

ефективність роботи систем в цілому щодо виявлення та ідентифікації дефектів суцільності виробів і матеріалів, є вихрострумові перетворювачі, зокрема накладні. У розділі проведено систематизацію та критичний аналіз відомих з науковотехнічних джерел інформації певних ідей, підходів та методів до створення систем збудження вихрострумових перетворювачів, які реалізують однорідний розподіл густини вихрових струмів в зоні контролю об'єкта. В розділі наведено огляд відомих математичних методів розв'язку некоректно поставлених задач даного типу. В результаті аналізу встановлено, що серед сучасних підходів перспективним є оптимізаційний метод. Розглянуто методи створення метамоделей ДЛЯ використання при оптимальному сурогатному синтезі вихрострумових найперспективніші перетворювачів. Визначено тенденції ïх розвитку та застосування.

Окрім того, в розділі на основі проведеного аналізу сформульована мета дисертаційних досліджень, поставлено низку завдань, виконання яких забезпечує її досягнення.

У другому розділі виконано концептуальну постановку науково-технічної проблеми. В розділі запропонована методологія сурогатного оптимального синтезу всього класу рухомих вихрострумових перетворювачів із однорідною чутливістю в зоні контролю. Як приклад, наведено узагальнену для кругових та рамкових збудження електродинамічну систем «точну» модель вихрострумових перетворювачів. Розглянуто методи генерування багатовимірних однорідних комп'ютерних планів експериментів. Представлено створений адитивний комітетний нейромережевий метод побудови багатовимірних метамоделей вихрострумових перетворювачів. Показано підходи остаточної оцінки адекватності й інформативності отриманих метамоделей за сукупністю статистичних показників. Також в цьому розділі наведено можливі варіанти функцій апроксимації багатовимірних поверхонь відгуку для низки різновидів структур систем збудження вихрострумових перетворювачів.

У третьому розділі розглянуто створення методів оптимального сурогатного синтезу кругових рухомих накладних вихрострумових перетворювачів з

планарною та об'ємною структурами систем збудження, які забезпечують однорідну чутливість до дефектів, що є необхідною умовою для розпізнавання дефектів суцільності в комп'ютерних системах контролю якості виробів. Ці методи розроблено в рамках єдиної методології оптимального синтезу всього класу рухомих вихрострумових перетворювачів, яку запропоновано в розділі 2. Здійснено побудову метамоделей систем збудження накладних вихрострумових перетворювачів, оцінено їх адекватність за низкою статистичних показників. Наведено чисельні результати параметричного оптимального сурогатного синтезу систем збудження накладних вихрострумових перетворювачів з круговою планарною та об'ємною структурами.

У *четвертому розділі* на основі запропонованого єдиного методологічного підходу до синтезу рухомих вихрострумових перетворювачів створено метод оптимального сурогатного синтезу рамкових рухомих накладних вихрострумових перетворювачів з планарною структурою систем збудження. Виконано побудову метамоделі системи збудження накладного вихрострумового перетворювача. Здійснена верифікація отриманої метамоделі.

Отримано в результаті умовної оптимізації з використанням створеної метамоделі синтезовані варіанти конструкцій рухомих квадратних накладних вихрострумових перетворювачів з планарною структурою систем збудження. Синтезовані варіанти показали кращі результати щодо однорідності розподілу густини вихрових струмів в порівнянні із класичним накладним вихрострумовим перетворювачем із системою збудження у вигляді одинарного квадратного витка.

У п'ятому розділі відповідно до запропонованого єдиного методологічного підходу до синтезу рухомих вихрострумових перетворювачів створено метод оптимального сурогатного синтезу тангенціальних рамкових рухомих накладних вихрострумових перетворювачів з об'ємною структурою систем збудження. Розглянуто можливі варіанти конструкцій тангенціальних накладних вихрострумових перетворювачів, що відрізняються розташуванням вимірювальної котушки перетворювача. Здійснено побудову метамоделі системи збудження тангенціального вихрострумового оцінена ïï накладного перетворювача,

адекватність за низкою статистичних показників. Наведено чисельні результати параметричного оптимального сурогатного синтезу систем збудження тангенціальних накладних вихрострумових перетворювачів з об'ємною структурою.

У *шостому розділі* запропоновано ряд можливих підходів до практичної реалізації систем збудження синтезованих накладних вихрострумових перетворювачів. Оцінено похибки всіх способів нівелювання спотворень розподілу густини вихрових струмів при виготовленні конкретного варіанта синтезованого накладного вихрострумового перетворювача на практиці.

У висновках сформульовано основні результати дисертаційного дослідження.

У додатках наведено акти про практичне впровадження результатів дисертаційної роботи; чотиривимірний однорідний комп'ютерний план експерименту на основі R_d-послідовностей для побудови метамоделі кругового накладного вихрострумового перетворювача з об'ємною структурою систем збудження у декомпозиційній підобласті; тривимірний однорідний комп'ютерний план експерименту на основі ЛП_т-послідовностей для побудови метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження у декомпозиційній підобласті; вагові коефіцієнти RBFнейронної мережі останнього рівня адитивної регресії гіперповерхні відгуку у відповідній декомпозиційній підобласті для метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження.

Наукова новизна дисертаційного дослідження полягає у наступному:

вперше розроблена методологія сурогатного оптимального синтезу 1. всього класу рухомих вихрострумових перетворювачів із однорідною чутливістю в зоні контролю, що включає також створені метод генерування багатовимірних однорідних комп'ютерних планів експериментів з гарантовано низькими розбіжностей комбінацій квазівипадкових показниками на основі R_dпослідовностей; адитивний комітетний нейромережевий метод побудови багатовимірних метамоделей вихрострумових перетворювачів. Методологія дозволяє створити нові методи оптимального сурогатного синтезу рухомих

накладних вихрострумових перетворювачів різних типів, для яких є властивий однорідний розподіл густини вихрових струмів, згенерований в об'єкті контролю.

2. вперше створено багатовимірні нейромережеві метамоделі кругових рухомих накладних вихрострумових перетворювачів з планарною та об'ємною структурами систем збудження, які є моделями на «точну» електродинамічну модель та дозволяють внаслідок значно меншої обчислювальної ресурсомісткості здійснювати процедуру оптимального сурогатного синтезу перетворювачів, що реалізують апріорі заданий розподіл густини вихрових струмів в об'єкті.

3. вперше побудовано багатовимірну нейромережеву метамодель рамкового рухомого накладного вихрострумового перетворювача з планарною структурою системи збудження, конструкція якого надає більші можливості щодо збільшення зони контролю з однорідним розподілом густини вихрових струмів. Як модельзамісник метамодель дозволяє здійснювати швидкі обчислення розподілу густини вихрових струмів близькі за точністю до «точної» електродинамічної моделі;

4. *вперше* створено багатовимірну нейромережеву метамодель рамкового рухомого тангенціального накладного вихрострумового перетворювача з об'ємною структурою системи збудження, який є ефективним для ідентифікації дефектів типу розшарувань комп'ютерними системами електромагнітного неруйнівного контролю. Метамодель характеризується високою обчислювальною продуктивністю в порівнянні із «точною» електродинамічною моделлю, що дозволяє реалізувати процедуру оптимального синтезу;

5. вперше створено методи оптимального синтезу кругових рухомих накладних вихрострумових перетворювачів з планарною та об'ємною структурами систем збудження, які забезпечують однорідну чутливість, що є необхідною умовою для розпізнавання дефектів суцільності в комп'ютерних системах контролю якості виробів;

6. *вперше* створено метод синтезу рамкових рухомих накладних вихрострумових перетворювачів з планарною структурою систем збудження, який дозволяє реалізувати однорідну чутливість перетворювачів в зоні контролю;

7. вперше створено метод синтезу рамкових рухомих тангенціальних накладних вихрострумових перетворювачів з об'ємною структурою систем збудження, використання якого дозволяє розширити зону з рівномірним розподілом густини вихрових струмів, що обумовлює однорідну чутливість перетворювачів до дефектів.

Практичне значення одержаних результатів.

1. Розширена науково-технічна база проектування рухомих вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю завдяки створеній єдиній методології сурогатного оптимального синтезу.

2. Розроблені програмні засоби, які реалізують побудову багатовимірних однорідних комп'ютерних планів експериментів на основі квазівипадкових R_d-послідовностей, що дозволило отримати плани експериментів з гарантовано низькими показниками центрованої та циклічної розбіжностей. Створена програма захищена свідоцтвом №102018 України про реєстрацію авторського права на твір "Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_d-послідовностей»".

3. Створені алгоритми та програмно реалізовано розрахунки розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для НВСП кругових та рамкових різновидів із врахуванням ефекту швидкості.

Створено алгоритм побудови комітетних нейромережевих метамоделей 4. вихрострумових перетворювачів з високою рухомих накладних часовою обчислювальною продуктивністю, що дозволяє реалізувати сурогатний оптимальний синтез цих перетворювачів. Розроблені програмні засоби апроксимації багатовимірних поверхонь відгуку з прийнятною похибкою. Розроблено практичні підходи для перевірки адекватності та інформативності створених метамоделей, що основані на перевірці статистичних гіпотез.

5. Розроблені алгоритми та програмні засоби, які реалізують методи умовної оптимізації багатовимірних нелінійних цільових функцій, що дозволяє проектувати накладні вихрострумові перетворювачі із однорідною чутливістю до дефектів.

Чисельним моделюванням на низці прикладів доведена ефективність розроблених засобів.

Ключові слова: комп'ютерна система неруйнівного контролю, ефект швидкості, накладний вихрострумовий перетворювач, однорідна чутливість, розподіл густини вихрових струмів, метамодель, сурогатний оптимальний синтез.

ABSTRACT

Trembovetska R. V. Theory of optimal synthesis of surface eddy current probes for computer systems of the non-destructive testing. – Manuscript.

The dissertation for the degree of Doctor of Technical Sciences, specialty 05.13.05 – Computer Systems and Components. – Cherkasy State Technological University of the Ministry of Education and Science of Ukraine, Cherkasy, 2021

In modern conditions of industry development in the field of heavy engineering, ferrous metallurgy with the continuous casting of billets, cold and hot rolling of metal products, the problem of product quality control by means of automated non-destructive testing in the "flow" when the object is moving at a certain speed is quite acute. The use of computer systems of non-destructive testing, in particular the electromagnetic one with the application of surface eddy current probes, ensures the required level of a product quality. Modern requirements for non-destructive testing systems need not only the detection of various defects, including defects in the integrity and structure of materials and products, but also the establishment of their shape, size, acceptability of structural deviations, which is much more difficult and impossible without digital technology. Effective implementation of defect identification significantly reduces the rejection of both materials at the preparatory stage of production and finished products in determining their suitability for operation or in its process, considerably reducing the final material production costs. Defect identification is impossible without probes with perfect characteristics, distorted due to unequal sensitivity to the defect, the signal of which can no longer be corrected even by state-of-the-art means of secondary processing, including the digital one. In recent years researchers have been making significant efforts to design advanced eddy current probes structures due to the development of modern computer

technology, new opportunities for the application of more advanced mathematical apparatus and software. These efforts are aimed at creating methods for the optimal synthesis of eddy current probe excitation systems generating a uniform eddy current density distribution in the testing objects. This distribution provides a uniform sensitivity to defects of continuity and local structure. But these studies dealt with the static testing objects. The effect of speed, inherent in movable objects and significantly affecting the eddy currents density distribution in them, failed to be recognized. For this reason, the theoretical achievements of the predecessors are unlikely to be used for the optimal synthesis of movable eddy current probes, providing a uniform eddy currents density distribution throughout the body of the defect.

Currently, there is a *contradiction* between the need to create a uniform eddy currents density distribution in the testing object area, which leads to a uniform sensitivity of the probes to defects, and the use of classical excitation systems eddy current probes, characterized by a heterogeneous eddy currents density distribution.

Therefore, the **scientific and applied problem** of creating a theory of optimal parametric synthesis of the whole class of movable eddy current probes with uniform sensitivity in the testing zone is relevant to provide the necessary conditions for identifying defects in the integrity of materials and products using computer systems of non-destructive testing.

The *introduction* studies the essence and state of the scientific problem, substantiates the relevance of the dissertation, formulates the purpose and objectives of the research, reveals the scientific novelty and practical value of the results, provides data on publications and testing of the work.

The *first section* analyzes the scientific and applied problem, studies the current state of development of computer systems of non-destructive electromagnetic testing. Based on the analysis of the computer systems of non-destructive testing, it was determined that their integral component, on which the efficiency of the systems as a whole depends on the detection and identification of defects in the integrity of products and materials, are eddy current probes, in particular surface. The section systematizes and critically analyzes certain ideas, approaches and methods known from scientific and technical sources of information to create excitation system of eddy current probes, which implement a homogeneous eddy currents density distribution in the testing object area. This section provides an overview of the available mathematical methods for solving incorrectly posed problems of this type. As a result of the analysis it is established that the optimization method is perspective among modern approaches. Methods of creating metamodels for use in optimal surrogate synthesis of eddy current probes are considered. The most perspective tendencies of their development and application are determined.

In addition, the section on the basis of the analysis formulates the purpose of the dissertation research, sets a number of tasks, the implementation of which ensures its achievement.

In the *second section* the conceptual statement of a scientific and technical problem is applied. The section proposes a methodology for surrogate optimal synthesis of the whole class of movable eddy current probes with the uniform sensitivity in the testing zone. As an example, the generalized for circular and frame excitation systems "exact" electrodynamic model of eddy current probes is given. The methods for generating multidimensional homogeneous computer designs of experiments are considered. The created additive committee neural network method of construction of multidimensional eddy current probes metamodels is presented. The approaches of the final estimation of adequacy and informativeness of the received metamodels on a set of statistical indicators are shown. This section also presents possible variants of approximation functions of multidimensional response surfaces for a number of varieties of excitation systems of eddy current probes structures.

The *third section* considers the creation of methods for optimal surrogate synthesis of circular movable surface eddy current probes with planar and volumetric excitation systems structures, providing a uniform sensitivity to defects, which is a necessary condition for recognizing defects of integrity in computer quality testing systems. These methods have been developed within the framework of a single methodology for optimal synthesis of the whole class of movable eddy current probes, which is proposed in Section 2. The construction of metamodels of excitation systems of surface eddy current probes was carried out; their adequacy was evaluated according to a number of statistical

indicators. Numerical results of parametric optimal surrogate synthesis of excitation systems of surface eddy current probes with circular planar and volumetric structures are given.

The *fourth section* presents the method of optimal surrogate synthesis of frame movable surface eddy current probes with a planar excitation systems structure, created on the basis of the proposed unified methodological approach to the synthesis of movable eddy current probes. The metamodel excitation system of surface eddy current probe has been constructed.

As a result of conditional optimization with the use of the created metamodel the variants of designs of movable square surface eddy current probes with planar excitation systems structure have been synthesized. The synthesized variants have showed better results in terms of homogeneity of eddy currents density distribution in comparison with the classical surface eddy current probe with excitation system in the form of a single square coil.

The *fifth section* presents a method of optimal surrogate synthesis of tangential frame movable surface eddy current probes with a volumetric excitation systems structure, created in accordance with the proposed unified methodological approach to the synthesis of movable eddy current probes. Possible variants of constructions of tangential surface eddy current probes differing in the location of the measuring coil of the probe are considered. The excitation system metamodel of the tangential surface eddy current probe has been built, its adequacy was evaluated according to a number of statistical indicators. Numerical results of parametric optimal surrogate synthesis of excitation systems of tangential surface eddy current probes with volumetric excitation system structure are presented.

The *sixth section* offers a number of possible approaches to the practical implementation of excitation systems synthesized surface eddy current probes. The errors of all methods of leveling distortions of eddy currents density distribution in the manufacture of a specific variant of the synthesized surface eddy current probe in practice have been estimated.

The main results of the dissertation research are formulated in the conclusions.

The *appendices* contain acts on the practical implementation of the results of the dissertation; a four-dimensional homogeneous computer plan of the experiment based on R_d -sequences for the construction of a metamodel of a circular surface eddy current probe with a volumetric structure of the excitation system in the decomposition subdomain; three-dimensional homogeneous computer design of the experiment based on LP_{τ} -sequences for construction of a metamodel of a frame surface eddy current probe with a planar structure of the excitation system in the decomposition subdomain; the weight coefficients of the RBF-neural network of the last level of an additive regression of the hypersurface response in the corresponding decomposition subdomain for the metamodel of the frame surface eddy current probe with a planar structure of the excitation system.

The scientific novelty of the dissertation research is as follows:

1. the methodology for surrogate optimal synthesis of the whole class of movable eddy current probes with homogeneous sensitivity in the testing area has been developed *for the first time*, which also includes a method for generating multidimensional homogeneous computer designs of experiments with guaranteed low differences based on combinations of quasi-random R_d -sequences; additive committee neural network method for constructing multidimensional eddy current probes metamodels. The methodology allows creating new methods of optimal surrogate synthesis of movable surface eddy current probes of different types, characterized by a homogeneous eddy currents density distribution, generated in the testing object;

2. the multidimensional neural network metamodels of circular movable surface eddy current probes with planar and volumetric structures of excitation systems have been created *for the first time*, serving as models for an "accurate" electrodynamic model and allow carrying out the procedure of optimal surrogate synthesis of probe currents in the object;

3. the multidimensional neural network metamodel of a frame movable surface eddy current probe with a planar structure of the excitation system has been constructed *for the first time*; its design provides greater opportunities to increase the testing zone with a uniform eddy current density distribution. As a substitute model, the metamodel allows fast calculations of the eddy current density distribution close in accuracy to the "exact" electrodynamic model;

4. the multidimensional neural network metamodel of a frame movable tangential surface eddy current probe with a volumetric structure of the excitation system has been created *for the first time*. It is effective for the identification of defects such as bundles by computer systems of electromagnetic non-destructive testing. The metamodel is characterized by a high computational performance in comparison with the "accurate" electrodynamic model, which allows implementing the procedure of optimal synthesis;

5. the methods of optimal synthesis of circular movable surface eddy current probes with planar and volumetric structures of excitation systems, which provide uniform sensitivity and it is a necessary condition for recognizing defects of integrity in computer quality testing systems have been created *for the first time*;

6. the method of synthesis of frame movable surface eddy current probes with planar structure of excitation system which allows using homogeneous sensitivity of probes in a testing zone is created *for the first time*;

7. a method of synthesis of frame movable tangential surface eddy current probes with volumetric structure of the excitation system has been created *for the first time*, the application of which allows expanding the zone with the uniform eddy current density distribution, providing a uniform sensitivity of probes to defects.

The practical significance of the obtained results.

1. The scientific and technical base of designing movable eddy current probes for computer systems of non-destructive testing has been expanded due to the created unified methodology of surrogate optimal synthesis.

2. The software tools implementing the construction of multidimensional homogeneous computer designs of experiments based on quasi-random R_d -sequences have been elaborated. Thus, the experimental designs with guaranteed low rates of centered and wrap-around discrepancies have been obtained. The created program is protected by the certificate No102018 of Ukraine on registration of copyright to the work "Computer program «Program of creation of the multidimensional computer homogeneous plan of experiment on the basis of R_d -sequences»".

3. Algorithms have been created and calculations of eddy currents density distribution in the testing object have been carried out according to "exact" electrodynamic models for surface eddy current probes of circular and frame varieties taking into account the effect of speed.

4. The algorithm of construction of committee neural network metamodels of movable surface eddy current probes with high time computing productivity has been done. The surrogate optimal synthesis of these probes are implemented on its basis. The software tools for approximating multidimensional response surfaces with acceptable error have been developed. Practical approaches to testing of the adequacy and informativeness of the created metamodels based on testing statistical hypotheses have been developed.

5. Algorithms and software tools, that implement methods of conditional optimization of multidimensional nonlinear objective functions, have been developed. It allows designing surface eddy current probes with homogeneous sensitivity to defects. Numerical simulations on a number of examples have proved the effectiveness of the developed tools.

Keywords: computer system of non-destructive testing, velocity effect, surface eddy current probe, homogeneous sensitivity, eddy current density distribution, metamodel, surrogate optimal synthesis.

Список публікацій здобувача

Наукові праці, в яких опубліковано основні наукові результати дисертації:

[1] The RBF-Metamodel Development of Surface Eddy-Current Probe for the Surrogate Optimal Synthesis Problem [Text] / V. Ya. Halchenko, R. V. Trembovetska, V. V. Tychkov // International Journal "NDT Days". – 2018. – Vol. 1, Issue 4. – P. 425-433. Особистий внесок: створено комп 'ютерний план експерименту на основі $\Pi\Pi_{\tau}$ -послідовностей; побудована RBF-метамодель вихрострумового перетворювача.

[2] Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен [Текст] / В. Я. Гальченко, Р. В.

Трембовецька, В. В. Тичков // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – с. 60-72. (**Web of Science**).

Особистий внесок: розроблена обчислювальна технологія побудови метамоделей для задач оптимального синтезу з використанням методів інтелектуального аналізу даних, штучного інтелекту та сучасних комп'ютерних методів планування експерименту. Створені тестові метамоделі.

[3] Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як складова сурогатного оптимального синтезу [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Вісник Херсонського національного технічного університету. – 2018. – № 3 (66). – Т. 1. – С. 32–38.

Особистий внесок: створена метамодель вихрострумового перетворювача з циліндричною котушкою збудження, що має прямокутний поперечний перетин. Здійснена оцінка адекватності та інформативності метамоделі.

[4] Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems [Text] / R. V. Trembovetska,
V. Ya. Halchenko, V. V. Tychkov // Eastern-European Journal of Enterprise Technologies. – 2018. - № 5/5 (95). - P. 39-46. (Scopus).

Особистий внесок: виконано розрахунок розподілу густини вихрових струмів для двох з трьох типів котушок збудження накладних вихрострумових перетворювачів, зокрема кругової, прямокутної, у відповідності до «точних» електродинамічних моделей із врахуванням ефекту швидкості.

[5] Побудова RBF-метамоделей структур збудження рухомого концентричного вихрострумового перетворювача [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Електротехніка та електромеханіка. – 2019. – № 2. – С. 28-38. (Web of Science).

Особистий внесок: розроблено програмне забезпечення для формування точок плану експерименту із використанням ЛП_т-послідовностей. Створено RBFнейромережеву метамодель для рухомого об'єкту контролю. [6] Nonlinear surrogate synthesis of the surface circular eddy current probes / Halchenko V. Ya., Trembovetska R. V., Tychkov V. V., Storchak A. V. // Przegląd elektrotechniczny. – 2019. - № 9. – P. 76-82. (Web of Science, Scopus).

Особистий внесок: запропонована гібридна побудова нейромережевої метамоделі накладного вихрострумового перетворювача; реалізовано нелінійний сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів.

[7] Оптимальний сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів із рівномірною чутливістю в зоні контролю [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Вісник Херсонського національного технічного університету. – 2019. – № 2(69). - Частина 2. - С. 118-125.

Особистий внесок: виконано сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів та апробовано різновиди цільових функцій для розв'язку задачі оптимального синтезу.

[8] Линейный синтез несоосных накладных вихретоковых преобразователей [Текст] / В. Я. Гальченко, Р. В. Трембовецкая, В. В. Тычков // International Journal "NDT Days". - 2019. – Vol. 2. – Issue. 3. - Р. 259-268.

Особистий внесок: виконано чисельні експерименти лінійного синтезу накладних вихрострумових перетворювачів; розраховано похибки синтезу.

[9] Оцінка точності нейромережевих метамоделей кругових накладних вихрострумових перетворювачів [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков, А. В. Сторчак // Вісник Черкаського державного технологічного університету. – 2019. – № 2. – С. 18-29.

Особистий внесок: розраховані статистичні показники для оцінки інформативності адекватності та метамоделей накладного кругового для вихрострумового перетворювача однієї iз трьох декомпозиційних підобластей; перевірена адекватність за *F*-критерієм Фішера.

[10] Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system / R.V. Trembovetska, V.Y. Halchenko, V.V.

Tychkov // International Scientific Journal «Mathematical Modeling». – 2019. - vol. 3. -Issue 4. - P. 113-116.

Особистий внесок: побудована багатопараметрична гібридна нейромережева матемодель вихрострумового перетворювача з об'ємною структурою системи збудження.

[11] Surface eddy current probes: excitation systems of the optimal electromagnetic field (review) / V.Ya. Halchenko, R.V. Trembovetskaya, V.V. Tychkov // Devices and Methods of Measurements. – 2020, vol. 11, no. 2, pp. 91–104. (Web of Science)

Особистий внесок: здійснений аналіз науково-технічної інформації в галузі вихрострумового контролю щодо використання електромагнітних полів збудження з апріорі заданими властивостями. Запропонована класифікація перетворювачів за ознаками, що характеризують систему збудження.

[12] Відновлення приповерхневих радіальних профілів електрофізичних характеристик циліндричних об'єктів при вихрострумових вимірюваннях із наявністю апріорних даних. Формування вибірки для побудови сурогатної моделі / В.Я. Гальченко, В.В. Тичков, А.В. Сторчак, Р.В. Трембовецька // Український метрологічний журнал. – 2020. – № 1. – С. 35-50. (Web of Science).

Особистий внесок: здійснено підготовчий етап побудови апроксимаційної сурогатної моделі, що полягає в створенні комп'ютерного плану експерименту на основі ЛП_т-послідовностей Соболя та формуванні на базі «точної» електродинамічної моделі задачі навчальної вибірки.

[13] The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence / Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. // Applied Computer Systems. – 2020. – vol. 25, no. 1, pp. 70-76. (Web of Science).

Особистий внесок: створено багатовимірні комп'ютерні плани генерації точок в одиничному гіперкубі з використанням безпараметричних адитивних рекурсивних R_d -послідовностей та комбінацій ЛП_т-послідовностей Соболя. Здійснено дослідження ефективності дво-, три-, чотири- та п'ятивимірних планів на основі цих послідовностей.

[14] Методи створення метамоделей: стан питання / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков, А.В. Сторчак // Вісник Вінницького політехнічного інституту. - 2020. – № 4 (151). - С. 74 – 88.

Особистий внесок: здійснено аналіз сучасних досліджень в сфері математичного моделювання з використанням евристичних методів побудови метамоделей для ресурсомістких задач; визначено їх переваги та недоліки.

[15] Створення сурогатної моделі для відновлення приповерхневих профілів електрофізичних характеристик циліндричних об'єктів / В. Я. Гальченко, А. В. Сторчак, Р. В. Трембовецька, В. В. Тичков // Український метрологічний журнал. - 2020. - № 3. – С. 27-35. (Web of Science).

Особистий внесок: виконано пошук інформації щодо методів побудови сурогатних моделей та їх систематизація.

[16] Оптимальне проектування вихрострумових перетворювачів та аналіз методів розв'язку нелінійних обернених задач / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков // Прикладні питання математичного моделювання. – 2020. – т.3. – № 2.2. – С. 93-104.

Особистий внесок: сформульована задача оптимального проектування перетворювачів із наперед заданими характеристиками як некоректно поставленої оберненої нелінійної з математичної точки зору. Проведено огляд та аналіз математичних методів, що використовуються для їх розв'язку.

[17] Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, A. V. Storchak // International Journal "NDT Days". - 2020. – Vol. 3. – Issue.
4. - P. 184-190.

Особистий внесок: побудована метамодель кругового вихрострумового перетворювача з об'ємною структурою системи збудження. Здійснено лінійний сурогатний параметричний синтез неспіввісних накладних вихрострумових перетворювачів із однорідним розподілом густини вихрових струмів в зоні контролю об'єкта. [18] Linear synthesis of frame eddy current probes with a planar excitation system /
R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, C. V. Bazilo // International
Scientific Journal «Mathematical Modeling». – 2020. - vol. 4. - Issue 3. – P. 86-90.

Особистий внесок: побудована метамодель рамкового вихрострумового перетворювача з планарною структурою системи збудження. Здійснено лінійний сурогатний параметричний синтез рамкових накладних неспіввісних вихрострумових перетворювачів із однорідним розподілом густини вихрових струмів в зоні контролю об'єкта.

[19] Застосування MLP-метамоделей в задачах сурогатної оптимізації [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Молодий вчений. — 2018. — №2 (54). – С. 32–39. (**Open Academic Journals Index, Academic Resource Index ResearchBib**).

Особистий внесок: побудовано метамодель на основі MLP—нейронної мережі. Зроблено узагальнювальні висновки щодо використання обчислювальної технології побудови MLP-метамоделі для апроксимації складних цільових функцій.

[20] Побудова MLP-метамоделі накладного вихрострумового перетворювача для задач сурогатного оптимального синтезу [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Технічні вісті. – 2018. – № 1(47), № 2(48). – С. 27-31. (**Open Academic Journals Index, Academic Resource Index ResearchBib, Elektronische Zeitschriftenbibliothek**).

Особистий внесок: побудована MLP-метамодель кругового вихрострумового перетворювача. Оцінено адекватність та інформативність отриманої MLPметамоделі.

[21] Свідоцтво 102018 України про реєстрацію авторського права на твір "Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_d-послідовностей»" [Текст] / Гальченко В.Я., Трембовецька Р.В., Тичков В.В. (Україна); заявник та власник Гальченко В.Я., Трембовецька Р.В., Тичков В.В. - №103492; заявл.24.12.20; зареєстровано 25.01.21 в Державному реєстрі свідоцтв про реєстрацію авторського права на твір. Особистий внесок: розроблено програму розрахунку мовою програмування MathCAD.

[22] Побудова RBF-метамоделей в задачах сурогатної оптимізації [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька // Теоретико-практичні проблеми використання математичних методів і комп'ютерно-орієнтованих технологій в освіті та науці : II Всеукраїнська конференція, Київ, 28 березня 2018 р. : матеріали доповідей. – Київ: Київ. ун-т ім. Б. Грінченка, 2018. – С. 179–184.

[23] Визначення впливу плану обчислювального експерименту на побудови RBF-метамоделей [Електронний ефективність pecypc] / P. B. Трембовецька, В. Я. Гальченко, В. В. Тичков // Теоретико-практичні проблеми використання математичних методів і комп'ютерно-орієнтованих технологій в освіті та науці : II Всеукраїнська конференція, Київ, 28 березня 2018 р. : матеріали доповідей. – Київ: Київ. ун-т ім. Б. Грінченка, 2018. – С. 223–228.

[24] Апроксимація поверхні відгуку засобами штучного інтелекту [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Сучасні тенденції розвитку науки: II Міжнародна науково-практична конференція, Ужгород, 23–24 лютого 2018 р. : матеріали доповідей. — Херсон: Видавничий дім "Гельветика", 2018. – С. 54–57.

[25] Застосування метамоделей для вирішення задач синтезу вихрострумових перетворювачів з однорідним розподілом щільності струму в зоні контролю [Текст]
/ В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Приладобудування: стан і перспективи : XVII Міжнародна науково-технічна конференція, 15–16 травня 2018
р. : тези доповідей. – Київ: ПБФ КПІ ім. Ігоря Сікорського, 2018. – С. 146–147.

[26] Вирішення складних задач оптимізації з використанням метамоделей [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Information Technologies in Education, Science and Technology" (ITEST-2018) : IV International Scientific-Practical Conference, Cherkasy, 17–18 May, 2018 : proceedings. – Cherkasy: ChSTU, 2018. – P. 37–42.

[27] The Approximation Surface Review of the Multidimensional Target Function for Surrogate Optimization Problem [Text] / R. V. Trembovetska, V. Ya. Halchenko, V.V. Tychkov // Advanced Information Systems and Technologies: VI International scientific conference, Sumy, 16–18 May, 2018 : proceedings. – [Edited by S. I. Protsenko, V. V. Shendryk]. – Sumy: Sumy State University, 2018. – P. 34–38.

[28] Метамоделювання як метод проектування вихрострумових перетворювачів з апріорі визначеними властивостями [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Вимірювальна та обчислювальна техніка в технологічних процесах: XVIII міжнародна науково-технічна конференція, Одеса, 8–13 червня 2018 р. : матеріали доповідей. – Одеса: ОНАЗ ім. О.С. Попова, 2018. – С. 105–107.

[29] Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як складова сурогатного оптимального синтезу [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // XIX Міжнародна конференція з математичного моделювання (МКММ–2018), Херсон, 17–21 вересня 2018 р. : тези доповідей. – Херсон: ХНТУ, 2018. – С. 8.

[30] Використання цільових функцій-замісників в оптимальному сурогатному синтезі вихрострумових перетворювачів [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Сучасні проблеми прикладної математики та інформатики : XXIV Всеукраїнська наукова конференція, Львів, 26–28 вересня 2018 р. : матеріали доповідей. – Львів: Вид-во Тараса Сороки, 2018. – С. 28–34.

[31] Визначення обчислювальної ресурсоємності математичних моделей накладних вихрострумових перетворювачів із врахуванням ефекту швидкості для задач оптимального синтезу [Текст] / [Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков та ін.] // Датчики, прилади та системи–2018 : VII Міжнародна науковотехнічна конференція, Черкаси – Херсон – Лазурне, 17–21 вересня 2018 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2018. – С. 40–46.

[32] Нейрокомпьютинг – инструментальное средство проектирования вихретоковых преобразователей [Текст] / [В. Я. Гальченко, Р. В. Трембовецкая, В. В. Тычков и др.] // Проблеми інформатики та моделювання (ПІМ–2018) : XVIII Міжнародна конференція, Харків–Одеса, 15–19 вересня 2018 р. : тези конференції. – Харків : НТУ «ХПІ», 2018. – С. 30. [33] Побудова нейромережевих метамоделей для вирішення зворотних задач реконструкції електрофізичних параметрів циліндричних об'єктів [Електронний ресурс] / [В. О. Діденко, В. В. Тичков, Р. В. Трембовецька, В.Я. Гальченко] // Метрологічні аспекти прийняття рішень в умовах роботи на техногеннонебезпечних об'єктах : Всеукраїнська науково-практична інтернет-конференція здобувачів вищої освіти і молодих учених, Харків, 1-2 листопада 2018 р. : матеріали конференції. – Харків : ХНАДУ, 2018. – С. 20-22.

[34] Нейромережеве моделювання в задачах відновлення електрофізичних параметрів циліндричних об'єктів при вихрострумовому контролі [Електронний ресурс] / [А. В. Сторчак, В. В. Тичков, В. Я. Гальченко, Р.В. Трембовецька] // Метрологічні аспекти прийняття рішень в умовах роботи на техногеннонебезпечних об'єктах : Всеукраїнська науково-практична інтернет-конференція здобувачів вищої освіти і молодих учених, Харків, 1-2 листопада 2018 р. : матеріали конференції. – Харків : ХНАДУ, 2018. – С. 71-73.

[35] Методи покращення точності нейромережевих метамоделей накладних вихрострумових перетворювачів для сурогатного синтезу [Електронний ресурс] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2018) : 2-nd scientific conference with international participation, Poland, Lublin, 15–19 october 2018. : Conference proceedings. – Poland : USNDT, 2018. – $N_{\rm P}$ 2. – P. 47-49.

[36] Побудова математичної моделі прямої задачі в проблемі реконструкції електрофізичних параметрів циліндричних об'єктів контролю вихрострумовим методом [Електронний ресурс] / [А. В. Сторчак, В. В. Тичков, Р. В. Трембовецька, В. Я. Гальченко] // Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2018) : 2-nd scientific conference with international participation, Poland, Lublin, 15–19 october 2018. : Conference proceedings. – Poland : USNDT, 2018. – N_{2} 2. – P. 50-51.

[37] Сурогатний нелінійний синтез вихрострумових перетворювачів [Текст] / [Гальченко В.Я., Трембовецька Р.В., Тичков В.В.] // Міжнародний науковий симпозіум «Інтелектуальні рішення». Обчислювальний інтелект (результати, проблеми, перспективи): праці міжнар. наук.-практ. конф., 15-20 квітня 2019 р. Ужгород / М-во освіти і науки України, ДВНЗ «Ужгородський національний університет», та [ін.]. – Ужгород : ПП «Інвазор», 2019. - С. 78-80.

[38] Сурогатне моделювання в задачах ідентифікації параметрів об'єктів контролю [Електронний ресурс] / [Гальченко В.Я., Тичков В.В., Трембовецька Р.В., Сторчак А.В.] // Інформатика, математика, автоматика (ІМА-2019) : науковопрактична конференція, Суми, 23-26 квітня 2019 р. : матеріали конференції. – Суми: СДУ, 2019 – С. 189.

[39] Розв'язок ресурсоємних обернених задач електротехніки методами сурогатної оптимізації [Електронний ресурс] / [Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В.] // Фізика, електроніка, електротехніка (ФЕЕ-2019) : науково-практична конференція, Суми, 23-26 квітня 2019 р. : матеріали конференції. – Суми: СДУ, 2019 – С. 135.

[40] Комп'ютерне моделювання вихрострумового контролю багатошарових циліндричних виробів [Електронний ресурс] / [Сторчак А.В., Трембовецька Р.В., Гальченко В.Я., Тичков В.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науково-практичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 179-182.

[41] Постановка проблематики комп'ютерного моделювання вихрострумового контролю циліндричних провідних виробів [Електронний ресурс] / [Тичков В.В., Трембовецька Р.В., Гальченко В.Я., Сторчак А.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науково-практичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 183-185.

[42] Сурогатне моделювання для розв'язку обернених задач вихрострумового контролю [Електронний ресурс] / [Трембовецька Р.В., Гальченко В.Я., Тичков В.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науково-практичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 186-187.

[43] Сурогатний параметричний синтез неспіввісних вихрострумових перетворювачів із рівномірною чутливістю [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // ХХ Міжнародна конференція з математичного моделювання (МКММ–2019), Херсон, 16–20 вересня 2019 р. : тези доповідей. – Херсон: ХНТУ, 2019. – С. 100.

[44] Моделювання вихрострумового контролю циліндричних виробів із неперервним розподілом електрофізичних параметрів [Text] / Сторчак А.В., Трембовецька Р.В., Гальченко В.Я., Тичков В.В. // Датчики, прилади та системи–2019 : VIII Міжнародна науково-технічна конференція, Черкаси – Херсон – Лазурне, 16–20 вересня 2019 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2019. – С. 9–12.

[45] Застосування сурогатної оптимізації в задачах синтезу вихрострумових давачів [Text] / Трембовецька Р.В., Гальченко В.Я., Тичков В.В. // Датчики, прилади та системи–2019 : VIII Міжнародна науково-технічна конференція, Черкаси – Херсон – Лазурне, 16–20 вересня 2019 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2019. – С. 13–17.

[46] Побудова багатопараметрової нейромережевої метамоделі накладних вихрострумових перетворювачів об'ємної структури / Р.В. Трембовецька, В.Я. Гальченко, В.В. Тичков // Ш-я науково-технічна конференція з міжнародною участю «Неруйнівний контроль в контексті асоційованого членства України в Європейському Союзі», 17-19 вересня 2019 р. : Збірник матеріалів. Київ, Україна: УТ НКТД, – 2019 – № 3. – С. 19-21.

[47] Аналіз досліджень щодо реконструкції електрофізичних параметрів об'єктів при вихрострумовому контролі / Сторчак А. В., Гальченко В. Я., Тичков В. В., Трембовецька Р. В. // Метрологічні аспекти прийняття рішень в умовах роботи на техногенно-небезпечних об'єктах : Всеукраїнська науково-практична інтернет-конференція здобувачів вищої освіти і молодих учених, Харків, 4-5 листопада 2019 р. : матеріали конференції. – Харків : ХНАДУ, 2019. – С. 121-125.

[48] Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system / R.V. Trembovetska, V.Y. Halchenko, V.V.

Tychkov // Proceedings of the III International scientific conference «Mathematical modeling». Tematic fields: Theoretical foundations and specificity of mathematical modelling. Mathematical modelling of technological processes and systems, 11–14.12.2019, Borovets, Bulgaria: Scientific-technical union of Mechanical Engineering - Industry 4.0, Sofia, Bulgaria. – Vol. III. - Issue 1(3)/2019. – P.56-59.

[49] Реконструкція профілів характеристик матеріалу циліндричних об'єктів шляхом розв'язку оберненої задачі вихрострумового вимірювального контролю / Сторчак А.В., Гальченко В.Я., Трембовецька Р.В., Тичков В.В. // Information Technologies in Education, Science and Technology" (ITEST-2020) : V International Scientific-Practical Conference, Cherkasy, May 21-23, 2020. – Cherkasy: ChSTU, 2020. – C. 34-36.

[50] Побудова ефективних багатовимірних комп'ютерних планів експерименту / Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В. // Information Technologies in Education, Science and Technology" (ITEST-2020) : V International Scientific-Practical Conference, Cherkasy, May 21-23, 2020. – Cherkasy: ChSTU, 2020. – C. 116-121.

[51] Методи побудови метамоделей для сурогатної оптимізації [Електронний ресурс] / [Трембовецька Р.В., Гальченко В.Я., Тичков В.В., Сторчак А.В.] // Інформатика, математика, автоматика (ІМА-2020) : науково-практична конференція, Суми, 20-24 квітня 2020 р. : матеріали конференції. – Суми: СДУ, 2020. – С. 243-244.

[52] Ідентифікація електрофізичних характеристик об'єктів із використанням «м'яких обчислень» [Електронний ресурс] / [Тичков В.В., Сторчак А.В., Гальченко В.Я., Трембовецька Р.В.] // Фізика, електроніка, електротехніка (ФЕЕ-2020) : науково-практична конференція, Суми, 20-24 квітня 2020 р. : матеріали конференції. – Суми: СДУ, 2020. – С. 143-144.

[53] Аналіз методів розв'язку нелінійних обернених задач та їх застосування до проектування вихрострумових перетворювачів / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков, А.В. Сторчак // XXI Міжнародна конференція з

математичного моделювання (МКММ–2020), Херсон, 14–18 вересня 2020 р. : тези доповідей. – Херсон: ХНТУ, 2020. – С. 44.

[54] Синтез об'ємних структур системи збудження вихрострумових перетворювачів [Електронний ресурс] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков, А. В. Сторчак // Матеріали XV міжнародної конференції "Контроль і управління в складних системах (КУСС-2020)", м. Вінниця, 8-10 жовтня 2020 р.– Електрон. текст. дані. – Вінниця : ВНТУ, 2020.

[55] Інверсія штучних нейронних мереж в обернених задачах вихрострумової структуроскопії [Електронний ресурс] / А. В. Сторчак, В. Я. Гальченко, В. В. Тичков, Р. В. Трембовецька // Матеріали XV міжнародної конференції "Контроль і управління в складних системах (КУСС-2020)", м. Вінниця, 8-10 жовтня 2020 р.– Електрон. текст. дані. – Вінниця : ВНТУ, 2020.

[56] Застосування нейромережі з «тандем»-архітектурою для розв'язку оберненої задачі при вихрострумовому вимірювальному контролі / В. В. Тичков, А. В. Сторчак, В. Я. Гальченко, Р. В. Трембовецька // Проблеми енергоефективності та автоматизації в промисловості та сільському господарстві : Міжнародна науково-практична on-line конференція, Кропивницький, 11-12 листопада 2020 р. – збірник тез доповідей. – Кропивницький : КНТУ, 2020. – С. 148-150.

[57] Linear synthesis of frame eddy current probes with a planar excitation system / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, C. V. Bazilo // Proceedings of the IV International scientific conference «Mathematical modeling». Tematic fields: Theoretical foundations and specificity of mathematical modelling. Mathematical modelling of technological processes and systems, 9–12.12.2020, Borovets, Bulgaria: Scientific-technical union of Mechanical Engineering - Industry 4.0, Sofia, Bulgaria. – Vol. IV. - Issue 1(4)/2020. – P. 20-24.

3MICT

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ	33
ВСТУП	34
РОЗДІЛ 1. АНАЛІЗ СУЧАСНОГО СТАНУ ТЕНДЕНЦІЙ,	43
НАПРЯМКІВ ТА МЕТОДІВ ПРОЕКТУВАННЯ ВИХРОСТРУМОВИХ	
ПЕРЕТВОРЮВАЧІВ ІЗ ПРОСТОРОВО-ІНВАРІАНТНИМИ ПОЛЯМИ	
ЗБУДЖЕННЯ	
1.1. Комп'ютерні системи неруйнівного електромагнітного контролю	43
для виявлення та ідентифікації дефектів суцільності в матеріалах та	
виробах	
1.2. Огляд методів та тенденцій щодо створення вихрострумових	46
перетворювачів із системами збудження оптимального	
електромагнітного поля	
1.3. Аналіз методів розв'язку нелінійних обернених задач та оцінка	64
можливості їх застосування для оптимального синтезу вихрострумових	
перетворювачів	
1.4. Огляд методів створення моделей-замісників для ресурсомістких	72
задач сурогатного оптимального синтезу вихрострумових	
перетворювачів з апріорі заданими властивостями поля зондування	
1.5. Постановка завдань дисертаційного дослідження та формулювання	94
його мети	
1.6. Висновки до першого розділу	95
Список використаних джерел до розділу 1	97
РОЗДІЛ 2. СТВОРЕННЯ МЕТОДОЛОГІЇ СУРОГАТНОГО	106
ОПТИМАЛЬНОГО ПАРАМЕТРИЧНОГО СИНТЕЗУ РУХОМИХ	
ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ З ОДНОРІДНОЮ	
ЧУТЛИВІСТЮ В ЗОНІ КОНТРОЛЮ	
	106

2.1. Постановка проблеми оптимального синтезу рухомих 106 вихрострумових перетворювачів із просторово-інваріантними полями збудження

2.2. Розв'язок прямої електродинамічної задачі щодо взаємодії 112 електромагнітного поля збудження з об'єктом контролю з урахуванням ефекту швидкості

2.3. Побудова метамоделей рухомих вихрострумових перетворювачів 119 для задач оптимального сурогатного синтезу їх систем збудження з забезпеченням однорідного розподілу густини вихрових струмів в об'єкті контролю

2.3.1. Створення методу побудови багатовимірних однорідних 119 комп'ютерних планів експерименту з високими показниками гомогенності для використання в задачах апроксимації гіперповерхонь відгуку

2.3.2. Створення методу побудови багатовимірних комітетних 135 адитивних нейромережевих метамоделей вихрострумових перетворювачів

2.3.3. Перевірка адекватності та інформативності метамоделей 139 рухомих вихрострумових перетворювачів

2.4. Оптимізаційні алгоритми пошуку глобального екстремуму в 142 задачах синтезу рухомих вихрострумових перетворювачів

2.4.1. Стохастичні метаевристичні методи розв'язку задач 144 глобальної оптимізації

2.4.2. Алгоритм оптимізації роєм частинок PSO зі стратегією 145 випадкової топології зв'язків

2.4.3. Гібридний меметичний алгоритм оптимізації на основі 149 генетичного з локальним пошуком симплексним методом Нелдера-Міда

2.4.4. Гібридний алгоритм оптимізації роєм частинок з 151 еволюційним формуванням складу рою

2.5. Верифікація результатів синтезу систем збудження рухомих 153 вихрострумових перетворювачів з використанням "точних" математичних моделей

2.6. Висновки до другого розділу

154

203

Список використаних джерел до розділу 2 156

РОЗДІЛ З. МЕТОД СУРОГАТНОГО ОПТИМАЛЬНОГО 164 ПАРАМЕТРИЧНОГО СИНТЕЗУ КРУГОВИХ РУХОМИХ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

3.1. «Точна» електродинамічна модель рухомих кругових накладних 164 вихрострумових перетворювачів

3.2. Побудова метамоделей кругових накладних вихрострумових 169 перетворювачів

3.2.1. Метамодель кругового накладного вихрострумового 171 перетворювача із планарною структурою системи збудження і перевірка її адекватності та інформативності

3.2.2. Метамодель кругового накладного вихрострумового 182
 перетворювача із об'ємною структурою системи збудження і перевірка
 її адекватності та інформативності

3.3. Сурогатний параметричний оптимальний синтез систем збудження 193 кругових накладних вихрострумових перетворювачів

3.3.1. Сурогатний синтез накладних вихрострумових 193 перетворювачів з планарною структурою системи збудження та верифікація результатів синтезу

3.3.2. Сурогатний синтез накладних вихрострумових 196 перетворювачів з об'ємною структурою системи збудження та верифікація результатів синтезу

3.4. Висновки до третього розділу 201

Список використаних джерел до розділу 3

РОЗДІЛ 4. МЕТОД СУРОГАТНОГО ОПТИМАЛЬНОГО 206 ПАРАМЕТРИЧНОГО СИНТЕЗУ РАМКОВИХ РУХОМИХ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

4.1. «Точна» електродинамічна модель рухомих рамкових накладних 206 вихрострумових перетворювачів

4.2. Побудова метамоделі рамкового рухомого накладного 212
вихрострумового перетворювача з планарною структурою системи
збудження і перевірка її адекватності та інформативності

4.3. Сурогатний оптимальний параметричний синтез систем збудження 220 рамкових накладних вихрострумових перетворювачів та верифікація результатів синтезу

4.4. Висновки до четвертого розділу 226

Список використаних джерел до розділу 4 227 5. МЕТОД ПАРАМЕТРИЧНОГО 230 РОЗДІЛ СУРОГАТНОГО ОПТИМАЛЬНОГО СИНТЕЗУ РАМКОВИХ РУХОМИХ НАКЛАДНИХ ТАНГЕНЦІАЛЬНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

5.1. «Точна» електродинамічна модель рамкових рухомих 230 тангенціальних накладних вихрострумових перетворювачів

5.2. Варіанти конструкцій тангенціальних накладних вихрострумових 235 перетворювачів

5.3. Побудова метамоделі рамкового тангенціального накладного 239 вихрострумового перетворювача з об'ємною структурою системи збудження і перевірка її адекватності та інформативності

5.4. Сурогатний оптимальний синтез систем збудження рамкових 247 тангенціальних накладних вихрострумових перетворювачів та верифікація результатів синтезу

5.5. Висновки до п'ятого розділу 255

Список використаних джерел до розділу 5

255

РОЗДІЛ 6. ПРАКТИЧНА РЕАЛІЗАЦІЯ СИНТЕЗОВАНИХ СИСТЕМ 258 ЗБУДЖЕННЯ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

6.1. Варіанти практичної реалізації синтезованих систем збудження 258 накладних вихрострумових перетворювачів та оцінка точності відтворення синтезованого розподілу густини вихрових струмів в об'єкті контролю

6.2. Висновки до шостого розділу	261
----------------------------------	-----

ОСНОВНІ РЕЗУЛЬТАТИ ТА ВИСНОВКИ

ДОДАТКИ 265

Додаток А Документація про наукову значущість, практичне 266 використання та впровадження основних результатів роботи

Додаток Б Свідоцтво про реєстрацію авторського права на твір 272 "Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_dпослідовностей»"

Додаток В Чотиривимірний однорідний комп'ютерний план 273 експерименту на основі R_d-послідовностей для побудови метамоделі кругового накладного вихрострумового перетворювача з об'ємною структурою системи збудження у декомпозиційній підобласті

Додаток Г Тривимірний однорідний комп'ютерний план експерименту 287 на основі ЛП_т-послідовностей для побудови метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження у декомпозиційній підобласті

Додаток Д Вагові коефіцієнти RBF-нейронної мережі останнього рівня 295 адитивної регресії гіперповерхні відгуку у відповідній декомпозиційній підобласті для метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження Додаток Е Список опублікованих праць за темою дисертації 314

262

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

- НК неруйнівний контроль
- КС комп'ютерна система
- ВСП вихрострумовий перетворювач
- ГВС густина вихрових струмів
- ОК об'єкт контролю
- СЗ система збудження
- НВСП накладний вихрострумовий перетворювач
- ЕМП електромагнітне поле
- КЗ котушка збудження
- ВС вихровий струм
- ОВС обертальні вихрові струми
- ОЗ обернена задача
- MARs багатоваріантні адаптивні регресійні сплайни
- NURBs неоднорідні раціональні В-сплайни
- RBF радіально базисна функція
- НМ (ANN) штучні нейронні мережі
- МГУА метод групового урахування аргументів
- SVM машини опорних векторів
- RBF-ANN нейронні мережі на радіально-базисних функціях
- MLP-ANN нейронні мережі на багатошарових персептронах
- МАРЕ середня відносна величина модельної похибки
- ЛСК локальна система координат
- ГСК глобальна система координат
- ВК вимірювальна котушка
- КПЕ комп'ютерний план експерименту
- ЛП_т послідовність Соболя
- PSO алгоритм оптимізації роєм частинок
- ГА генетичний алгоритм
- МРС магніто рушійна сила

вступ

Актуальність теми

B розвитку промисловості галузі сучасних умовах В важкого машинобудування, підприємств чорної металургії, де широко використовується неперервне лиття заготівок, холодний та гарячий прокат металопродукції, досить гострою є проблема контролю якості продукції засобами автоматизованого неруйнівного контролю (НК) в «потоці», коли об'єкт переміщується з певною швидкістю. Значні успіхи в забезпеченні необхідного рівня якості продукції останнім часом досягнуто використанням комп'ютерних систем (КС) неруйнівного контролю, зокрема електромагнітного із застосуванням накладних вихрострумових перетворювачів (НВСП). Сучасні вимоги до систем НК потребують не тільки виявлення різноманітних дефектів, зокрема дефектів порушень суцільності та структури матеріалів й виробів, але також встановлення їх форми, допустимих розмірів, прийнятності структурних відхилень, що є значно складнішою проблемою та є неможливим без застосування цифрових технологій. Ефективне виконання ідентифікації дефектів значно скорочує перебраковку як матеріалів на підготовчому етапі виробництва, так і вже готових виробів при визначенні їх придатності до експлуатації або в її процесі, що суттєво впливає на кінцеві матеріальні затрати виробництва. Ідентифікація дефектів є неможливою без перетворювачів із досконалими характеристиками, спотворений через неоднакову чутливість до дефекту сигнал яких вже не можна виправити навіть надсучасними засобами вторинної обробки, в тому числі й цифрової. В останні роки спостерігається певна інтенсифікація зусиль дослідників в напрямку проектування вдосконалених конструкцій вихрострумових перетворювачів (BCП), ЩО обумовлена розвитком сучасної обчислювальної техніки, новими можливостями застосування більш досконалого математичного апарату програмного та забезпечення. Дана проблематика досліджувалася вітчизняними та іноземними науковцями, серед яких відзначимо насамперед роботи Стєблева Ю.І., Яковенка В.В., Гальченка В.Я., Repelianto A.S., Su Z., Ye C., Tamburrino A., Koyama K., Hoshikawa H., Postolache O., Ribeiro A.L., Ramos H.G., Udpa L., Udpa S., Safdarnejad

М., Stawicki К., Gratkowski S. тощо. Їх зусилля було направлено на створення методів оптимального синтезу систем збудження ВСП, які генерують рівномірний розподіл густини вихрових струмів (ГВС) в об'єктах контролю (ОК). Такий розподіл забезпечує однорідну чутливість до дефектів суцільності та локальної структури. Але в усіх цих дослідженнях розглядалися статичні ОК, ефект швидкості, наявність якого властива для рухомих об'єктів та суттєво впливає на розподіл ГВС в них, не враховувався. З цієї причини теоретичні здобутки попередників не можуть бути використано для оптимального синтезу рухомих ВСП, що забезпечують однорідний розподіл ГВС вздовж всього тіла дефекту.

Наразі спостерігається наявна **суперечність** між необхідністю створення однорідного розподілу ГВС в зоні контролю об'єкта, що призводить до однорідної чутливості перетворювачів до дефектів, та між використанням класичних систем збудження ВСП, яким притаманний неоднорідний розподіл ГВС.

Тому актуальною є **науково-прикладна проблема** створення теорії оптимального параметричного синтезу всього класу рухомих ВСП з однорідною чутливістю в зоні контролю для забезпечення необхідних умов щодо ідентифікації дефектів порушень суцільності матеріалів й виробів при використанні комп'ютерних систем неруйнівного контроля.

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана на кафедрі приладобудування, мехатроніки та комп'ютеризованих технологій Черкаського державного технологічного університету в період 2020-2021 р.р. у межах ініціативної науково-дослідної роботи за темою: «Обернені задачі вихрострумового контролю: моделі, алгоритми, методи оптимізації», номер держреєстрації №0120U103875, у виконанні якої здобувачка брала безпосередню участь в якості виконавця.

Мета і задачі дослідження. Метою дисертаційної роботи є створення теорії сурогатного оптимального параметричного синтезу всього класу рухомих накладних вихрострумових перетворювачів з однорідною чутливістю до дефектів порушень суцільності матеріалів й виробів щодо забезпечення необхідних умов їх ідентифікації комп'ютерними системами неруйнівного контролю.

Для досягнення поставленої мети в дисертаційній роботі необхідно виконати такі науково-технічні завдання:

1) Створити єдину методологію сурогатного оптимального синтезу всього класу рухомих ВСП із однорідною чутливістю в зоні контролю;

2) Створити багатовимірні нейромережеві метамоделі кругових рухомих накладних ВСП (НВСП) з планарною та об'ємною структурами систем збудження;

3) Створити багатовимірну нейромережеву метамодель рамкового рухомого НВСП з планарною структурою системи збудження;

4) Створити багатовимірну нейромережеву метамодель рамкового рухомого тангенціального НВСП з об'ємною структурою системи збудження;

5) Створити методи оптимального синтезу кругових рухомих НВСП із однорідною чутливістю в зоні контролю з планарною та об'ємною структурами систем збудження;

6) Створити метод оптимального синтезу рамкових рухомих НВСП із однорідною чутливістю в зоні контролю з планарною структурою системи збудження;

 Створити метод оптимального синтезу рамкових рухомих тангенціальних НВСП із однорідною чутливістю в зоні контролю з об'ємною структурою системи збудження.

Об'єкт дослідження – процеси неруйнівного вихрострумового контролю струмопровідних матеріалів та виробів.

Предмет дослідження — метамоделі та методи сурогатного оптимального параметричного синтезу накладних вихрострумових перетворювачів із однорідною чутливістю в зоні контролю для комп'ютерних систем неруйнівного контролю.

Методи досліджень. Для розв'язку поставлених задач було використано сучасний математичний апарат, зокрема теорія електромагнітного поля, теорія диференціальних та інтегральних рівнянь, нейронні мережі, теорія статистики, теорія планування експерименту, теорія обернених задач, теорія оптимізації.
Наукова новизна одержаних результатів полягає у наступному:

1. вперше розроблена методологія сурогатного оптимального синтезу всього класу рухомих вихрострумових перетворювачів із однорідною чутливістю в зоні контролю, що включає також створені метод генерування багатовимірних однорідних комп'ютерних планів експериментів з гарантовано низькими розбіжностей комбінацій квазівипадкових показниками основі R_dна метод послідовностей; адитивний комітетний нейромережевий побудови багатовимірних метамоделей вихрострумових перетворювачів. Методологія дозволяє створити нові методи оптимального сурогатного синтезу рухомих накладних вихрострумових перетворювачів різних типів, для яких є властивий однорідний розподіл густини вихрових струмів, згенерований в об'єкті контролю.

2. вперше створено багатовимірні нейромережеві метамоделі кругових рухомих накладних вихрострумових перетворювачів з планарною та об'ємною структурами систем збудження, які є моделями на «точну» електродинамічну модель та дозволяють внаслідок значно меншої обчислювальної ресурсомісткості здійснювати процедуру оптимального сурогатного синтезу перетворювачів, що реалізують апріорі заданий розподіл густини вихрових струмів в об'єкті.

3. вперше побудовано багатовимірну нейромережеву метамодель рамкового рухомого накладного вихрострумового перетворювача з планарною структурою системи збудження, конструкція якого надає більші можливості щодо збільшення зони контролю з однорідним розподілом густини вихрових струмів. Як модельзамісник метамодель дозволяє здійснювати швидкі обчислення розподілу густини вихрових струмів близькі за точністю до «точної» електродинамічної моделі;

4. вперше створено багатовимірну нейромережеву метамодель рамкового рухомого тангенціального накладного вихрострумового перетворювача з об'ємною структурою системи збудження, який є ефективним для ідентифікації дефектів типу розшарувань комп'ютерними системами електромагнітного неруйнівного контролю. Метамодель характеризується високою обчислювальною продуктивністю в порівнянні із «точною» електродинамічною моделлю, що дозволяє реалізувати процедуру оптимального синтезу;

5. вперше створено методи оптимального синтезу кругових рухомих накладних вихрострумових перетворювачів з планарною та об'ємною структурами систем збудження, які забезпечують однорідну чутливість, що є необхідною умовою для розпізнавання дефектів суцільності в комп'ютерних системах контролю якості виробів;

6. вперше створено метод синтезу рамкових рухомих накладних вихрострумових перетворювачів з планарною структурою систем збудження, який дозволяє реалізувати однорідну чутливість перетворювачів в зоні контролю;

7. вперше створено метод синтезу рамкових рухомих тангенціальних накладних вихрострумових перетворювачів з об'ємною структурою систем збудження, використання якого дозволяє розширити зону з рівномірним розподілом густини вихрових струмів, що обумовлює однорідну чутливість перетворювачів до дефектів.

Практичне значення отриманих результатів визначається тим, що:

1. Розширена науково-технічна база проектування рухомих вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю завдяки створеній єдиній методології сурогатного оптимального синтезу.

2. Розроблені програмні засоби, які реалізують побудову багатовимірних однорідних комп'ютерних планів експериментів на основі квазівипадкових R_d-послідовностей, що дозволило отримати плани експериментів з гарантовано низькими показниками центрованої та циклічної розбіжностей. Створена програма захищена свідоцтвом №102018 України про реєстрацію авторського права на твір "Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_d-послідовностей»".

3. Створені алгоритми та програмно реалізовано розрахунки розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для накладних вихрострумових перетворювачів кругових та рамкових різновидів із врахуванням ефекту швидкості.

Створено алгоритм побудови комітетних нейромережевих метамоделей 4. вихрострумових перетворювачів 3 рухомих накладних високою часовою обчислювальною продуктивністю, ЩО дозволяє реалізувати сурогатний оптимальний синтез цих перетворювачів. Розроблені програмні засоби апроксимації багатовимірних поверхонь відгуку з прийнятною похибкою. Розроблено практичні підходи для перевірки адекватності та інформативності створених метамоделей, що основані на перевірці статистичних гіпотез.

5. Розроблені алгоритми та програмні засоби, які реалізують методи умовної оптимізації багатовимірних нелінійних цільових функцій, що дозволяє проектувати накладні вихрострумові перетворювачі із однорідною чутливістю до дефектів. Чисельним моделюванням на низці прикладів доведена ефективність розроблених засобів.

Результати проведених досліджень знайшли практичне впровадження у навчальний процес на кафедрі приладобудування, мехатроніки та комп'ютеризованих технологій Черкаського державного технологічного університету та кафедрі виробництва приладів НТУУ «КПІ ім. Ігоря Сікорського». Також отримані результати досліджень впроваджено у промисловості в АТ «Укрзалізниця», виробничий підрозділ служби сигналізації та зв'язку «Шевченківська дистанція сигналізації та зв'язку», філії «Науково-виробничого центру технічної діагностики «Техдіагаз» Черкаська діагностична дільниця АТ «Укртрансгаз».

Особистий внесок здобувача. Основні теоретичні та результати моделювання отримано здобувачкою самостійно. Наукові положення, що виносяться на захист, та висновки дисертаційної роботи належать автору.

У роботах, опублікованих у співавторстві, здобувачем здійснено аналіз науково-технічної інформації в галузі вихрострумового контролю щодо використання електромагнітних полів збудження з апріорі заданими властивостями. Запропонована класифікація перетворювачів за ознаками особливостей генерування електромагнітного поля збудження [11]; здійснено аналіз сучасних досліджень в сфері математичного моделювання з використанням евристичних методів побудови метамоделей для ресурсомістких задач [14, 15, 33, 34, 36]; проведено огляд та аналіз математичних методів, що використовуються для розв'язку некоректно поставлених обернених нелінійних задач [16, 39, 41, 47, 49, 52, 53]; створено комп'ютерний план експерименту на основі ЛП_т-послідовностей та розроблено програмне забезпечення [1, 2, 5, 12, 26, 27, 44]; створено багатовимірні комп'ютерні плани однорідної генерації точок в гіперпаралелепіпеді з використанням безпараметричних адитивних рекурсивних R_d-послідовностей та комбінацій ЛП_t-послідовностей Соболя [13, 42, 43, 50]; побудовано RBF-метамоделі вихрострумових перетворювачів різноманітних систем збудження [1, 3, 5, 10, 17, 18, 22-25, 28-29, 32, 55, 56]; здійснена оцінка адекватності та інформативності метамоделей [3, 9, 20, 40]; виконано розрахунок розподілу ГВС з урахуванням ефекту швидкості [4, 31]; запропонована гібридна побудова нейромережевої метамоделі НВСП [6, 9, 35]; реалізовано сурогатний параметричний синтез НВСП із різними типами систем збудження [6, 7, 8, 17, 18, 37, 38, 45, 46, 48, 51, 54, 57]; апробовано різновиди цільових функцій для розв'язку задачі оптимального синтезу [7, 30]; розраховано похибки оптимального синтезу перетворювачів [8]; побудовано метамодель на основі MLP-нейронної мережі [19, 20]. В творі "Комп'ютерна програма" [21], зазначеному в свідоцтві про реєстрацію авторського права, автору належить розробка програми розрахунку мовою програмування MathCAD. Особистий внесок здобувача у наукових роботах, написаних у співавторстві, зазначений у списку праць, опублікованих за темою дисертації.

Апробація результатів дисертаційного дослідження. Основні положення дисертаційної роботи доповідалися та обговорювалися на таких наукових конференціях та семінарах: Всеукраїнська конференція «Теоретико-практичні проблеми використання математичних методів і комп'ютерно-орієнтованих технологій в освіті та науці» (Київ, 2018 р.); Міжнародна науково-практична конференція «Сучасні тенденції розвитку науки» (Ужгород, 2018 р.); Міжнародна науково-технічна конференція «Приладобудування: стан і перспективи» (Київ, 2018 р.); International Scientific-Practical Conferences «Information Technologies in Education, Science and Technology» (Cherkasy, 2018, 2020 р.); Міжнародна науковотехнічна конференція «Вимірювальна та обчислювальна техніка в технологічних процесах» (Одеса, 2018 р.); Міжнародні науково-технічні конференції «Датчики, прилади та системи» (Черкаси-Херсон-Лазурне, 2018, 2019 р.); Міжнародна конференція «Проблеми інформатики та моделювання» (Харків-Одеса, 2018 р.); International Conferences «NDT Days» (Bulgaria Sozopol, 2018-2020 p.); Всеукраїнські науково-практичні інтернет-конференції здобувачів вищої освіти і молодих учених «Метрологічні аспекти прийняття рішень в умовах роботи на техногенно-небезпечних об'єктах» (Харків, 2018, 2019 р.); Scientific conference with international participation «Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union» (Poland, Lublin, 2018 p.); Міжнародний науковий симпозіум «Інтелектуальні рішення». Обчислювальний інтелект (результати, проблеми, перспективи) (Ужгород, 2019 р.); Науковопрактичні конференції «Інформатика, математика, автоматика» (Суми, 2019, 2020 р.); Науково-практичні конференції «Фізика, електроніка, електротехніка» (Суми, 2019, 2020 р.); Міжнародна науково-практична конференція «Обробка сигналів і негаусівських процесів» (Черкаси, 2019 р.); Науково-технічна конференція з міжнародною участю «Неруйнівний контроль в контексті асоційованого членства України в Європейському Союзі» (Київ, 2019 р.); International scientific conferences «Mathematical modeling» - Tematic fields: Theoretical foundations and specificity of mathematical modelling. Mathematical modelling of technological processes and systems, (Bulgaria, Borovets, 2019, 2020 р.); Міжнародна конференція «Контроль і управління в складних системах», (Вінниця, 2020 р.); Міжнародна науковопрактична on-line конференція «Проблеми енергоефективності та автоматизації в промисловості та сільському господарстві» (Кропивницький, 2020 р.).

Публікації. Основні положення дисертації опубліковано в 57 наукових роботах, у тому числі: в 21-й науковій праці (з них 8 проіндексовано у наукометричних базах даних Scopus та Web of Science; 5 – опубліковані у періодичних закордонних рецензованих виданнях; 5 – у вітчизняних фахових наукових журналах; 2 – у вітчизняних наукових журналах, проіндексованих у міжнародних наукометричних базах) та 1 свідоцтві про реєстрацію авторського

права на твір - комп'ютерну програму, а також у **36** матеріалах конференцій та тезах доповідей.

Структура та обсяг дисертації. Дисертація складається з анотації, змісту, вступу, шести розділів, висновків і додатків. Загальний обсяг роботи становить 325 сторінки, з них обсяг основного тексту – 265 сторінок, 109 рисунків, 24 таблиць, список використаних джерел складає 159 найменувань і займає 24,5 сторінок, а також 6 додатків на 59 сторінках.

РОЗДІЛ 1. АНАЛІЗ СУЧАСНОГО СТАНУ ТЕНДЕНЦІЙ, НАПРЯМКІВ ТА МЕТОДІВ ПРОЕКТУВАННЯ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ ІЗ ПРОСТОРОВО-ІНВАРІАНТНИМИ ПОЛЯМИ ЗБУДЖЕННЯ

1.1. Комп'ютерні системи неруйнівного електромагнітного контролю для виявлення та ідентифікації дефектів суцільності в матеріалах та виробах

Наразі в сучасних умовах розвитку промисловості, а саме галузі важкого машинобудування, підприємств чорної металургії, досить гострою є проблема контролю якості продукції засобами автоматизованого НК в «потоці», коли об'єкт переміщується з певною швидкістю.

Суттєві успіхи в галузях мікроелектроніки, мікропроцесорної, обчислювальної техніки сприяють розвитку систем НК промислової продукції та призводять до збільшення впливу цих систем в підвищенні її якості як на етапах технологічного процесу, так і при експлуатації.

Сучасний розвиток IT-технологій дає поштовх щодо інтенсивного застосування КС неруйнівного контролю, які мають потужний математичний апарат і програмне забезпечення, що неупинно вдосконалюється та відкриває для НК, зокрема електромагнітного, нові перспективи та можливості.

Вихрострумовий метод контролю достатньо широко використовується для виявлення і визначення параметрів дефектів, визначення фізико-механічних параметрів і структурного стану матеріалів після термічного та хіміко-термічного обробляння деталей, стану поверхневих шарів після механічного обробляння, наявності залишкових механічних напружень.

Невіддільним компонентом будь-якої КС неруйнівного електромагнітного контролю є ВСП, зокрема накладні, від яких значною мірою залежить ефективність роботи систем в цілому щодо виявлення та ідентифікації дефектів суцільності виробів і матеріалів (рис.1.1). Зазвичай дефектоскопічний контроль в промисловості значної частки металевих матеріалів та виробів, в тому числі з автоматичним скануванням, здійснюється з використанням ВСП із системами збуджень класичних конструкцій.

Рисунок 1.1 - Узагальнена структурна схема комп'ютерної системи електромагнітного неруйнівного контролю та ідентифікації дефектів суцільності

До сучасних неруйнівних засобів контролю пред'являють вимоги не тільки щодо виявлення різноманітних дефектів, зокрема дефектів порушень суцільності та структури матеріалів й виробів, але також їх ідентифікації, тобто встановлення їх форми, допустимих геометричних розмірів, прийнятності можливих локальних структурних відхилень тощо, що є значно складнішою проблемою і вимагає досконалих ВСП із покращеними метрологічними та експлуатаційними характеристиками. Тобто перехід від дефектоскопїї до дефектометрії, що є викликом сьогодення, передбачає більш жорсткі вимоги до характеристик ВСП.

Застосування ж класичних конструкцій ВСП, які мають неоднорідну чутливість, що зумовлена нерівномірним розподілом ГВС, не дає можливості ефективного виконання завдань дефектометрії. Навіть сучасні цифрові засоби вторинної обробки не здатні повною мірою виправити сигнал та виділити із нього корисний інформаційний, який спотворений неоднорідною чутливістю перетворювача. Тому застосування ВСП з однорідною чутливістю в зоні контролю сприяє ефективній цифровій обробці сигналу в багатовимірному просторі діагностичних ознак та програмно-алгоритмічній процедурі ідентифікації дефектів КС неруйнівного контролю.

Отже, для ефективного розв'язку задач дефектометрії важливо створити в зоні контролю рівномірний розподіл ГВС вздовж тіла дефекту, який забезпечує однорідну чутливість до дефектів суцільності та локальної структури всіх орієнтацій у просторі. Для дефектометрії такою ідеальною характеристикою є рівномірна в зоні контролю та нульова за її границями. Саме вона забезпечує повноінформаційний інваріантний сигнал перетворювача на дефект, як би він не розташовувався в зоні контролю, що не створює додаткових перешкод для його ідентифікації та є необхідною умовою її проведення. Забезпечення цієї умови значно покращує та розширює можливості дефектометрії, сприяє створенню умов щодо кращого виявлення та ідентифікації (розпізнавання) дефектів і оцінки їх параметрів КС неруйнівного контролю. 1.2. Огляд методів та тенденцій щодо створення вихрострумових перетворювачів із системами збудження оптимального електромагнітного поля

Зазвичай класичні конструкції ВСП [1] мають неоднорідну чутливість (рис.1.2 а), яка зумовлена нерівномірним розподілом ГВС, що не дає можливості ефективного вирішення завдань дефектоскопії та дефектометрії. Розподіл ГВС в об'ємі ОК залежить від сукупності певних параметрів, таких як форма, геометричні та електрофізичні характеристики ОК, взаємне розташування системи збудження (СЗ) відносно ОК. І саме неоднорідний розподіл ГВС обмежує чутливість НВСП до виявлення дефектів, і відповідно, наперед обумовлене взаємне розташування СЗ відносно контрольованої поверхні. Разом з тим цей недолік проявляється ще більше, коли ОК і ВСП рухаються один відносно іншого, оскільки в цьому випадку на розподіл ГВС додатково впливає струм перенесення, який проявляється в так званому ефекті швидкості. Для впевненого виявлення дефектів і визначення їх параметрів засобами вихрострумового геометричних контролю важливо забезпечити в зоні контролю оптимальне електромагнітне поле (ЕМП) збудження (рис.1.2 а, графік 1).

Рисунок 1.2 - Розподіл ГВС кругового неспіввісного ВСП: а) на поверхні ОК: б) в глибину ОК; 1 - бажаний рівномірний розподіл; 2 - розподіл, притаманний класичній конструкції

Під оптимальним розуміємо поле, що має апріорі визначену конфігурацію, яка забезпечує рівномірну або близьку до неї чутливість. Наприклад, П-подібна форма розподілу напруженості ЕМП, що локалізовано та максимально сконцентровано в зоні контролю та має нульове його значення поза її межами. Можливими варіантами генерування поля є його заданий розподіл як на поверхні ОК, так і на певній його глибині (рис.1.2 б).

Розроблені засади теорії синтезу ВСП [2-9] дозволяють реалізувати в конструкціях нові технічні рішення, що позитивно впливають на поле збудження ВСП. Ідея цілеспрямованої зміни зондувальних властивостей згенерованого ЕМП реалізовується в багатьох працях з різноманітною метою. Так, задля підвищення завадозахищеності та селективності вирішується завдання зменшення зони взаємодії поля ВСП із виробом та зменшення магнітних потоків розсіювання [10]. А створення ЕМП з наперед визначеною топологією розподілу дозволяє покращити селективність та чутливість ВСП [1-9, 11-30]. Причому вдосконалення обидвох складових ВСП, а саме, СЗ та детектора поля, дозволяє досягти бажаних результатів.

У результаті узагальнення та аналізу доробку науковців з проблеми формування оптимального ЕМП збудження запропоновано варіант класифікації ВСП за цією ознакою (рис.1.3). Зупинимося саме на проблемі створення ЕМП із заданими властивостями для випадку статичного ОК. Особливої уваги заслуговує випадок генерації однорідного розподілу ЕМП.

Задані властивості ЕМП, що змінюються у відповідності з наперед обумовленими залежностями отримуються частіше за все двома способами. Перший – створення нерівномірного розподілу струму збудження в генераторній котушці ВСП [2-4]; другий – використанням специфічної геометрії обмотки збудження ВСП, як, наприклад, це реалізовано в роботах [8, 12-13].

Дана проблематика досліджувалася вітчизняними та іноземними науковцями, серед яких відзначимо перед усім роботи Стєблева Ю.І., Яковенка В.В., Гальченка В.Я., Su Z., Ye C., Tamburrino A., Udpa L., Udpa S., Safdarnejad M., Stawicki K., Gratkowski S. та інші.

Рисунок 1.3 - Узагальнена схема класифікації ВСП з оптимальними ЕМП збудження

Останніми роками спостерігалася певна інтенсифікація зусиль дослідників в цьому напрямку, що обумовлена розвитком сучасної обчислювальної техніки, новими можливостями застосування більш досконалого математичного апарату та програмного забезпечення. Так, в роботах [2-4] основними засадами є отримання бажаної структури поля в зоні контролю засобами лінійного синтезу ВСП. Розглядається задача синтезу полів збудження ВСП із заданими вихідними характеристиками від просторових координат локальних неоднорідностей контрольованих виробів. Отримана структура в результаті синтезу плоскопаралельного ЕМП реалізує інваріантність вихідного сигналу перетворювача до просторового положення локального дефекту.

Після визначення структури ЕМП виконувалась задача синтезу секційних обмоток ВСП, що реалізують необхідний розподіл поля в зоні контролю. Отримана багатосекційна СЗ має N = 8 з нормованою відстанню між обмотками. Визначена схема з'єднання обмоток, а саме: зустрічно-узгоджене включення секцій обмоток за полем та кількість витків W кожної обмотки.

Експериментальні та теоретичні дані показують можливість практичної реалізації складної конфігурації поля збудження, коли його напруженість збільшується із віддаленням від джерела. Проте такий розподіл можна створити лише на обмеженій ділянці, після якої поле зменшується, наближаючись до нуля.

Недоліком лінійного синтезу [3, 4] є отримання дійсних значень густини струму в секціях котушки, що значно ускладнює практичну реалізацію ВСП, а також необхідність задавати наперед кількість секцій, відстань між ними та їх геометричні розміри. Залишається невисвітленим питання синтезу, коли отримання заданої структури поля досягають параметрами ВСП, які нелінійно входять до формули розрахунку поля збудження.

В роботі [5] авторами запропоновано вирішення завдання нелінійного оптимального синтезу, а саме, визначення розміщення обмоток секцій котушок збудження (КЗ) у просторі та їх геометричних розмірів за умови фіксованої густини струму збудження в генераторній котушці. Розглядалися декілька варіантів: перший варіант – відповідно до відомої функції розподілу напруженості ЕМП

визначалися радіуси секцій генераторної котушки, що забезпечують такий розподіл за умови фіксованих *z*-координат секцій та магніто рушійної сили (МРС) (рис.1.4 а); другий варіант передбачає визначення *z*-координат секцій за умови фіксованих радіусів та МРС (рис.1.4 б). Для пошуку екстремуму нелінійної оптимізаційної задачі застосовано алгоритм, придатний для багатовимірних «ярових» цільових функцій.

Рисунок 1.4 - Нелінійний синтез котушки ВСП: a) z_i , $(Iw)_i$ =const; R_i -var; i=1...N; б) R_i , $(Iw)_i$ = const, z_i -var; i=1...N

Розглянуті вище підходи [2-5] є методами параметричної оптимізації і невирішеною залишилась проблема вибору структури СЗ ВСП, тобто кількості секцій в генераторній котушці. Причиною цього є суб'єктивні труднощі вибору структури, що може призвести до невдалого її варіанту в сенсі відтворення заданого розподілу або до надлишково складної конструкції. Помилку вибору структури неможливо виправити засобами параметричної оптимізації.

Шлях подолання вказаних труднощів запропоновано в роботі [6], а саме, метод структурно-параметричного синтезу джерела ЕМП збудження. Метою такого синтезу магнітної системи ВСП поряд із пошуком оптимальних значень параметрів секцій є отримання найбільш простої конструкції СЗ, яка забезпечує заданий розподіл поля збудження в просторі. В роботі розглядається зондувальне поле ВСП без врахування реакції ОК. Структурний синтез виконується стохастичним

методом оптимізації, а саме, за допомогою генетичного алгоритму. Отримані значення середніх відносних відхилень свідчать про значне покращення якості згенерованого поля синтезованої магнітної системи у порівняння із результатами [4]. Досягнуто суттєве спрощення структури СЗ за кількістю секцій та зменшення її довжини, а також на два порядки зменшена кількість витків в секціях при однакових значеннях струмів. Тобто досягнута більш висока точність відтворення заданого розподілу поля та разом з тим значно покращилися технічні показники конструкції системи.

Зрештою значна кількість наукових повідомлень стосується різноманітних конструкцій ВСП з однорідним полем збудження, який створюється прямокутною тангенціальною та іншими типами котушок та, як наслідок, проблемам збільшення чутливості до виявлення дефектів [13-23, 30, 31]. Передбачається генерування однорідної конфігурації напруженості ЕМП в зоні контролю та зумовлене нею відповідне збудження однорідного розподілу ГВС в статичному ОК.

Зокрема, в роботі [14] проаналізовано декілька таких конфігураційних структур односпрямованих збуджувальних та вимірювальних котушок, а також різновиди конструкцій ВСП, що створюють обертальні вихрові струми (OBC). Тангенціальна прямокутна КЗ із джерелом змінного струму генерує магнітне поле, що індукує вихровий струм (BC) на поверхні досліджуваного зразка (рис.1.5 а). ВС протікає по прямим лініям, які перпендикулярні магнітному полю (рис.1.5 б).

Рисунок 1.5 - Принцип генерації однорідної ГВС [14]: а) циркуляція магнітного поля котушки та створеного нею ВС; б) зона збудження однорідного ВС на

Розглядаються наступні структури таких СЗ: тангенціальна прямокутна КЗ та кругова вимірювальна (рис.1.6 а); обидві котушки тангенціальні та прямокутні (рис.1.6 б); система тангенціальних котушок, з яких одна збуджувальна та дві вимірювальні (рис.1.6 в); тангенціальна прямокутна КЗ та детектор, що уявляє собою магніторезистивний датчик GMR (рис.1.6 г); прямокутна КЗ та дві напівкруглі пласкі котушки детектора (рис.1.6 д).

котушок [14]

Всі представлені конструкції створюють ВС лише одного напрямку. Окрім того, в роботі не розглядалися питання вибору співвідношення геометричних розмірів КЗ, яка дозволяє регулювати ширину зони контролю.

В дослідженні [23] висвітлено реалізація однорідного розподілу ЕМП, що здійснюється прямокутною КВ, а саме, такого її розташування, коли обмотка обернена до поверхні ОК (рис.1.7).

Рисунок 1.7 - Конфігурація запропонованого ВСП, розміщеного над провідним ОК [23]: а) вигляд в *x* - напрямку; б) вигляд в *y* - напрямку

Однорідність конфігурації ВС та ЕМП досліджується шляхом моделювання методом ETREE (Extended Truncated Region Eigenfunction Expansion). Розрахований розподіл ГВС на поверхні пластини та складових ЕМП над поверхнею пластини показано на рис.1.8, 1.9 відповідно.

Отримане значення степені однорідності складає 20 ppm для ВС та 5.9 ppm для індукції ЕМП. Це вказує на те, що в контрольній зоні ВС на поверхні пластини та сумарне ЕМП над верхньою поверхнею пластини є однорідними, і це сприяє високочутливому виявленню дефектів. Не дивлячись на доволі високі степені однорідності як поля, так і ВС, забезпечуються вони лише в зоні малих геометричних розмірів 2 × 2 мм.

Рисунок 1.8 - Розрахункова ГВС на поверхні пластини [23]: а) *х*-компонента;

Рисунок 1.9 - Розрахункові значення складових ЕМП над досліджуваною поверхнею[23]: a) B_x ; б) B_y ; в) B_z

В роботі [13] з метою отримання рівномірної чутливості в області сканування досліджувалося формування однорідного розподілу ВС в межах зони контролю датчика шляхом визначення профілю зовнішнього радіуса КЗ. Отримана конструкція датчика дозволяє індукувати заданий однорідний розподіл ГВС всередині провідного циліндра (рис.1.10).

Проектне завдання вирішується шляхом мінімізації квадратичної функції відхилення між бажаними і розрахунковими значеннями векторного потенціалу в контрольних точках всередині області дослідження похибки:

$$\boldsymbol{F}(\boldsymbol{p}) = \frac{1}{2} \cdot \sum_{k=1}^{K} \left| \boldsymbol{A}^{\boldsymbol{e}}(\boldsymbol{r}_{k}, \boldsymbol{z}_{k}) - \boldsymbol{A}^{\boldsymbol{d}}(\boldsymbol{r}_{k}, \boldsymbol{z}_{k}) \right|^{2}$$

Для мінімізації цільового функціоналу застосовують алгоритм оптимізації Ньютона.

Рисунок 1.10 - Конструкція датчика: 1 – досліджуваний циліндричний зразок; 2 – котушка збудження

Завдання підвищення чутливості до дефектів незалежно від їх орієнтації за рахунок створення обертального поля збудження висвітлено в статтях [14, 12, 24-25]. Одним із таких різновидів ВСП з однорідним полем є створення варіанту з ОВС, для генерування яких використовують два струми в СЗ з різницею фаз 90 градусів. Наприклад, обертальний датчик Hoshi має дві тангенціальні прямокутні КЗ1 та КЗ2 та одну пласку кругову вимірювальну котушку (рис.1.11) [14]. Запропонований датчик може виявляти дефекти незалежно від їх напрямку на поверхні досліджуваного ОК.

Рисунок 1.11 - Обертальний датчик Hoshi [14]

У розвиток ідеї в статті [14] запропоновано подвійний обертальний датчик який має чотири тангенціальні прямокутні КЗ та чотириполюсні чверть-кругові детекторні котушки (рис.1.12), що функціонує за тим же принципом. За допомогою управління струмами і фазами вдається максимально достовірно виявляти дефекти без зміни положення ВСП.

Рисунок 1.12 - Подвійний обертальний датчик [14]

В роботі [12] розглядається варіант генерування обертального поля збудження, ЩО реалізовано системою ортогональних котушок. Спочатку оптимізований розподіл ГВС, який забезпечує розраховувався однорідну чутливість до дефектів незалежно від їх орієнтації у просторі, а потім створювалася конструкція котушки із нерівномірною щільністю намотки (рис.1.13). Кожна котушка складається мінімум із двох шарів. Для отримання найбільшої степені непереривності розподілу, ніж у варіанті одношарової котушки, в 2-х шаровому випадку виконано зміщення мідного шару однієї із котушок, закриваючи повітряні проміжки.

Рисунок 1.13 - Конструкція багатошарової котушки обертального датчика [12]

Особливістю оптимізованої конструкції котушки є те, що отримане поле збудження найбільш однорідне в області матриці детекторів у порівнянні зі звичайною котушкою. Розподіл струмів збудження котушки оптимізовано за допомогою методу поліноміальної апроксимації.

Так само, як і в розглянутих попередніх працях, в статті [25] запропоновано ВСП обертального типу. Для отримання рівномірного розподілу ГВС в зоні вимірювальної котушки засобами чисельного аналізу розраховано раціональні розміри КЗ (рис.1.14).

Рисунок 1.14 - Конструкція обертального датчика [25]

Отримана зона рівномірного розподілу ГВС достатньо велика (рис.1.15) [25], тому виявлення дефектів таким ВСП є ефективнішим.

Рисунок 1.15 - Топографія створеного однорідного розподілу ГВС в зоні контролю

Інтенсивність згенерованих ВС впливає на здатність виявлення дефекту. В дослідженні [10] задля досягнення цієї мети запропонована конструкція ВСП

(рис.1.16 а), що містить дві пари котушок з однаковими розмірами та протилежними напрямками намотками.

в) схема протікання ВС (зона з рівномірними ВС виділена прямокутником)

Середина датчика є найбільш чутливою зоною для виявлення дефектів. Для досягнення найкращого ефекту характеристики обидвох котушок повинні бути однакові. При аналізі методом кінцевих елементів встановлено, що залежність ГВС згенерована за допомогою звичайного не подвійного однорідного датчика має тільки один пік амплітуди, тоді як датчик із двома прямокутними котушками має три максимуми (рис.1.17). Причому, максимальна амплітуда приблизно в 1.9 рази більша ніж в інших піках. А у порівнянні із звичайним датчиком цей максимум більший в 1.8 рази. Окрім того, ефективний розподіл ВС займає більшу область, тому область виявлення в три рази ширша ніж у звичайного датчика (рис.1.17).

Рисунок 1.17 - Розподіл ГВС на поверхні досліджуваного ОК [10]

Недоліком такого ВСП, як і в попередніх конструкціях (рис.1.6), є формування односпрямованих ВС, що потребує зміни його орієнтації у просторі для виявлення дефектів з невідомою апріорі орієнтацією.

Актуальним є використання ВСП із наперед сформованою топографією ЕМП при виявленні дефектів складної форми та обмежених розмірів при контролі яких починає виявлятися вплив краю об'єкта на сигнали ВСП. Так в роботах [8, 9] розглядаються саме такі випадки. В статті [8] вирішується завдання оптимізації КЗ, яка створює майже однорідне та тангенціальне поле на поверхні ОК шляхом розв'язку багатопараметрової багатоцільової задачі оптимізації. Методом Монте-Карло здійснюється оптимізація пласкої котушки з варіюванням декількох параметрів: кількості витків, зазором сердечника котушки, шириною мідної смуги друкованого провідника, величиною повітряних проміжків, довжиною та шириною котушки (рис.1.18).

Рисунок 1.18 - Конфігурація КЗ [8]

В роботі [9] розглянута аналогічна проблема як в [8], яка вирішується за допомогою генетичного алгоритму із недомінуючим сортуванням (NSGAII). Модифікованим алгоритмом NSGAII здійснюється оптимізація пласкої котушки, де змінними є проміжки між витками. Для оптимізації задаються цільові функції f_1 та f_2 , які відповідно мінімізуються та максимізуються. Перша цільова функція представляє собою стандартне відхилення отриманої ГВС від заданого однорідного розподілу, і, відповідно, чим менше це значення тим краща однорідність струмів. Норма індукованого ВС є мірою його інтенсивності. Тому, чим більше це значення,

тим кращі можливості виявлення дефектів. Зазначимо, що не існує одного рішення, яке б задовольняло обидві умови, тому знаходиться ряд недомінуючих рішень. Рішення А має великі значення f_1 та f_2 , що відповідає незадовільній однорідності та високому значенню ГВС(рис.1.19). Рішення В навпаки має високу однорідність та низьке значення ГВС. Рішення С є деяким компромісом між степенем однорідності ГВС та її значеннями в області контролю.

Рисунок 1.19 - Розподіл індукованих ВС [9]

Для порівняння на рис.1.20 показані зображення котушок із рівномірними проміжками між провідниками з протікаючими в них однаковими струмами та оптимізованої – з нерівномірними проміжками. Положення ліній провідників для звичайної котушки (рис.1.20 а) є рівномірним, тоді як для оптимізованої котушки - лінії провідників небагаточисельні в центрі та більш щільно розташовані з краю. ВС індуковані оптимізованою котушкою є одноріднішими у порівнянні із звичайною конструкцією котушки з рівномірними проміжками між провідниками (рис.1.20 б).

Рисунок 1.20 - Односпрямовані ВСП з однорідною ГВС [9]: а) конструкції котушок з рівномірними і нерівномірними проміжками між провідниками; б) розподіл ВС

Дослідженню такого недоліку ВСП, як експоненціальне затухання ВС з глибиною в досліджуваному зразку та відповідно застосування різноманітних заходів усунення цього недоліку присвячені роботи [26-28]. В цих роботах запропонована ідея, що полягає в придушенні ВС на поверхні ОК та реалізації глибшого проникнення ВС в товщу матеріалу. Ця ідея реалізована комбінацією декількох котушок, які живляться струмом збудження із різними амплітудами та фазами, що дозволяє отримати бажаний ефект [26]. Отримані результати показують, що радіус котушки та її висота розташування мають сильний вплив на затухання ВС в глибину ОК, коли його товщина матеріалу в декілька разів більша за стандартну глибину проникнення ЕМП. Як недолік даної роботи можна зазначити те, що не вирішувалась задача синтезу, а лише досліджувалося шляхом перебору різноманітне співвідношення конструктивних параметрів КЗ та її висоти розташування над ОК, та, відповідно, їх вплив на затухання ВС в глибину досліджуваного ОК.

На наступному етапі проведемо аналіз систем збудження ВСП, що генерують поля складної конфігурації. Сучасне доволі цікаве дослідження опубліковано

авторами Guolong Chen, Weimin Zhang, Weihan Pang [29]. З метою збільшення чутливості пропонується використовувати КЗ фрактальної форми, зокрема, у вигляді кривої Коха (рис.1.21). Така система генерує ВС в досліджуваному ОК, топографія яких зумовлена мультирадіусами обмотки. Цією конструкцією КЗ підвищується ймовірність виявлення дефектів, які неможливо виявити за допомогою ВСП з круговою КЗ, а саме таких, довжина яких значно менша ніж радіус КЗ.

Рисунок 1.21 - Геометрія КЗ у вигляді перших трьох форм кривої Коха [29]

Запропонований датчик має КЗ з фрактальною геометрією та вимірювальні котушки, які виконані друкованим способом на чотиришаровій друкованій платі (рис.1.22 а). Досліджувалися діаграми ГВС на поверхні досліджуваного зразка в залежності від розмірів дефекту. Діаграми на рис.1.22 б показують, що збурена ГВС приблизно однакова, як для малих так і великих за розмірами дефектів, оскільки мультирадіуси ВС збільшують ймовірність взаємодії між ВС і дефектом.

Рисунок 1.22 - Конструкція та розподіл ГВС з фрактальною геометрією КЗ [29]: а) конструкція датчика; б) розподіл ГВС

Також досліджено отримані максимальні значення густини магнітного потоку в залежності від розташування дефектів на ОК з орієнтацією під різноманітними

кутами (рис.1.23). Незважаючи на переваги такого планарного ВСП, проблема створення однорідного розподілу ГВС все ж залишається не вирішеною.

Рисунок 1.23 - Конфігурація ВС в залежності від розташування дефектів [29]

Інший підхід у формування ЕМП оптимальної конфігурації в заданій зоні використано в роботах [11, 14], де застосовуються магнітопроводи, концентратори поля із провідних матеріалів та екрани спеціальної форми з «масками» та без них. Для прикладу, датчик із пристроєм намагнічування запропоновано в роботі [14]. Датчик має електромагніт з U-подібним осердям та комбінацію тангенціальної прямокутної детекторної котушки для вимірювання густини магнітного потоку B_x та пласкої прямокутної котушки для вимірювання густини магнітного потоку B_z (рис.1.24).

Датчики даного типу [11, 14] ефективні при виявленні дефектів в ОК складної форми та обмежених розмірів, при контролі яких особливо відчувається ефект впливу краю об'єкта на сигнали ВСП. Для екранних ВСП при розміщенні екранувальних елементів на торцях прохідних перетворювачів окрім позитивного ефекту виникає і негативний, як то збільшення неоднорідності поля в зоні контролю.

Використання «маскових» ВСП призводить поряд із підвищенням локальності до зменшення чутливості ВСП. В рамках цих конструкцій значно складніше реалізувати однорідність розподілу ЕМП в зоні контролю. Крім того, не бажана наявність металевих елементів конструкції ВСП при їх використанні в умовах підвищеної температури.

Вищерозглянуті дослідження присвячені питанням синтезу ВСП із заданою конфігурацією зондувального поля в зоні контролю, але розглядали нерухомі ОК. В результаті проведеного аналізу встановлено повна відсутність відомостей про рішення проблеми створення НВСП із однорідною чутливістю для рухомих ОК, яка вимагає врахування струмів перенесення при синтезі. Отже, із проведеного аналізу наукових досліджень з проектування ВСП із апріорі заданою конфігурацією ЕМП збудження встановлено, що не вирішеним залишається питання синтезу ВСП із врахуванням ефекту швидкості.

1.3. Аналіз методів розв'язку нелінійних обернених задач та оцінка можливості їх застосування для оптимального синтезу вихрострумових перетворювачів

В розділі 1.2 та огляді [32] розглянуто результати теоретичних досліджень, присвячені проблемі проектування ВСП з рівномірною чутливістю в зоні

контролю, яка обумовлена однорідним розподілом ГВС, що протікають в об'єкті. Саме однорідна чутливість перетворювача значно покращує можливості дефектометрії та сприяє визначенню форми дефектів при контролі об'єктів, їх допустимих геометричних розмірів, наявних локальних структурних відхилень матеріалу тощо. Реалізація апріорі заданих характеристик перетворювачів на етапі проектування, здійснюється із використанням процедур оптимального синтезу їх конструкцій, зокрема СЗ [33, 5].

При проектуванні найчастіше виконується структурний та параметричний синтез конструкції об'єкта [34-40]. Структурний синтез реалізувати значно складніше, тому в конструкторський практиці частіше застосовується процедура параметричного синтезу [41, 38]. Під структурним синтезом розуміємо визначення переліку різнотипних в загальному випадку компонентів (секцій котушки), які є складовими об'єкту (СЗ перетворювача) та забезпечують найкраще їх поєднання, а також схему взаємодії між ними (узгоджене або зустрічне включення за полем), виходячи із природи фізичного зв'язку [5, 33]. Результату досягають використанням дискретної оптимізації для пошуку прийнятної структури варіюванням невідомих на кінцевій множині. В складних випадках доводиться розв'язувати задачі відносно високої розмірності, які відносяться до категорії NPважких. Тому повний перебір варіантів структур і навіть скорочений, здійснений методами випадкового пошуку, є неприйнятними.

Оптимальний параметричний синтез полягає в визначенні найкращих значень параметрів для вибраної на попередньому етапі структури системи збудження перетворювача із врахуванням усіх вимог до неї, зокрема щодо забезпечення заданого розподілу ГВС в ОК [36, 37].

Далі обмежимося розглядом задачі параметричного оптимального синтезу C3 ВСП із наперед заданою характеристикою чутливості.

З точки зору співвідношення причина-наслідок задачу оптимального синтезу перетворювача з однорідною чутливістю в зоні контролю можна віднести до обернених задач (ОЗ) математичного моделювання [42]. Тобто розв'язок ОЗ дає змогу визначитися з невідомими параметрами СЗ перетворювача, використовуючи

в якості вхідних даних апріорі задану її бажану характеристику. В загальному випадку математичне формулювання ОЗ в операторній формі має вигляд:

$$A \cdot z = u, u \in U, z \in Z, \tag{1.1}$$

де *z* – шукане рішення;

и – задана права частина;

A - оператор зв'язку між *z* та *u* (лінійний, нелінійний, інтегральний, диференціальний і тощо);

U, *Z* – метричні простори.

Причому замість точних u і A відомі їх приблизні значення A_{μ}, u_{δ} такі, що:

$$\left\|u_{\delta}-u\right\|_{U}\leq\delta, \quad \left\|A_{h}-A\right\|\leq h,$$

де $\delta \ge 0, h \ge 0$ - похибки правої частини і оператора.

Тобто за даних умов необхідно виконати розв'язок операторного рівняння:

$$A_h \cdot z = u_\delta. \tag{1.2}$$

Слід зазначити, що права частина рівняння (1.2) асоціюється з наперед заданою характеристикою розподілу ГВС в ОК, а шуканий розв'язок - з параметрами СЗ перетворювача, які реалізують цю характеристику.

Розв'язок ОЗ складає окрему проблему, що обумовлено певними їх математичними особливостями. Внаслідок такої специфічності цей клас задач відноситься до некоректно поставлених [43, 44]. Причиною цього є характерна для них практично завжди відсутня неперервна залежність від правої частини рівняння (1.2), що при незначних збуреннях вхідних даних призводить до нестійких значень розв'язку, тобто його пилкоподібного характеру із значними відмінностями від точного. Розв'язок ОЗ далеко не завжди буває однозначно визначеним, тобто є не єдиним [45, 46]. Крім того, ОЗ лише в дуже рідких випадках, які представляють практичну цінність в технічних додатках, є лінійними. Зазвичай шукані параметри входять до операторного рівняння нелінійним чином. Відповідно до цих зауважень проблема розв'язання ОЗ полягає в пошуку умовно коректного за А.М. Тихоновим

її розв'язку [47], максимально наближеного до точного, стійкого до змін вхідних даних. Перевагою такого підходу є гарантоване отримання певного розв'язку ОЗ.

Теорія нелінійних некоректних задач на даному етапі ще знаходиться у розвитку та опрацьована в значно меншій степені ніж лінійних. Універсального методу розв'язку некоректних задач на даний час не існує. Стійкість розв'язку ОЗ залежить від вибору простору розв'язків: задачі можуть бути некоректно поставленими у одному просторі розв'язків та коректно поставленими в іншому. Отримання наближеного стійкого розв'язку ОЗ є можливим із використанням додаткової інформації щодо нього. Один із шляхів такого підходу полягає у введенні шуканого розв'язку у множину коректності, тобто при умові його належності деякому компакту (множині спеціальної структури) [48, 49]. Відповідно до ідеї, сформульованої А.М. Тихоновим, якщо є відомим факт того, що множина розв'язків є компактом, то задача розв'язку операторного рівняння вважається коректною при умові, коли права частина рівняння належить образу компакту. Ідея є вірною також і для нелінійних операторів. Такий підхід забезпечує стійкість розв'язку ОЗ до варіацій вхідних даних, які не виводять його за межі множини коректності. При такій ситуації апріорні відомості щодо рівня похибки вхідних даних при пошуку розв'язку не потрібні. Особливістю методу є суттєве використання апріорних обмежень, а саме кількісної та якісної інформації щодо структури розв'язку ОЗ. Близькими до групи методів, що реалізують цю ідею, є методи підбору, квазірозв'язку, квазіобернення тощо [42]. До появи сучасних ефективних методів регуляризації методи цієї групи використовувалися в якості основних для пошуку задовільних для дослідників наближених розв'язків некоректних задач. Необхідність попереднього визначення компакту є головним недоліком даного підходу.

До найбільш популярних чисельних методів, які призначені для розв'язку некоректних ОЗ, відносяться регуляризаційні. Загалом існує значна кількість підходів до побудови регуляризуючих операторів, але найбільше поширення отримав варіаційний. В його основі закладено універсальний спосіб наближеного розв'язку некоректної ОЗ, запропонований А.М. Тихоновим, який полягає в

зведенні вихідної задачі виду (1.2) до іншої, що вимагає пошуку мінімуму певного згладжувального функціонала. Суть ідеї складає стабілізація мінімуму середньоквадратичного відхилення лівої частини операторного рівняння від правої його частини внаслідок введення до складу функціоналу залежного від параметру регуляризації доданку. Вибір значення параметра регуляризації здійснюється в залежності від рівня збурення вхідних даних задачі та є компромісом між точністю процедури її розв'язку та стійкістю його оцінок, а проблема адекватного вибору параметра регуляризації має визначальне значення для пошуку розв'язку максимально наближеного до точного. Функціонал Тихонова має наступний вигляд [42]:

$$z_{\eta}^{\alpha} = \arg\min_{z \in D} \left(\left\| A_{h}^{z} - u_{\delta} \right\|^{2} + \alpha \cdot \left\| z \right\|^{2} \right), \tag{1.3}$$

де $\alpha > 0$ параметр регуляризації;

А – лінійний оператор, діючий із гільбертового простору *Z* в гільбертовий простір *U*;

D - замкнута випукла множина, причому $z \in D \subseteq Z$.

Доведено, що модифікована задача (1.3) має єдиний розв'язок навіть для випадку, коли у вихідної він взагалі відсутній. Метод не потребує знання апріорної інформації про належність розв'язку ОЗ деякій множині коректності.

Незважаючи на те, що ці теоретичні здобутки було отримано для лінійного оператора рівняння (1.2), А.М. Тихоновим вони були узагальнені на випадок розв'язку нелінійних некоректних ОЗ в рамках варіаційного підходу [50]. Проблемою в цьому є мінімізація функціоналу нев'язки з причини його не випуклості. Але схема є можливою при виконанні умови посиленої неперервності нелінійного оператора, коли він перетворює послідовності, які слабо збігаються у просторі Z, в послідовності, що сильно збігаються у просторі U. Або також при використанні схеми компактного вкладення з трьома просторами $V \rightarrow Z \rightarrow U$, де простір V вкладається в простір Z із допомогою неперервного оператора B. Тоді функціонал Тихонова приймає вигляд:

$$M^{\alpha}[v] = \left\| A_{h}Bv - u_{\delta} \right\|^{p} + \alpha \cdot \|v\|^{2}, \ z = Bv.$$
(1.4)

Також слід зазначити, що для побудови наближеного розв'язку некоректно **O**3 3 нелінійним поставлених оператором використання можливим € згладжувального функціоналу Тихонова (1.3), що підтверджується дослідженнями [51-53] певною специфікою щодо апостеріорного вибору 3 параметру регуляризації. Недоліком методу вважається фактично емпіричне налаштування регуляризуючого функціоналу під кожну конкретну задачу.

В якості альтернативи до регуляризуючого алгоритму Тихонова широке використання отримали методи ітеративної регуляризації [51-53], що створені на єдиній схемі поточкової апроксимації зворотного оператора. Завдяки ефективності, алгоритмічній простоті побудови та універсальності ітеративні регуляризаційні методи знайшли застосування при розв'язку не тільки лінійних ОЗ, а й нелінійних задач. На сьогоднішній час обґрунтованими є принципи побудови регуляризуючих алгоритмів на основі виконання деяких ітераційних схем обчислень, в яких номер ітерації, узгоджений з похибками вхідних даних, використовується в якості параметру регуляризації. Формально ці схеми не знайшли суттєвих змін в порівнянні до класичних ітераційних [54-60]. Ідея полягає в тому, що ітераційні методи є робастними до похибок даних, з якими вони працюють, і тому на перших ітераціях наближені результати розв'язку ОЗ незначною мірою відрізняються від аналогічних наближень, що спостерігаються для точних вхідних даних. Похибки наростають поступово при збільшенні числа ітерацій, тому має сенс переривати обчислювальний процес при досягненні стійких наближень з урахуванням рівня похибок вхідних даних. В узагальненому випадку ітераційний процес виконується відповідно до формули при виборі різних $G_k\left(z_k^{\delta}, u_{\delta}\right)$:

$$z_{k+1}^{\delta} = z_k^{\delta} + G_k \left(z_k^{\delta}, u_{\delta} \right).$$
(1.5)

Серед ефективних методів ітераційної регуляризації можна відзначити метод нелінійних ітерацій Ландвебера (Landweber), методи Ньютонівського типу

(Levenberg–Marquardt, Gauss–Newton, Broyden's method, iterated Tikhonov regularization). До недоліків ітераційних методів регуляризації можна віднести обмежену область застосування, низьку в деяких випадках збіжність та проблему вибору належного початкового наближення.

Значну кількість прикладних задач, зокрема оптимального проектування ВСП, може бути сформульовано як екстремальні, тобто задачі пошуку екстремуму функціонала при заданих певних обмеженнях на аргументи. Серед таких задач зустрічаються і не стійкі, тобто некоректні. Зосередимся на задачах, які потребують знаходження мінімуму функціоналу J на множині $D: J^* = \inf \{J(z): z \in D\}$. До функціоналу досить легко приєднати обмеження з використанням множників Лагранжа. Для стійкого наближеного розв'язку екстремальних некоректних задач необхідним є використання регуляризації. Варіанти варіаційних алгоритмів нелінійних розв'язку операторних рівнянь наведено В [50. 60]. ле використовуються певні стабілізаційні функціонали. Здебільшого для розв'язання таких задач застосовують градієнтні методи пошуку, які характеризуються досить високою збіжністю.

Досить успішним також є досвід використання для розв'язку екстремальних саморегуляризації. При некоректних задач принципу цьому первинне зберігається, її розв'язок формулювання некоректної ОЗ виконується з застосуванням наближених методів, які надають можливість керувати за рахунок «в'язкості» обчислювальних процедур алгоритмів мірою близькості шуканого розв'язку до точного. Відповідні зміни параметрів обчислювальних алгоритмів фільтрацію забезпечують природну високочастотних складових шуканого розв'язку.

В більшості випадків в якості цільової функції задачі оптимізації застосовують суму квадратів нев'язок, але можливими є й інші варіанти. При виборі методу оптимізації необхідно враховувати певні особливості, що є характерними при такому формулюванні задачі нелінійного математичного програмування: наявність значної кількості локальних екстремумів, тобто багатоекстремальність задачі;

• необхідність пошуку глобального екстремуму;

 складна топологія гіперповерхні пошуку, яка характеризується багатовимірною «яроподібністю», наявністю «плато», точок перегину поверхні тощо;

• наявність обмежень, введення яких до цільової функції ще більш ускладнює топологію поверхні пошуку;

• суттєва нелінійність та можлива недиференційованість функції цілі;

• алгоритмічне або складне аналітичне представлення цільової функції, що потребує значних обчислювальних ресурсів та затрат часу для розрахунків, обумовлює використання громіздких чисельних методів та часто становить непросту самостійну задачу.

Всім цим вимогам задовольняють сучасні метаевристичні стохастичні алгоритми оптимізації як еволюційні, так і поведінкові, які засновані на моделюванні колективної поведінки систем, що самоорганізуються та складаються з взаємодіючих агентів [61, 62].

Суттєва ресурсомісткість нелінійних оптимізаційних задач зі складними для обчислень цільовими функціями робить затребуваними для використання технології сурогатної оптимізації [63], яка передбачає заміну ресурсомісткої функції цілі її замісником, що є апроксимованим аналогом, тобто метамоделлю, та потребує значно менших обчислювальних ресурсів і дає можливість пошуку розв'язку за реальний час. Під метамоделлю будемо розуміти просту в обчислювальному сенсі формальну модель на більш складну модель, побудовану на фізичних законах.

Огляд та аналіз математичних методів, що використовуються для розв'язку нелінійних обернених задач здійснено в роботі [64].

1.4. Огляд методів створення моделей-замісників для ресурсомістких задач сурогатного оптимального синтезу вихрострумових перетворювачів з апріорі заданими властивостями поля зондування

Сурогатне моделювання є одним із поширених напрямків розвитку методів розв'язку складних обернених задач в численних сферах науки та техніки, зокрема оптимальному синтезі конструкцій об'єктів, неруйнівному контролі матеріалів та виробів, ідентифікації властивостей досліджуваних об'єктів при їх взаємодії з різноманітними фізичними полями, технічній діагностиці, тощо. Зазвичай такі задачі потребують застосування оптимізаційних методів, що використовують функції цілі, які характеризуються великою обчислювальною ресурсомісткістю. В таких випадках функції цілі часто обчислюються за допомогою досить «важких» в сенсі затрат часу чисельних методів, що призводить до практично непереборних перешкод. Підміна ресурсомісткої функції цілі її апроксимованим аналогом, тобто метамоделлю або моделлю-замісником (рис.1.25), яка відрізняється значно більш високою обчислювальною продуктивністю, дає можливість пошуку розв'язку оптимізаційної задачі за реальний час [65, 66]. Така обчислювальна технологія ілюструється схемою на рис.1.26. В задачах ідентифікації метамоделі додатково ще виконують функції накопичувачів апріорної інформації, яка отримана попередньо щодо досліджуваних об'єктів шляхом комп'ютерних чисельних експериментів, проведених за відповідними доцільними планами. Створені таким чином носії інформації надалі використовуються безпосередньо у вимірювальних операціях, що дозволяє забезпечити розв'язок обернених задач в реальному масштабі часу. Останніми роками такий підхід зі створенням метамоделей застосовується в різноманітних вирішенні галузях при складних проектних завдань: В машинобудуванні [67, 68], аерокосмічній промисловості [69], турбінобудуванні, будівництві [70].

Рисунок 1.25 - Метамодель як модель на модель, створена за фізичними законами

Отже, під метамоделлю або сурогатною моделлю розуміють просту в обчислювальному сенсі формальну модель на більш складну модель, побудовану на фізичних законах, тобто вона являє собою модель на модель. Загалом задача побудови сурогатної моделі зводиться до побудови апроксимаційної функції гіперповерхні відгуку, що визначається моделлю на фізичних законах. Це є непростою задачею та іноді, в складних випадках, потребує застосування комбінованих методів апроксимації, які поєднують в собі методи штучного інтелекту і традиційні математичні методи наближення та аналізу даних.

Рисунок 1.26 - Узагальнений алгоритм сурогатної оптимізації

Розвиток теорії метамоделювання забезпечено дослідженнями вчених G. G. Wang, A. Forrester, A. Sobester, A. Keane, S. De Marchi, E. Perracchiono, H. Fang, S. Koziel, A. П. Кулешов, А. В. Бернштейн, Е. В. Бурнаєв, тощо.

Загальна концепція побудови сурогатних адаптивних моделей розглянута в роботах [65, 71] і передбачає:

• характеристику об'єкту за допомогою «точної» математичної моделі;

• створення наближеної моделі, яка дозволяє обчислювати приблизне значення характеристики об'єкту на основі вхідних даних. Невід'ємним компонентом даного етапу є створення комп'ютерного плану обчислювального експерименту, на основі якого виконується побудова регресійної моделі;

• валідацію та оцінювання точності створеної сурогатної моделі.

Отже, виникає необхідність узагальнення матеріалів сучасних досліджень з використанням існуючих методів побудови метамоделей для технічних задач в різноманітних галузях, визначення їх переваг та недоліків, особливостей застосування на практиці.

Наявні різноманітні методи побудови метамоделей, які використовуються науковцями, можна класифікувати варіантом, представленим на рис.1.27.

Рисунок 1.27 - Різновиди методів апроксимації, що застосовуються для побудови метамоделей

При цьому можна виділити узагальнені класи найбільш застосовуваних метамоделей, а саме геометричних, стохастичних та евристичних, та відповідних методів їх побудови. Відзначимо, що методи створення метамоделей, які використовуються для технічних задач, відрізняються різноманітними підходами до апроксимації та складністю їх реалізації. Згідно з наведеною класифікацією до першої групи методів побудови метамоделей відносять геометричні, до яких належать всі види поліноміальних моделей та сплайн-моделі: багатоваріантні адаптивні регресійні сплайни MARs (Multivariate adaptive regression splines), кубічні сплайни (Cubic splines), неоднорідні раціональні B-сплайни NURBs (Non-uniform rational B-splines).

Поліноміальні моделі, як одні із найпоширеніших, застосовуються науковцями при розв'язанні різноманітних задач [67, 68]. Поліноміальна модель отримується на відміну від лінійної внесенням додаткових предикторів шляхом піднесення кожного початкового предиктора до певного степеню. Залежність між предикторами і відгуком описується в загальному вигляді регресійною функцією:

$$y = b_0 + b_1 \cdot f_1(x_1, x_2, \dots, x_n) + \dots + b_{m-1} \cdot f_{m-1}(x_1, x_2, \dots, x_m) + \varepsilon, \qquad (1.7)$$

де $f_i(x_1, x_2, ..., x_n), i = 1, ..., m - 1$ - задані функції факторів; $x_1, x_2, ..., x_n, b_0, b_1, ..., b_{m-1}$ - коефіцієнти математичної моделі; ε - залишок або випадкова складова.

В залежності від вибраної функції $f(x_1, x_2, ..., x_n)$ регресійна модель може бути представлена в різних виглядах. Наприклад, для однофакторної поліноміальної регресії функція має вигляд:

$$y = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \dots + b_{m-1} \cdot x^{m-1} + \varepsilon, \qquad (1.8)$$

а поліноміальна модель 2-го порядку для трьох факторів містить головні ефекти (тобто ефекти першого порядку) та квадратичні ефекти (тобто ефекти другого порядку) і має вигляд:

$$y = b_0 + b_1 \cdot x_1 + b_2 \cdot x_1^2 + b_3 \cdot x_2 + b_4 \cdot x_2^2 + b_5 \cdot x_3 + b_6 \cdot x_3^2 + \varepsilon.$$
(1.9)

Коефіцієнти математичної моделі оцінюються методом найменших квадратів. Зазвичай степінь поліному більш ніж 3 або 4 не використовується, оскільки в такому випадку поліноміальна крива стає надмірно гнучкою і приймає неадекватний вигляд.

Класичний регресійний аналіз передбачає виконання ряду передумов [72], які насправді можуть не виконуватися, а їх перевірка достатньо складна, оскільки передбачає проведення складних експериментів і вимагає значних ресурсів на її здійснення. В поліноміальних моделях в залежності від складності гіперповерхні відгуку завжди виникає проблема вибору порядку моделі, яка на практиці вирішується ітеративним методом в бік поступового підвищення з метою уникнення перенасичення.

Одним із методів розв'язку регресійних задач є застосування багатовимірних адаптивних сплайнів MARs, що дозволяє встановлювати вигляд і параметри апроксимаційної функції із заданою точністю відтворюючої початкові дані [73]. Простір пошуку значень вхідних змінних розбивається на області, в яких використовуються різні базисні функції певних видів та їх добутки з декількох співмножників. В основі роботи методу покладено вибір необхідної зваженої суми базисних функцій з їх загального набору (словника). Алгоритм MARs-сплайнів відшуковує в просторі всіх вхідних змінних місця розташування вузлових точок, а також взаємозв'язки між змінними. Коефіцієнти розкладання і сам робочий набір базисних функцій вибираються за допомогою ітеративної евристичної процедури включення-виключення, що дає дещо меншу точність апроксимації, ніж при використанні повного словника. Метод MARs-сплайнів знаходить шукану залежність у два етапи. Перший етап полягає в додаванні базисних функцій до робочого набору, доки не буде мінімізовано загальний критерій якості моделі [73] або ж буде досягнута максимальна кількість базисних функцій. На другому етапі з робочого набору видаляються функції, які не впливають суттєво на критерій точності моделі, що відображає зростання дисперсії з ростом числа базисних функцій. Для розрахунку невідомих коефіцієнтів розкладання використовують метод найменших квадратів.

В роботі [74] розглядаються модельні приклади із застосуванням кусковолінійних базисних функцій. Цей метод ефективний не тільки при розгляді функції однієї змінної, але і для багатовимірних просторів. Досліджено залежність похибки при навчанні і контролі від кількості базисних функцій, причому як на етапі додавання, так і на етапі видалення функцій із моделі [74].

В роботі [75] автори запропоновували спеціальний метод розв'язку задачі апроксимації за допомогою розкладання по структурно-орієнтованому словнику функцій. В основі методу лежить використання тензорного добутку словників функцій, побудованих в кожному із факторів, і спеціального штрафу на мінливість моделі, який дозволяє досягти контролю гладкості апроксимації. Розв'язання задачі апроксимації зводиться до пошуку оптимального тензора коефіцієнтів розкладання за словником для вибірок спеціальної структури. Також для випадку вибірок, що мають структуру неповного декартового добутку довільного числа багатовимірних факторів, розроблено метод знаходження оптимального тензора коефіцієнтів за словником та показана його висока обчислювальна ефективність.

Маючи деякі переваги перед класичними статистичними методами побудови апроксимаційної моделі, MARs все ж є чутливим до початкових вхідних даних. Крім того, метод має значні часові затрати на розрахунок коефіцієнтів моделі методом найменших квадратів у випадку розв'язку задач великої розмірності.

Представником стохастичних методів побудови сурогатних моделей є регресія на основі гаусівських процесів (або крігінг) [76], що дозволяє створювати нелінійні апроксимаційні моделі. Методи побудови сурогатних моделей на основі гаусівських процесів та їх застосування в задачах оптимізації розглядаються в ряді робіт [77, 78]. Відомо, що будь-який випадковий процес визначається середнім значенням та коваріаційною функцією. При використанні реальних даних коваріаційна функція гаусівського процесу невідома. Тому вводиться припущення, що коваріаційна функція належить до деякого параметричного сімейства. В залежності від апріорних уявлень про вигляд апроксимаційної залежності вибирається сімейство коваріаційних функцій. Так в роботі [79] передбачалося, що коваріаційна функція належить до експоненціального сімейства, а в [80] - до сімейства на основі відстані Махалонобіса. Коваріаційна функція другого сімейства дозволяє створити модель більш загальну, проте обмежує роботу із даними великої розмірності, оскільки значно збільшується кількість параметрів коваріаційної функції, які необхідно оцінити. У зв'язку з цим в роботі [80] вирішується актуальне завдання розробки алгоритму налагодження параметрів коваріаційної функції на основі відстані Махалонобіса, який дозволяє виконувати ці дії і для випадку даних великої розмірності. При порівнянні методів у двовимірному випадку стандартний і запропонований авторами [80] алгоритми налагодження параметрів коваріаційної функції мають однакову точність. Зі збільшенням розмірності стандартний метод із використанням відстані Махалонобіса має суттєво меншу точність у порівнянні із запропонованим алгоритмом повороту координатних осей [80], оскільки збільшується кількість гіперпараметрів, які необхідно визначати в процесі навчання.

З метою зменшення обчислювальних затрат та підвищення точності при оцінюванні параметрів моделі в роботі [75] пропонується метод моделювання нестаціонарної коваріаційної функції на основі лінійного розкладання за словником параметричних функцій та використання байєсівської регуляризації. Для байєсівської регуляризації в якості відомих розподілів параметрів використовуються нормальний та гама-розподіл. Обидва розподіли дозволяють уникати виродження апроксимації, збільшувати узагальнювальну здатність і надійність алгоритмів.

При використанні методу слід враховувати, що для побудови моделі на основі гаусівських процесів необхідно оцінити вектор параметрів коваріаційної функції, трудоємність такої оцінки складає $O(n^3)$. Регресія на основі гаусівських процесів передбачає наявність заздалегідь заданої коваріаційної функції, яка необхідна при оцінюванні параметрів цих процесів, що відповідно впливає на обчислювальну складність методу. У даному методі розрахунок параметрів моделі виконується методом максимальної правдоподібності, який передбачає виконання досить громіздких матричних перетворень, що суттєво впливає на затрати часу зі збільшенням розмірності задачі.

У разі коли є великий масив вихідних даних найчастіше використовуються регресійні RBF-моделі, які так само створюються застосуванням стохастичних методів побудови [81, 82]. Радіальна базисна функція апроксимації використовує лінійні комбінації К радіально-симетричних функцій *φ*:

$$f(\boldsymbol{x}) = \sum_{j=1}^{K} \lambda_{j} \cdot \varphi\left(\left\|\boldsymbol{x} \cdot \boldsymbol{c}^{(j)}\right\|\right), \qquad (1.10)$$

де $\lambda = \begin{bmatrix} \lambda_1, \lambda_2, \dots, \lambda_K \end{bmatrix}^T$ - вектор параметрів моделі;

- \boldsymbol{x} вектор проектних змінних;
- φ базисна функція;
- $c^{(j)}$, j=1...K відомі центри базисних функцій.

Параметри моделі λ визначаються аналогічно, як і у випадку поліноміальної регресії. Тобто функція апроксимації f(x) є лінійною комбінацією деяких базисних функцій із відповідними ваговими коефіцієнтами. Найбільш застосовані базисні функції — лінійна, кубічна, полігармонічний сплайн, TPs–сплайни (або сплайнповерхні) [81, 82]. Проте більшу гнучкість мають параметричні базисні функції, наприклад, гаусівська, зворотна квадратична, мультиквадратична, зворотна мультиквадратична та інші [81]. Розрахунок вектору параметрів моделі виконується методом найменших квадратів, що в задачах великої розмірності вимагає суттєвих обчислювальних ресурсів.

Розглядаючи клас евристичних метамоделей можна виділити штучні нейронні мережі (ANN), моделі з використанням методу групового урахування аргументів (МГУА) та машин опорних векторів (SVM). Послідовно розглянемо кожен із цих методів.

Потужним апаратом для апроксимації складних залежностей є штучні нейронні мережі (HM) [83], а саме HM на радіально-базисних функціях RBF-ANN та багатошарових персептронах MLP-ANN. Універсальні апроксимаційні властивості HM та відсутність вимог попереднього «точного, жорсткого» задання вигляду моделі є причиною їх широкого застосування при створенні метамоделей у складних випадках топології гіперповерхні відгуку [84, 85]. Відсутність «жорстко» заданого апріорного зв'язку шуканого рішення із конкретною моделлю надає переваги НМ, оскільки вона виявляється більш пристосованою до роботи в умовах невизначеності.

Основні переваги НМ головним чином зумовлені: навчанням на прикладах; підвищенням завадостійкості до зашумлених та суперечливих даних; стійкістю до помірних змін побічних параметрів об'єкту, які не є шуканими в процесі розв'язку. Разом з тим їм притаманні і деякі недоліки, один із яких це відносно великий час для навчання мережі та відсутність аналітичного запису отриманої апроксимаційної функції. На рисунку 1.28 представлено найбільш розповсюджені типи НМ [83, 86], які використовуються для розв'язку регресійних задач.

Рисунок 1.28 - Узагальнена класифікація нейронних мереж за архітектурою

В класифікації нейронних мереж виділяють два фундаментальних класи: мережі прямого розповсюдження (одношарові та багатошарові) та рекурентні мережі або мережі зі зворотним зв'язком [83, 86], але практичне застосування в апроксимаційних задачах знайшли перші з них. Завдяки великій кількості алгоритмів і методик навчання та багатьох видів функцій активації досягається створення великого розмаїття НМ.

Теоретичною основою і обґрунтуванням того, що НМ здатна апроксимувати будь-яку функціональну залежність є теорема Колмогорова-Арнольда про

універсальну апроксимацію [83]. Будь-яка неперервна функція *К* аргументів в одиничному кубі [0, 1]^{*к*} може бути представлена у вигляді суперпозицій неперервних функцій одного аргументу і операції додавання:

$$F(x_1, x_2, \dots, x_K) = \sum_{i=1}^N a_i \cdot f\left(\sum_{k=1}^K a_{ik} \cdot x_k + a_{0k}\right), \quad (1.11)$$

де $(x_1, x_2, ..., x_K)^T$ - вектор вхідних даних;

- $f(\cdot)$ обмежена, не постійно монотонно висхідна неперервна функція;
- К кількість вхідних вузлів;
- N кількість нейронів прихованого шару;
- *а*_{*ik*} синаптичні ваги прихованого шару;
- *а*_{*i*} синаптичні ваги вихідного шар;
- *а*_{0*k*} зміщення.

Процес навчання нейронної мережі представлено на рис.1.29.

Рисунок 1.29 - Процедура навчання нейронної мережі

В основі побудови RBF-мереж покладено розбиття простору пошуку гіперсферами, які задаються своїм центром та радіусом. RBF-мережа має у своєму складі: вхідний шар, що з'єднує мережу з середовищем спостереження; прихований шар (або проміжний), що складається з елементів з ядерними базисними функціями активації; лінійний вихідний шар – звичайний одношаровий персептрон, який в результаті налаштування ваг визначає вихід мережі (рис.1.30) [83, 86]. В якості функції активації нейронів прихованого шару часто використовують функцію Гауса, але можливі й інші різновиди функцій, наприклад, квадратична ядерна функція, ядро Єпанечникова, зворотна мультиквадратична функція, сплайн-функція, функція Коши.

Рисунок 1.30 - Структура RBF-нейронної мережі

При застосуванні гаусівської функції активації вихід мережі формується як лінійна комбінація виходів нейронів прихованого шару і описується виразом [83]:

$$u(\vec{x}) = \sum_{k=1}^{m} w_k \cdot \varphi_k(\vec{x}) = \sum_{k=1}^{m} w_k \cdot \exp\left(-\frac{r_k^2}{a_k^2}\right), \quad (1.12)$$

де \vec{x} - вхідний вектор $\vec{x} = (x_1, x_2, ..., x_l)^T$;

$$r_{k} = \|\vec{x} - \vec{c}_{k}\| = \sqrt{\left(x_{1} - c_{x_{1}k}\right)^{2} + \left(x_{2} - c_{x_{2}k}\right)^{2} + \dots + \left(x_{l} - c_{x_{l}k}\right)^{2}} - \text{pagive } k - rec$$

нейрона;

l - кількість змінних цільової функції;

т - кількість нейронів прихованого шару;

 W_k - вага зв'язку вихідного нейрона з *k*-м нейроном прихованого шару;

 \vec{c}_k - вектор координат центру *k*-го нейрона, який містить координати $\left(c_{x_1k}, c_{x_2k}, \dots, c_{x_lk}\right)^T;$

*а*_{*k*} - ширина *k*-го нейрона;

 $\varphi_k(\vec{x})$ - гаусівська функція активації прихованого шару.

Задача апроксимації RBF-мережею зводиться до оптимального вибору ваг вихідного шару, кількості радіальних функцій (нейронів), а також їх параметрів: центрів розташування цих функцій та їх ширини, які є нелінійними параметрами прихованого шару.

До переваг нейронних RBF-мереж відносять те, що вони мають лише один прихований шар нейронів, який істотно спрощує характерну для більш складних HM задачу вибору кількості прихованих шарів і робить цей вибір визначеним. Також ці мережі швидко навчаються, що обумовлено можливістю застосування добре вивчених методів лінійної оптимізації при підборі параметрів лінійної комбінації у вихідному шарі мережі. Але розмірність RBF-мереж експоненційно зростає при збільшенні розмірності вихідних даних, а при їх навчанні є необхідність використання великої кількості прикладів. Окрім того RBF-мережа не володіє здатністю до екстраполяції даних при збільшенні ширини діапазону вхідних даних.

Багатошаровий персептрон прямого розповсюдження складається із множини сенсорних елементів (вхідних вузлів та вузлів джерела), які утворюють вхідний шар; одного або декількох прихованих шарів обчислювальних нейронів та одного вихідного шару (рис.1.31).

Рисунок 1.31 - Структура двошарової MLP-нейронної мережі

Вхідний сигнал розповсюджується мережею в прямому напрямку, від шару до шару. Навчання з «учителем» такої мережі виконується за допомогою алгоритму

зворотного розповсюдження помилки, який ґрунтується на корекції похибок. В загальному випадку це відповідає популярному алгоритму адаптивної фільтрації – алгоритму мінімізації середньоквадратичної похибки.

Існують також і інші алгоритми навчання MLP-мереж, які використовують різноманітні стратегії найшвидшого просування до точки мінімуму [83, 86], наприклад, спуск по спряженим градієнтам і метод Левенберга-Марквардта.

Багатошарові персептрони мають декілька відмінних ознак:

1. Кожен нейрон мережі має гладку нелінійну функцію активації, наприклад, гіперболічного тангенса. Найбільш розповсюджена форма такої функції є сигмоїдальна, яка визначається логістичною функцією:

$$y_j = \frac{1}{1 + \exp\left(-\upsilon_j\right)},$$

де υ_j - локальне поле *j*-го нейрону, що визначається як зважена сума всіх синаптичних входів із значенням зміщення включно;

у. - вихід нейрону.

Теоретично доведено, що з використанням таких найпростіших перетворень можна наближувати достатньо складні багатовимірні функції, і як наслідок оцінювати складні залежності.

2. Мережа містить один або декілька шарів прихованих нейронів, які не належать до входу або виходу мережі. Ці нейрони дозволяють мережі навчатися розв'язку складних задач, послідовно враховуючи важливі ознаки із вхідного вектору.

3. Мережа має високий степінь зв'язаності, що реалізується за допомогою синаптичних з'єднань. Зміна рівня зв'язаності мережі вимагає зміни множини синаптичних з'єднань або їх вагових коефіцієнтів.

У загальному вигляді вихід двошарової та тришарової МLP-мережі із прямими зв'язками, яких є достатньо для апроксимації практично будь-яких гіперповерхонь, описується наступними виразами:

$$y_{i}(t) = f_{2}\left(a_{20i} + \sum_{i=1}^{N} a_{2i} \cdot f_{1}\left(\sum_{k=1}^{K} a_{1k} \cdot x_{k}(t) + a_{10k}\right)\right), \quad (1.13)$$

$$y_{m}(t) = f_{3}\left(a_{30m} + \sum_{m=1}^{M} a_{3m} \cdot f_{2}\left(a_{20i} + \sum_{i=1}^{N} a_{2i} \cdot f_{1}\left(\sum_{k=1}^{K} a_{1k} \cdot x_{k}(t) + a_{10k}\right)\right)\right), \quad (1.14)$$

де i = 1, 2, ... N - кількість нейронів другого шару;

k = 1, 2, ... K - кількість нейронів першого шару;

m = 1, 2, ... M - кількість нейронів третього шару;

 f_1, f_2, f_3 - функції активації першого, другого та третього шарів відповідно;

 $a_{10k}^{}, a_{20i}^{}, a_{30m}^{}$ - початкові збудження *k*-го, *i*-го, *m*-го нейронів першого, другого та третього шарів відповідно;

*a*_{1k},*a*_{2i},*a*_{3m} - вагові коефіцієнти *k*-го нейрону першого шару, *i*-го нейрону другого шару, *m*-го нейрону третього шару;

 $x_k(t)$ - *k*-та координата вхідного вектору;

 $y_i(t), y_m(t)$ - *i*-та, *m*-на координата вихідного вектору для двошарової НМ та тришарової відповідно.

Поєднання позитивних різноманітних властивостей MLP-мереж разом, з врахуванням їх здатності до навчання забезпечує суттєву обчислювальну потужність регресійного багатошарового персептрона. Водночас це є причиною неповноти знань про поведінку таких мереж. Застосування MLP-мережі передбачає крім вибору алгоритму навчання, необхідність застосування різноманітних методів оптимізації структури мережі для кожної конкретної задачі. Окрім того, MLPмережі мають складну процедуру навчання, оскільки необхідно разом навчати декілька шарів нейронів.

Ефективними методами підвищення точності метамоделей є використання множинних нейронних мереж, тобто асоціативних машин (комітетів нейронних мереж) [83, 86]. В цьому випадку складні регресійні задачі вирішуються розбиттям на множину простіших задач з меншими вимогами до точності із наступним

об'єднанням отриманих рішень в єдине. Для задач регресії використовуються асоціативні машини статичної структури з відповідними методами отримання рішення, а саме з усередненням за ансамблем та підсиленням (boosting) [87].

Далі розглянемо статичну структуру комітету НМ з усередненням за ансамблем (рис.1.32), як найпростішу в реалізації та досить ефективну за точністю апроксимації. В такому випадку передбачається, що окремі мережі ймовірно будуть мати різні локальні мінімуми поверхні відгуку. В результаті чого деяка комбінація їх вихідних сигналів призведе до підвищення ефективності композитної мережі. Поєднання вихідного сигналу здійснюється за допомогою лінійної комбінації вихідних сигналів окремих НМ.

Рисунок 1.32 - Комітет нейронних мереж, заснований на усередненні за ансамблем

В методі, що розглянуто вище, всі мережі навчаються на одній і тій же множині даних і вони відрізняються одна від одної тільки вибором початкового стану. На противагу цьому мережі, що працюють на основі методу підсилення, навчаються на прикладах, які мають різні розподіли. Тоді окремі мережі, що можуть використовувати досить «слабкий» алгоритм навчання, в результаті сумісного врахування виходів перетворюються в композит HM, який досягає довільно заданої точності.

Метод підсилення реалізовується трьома способами [83]: підсиленням шляхом фільтрації (boosting by filtering), підсиленням шляхом формування підвибірок (boosting by subsampling), підсиленням шляхом перезважування (boosting by reweighting). Серед недоліків методу підсилення можна відзначити такі, як необхідність великої кількості прикладів навчальних вибірок та потреба в значних обчислювальних ресурсах для підтримки і навчання HM [83, 88].

Більш детально розглянемо реалізацію методу підсилення шляхом формування підвибірок (boosting by subsampling). В такому випадку потрібна множина прикладів навчання фіксованого розміру. Підвибірки створюються під час навчання згідно із заданим розподілом ймовірності. Одна із найбільш відомих процедур, що реалізує формування підвибірок – це так звана процедура беггінг (bagging) [86].

В основі цієї процедури покладена ідея, заснована на тому, що навіть невеликі зміни в навчальній множині формують декілька абсолютно різних НМ-моделей. Внесення випадкових змін до масиву навчальної вибірки необхідно з метою подальшого створення декількох альтернативних моделей, які засновані на різних підмножинах даних. Такий стохастичний метод побудови НМ передбачає, що базові алгоритми навчаються незалежно один від одного на випадково відібраних підмножинах навчальної вибірки, використовуючи так звані бутстреп-вибірки (bootstrap) [83, 86]. Тобто в цій процедурі формування вибірок здійснюється випадково і тому деякі дані можуть брати участь у навчанні декілька разів, а інші ні разу (рис.1.33). Елементи, що не потрапили в чергову вибірку, використовуються в якості тестової множини для поточної НМ.

Наступним кроком є побудова комітету НМ на сформованих таким чином підмножинах вихідних даних. Результати функціонування отриманих алгоритмів поєднуються в композицію за допомогою простого або зваженого середнього. Похибка визначається відносно фіксованої множини прикладів навчання. Основним недоліком такого методу формування вибірок є те, що отримані підмножини даних залежні, оскільки формуються із однієї множини вихідних даних, хоча і відрізняються одна від одної.

Рисунок 1.33 - Структурна схема процедури беггінга

Альтернативні методи побудови ансамблів НМ для задач регресії розроблені на основі бустінга і отримали назву адитивної регресії та стекінг (stacking) [86]. Спосіб створення стекінг-метамоделей використовується коли в якості нейромереж застосовано різноманітні їх поєднання: багатошаровий персептрон, мережа Хопфілда, сігма-пі мережа та інші (рис.1.34). Тобто в цьому випадку використовується декілька алгоритмів, що приймають рішення, і зазвичай процедура полягає в визначенні компетентності кожного алгоритму та виборі кращого із них, який і буде надалі використовуватися для прийняття рішень.

На відміну від звичайного підходу, в стекінгу використовується концепція метанавчання, яка дозволяє виявити кращу комбінацію виходів базових моделей. Метанавчання передбачає створення декількох рівнів, так на рівні А застосовуються базові мережі, потім на вхід метамоделі (рівень В) подаються результати виходів із попереднього рівня.

Рисунок 1.34 - Структурна схема стекінга

Процес продовжується до тих пір, доки не буде виконана умова припинення роботи алгоритму, а саме досягнення необхідної заданої точності або використання всіх можливих обчислювальних ресурсів [86]. Основним недоліком моделі стекінга є те, що зі збільшенням рівнів метамоделі швидко зменшуються обчислювальні ресурси.

Зрештою розглянемо основні принципи побудови та функціонування адитивних регресійних метамоделей. Поняття «адитивна регресія» відноситься до будь-яких методів, що засновані на комбінуванні (додаванні) вкладів від декількох регресійних моделей. Ідея адитивної регресії полягає в прямому східчастому моделюванні (forward stagewise additive modeling), основні етапи виконання якого наступні [86, 89]: побудова звичайної регресійної моделі; розрахунок похибки (залишків), отриманої на навчальній множині; мінімізація залишків за допомогою другої моделі, для чого початкові цільові значення замінюються відповідними залишками перед навчанням другої моделі; повторення процесу доти, поки не буде досягнено необхідної точності остаточної регресійної моделі.

Так в роботах [89, 90] для регресії з метою удосконалення нейромережевого рішення використана адитивна парадигма побудови мережі. Отримана перша НМ використовується для навчання другої, де на етапі навчання застосовується абсолютна похибка апроксимації, яка є результатом обчислень із урахуванням побудованої першої мережі. Дана процедура повторюється додаванням необхідної кількості НМ до тих пір, поки не буде отримано задовільне значення відносної похибки апроксимації *МАРЕ*, %. Така побудова НМ дає поступове зменшення похибки апроксимації від мережі до мережі (рис.1.35).

Тобто кожна наступна додана НМ апроксимує поверхню похибки. Загальний відгук поверхні z_{Σ} отримується додаванням відгуків від кожного виходу (z^0 , z^1 , ... z^n) нейронних мереж. Необхідна кількість каскадів визначається отриманим значенням *МАРЕ*, %. Їх нарощування припиняється, коли похибка при додаванні наступного каскаду зменшується до наперед заданого значення.

Рисунок 1.35 - Схема побудови адитивної регресійної нейромережевої метамоделі

Підхід із декомпозиції області пошуку досить часто використовується в задачах побудови сурогатних моделей, а саме коли необхідно отримати високу їх точність та В умовах наявності суттєвої просторової неоднорідності апроксимаційної залежності [66]. Тобто простір пошуку розбивається на декілька підобластей, далі вирішуються задачі побудови апроксимації в кожній окремій підобласті, після чого кінцева сурогатна модель будується за допомогою «зшивання» складових частин. Така декомпозиція простору пошуку на підобласті за значеннями виходів корисна не тільки для випадку, коли є різні вимоги до точності сурогатної моделі в різних локаціях простору пошуку. Дана техніка також має сенс у ситуаціях, коли в деяких підобластях мінливість функції суттєво менша ніж у всьому просторі пошуку. Тобто, якщо побудувати завершальну апроксимацію «зшиванням» часткових апроксимацій, то вдається отримати більш точну сурогатну модель у порівнянні із глобальною сурогатною моделлю, побудованою одразу для всього простору пошуку [66].

Будь-які утворені структури НМ-метамоделей потребують обов'язкового оцінювання адекватності та інформативності за комплексом статистичних показників, серед яких коефіцієнт детермінації R^2 , відношення стандартних відхилень *S.D. ratio*; середня відносна величина модельної похибки *МАРЕ,%.*, сума квадратів залишків *SS_R*, середній квадрат залишків *MS_R*. Також з цією метою використовують графічний аналіз залишків у вигляді гістограми та діаграми розсіювання значень для «точної» моделі *Y* та побудованої метамоделі \hat{Y} [91].

Створення МГУА-метамоделей засновано на сортуванні поступово ускладнених варіантів моделей із вибором їх оптимальної структури [92, 93]. Даний метод має переваги, коли відсутня або майже відсутня апріорна інформація про структуру моделі і розподіл її параметрів.

Ідея методу полягає в формуванні за даними вибірки деякої множини моделей \hat{y}_{f} різноманітної структури, що мають наступний вигляд:

$$\hat{\boldsymbol{y}}_{f} = f\left(\boldsymbol{X}, \hat{\boldsymbol{\theta}}_{f}\right), \tag{1.15}$$

де Х - матриця значень змінних, що утворює вибірку спостережень;

 $\hat{\theta}_{f}$ - оцінка параметрів моделі.

Далі із отриманої множини моделей \hat{y}_{f}^{*} визначається оптимальна модель f^{*} за критерієм мінімуму оцінки якості моделі С:

$$f^* = \arg\min C\left(y, \hat{y}_f\right), \qquad (1.16)$$

де у - вектор вихідних значень у вибірці даних.

Оцінки параметрів для кожної моделі є також рішенням ще однієї екстремальної задачі. Зв'язок між вхідними і вихідними змінними описується у вигляді функціонального ряду Вольтерра, дискретним аналогом якого є узагальнений поліном Колмогорова-Габора:

$$\hat{y}_{f} = a_{0} + \sum_{i=1}^{n} a_{i} \cdot x_{i} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot x_{i} \cdot x_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ijk} \cdot x_{i} \cdot x_{j} \cdot x_{k}, (1.17)$$

де $a_0, a_i, a_{ij}, a_{ijk}$ - коефіцієнти поліному;

 x_{i}, x_{j}, x_{k} - вхідні змінні;

n - кількість вхідних змінних.

Існує чотири базових алгоритми МГУА та велика кількість їх модифікацій: СОМВІ – комбінаторний алгоритм, MULTІ – комбінаторно-селекційний алгоритм, МІА – багаторядний ітеративний алгоритм, RIA – релаксаційний ітеративний алгоритм. Всі базові алгоритми є багаторядними. В кожному ряді може знаходитися декілька моделей, які характеризуються однаковим рівнем складності. Алгоритми відрізняються між собою умовами формування і відбору змінних при переході від одного ряду до іншого.

Ідея СОМВІ полягає в використанні всіх можливих моделей без їх пропуску, саме тому на кожному рівні складності розглядаються всі моделі і не проводиться селекція кращих комбінацій змінних. Проте його практичне застосування обмежено задачами з невеликою кількістю ознак n, оскільки кількість можливих комбінацій експоненціально збільшується зі збільшенням кількості змінних моделей. Тому в даному алгоритмі кількість змінних обмежена n=20.

Ідея алгоритму MULTI зменшити кількість моделей, що розглядаються в кожному ряді без втрати кращої комбінації змінних. На кожному рівні складності відбирається фіксована кількість кращих поєднань змінних моделі, а потім кращі поєднання комбінуються із всіма іншими змінними по черзі при переході на наступний рівень.

Алгоритм MIA реалізує ідею зменшення кількості моделей, які розглядаються в кожному ряді зі зменшенням кількості рядів, що дозволяє прискорити забезпечення оптимального рівня складності. На кожному ряді відбирається фіксована кількість кращих моделей, а потім кожна пара цих кращих моделей породжує нову змінну при переході на наступний рівень. Кількість кращих моделей та функцію перетворювання необхідно задавати апріорі. Попри високу продуктивність даний алгоритм здатен пропускати оптимальні рішення та при збільшенні кількості рядів характеризується різким ускладненням моделі, тоді як значення зовнішнього критерію якості при цьому зменшується несуттєво.

Серед основних переваг алгоритму МГУА [94, 95] можна виділити, те що з його допомогою для коротких, неточних або зашумлених даних може бути знайдена оптимальна нефізична модель. При цьому точність і структура такої моделі є прийнятними для подальшого застосування. Принциповим недоліком таких параметричних алгоритмів МГУА є необхідність оцінювання параметрів результуючої моделі, які можуть бути зміщеними; додаткові затрати часу на пошук ефективного виду моделі.

Також для задач нелінійної регресії використовується потужна і універсальна модель машинного навчання - так званий метод опорних векторів SVM (support vector machine) [96].

Цей метод передбачає створення набору гіперплощин в багатовимірному або нескінченному просторі, які використовуються для розв'язання задач регресії. Алгоритм SVM спочатку розроблявся для лінійної і нелінійної класифікації. Частіше за все використовується модель із застосуванням класу SVR з бібліотеки Scikit-Learn, яка підтримує ядровий трюк (kernel trick) і дозволяє керувати балансом між шириною смуги поміж класами та обмеженням кількості порушень зазору, використовуючи гіперпараметр С. Ядровий трюк передбачає додавання додаткових поліноміальних ознак до набору даних, що робить можливим реалізацію нелінійної класифікації в результаті переходу до нового простору ознак. На практиці використовуються поліноміальні і гаусівські ядра.

Безпосередньо для задач регресії використовується параметрично редукована (kernelized) модель SVM. При застосуванні SVM-методом застосовується ефективний математичний прийом. Його ідея полягає в інвертуванні мети: замість спроби пристосуватися до найширшої із можливих смуг між класами, одночасно

обмежуючи порушення зазору, регресія SVM намагається помістити якомога більше зразків даних на смузі разом з обмеженням порушення зазору (тобто зразків поза смугою). Ширина смуги керується гіперпараметром є.

Розповсюджений підхід з пошуку доцільних значень гіперпараметрів полягає у використанні пошуку на гратці. Метод SVM найкраще підходить для невеликого і середнього наборів даних. На великих навчальних вибірках даний метод апроксимації характеризується великими обчислювальними затратами.

В роботі [97] детально розглянуто методи створення метамоделей та виділено найперспективніші із них для використання при оптимальному сурогатному синтезі ВСП.

1.5. Постановка завдань дисертаційного дослідження та формулювання його мети

Незважаючи на розмаїття досліджень, в напрямку проектування вдосконалених конструкцій ВСП їх аналіз показує, що є низка невирішених питань щодо врахування ефекту швидкості, наявність якого властива для рухомих об'єктів та суттєво впливає на розподіл ГВС в них. З цієї причини теоретичні здобутки попередників не можуть бути використано для оптимального синтезу рухомих ВСП, що забезпечують однорідний розподіл ГВС вздовж всього тіла дефекту.

Наразі спостерігається наявна **суперечність** між необхідністю створення однорідного розподілу ГВС в зоні контролю об'єкта, що призводить до однорідної чутливості перетворювачів до дефектів, та між використанням класичних систем збудження ВСП, яким притаманний неоднорідний розподіл ГВС. Тому актуальною є **науково-прикладна проблема** створення теорії оптимального параметричного синтезу всього класу рухомих вихрострумових перетворювачів з однорідною чутливістю в зоні контролю для забезпечення необхідних умов щодо ідентифікації дефектів порушень суцільності матеріалів й виробів при використанні комп'ютерних систем неруйнівного контроля.

На основі здійсненого аналізу визначені мета та задачі дослідження.

Мета і задачі дослідження. Метою дисертаційної роботи є створення теорії сурогатного оптимального параметричного синтезу всього класу рухомих накладних вихрострумових перетворювачів з однорідною чутливістю до дефектів порушень суцільності матеріалів й виробів щодо забезпечення необхідних умов їх ідентифікації комп'ютерними системами неруйнівного контролю.

Для досягнення поставленої мети в дисертаційній роботі необхідно виконати такі науково-технічні завдання:

1) Створити єдину методологію сурогатного оптимального синтезу всього класу рухомих ВСП із однорідною чутливістю в зоні контролю;

2) Створити багатовимірні нейромережеві метамоделі кругових рухомих накладних ВСП (НВСП) з планарною та об'ємною структурами систем збудження;

3) Створити багатовимірну нейромережеву метамодель рамкового рухомого НВСП з планарною структурою системи збудження;

4) Створити багатовимірну нейромережеву метамодель рамкового рухомого тангенціального НВСП з об'ємною структурою системи збудження;

5) Створити методи оптимального синтезу кругових рухомих НВСП із однорідною чутливістю в зоні контролю з планарною та об'ємною структурами систем збудження;

6) Створити метод оптимального синтезу рамкових рухомих НВСП із однорідною чутливістю в зоні контролю з планарною структурою системи збудження;

 Створити метод оптимального синтезу рамкових рухомих тангенціальних НВСП із однорідною чутливістю в зоні контролю з об'ємною структурою системи збудження.

1.6. Висновки до першого розділу

1. Проведено аналіз науково-технічної інформації в галузі вихрострумового контролю на предмет використання ВСП з ЕМП збудження з апріорі заданими властивостями. Узагальнено та систематизовано досвід наукових досліджень в цьому напрямку, а саме розглянуто роботи, в яких для нерухомих ВСП за

допомогою лінійного або нелінійного синтезу досягається однорідний розподіл ЕМП на поверхні досліджуваного зразка. Проаналізовані конструкції ВСП з однорідним полем збудження, що створюється круговими, рамковими котушками із паралельним та перпендикулярним розташуванням відносно ОК, а також за рахунок застосування обертального поля збудження.

2. Із проведеного аналізу наукових досліджень з проектування ВСП із апріорі заданою конфігурацією ЕМП збудження встановлено, що невирішеним залишається питання синтезу НВСП із врахуванням ефекту швидкості та рівномірним розподілом ГВС в ОК. Такий розподіл забезпечує однорідну чутливість перетворювачів до дефектів суцільності всіх орієнтацій у просторі. Шляхом вирішення даної проблеми є оптимальний синтез СЗ перетворювачів.

3. Сформульовано задачу оптимального проектування ВСП з наперед заданою однорідною характеристикою чутливості як оберненої некоректної нелінійної з математичної точки зору задачі. Проведено огляд та відповідний аналіз математичних методів, що використовуються для розв'язку задач такого класу.

4. Обрано оптимізаційний метод розв'язку нелінійних обернених задач проектування систем збудження ВСП, що забезпечують однорідну чутливість в зоні контролю об'єкта. Із врахуванням математичних особливостей розв'язку задач такого типу обрано стохастичні метаевристичні методи розв'язку задач глобальної оптимізації.

5. Показана доцільність застосування сурогатної оптимізації для розв'язку сформульованих задач з метою зменшення ресурсомісткості оптимізаційних алгоритмів при обчисленнях з використанням складних для розрахунків цільових функцій.

6. Здійснено аналіз методів створення метамоделей і врахування переваг та недоліків притаманних їм, що дає змогу дійти висновку щодо застосування штучних НМ як найбільш доцільного і перспективного методу при розв'язанні багатовимірних апроксимаційних задач з метою побудови сурогатних моделей. Особливо це є актуальним щодо метамоделей для складних гіперповерхонь відгуку, які характеризуються суттєвою нелінійністю та нерегулярною поведінкою,

внаслідок наявності у НМ узагальнювальної здатності, якостей універсальних апроксиматорів, забезпечення достатньо високої точності відтворення вхідних даних, стійкої роботи в умовах зашумлених даних, можливості врахування та об'єднання в єдине рішення декількох нейромереж. Евристичні сурогатні моделі на штучного інтелекту потребують основі не при використанні значних обчислювальних ресурсів та успішно виконують функції моделі-замісника. Для гіперповерхонь відгуку складної топології має сенс застосування технології декомпозиції областей пошуку та технік асоціативних машин. Вибір остаточної архітектури НМ здійснюється тільки після повного циклу навчання різноманітних варіантів їх структур та оцінки адекватності й інформативності отриманих метамоделей за сукупністю статистичних показників.

Список використаних джерел до розділу 1

1. Герасимов В.Г. Неразрушающий контроль качества изделий электромагнитными методами. - М.: Энергия. 1978. - 216 с.

2. Стеблев Ю.И. Синтез возбуждающих полей вихретоковых преобразователей для контроля локально неоднородных изделий и сред // Дефектоскопия. - 1988. - № 5. - С. 47-56.

3. Стеблев Ю.И. Синтез заданных характеристик вихретоковых преобразователей // Дефектоскопия. - 1984. - № 11. - С. 12-20.

4. Стеблев Ю.И. Синтез вихретоковых преобразователей с заданной структурой возбуждающего поля в зоне контроля // Дефектоскопия. - 1986. -№ 4. - С. 58-64.

5. Гальченко В.Я., Павлов О.К., Воробйов М.О. Нелінійний синтез магнітних полів збудження вихрострумових перетворювачів дефектоскопів // Методи і прилади контролю якості. - 2002. - № 8. – С. 3–5.

6. Гальченко В.Я., Воробьев М.А. Структурный синтез накладных вихретоковых преобразователей с заданным распределением зондирующего поля в зоне контроля // Дефектоскопия. - 2005. - № 1. - С. 40–46.

7. Rosado L.S., Gonzalez J.C., Santos T.G., Ramos P.M., Piedade M. Geometric optimization of a differential planar eddy currents probe for non-destructive testing // Sensors and Actuators A: Physical. - 2013. - V. 197. - P. 96-105.

8. Su Z., Efremov A., Safdarnejad M., Tamburrino A., Udpa L., Udpa S. Optimization of coil design for near uniform interrogating field generation// AIP Conference Proceedings. - 2015. - V. 1650. - P. 405–413.

9. Su Z., Ye C., Tamburrino A., Udpa L., Udpa S.Optimization of coil design for eddy current testing of multi-layer structures // International Journal of Applied Electromagnetics and Mechanics. - 2016. – V. 52. - N_{2} 1-2. - P. 315-322.

10. Liu Z., Yao J., He C., Li Z., Liu X., Wu B. Development of a bidirectionalexcitation eddy-current sensor with magnetic shielding: Detection of subsurface defects in stainless steel // IEEE Sensors J. - 2018. - V. 18. - № 15. - P. 6203-6216.

 Repelianto A.S., Kasai N., Sekino K., Matsunaga M. A Uniform Eddy Current Probe with a Double-Excitation Coil for Flaw Detection on Aluminium Plates// Metals. -2019. - № 9. - Article № 1116.

12. Ye C., Udpa L., Udpa S. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection // Sensors. - 2016.
- V. 16. - №. 9. - Article № 1512.

13. Rekanos I.T., Antonopoulos C.S., Tsiboukis T.D. Shape design of cylindrical probe coils for the induction of specified eddy current distributions // IEEE Trans. Magnetics. - 1999. - V. 35. - №. 3. - P. 1797-1800.

14. Repelianto A.S., Kasai N. The improvement of flaw detection by the configuration of uniform eddy current probes // Sensors. - 2019. - V. 19. - \mathbb{N}_2 2. - Article \mathbb{N}_2 397.

15. Ribeiro A.L., Ramos H.G., Postolache O.A simple forward direct problem solver for eddy current non-destructive inspection of aluminum plates using uniform field probes // Measurement. - 2012. - V. 45. - №. 2. - P. 213-217.

16. Ribeiro A.L., Pasadas D., Ramos H.G., Rocha T. Using Excitation Invariance in the Characterization of Defects by Eddy Current Image Constructions // Procedia Engineering. - 2014. - V. 86. - P. 440-451. 17. Postolache O., Ribeiro A.L., Ramos H. Induction defectoscope based on uniform eddy current probe with GMR // Proc. IEEE Instrumentation and Measurement Technology Conf. - 2010. - V. 1. - P. 1278-1283.

18. Postolache O., Ribeiro A.L., Ramos H. Uniform eddy current probe based on GMR sensor array and image processing for NDT // Instrumentation and Measurement Technology Conference (12MTC): 2012 IEEE International. - 2012. - P. 458-463.

 Postolache O., Ribeiro A.L., Ramos H. A novel uniform eddy current probe with GMR for non destructive testing applications // Proc. Conf. on Telecommunications
 ConfTele. – 2011. - V. 1. - P. 5-9.

20. Postolache O., Lopes A., Ramos H.G. GMR array uniform eddy current probe for defect detection in conductive specimens // Measurement. - 2013. - V. 46. - P. 4369–4378.

21. Hoshikawa H., Koyama K. Uniform Eddy Current Probe with Little Disrupting Noise // Review of Progress in Quantitative Nondestructive Testing. - 1998. - V. 17. - P. 1059-1066.

22. Hoshikawa H., Koyama K., Mitsuhashi S. Eddy Current and Magnetic Testing of Magnetic Material by Uniform Eddy Current Probe // Review of Quantitative Nondestructive Evaluation. - 2005. - V. 24. - P. 494-501.

23. Li Y., Ren S., Yan B., Zainal A.I.M., Wang Y. Imaging of Subsurface Corrosion Using Gradient-Field Pulsed Eddy Current Probes with Uniform Field Excitation // Sensors. - 2017. – V. 17. - Article № 1747.

24. Su Z., Rosell A., Udpa L. Model-based study for evaluating the sensitivity of eddy current GMR probe inspection of multilayer structures // AIP Conf. Proc. - 2017. – V. 1806. - № 1. - Article № 110016-1-8.

25. Hashimoto M., Kosaka D., Ooshima K., Nagata Y. Numerical analysis of eddy current testing for tubes using uniform eddy current distribution // Int. J. Appl. Electromagn. Mech. - 2001/2002. - V. 14. - P. 95-99.

26. Janousek J. Effect of exciting system configuration on eddy currents distribution in non-destructive evaluation of materials // Przeglad Elektrotechniczny. - 2013. – V. 89 (3A). - P. 256-258.

27. Janousek L., Chen Z., Yusa N., Miya K.Excitation with phase shifted fieldsenhancing evaluation of deep cracks in eddy-current testing // NDT & E Int. - 2005. - V.
38. - P. 508-515.

28. Ramos H.G., Rocha T., Pasadas D., Ribeiro A.L. Determination of linear defect depths from eddy currents disturbances // Proc. 40th Annu. Rev. Progr. Quant. Nondestruct. Eval. AIP Conf. - 2014. - P. 1448-1455.

29. Chen G., Zhang W., Pang W. Koch Curve Fractal Geometry Excitation Probe for Eddy Current Non-Destructive Testing // Measurement. - 2018. - V. 124. -P. 470–478.

30. Koyama K., Hoshikawa H., Mito Y. Surface Flaw Testing of Weld Zone by Uniform Eddy Current Probe // J. Jpn. Soc. Non-Destruct. Insp. - 2006. – V. 60. - P. 275–282.

31. Huang L., Zou J., Zhang J., Zhou Y., Deng F. A novel rectangular vertical probe with a conductive shell for eddy current testing // Int. J. of Applied Electromagnetics and Mechanics, vol. 62, no. 1, pp. 191-205, 2019.

32. Halchenko V.Ya., Trembovetskaya R.V., Tychkov V.V. Surface eddy current probes: excitation systems of the optimal electromagnetic field (review) // Devices and Methods of Measurements. 2020. № 1 (11). P. 42-52.

33. Gal'chenko V.Ya., Vorob'ev M.A. Structural synthesis of attachable eddycurrent probes with a given distribution of the probing field in the test zone // Russian Journal of Nondestructive Testing. 2005. № 1 (41). P. 29–33.

34. Норенков И.П. Основы автоматического проектирования. Москва: Издво МГТУ им. Баумана, 2002. 336 с.

35. Норенков И.П. Автоматизированное проектирование. Учебник. Серия: Информатика в техническом университете. Москва: Изд-во МГТУ им. Н.Э. Баумана, 2000. 188 с.

36. Ли К. Основы САПР (CAD/CAV/CAE). Санкт-Петербург: Питер, 2006. 580 с.

37. Корячко В.П., Курейгин В.М., Норенков И.П. Теоретические основы САПР. Москва: Энергоатомиздат, 1987. 400 с.

38. Андронов С.А. Методы оптимального проектирования. Санкт-Петербург: СПбГУАП, 2001. 168 с.

39. Аветисян Д.А. Автоматизация проектирования электротехнических систем и устройств. Москва: Высшая школа, 2005. 511 с.

40. Свирщева Э.А. Структурный синтез неизоморфных систем с однородными компонентами. Харьков: ХТУРЕ, 1998. 256 с.

41. Черноруцкий И.Г. Оптимальный параметрический синтез. Ленинград: Энергоатомиздат, 1987. 128 с.

42. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. Москва: Наука, 1986. 288 с.

43. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. Москва: Наука. 1990. 230 с.

44. Охріменко М.Г., Фартушний І.Д., Кулик А.Б. Некоректно поставлені задачі та методи їх розв'язування. Київ: НТУУ «КПІ», 2014. 228 с.

45. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сибирское научное издательство, 2008. 457 с.

46. Ягола А.Г., Степанова И.Э., Титаренко В.Н. Обратные задачи и методы их решения. Приложения к геофизике. Москва: БИНОМ. Лаб. знаний, 2014. 216 с.

47. Петров Ю.П., Сизиков В.С. Корректные, некорректные и промежуточные задачи с приложениями. Санкт-Петербург: Политехника, 2003. 261 с.

48. Васин В.В., Агеев А.Л. Некорректные задачи с априорной информацией. Екатеринбург: Наука, 1993. 263 с.

49. Сумин М.И. Некорректные задачи и методы их решения. Нижний Новгород: НГУ, 2009. 288 с.

Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи.
 М.: Наука, 1995. 312 с.

51. Qi-Nian J., Zong-Yi H. On the choice of the regularization parameter for ordinary and iterated Tikhonov regularization of nonlinear ill-posed problems // Inverse Problems. 1997. № 13. P. 815–827.

52. Танана В.П., Боков А.В. Регуляризация нелинейных операторных уравнений // Известия Челябинского научного центра. 2003. № 1 (18). С. 6-8.

53. Liu F., Nashed M.Z. Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales // Journal of Inverse and Ill-posed Problems. 1997. N_{2} 4 (5). P. 363-376.

54. Алифанов О.М., Артюхин Е.А., Румянцев С.В. Экстремальные методы решения некорректных задач. Москва: Наука, 1988. 287 с.

55. Бакушинский А.Б., Гончарский А.В. Некорректные задачи. Численные методы и приложения. Москва: МГУ, 1989. 1999 с.

56. Engl H.W., Hanke M., Neubaue A. Regularization of Inverse Problems. Kluwer, 1996. 319 p.

57. Kaltenbacher B., Neubauer A., Schertzer O. Iterative Regularization Methods for Nonlinear Ill-posed Problems. Walter de Gruyter & Co, 2008. 202 p.

58. Kaipio J., Somersalo E. Statistical and Computational Inverse Problems. New York: Springer Verlag. 2004. 340 p.

59. Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. Москва: ЛКИ, 2009. 480 с.

60. Жданов М.С. Теория обратных задач и регуляризации в геофизике. Москва: Научный мир, 2007. 712 с.

61. Гальченко В.Я., Якимов А.Н. Популяционные метаэвристические алгоритмы оптимизации роем частиц: Учебное пособие. Черкассы: ФЛП Третяков А.Н., 2015. 160 с.

62. Скобцов Ю.А., Федоров Е.Е. Метаэвристики: монография. Донецк: Ноулидж, 2013. 426 с.

63. Jiang P., Zhou Q., Shao X. Surrogate Model-Based Engineering Design and Optimization. Springer (Springer Tracts in Mechanical Engineering), 2020. 240 p.

64. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Оптимальне проектування вихрострумових перетворювачів та аналіз методів розв'язку нелінійних обернених задач // Прикладні питання математичного моделювання. – 2020. – Т. 3. – № 2.2. – С. 93-104.

65. Forrester A.I.J., Sóbester A., Keane A.J., Engineering design via surrogate modelling: a practical guide. Chichester: Wiley. 2008.

66. Бурнаев Е.В., Приходько П.В. Методология построения суррогатных моделей для аппроксимации пространственно неоднородных функций // Труды МФТИ, т. 5, № 4, с. 122-132. 2013.

67. Глебов А.О., Карпов С.В., Карпушкин С.В. Методика оптимизации режимных и конструктивных характеристик нагревательной плиты вулканизационного пресса // Вестн. Тамб. гос. Техн, т. 19, № 1, с. 137-151. 2013.

68. Чубань М.А. Аппроксимация поверхности отклика для использования в процессе параметрического синтеза машиностроительных конструкций // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Транспортное машиностроение. – Харьков : НТУ "ХПИ", т. 43, № 1152, с. 161-164. 2015.

69. Бурнаев Е.В., Ерофеев П., Зайцев А., Кононенко Д., Капушев Е. Суррогатное моделирование и оптимизация профиля крыла самолета на основе гауссовских процессов [Электронный ресурс]. URL: <u>http://itas2012.iitp.ru/pdf/1569602325.pdf</u>. Дата обращения: Ноябрь 04, 2015.

70. Garifullin M.R., Barabash A.V., Naumova E.A., Zhuvak O.V., Jokinen T., Heinisuo M. Surrogate modeling for initial rotational stiffness of welded tubular joints // Magazine of Civil Engineering, no. 3, pp. 53–76. 2016. <u>https://DOI:10.5862/MCE.63.4</u>.

71. Koziel S., Echeverrı'a-Ciaurri D., Leifsson L. Surrogate-based methods, in Computational Optimization Methods and Algorithms. Berlin: Springer-Verlag, 2011, pp. 33-59.

72. Радченко С.Г. Анализ методов моделирования сложных систем // Математичні машини і системи, № 4, с. 123–127. 2015.

73. Friedman J. Multivariate adaptive regression splines (with discussion) // Annals of Statistics, no. 19, pp. 1–141. 1991.

74. Целых В.Р. Многомерные адаптивные регрессионные сплайны // Машинное обучение и анализ данных, т. 3, № 1, с. 272-278. 2012.

75. Беляев М.Г. Аппроксимация многомерных зависимостей по структурированным выборкам // Искусственный интеллект и принятие решений. № 3. с. 24-39. 2013.

76. David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press. 2003.

77. Bilicz S., Lambert M., Gyimothy S., Pavo J. Solution of inverse problems in nondestructive testing by a kriging-based surrogate model // IEEE Transactions on Magnetics. vol. 48, no. 2. 2012.

78. Бурнаев Е.В., Панов М., Кононенко Д., Коноваленко И. Сравнительный анализ процедур оптимизации на основе гауссовских процессов». [Электронный pecypc]. URL: <u>http://itas2012.iitp.ru/pdf/1569602385.pdf</u>. Дата обращения: Ноябрь 04, 2015.

79. Бурнаев Е.В., Панов М.Е., Зайцев А.А. Регрессия на основе нестационарных гауссовских процессов с байесовской регуляризацией // Информационные процессы. т. 15, № 3, с. 298–313. 2015.

80. Бурнаев Е.В., Ерофеев П.Д., Приходько П.В. Выделение главных направлений в задаче аппроксимации на основе гауссовских процессов // Труды МФТИ. т. 5, № 3, с. 24-35. 2013.

81. Fang H., Horstemeyer M.F. Global response approximation with radial basis functions // Engineering optimization. vol. 38, no. 4, pp. 407–424. 2006.

82. Marchi S.De, Perracchiono E., Lectures on Radial Basis Functions. Preprint. 2018.

83. Хайкин Саймон. Нейронные сети: полный курс. (2-е изд.) Москва: Издательский дом «Вильямс». 2006.

84. Афонин П.В. Система оптимизации на основе имитационного моделирования, генетического алгоритма и нейросетевых метамоделей // Межд. конф. Knowledge-Dialogue-Solutions, Varna, 2007, с. 60-63.

85. Афонин П.В. Оптимизация моделей сложных систем на основе метаэвристических алгоритмов и нейронных сетей // Инженерный вестник: электронный научно-технический журнал. т. 11. с. 508–516. 2016.

86. Géron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media. 2019.

87. Duffy N., Helmbold D.P. Boosting Methods for Regression // Machine Learning. vol. 47, pp. 153–200. 2002.

88. Боровиков В.П. Нейронные сети. STATISTICA Neural Networks: Методология и технологии современного анализа данных. М.: Горячая Линия – Телеком. 2008.

89. Beyer W., Liebscher M., Beer M. Neural Network Based Response Surface. Methods – a Comparative Study. LS-DYNA Anwenderforum: Ulm. 2006.

90. Ковалевский С.В., Гитис В Б., Аппроксимация функций с помощью каскадных нейроподобных сетей // Штучний інтелект. № 4. с. 589-593. 2008.

91. Бринк Х., Ричардс Дж., Феверолф М. Машинное обучение. Спб.: Питер. 2017.

92. Ивахненко А.Г. Индуктивный метод самоорганизации моделей сложных систем. Киев: Наук. Думка. 1982.

93. Ivakhnenko A.G., Ivakhnenko G.A. The Review of Problems Solvable by Algorithms of the Group Method of Data Handling (GMDH) // International Journal of Pattern Recognition and Image Analysis: Advanced in Mathematical Theory and Application. vol. 5, no. 4, pp. 527–535. 1995.

94. GMDH - General description of the GMDH. Retrieved from <u>http://www.gmdh.net/GMDH_abo.htm</u>. 2014.

95. GMDH - Spectrum of the GMDH algorithms. Retrieved from <u>http://www.gmdh.net/GMDH_alg.htm</u>. 2014.

96. Parrella F. Online support vector regression // Thesis Inf. Sci, Dept. of Inf. Sci. Univ. of Genoa, Italy, 2007.

97. Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В. Методи створення метамоделей: стан питання // Вісник Вінницького політехнічного інституту. - 2020. – Т. 151. - № 4. - С. 74 – 88.

РОЗДІЛ 2. СТВОРЕННЯ МЕТОДОЛОГІЇ СУРОГАТНОГО ОПТИМАЛЬНОГО ПАРАМЕТРИЧНОГО СИНТЕЗУ РУХОМИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ З ОДНОРІДНОЮ ЧУТЛИВІСТЮ В ЗОНІ КОНТРОЛЮ

2.1. Постановка проблеми оптимального синтезу рухомих вихрострумових перетворювачів із просторово-інваріантними полями збудження

Моделювання процесів контролю вихрострумовим методом представлено на узагальненій схемі рис.2.1. Область V_I асоціюють з ОК, який є струмопровідним, однорідним, ізотропним середовищем. ОК є нескінченної ширини, довжини та має кінцеву товщину *d*. Його швидкість $\vec{v} = (v_x, v_y, 0)$ переміщення є сталою відносно ВСП. ОК має електрофізичні параметри σ та μ_r .

Рисунок 2.1 - Постановка проблеми синтезу НВСП

Область V_2 – немагнітне, непровідне середовище із магнітною проникністю вакууму μ_0 , тобто це повітряний простір, в якому розміщується ВСП.

Не втрачаючи загалу, для визначеності надалі розглядатимемо накладні ВСП, хоча всі ті ж самі тенденції є актуальними і для інших типів ВСП, зокрема

прохідних. Область V_3 асоціюють з накладним трансформаторним ВСП, який в свою чергу включає до складу СЗ та вимірювальну котушку (ВК). СЗ є джерелом електромагнітного поля із заданим змінним струмом збудження I круговою частотою ω та густиною струму \vec{J}_{cm} . Вона може бути утворена витками зі струмом довільної форми. Частіше за все застосовують витки кругової та прямокутної форми, тобто рамкові СЗ.

Задача опису взаємодії ЕМП із ОК формулюється для квазістаціонарного ЕМП, оскільки розглядуваний діапазон частот вихрострумової дефектоскопії та невеликі габаритні розміри досліджуваних виробів дозволяють знехтувати магнітним полем струмів зміщення всередині об'єктів та в навколишньому просторі.

ВК ВСП розташована над зоною контролю в безпосередній близькості до ОК та може бути використана для реєстрації значень ЕРС, що індукована результуючим електромагнітним полем, створеним в результаті взаємодії поля збудження та інформаційного поля вихрових струмів *J*.

Для впевненого виявлення дефектів і визначення їх геометричних параметрів засобами вихрострумової дефектоскопії важливо забезпечити в зоні контролю просторово-інваріантне поле збудження, а у випадку рухомого перетворювача однорідний розподіл ГВС (рис.2.2 а, графік 1). Такий розподіл забезпечує однорідну чутливість до дефектів суцільності та локальної структури всіх орієнтацій у просторі незалежно від відносного їх розташування до вимірювальної котушки перетворювача.

Важливо також досягнути однорідної чутливості ВСП, які не тільки нерухомі відносно ОК чи переміщуються з невеликою швидкістю, коли ефектом виникнення струмів перенесення можна знехтувати, але й для рухомих перетворювачів.

Класичним ВСП властивий характерний нерівномірний розподіл ГВС в ОК, який залежить від геометричних, електромагнітних параметрів та взаємного розташування його СЗ відносно контрольованої поверхні. В ВСП ГВС максимальна в поверхневому шарі струмопровідного об'єкта та зменшується при віддаленні від витків котушки збудження вздовж поверхні (рис. 2.2 а, графік 2) і в глибших шарах за експоненціальним законом. Цей недолік ще більше проявляється, коли ОК і перетворювач рухаються один відносно іншого, оскільки в такому випадку додатковий вплив вносить струм перенесення.

Рисунок 2.2 - Особливості ВСП: а) 1 рівномірний розподіл ГВС; 2 розподіл ГВС, притаманний класичним конструкціям перетворювачів;
б) неоднорідний розподіл ГВС; в) однорідний розподіл ГВС

Тобто якість виявлення дефектів вихрострумовим методом при такому неоднорідному розподілі ГВС (рис. 2.2 а) залежить від розташування збуджувальної котушки відносно ОК і суттєво впливає на чутливість методу. Для ефективного розв'язку задач дефектометрії такою ідеальною характеристикою є рівномірна в зоні контролю та нульова за її границями (рис.2.2, графік 1). Саме вона забезпечує інваріантний сигнал перетворювача на дефект, як би він не розташовувався в зоні контролю, що не створює додаткових перешкод для його ідентифікації та є необхідною умовою її проведення.

Намагання реалізації близького до ідеального розподілу ГВС призвело до появи розмаїття конструкцій ВСП з більш досконалими СЗ, детальний аналіз яких розглянуто в розділі 1. Де узагальнено та систематизовано накопичений досвід, а також результати теоретичних досліджень, присвячені проблемі проектування ВСП з рівномірною чутливістю в зоні контролю, обумовленої однорідним розподілом густини індукованих струмів, що протікають в об'єкті.
Забезпечення цієї умови значно покращує можливості визначення форми дефектів при контролі об'єктів, їх допустимих геометричних розмірів, наявних локальних структурних відхилень матеріалу. Сучасні підходи реалізації апріорі заданих характеристик перетворювачів передбачають використання процедур оптимального синтезу їх конструкцій, зокрема СЗ [1, 2], на етапі проектування.

Зазвичай при проектуванні виконується структурний та параметричний синтез конструкції об'єкта [3-9]. Внаслідок суттєвих проблем з формалізацією структурний синтез реалізувати значно складніше, тому в конструкторській практиці частіше застосовується процедура параметричного синтезу [10, 7]. Зазначимо, що під структурним синтезом будемо розуміти визначення переліку різнотипних в загальному випадку компонентів (секцій котушки), які є складовими об'єкту (СЗ перетворювача) та забезпечують найкраще їх поєднання, а також схему взаємодії між ними (узгоджене або зустрічне включення за полем), виходячи із природи фізичного зв'язку [3, 4]. Оптимальний параметричний синтез полягає в визначенні найкращих значень параметрів для вибраної на попередньому етапі структури системи збудження перетворювача із врахуванням усіх вимог до неї, зокрема щодо забезпечення заданого розподілу ГВС в ОК [5, 6].

Система збудження ВСП уявляє собою сукупність окремих секцій котушки, включених послідовно-узгоджено або послідовно-зустрічно «за полем» та розмішених в однієї площині (планарна структура), в просторі (об'ємна структура) чи в гібридному змішаному варіанті (гібридна структура) (рис.2.3) [11].

Систему котушок із різноманітним розташуванням котушок відносно ОК та відповідною схемою живлення надалі будемо називати структурою збудження.

Серед можливих конструкцій СЗ виділяють гомогенні та гетерогенні структури збудження ВСП (рис.2.3). Гомогенні структури містять систему тільки кругових витків із радіусами r_i (рис.2.3 а), або тільки систему витків у вигляді рамок розмірами $a \ x \ b$ із різним розташуванням відносно ОК (рис.2.3 б, в). Наприклад, рамка розташована паралельно до ОК (рис.2.3 б) або перпендикулярно (рис.2.3 г). Тоді як гетерогенні структури складаються із різних типів витків, як кругових, так і рамкових та різноманітного їх розташування один відносно іншого (рис.2.3 г).

Рисунок 2.3 – Гомогенні та гетерогенні конструкції СЗ ВСП: а) гомогенні структури СЗ із кругових витків; б), в) гомогенні структури СЗ із витків у вигляді рамок; г) гетерогенна структура СЗ

Тобто існує розмаїття варіантів структур СЗ, причому інтуїтивно не можна віддати перевагу ні одній із них. Кожен варіант СЗ потребує ретельного дослідження з точки зору можливості забезпечення апріорі заданого однорідного розподілу ГВС в зоні контролю об'єкта.

Застосуванням гомогенних та гетерогенних структур збудження із відповідною схемою включення досягається зменшення неоднорідності розподілу ГВС та збільшення чутливості вихрострумового методу контролю. У результаті ці структури генерують максимально наближений до ідеального однорідний розподіл ГВС в ОК.

Для розв'язку таких обернених задач електродинаміки в загальному випадку необхідно мати «точну» математичну модель для розрахунку ГВС в залежності від електрофізичних параметрів об'єкту, частоти струму збудження, геометрії ОК та перетворювача [11, 12]. Тоді задача синтезу може бути зведена до оптимізаційної, розв'язком якої є параметри СЗ перетворювача, що забезпечують апріорі заданий розподіл ГВС в зоні контролю. Отже, технічні та електричні характеристики системи збудження, а відповідно її секцій, отримуються в результаті розв'язку оберненої задачі електродинаміки відносно цих параметрів, вхідними даними для якої є бажаний, апріорі заданий, розподіл вихрових струмів в об'єкті, що забезпечує однорідну, тобто рівномірну, чутливість перетворювачів в зоні контролю.

Застосування технології сурогатної оптимізації дозволяє розв'язувати задачі оптимального синтезу з використанням метамоделей ВСП, які характеризуються високою обчислювальною продуктивністю [13-19]. Тому створення апроксимаційних моделей (метамоделей) ВСП (рис.2.3), що з прийнятною точністю відтворюють багатовимірні в загальному випадку поверхні відгуку, є дуже важливим етапом методу сурогатної оптимізації, який визначає в кінцевому результаті успішність синтезу апріорі заданого однорідного розподілу ГВС в зоні контролю об'єкта [19-22, 11].

Отже, необхідно створити теоретичні засади єдиної методології та на її основі низки методів, які дозволяють здійснювати сурогатний оптимальний синтез всього класу рухомих ВСП із однорідною чутливістю в зоні контролю, що забезпечується однорідним розподілом ГВС в ОК.

2.2. Розв'язок прямої електродинамічної задачі щодо взаємодії електромагнітного поля збудження з об'єктом контролю з урахуванням ефекту швидкості

Загальна теоретична модель, яка описує процес взаємодії ЕМП із електропровідними об'єктами контролю, будується на основоположних диференціальних рівняннях Максвела.

Рисунок 2.4 - Геометрична модель ВСП, що представлений рухомим витком C3

Математична модель C3 із одинарного витка ВСП, розроблена дослідниками і наведена в роботах [23-29], дозволяє визначити розподіл ГВС в ОК за наступних припущень:

- середовище є лінійним, однорідним, ізотропним;

– ОК є рухомим, струмопровідним, нескінченної площі та має кінцеву товщину *d*;

- виток збуджується змінним струмом *I* круговою частотою ω;

– провідник джерела збудження є нескінченно тонким;

– електрична провідність σ , відносна магнітна проникність μ_r і вектор швидкості руху $\vec{\upsilon} = (\upsilon_x, \upsilon_y, 0)$ є сталими; - ЕМП є квазістаціонарним, тобто струмом зміщення нехтують у порівнянні із струмом провідності внаслідок значно меншої швидкості сканування в порівнянні зі швидкістю світла.

Розв'язок диференціальних рівнянь знаходиться при зазначених припущеннях та граничних умовах: тангенціальні складові *H* і нормальні складові *B* на границях розділу середовищ 1 (повітря) і 2 (середовище ОК) неперервні:

$$H_{1t} = H_{2t}, \ B_{1n} = B_{2n}.$$

Тоді для квазістаціонарного спрощення представлення ЕМП рівняння Максвела, що доповнені умовою неперервності струму, мають вигляд [30, 31]:

$$\nabla \times \vec{H} = \vec{J},$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

$$\nabla \cdot \vec{B} = 0,$$

$$\nabla \cdot \vec{J} = 0.$$
(2.1)

Із врахуванням матеріальних рівнянь:

$$\vec{\mathbf{B}} = \boldsymbol{\mu}_r \cdot \boldsymbol{\mu}_0 \cdot \vec{\mathbf{H}}, \ \vec{\mathbf{D}} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\varepsilon}_0 \cdot \vec{\mathbf{E}},$$

де ∇ - диференціальний оператор набла $\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k};$

- \vec{H} вектор напруженості магнітного поля;
- \vec{J} вектор густини струму;
- \vec{B} вектор індукції магнітного поля;
- $ec{D}$ вектор електричної індукції;
- \vec{E} вектор електричної напруженості поля;
- µ_r відносна магнітна проникливість середовища;

$$\mu_0 = 4 \cdot \pi \cdot 10^{-7} \frac{\Gamma_H}{M}$$
 – магнітна постійна у вакуумі;

ε - відносна електрична проникливість;

$$\varepsilon_0 = \frac{1}{36 \cdot \pi} \cdot 10^{-9} \frac{\Phi}{M}$$
 - електрична постійна у вакуумі.

Густина повного струму містить лише струм провідності і струм перенесення:

$$\vec{J} = \vec{J}_{npobidhocmi} + \vec{J}_{nepenecenng}, \qquad (2.2)$$

$$\vec{J}_{nposi\partial + ocmi} = \boldsymbol{\sigma} \cdot \vec{E}, \qquad (2.3)$$

$$\vec{J}_{nepehecehhs} = \sigma \cdot \left[\vec{\upsilon} \times \vec{B} \right].$$
(2.4)

Математична модель побудована для декількох розрахункових областей, в кожній з яких визначалися комплексні значення магнітної індукції [23-29]:

• в області (1) 0 < *z* < *z*₀

$$\vec{B}_{1} = \vec{B}_{i} + \vec{B}_{r},$$

$$\vec{B}_{i} = \nabla \times \vec{A}_{i}, \quad \vec{A}_{i} = \frac{\mu_{0}}{4\pi} \int_{l} \frac{\vec{J}_{cm.} dl}{R},$$

$$\nabla^{2} \vec{B}_{r} = 0, \quad \nabla \times \vec{B}_{r} = 0.$$
(2.5)

де \vec{B}_i - власне магнітне поле витка довжиною *l* та густиною струму $\vec{J}_{cm.}$; \vec{B}_r - магнітне поле вихрових струмів, наведених в середовищі ОК;

- *A*_{*i*} векторний потенціал;
- *R* відстань від джерела струму;
- в області (2) –*d* < *z* < 0

$$\nabla^{2}\vec{B}_{2} - \sigma \cdot \mu_{r} \cdot \mu_{0} \cdot \left(v_{x} \cdot \frac{\partial \vec{B}_{2}}{\partial x} + v_{y} \cdot \frac{\partial \vec{B}_{2}}{\partial y} \right) - j \cdot \omega \cdot \sigma \cdot \mu_{r} \cdot \mu_{0} \cdot \vec{B}_{2} = 0, \qquad (2.6)$$
$$\nabla \cdot \vec{B}_{2} = 0.$$

• в області (3) *z* < -*d*

$$\nabla^2 \vec{B}_3 = 0, \ \nabla \times \vec{B}_3 = 0. \tag{2.7}$$

Для розв'язку диференціальних рівнянь в частинних похідних в декартовій системі координат застосовано метод інтегральних перетворень Фур'є, а саме пряме подвійне перетворення:

$$b(\xi,\eta,z) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} B(x,y,z) \cdot e^{j(x\xi+y\eta)} dxdy, \qquad (2.8)$$

тим самим тимчасово із рівняння виключаються незалежні змінні *x* та *y*. В результаті отримано звичайне диференціальне рівняння для зображення [23-29]:

$$\frac{\partial^2 \vec{b}}{\partial z^2} - \left(\xi^2 + \eta^2 - j \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\mu} \cdot \boldsymbol{\upsilon}_x \cdot \xi - j \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\mu} \cdot \boldsymbol{\upsilon}_y \cdot \boldsymbol{\eta} + j \cdot \boldsymbol{\omega} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\mu}\right) \cdot \vec{b} = 0.$$
(2.9)

Розв'язок вищевказаного рівняння через x, y і z складові магнітного потоку \vec{b} в ОК представлені, як:

$$b_{x} = C_{x} \cdot e^{\gamma \cdot z} + D_{x} \cdot e^{-\gamma \cdot z}; \qquad (2.10)$$

$$b_{y} = C_{y} \cdot e^{\gamma \cdot z} + D_{y} \cdot e^{-\gamma \cdot z}; \qquad (2.11)$$

$$b_{z} = C_{z} \cdot e^{\gamma \cdot z} + D_{z} \cdot e^{-\gamma \cdot z}; \qquad (2.12)$$

де
$$\gamma = \sqrt{\xi^2 + \eta^2 - j \cdot \sigma \cdot \mu_0 \cdot \mu_r \cdot (\upsilon_x \cdot \xi + \upsilon_y \cdot \eta) + j \cdot \omega \cdot \sigma \cdot \mu_0 \cdot \mu_r}$$
.

Коефіцієнти $C_x, C_y, C_z, D_x, D_y, D_z$ в рівняннях (2.10)-(2-12) отримані наступним

чином:

$$C_{x} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left(-\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right) \cdot C_{ix}; \qquad (2.13)$$

$$C_{y} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left(-\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right) \cdot C_{iy}; \qquad (2.14)$$

$$C_{z} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left(-\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right) \cdot \frac{\sqrt{\xi^{2} + \eta^{2}}}{\gamma} \cdot C_{iz}; \qquad (2.15)$$

$$D_{x} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left(1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d}\right) \cdot C_{ix}; \qquad (2.16)$$

$$D_{y} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left(1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d}\right) \cdot C_{iy}; \qquad (2.17)$$

$$D_{z} = -\frac{\mu_{r}}{1 - e^{2\cdot\gamma \cdot d}} \cdot \left(1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d}\right) \cdot \frac{\sqrt{\xi^{2} + \eta^{2}}}{\gamma} \cdot C_{iz}.$$
 (2.18)

Коефіцієнти C_{ix}, C_{iy}, C_{iz} визначаються геометрією котушки.

Коли котушка довільної форми, що розташована на висоті $z = z_0$ і збуджується струмом *I*, то компоненти густини магнітного потоку $\vec{b}_i(\xi, \eta, z)$ при -d < z < 0 описуються, як [23-29]:

$$b_{ix} = \frac{\mu_0 \cdot I \cdot \xi}{2 \cdot \eta} \cdot e^{(z - z_0) \cdot \sqrt{\xi^2 + \eta^2}} \cdot \sum_{i=1}^n \int_{x_{i-1}}^{x_i} e^{j \cdot \left\{x \cdot \xi + f_i(x) \cdot \eta\right\}} dx = C_{ix} \cdot e^{z \cdot \sqrt{\xi^2 + \eta^2}}; \quad (2.19)$$

$$b_{iy} = \frac{\mu_0 \cdot I}{2} \cdot e^{\left(z - z_0\right) \cdot \sqrt{\xi^2 + \eta^2}} \cdot \sum_{i=1}^n \int_{x_{i-1}}^{x_i} e^{j \cdot \left\{x \cdot \xi + f_i(x) \cdot \eta\right\}} dx = C_{iy} \cdot e^{z \cdot \sqrt{\xi^2 + \eta^2}} ; \qquad (2.20)$$

$$b_{iz} = j \cdot \frac{\mu_0 \cdot I \cdot \sqrt{\xi^2 + \eta^2}}{2 \cdot \eta} \cdot e^{\left(z - z_0\right) \cdot \sqrt{\xi^{2 \cdot \eta} + \eta^2}} \cdot \sum_{i=1}^n \int_{x_{i-1}}^{x_i} e^{j \cdot \left\{x \cdot \xi + f_i(x) \cdot \eta\right\}} dx = C_{iz} \cdot e^{z \cdot \sqrt{\xi^2 + \eta^2}}, \quad (2.21)$$

де C_{ix} , C_{iy} , C_{iz} – коефіцієнти, що враховують функцію форми перетворювача;

$$C_{ix} = \frac{\mu_0 \cdot I \cdot \xi}{2 \cdot \eta} \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S(\xi, \eta); \qquad (2.22)$$

$$C_{iy} = \frac{\mu_0 \cdot I}{2} \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S(\xi, \eta);$$
(2.23)

$$C_{iz} = j \cdot \frac{\mu_0 \cdot I \cdot \sqrt{\xi^2 + \eta^2}}{2 \cdot \eta} \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S(\xi, \eta).$$
(2.24)

Тоді компоненти густини магнітного потоку (2.10)-(2.12) із врахуванням виразів (2.13)-(2.18) описується виразами [23-29]:

$$b_{x} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \left[\left\{ -\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} + \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot C_{ix};$$

$$b_{y} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left[\left\{ -\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} + \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot C_{iy};$$

$$(2.26)$$

$$b_{z} = \frac{\mu_{r}}{1 - e^{2 \cdot \gamma \cdot d}} \cdot \left[\left\{ -\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot C_{iz};$$

$$(2.27)$$

де $S(\xi,\eta)$ – функція форми котушки;

$$\begin{split} S(\xi,\eta) &= -j \cdot \frac{2 \cdot \pi \cdot a \cdot \eta}{\sqrt{\xi^2 + \eta^2}} \cdot J_1 \left(a \cdot \sqrt{\xi^2 + \eta^2} \right) - \text{для рис. 2.5 } a; \\ S(\xi,\eta) &= -j \cdot \frac{4}{\xi} \cdot \sin(a \cdot \xi) \cdot \sin(b \cdot \eta) - \text{для рис. 2.5 } b; \\ S(\xi,\eta) &= -\frac{2 \cdot \xi \cdot e^{j \cdot x_0 \cdot \xi} \cdot \sin(b \cdot \eta)}{\left(\xi^2 + \eta^2\right)} \cdot \left(e^{a \cdot \sqrt{\xi^2 + \eta^2}} - e^{-a \cdot \sqrt{\xi^2 + \eta^2}} \right) - \text{для рис. 2.5 } b; \\ \lambda_0 &= \frac{\left\{ \gamma^2 - \mu_r^2 \cdot \left(\xi^2 + \eta^2\right) \right\} \cdot \left(1 - e^{-2 \cdot \gamma \cdot d}\right)}{\left(\gamma + \mu_r \cdot \sqrt{\xi^2 + \eta^2}\right)^2 - \left(\gamma - \mu_r \cdot \sqrt{\xi^2 + \eta^2}\right)^2 \cdot e^{-2 \cdot \gamma \cdot d}}; \\ \nu_0 &= \frac{4 \cdot \mu_r \cdot \gamma \cdot \sqrt{\xi^2 + \eta^2} \cdot e^{\left(\sqrt{\xi^2 + \eta^2} - \gamma\right)d}}{\left(\gamma + \mu_r \cdot \sqrt{\xi^2 + \eta^2}\right)^2 - \left(\gamma - \mu_r \cdot \sqrt{\xi^2 + \eta^2}\right)^2 \cdot e^{-2 \cdot \gamma \cdot d}}; \end{split}$$

 ξ , η – змінні інтегрування.

Рисунок 2.5 - Геометрична модель котушки збудження ВСП: a) – виток кругової форми; б) – виток прямокутної форми (рамковий); в) – виток прямокутної форми (рамковий тангенціальний) До знайдених зображень (2.25)-(2.27) застосовується зворотне подвійне перетворення Фур'є:

$$B(x, y, z) = \frac{1}{4 \cdot \pi^2} \int_{-\infty - \infty}^{\infty} \int_{-\infty - \infty}^{\infty} b(\xi, \eta, z) \cdot e^{-j(x\xi + y\eta)} d\xi d\eta.$$
(2.28)

Розв'язком диференціального рівняння (2.9) є складові магнітної індукції B_x , B_y , B_z за просторовими координатами [23-29]. Тоді складові густини струму за просторовими координатами x, y і z відповідно визначаються за формулами:

$$J_{x} = \frac{1}{\mu_{0} \cdot \mu_{r}} \cdot \left[\frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z} \right]; \qquad (2.29)$$

$$\boldsymbol{I}_{y} = \frac{1}{\mu_{0} \cdot \mu_{r}} \cdot \left[\frac{\partial \boldsymbol{B}_{x}}{\partial z} - \frac{\partial \boldsymbol{B}_{z}}{\partial x} \right];$$
(2.30)

$$J_{z} = \frac{1}{\mu_{0} \cdot \mu_{r}} \cdot \left[\frac{\partial B_{y}}{\partial x} - \frac{\partial B_{x}}{\partial y} \right].$$
(2.31)

Аналітичні залежності розподілу ГВС (2.29)-(2.31) містять невласні кратні інтеграли І-го роду, складні для обчислень функції форми котушки, які включають в себе спеціальні функції Бесселя І-го роду І-го порядку, що впливає на ресурсомісткість їх розрахунку [23-29, 11, 13]. В дослідженні [12] показано значні витрати часу навіть для однократних обчислень значень розподілу ГВС за цими залежностями, що свідчить про неможливість безпосереднього їх використання в задачах оптимального синтезу.

«Точна» електродинамічна модель ВСП в загальному вигляді може бути представлена сукупністю будь-яких математичних виразів, що є характерними для різноманітних типів ВСП, отриманих в тому числі і в результаті чисельних методів розрахунків. Тобто вона може бути будь-якої складності та повинна адекватно зображати процеси взаємодії СЗ ВСП із ОК.

2.3. Побудова метамоделей рухомих вихрострумових перетворювачів для задач оптимального сурогатного синтезу їх систем збудження з забезпеченням однорідного розподілу густини вихрових струмів в об'єкті контролю

2.3.1. Створення методу побудови багатовимірних однорідних комп'ютерних планів експерименту з високими показниками гомогенності для використання в задачах апроксимації гіперповерхонь відгуку

Однорідні комп'ютерні плани експерименту (КПЕ) [32], під якими будемо розуміти числові техніки отримання кінцевих послідовностей точок, що рівномірно заповнюють одиничний гіперкуб довільною кількістю своїх перших елементів (space-filling designs), характеризуються значними прикладними можливостями. Загальнотеоретичне значення цієї задачі підтверджується поширенням її області використання на такі напрямки як: стохастична глобальна оптимізація [33], сурогатна оптимізація [34], апроксимація множини Парето при багатокритеріальній оптимізації [35], моделювання методом квазіМонте-Карло [36], криптографія, деякі додатки комп'ютерної графіки тощо.

Не дивлячись на значну увагу дослідників до планування експериментів, не всі теоретичні питання щодо їх створення вирішені. Особливо великі труднощі виникають при створенні багатовимірних планів, що є, безумовно, актуальним.

Надалі без втрати загалу зосередимося на додатках до задач оптимізації, в яких точка в просторі пошуку асоціюється з певним набором параметрів варіювання. Тоді КПЕ являє собою специфікацію точок в гіперпросторі (семплінг точок), стратегія вибору яких забезпечує виявлення глобальних та локальних трендів топології багатовимірної поверхні відгуку. Оптимальним планом експерименту вважатимемо такий, що генеруванням комплексу точок реалізує отримання максимального обсягу інформації щодо гіперповерхні відгуку. Внаслідок того, що ця інформація апріорі зазвичай не є відомою, має сенс забезпечити заповнення одиничного гіперкубу точками з високими якостями рівномірності, так як перехід розтягненням до багатовимірного паралелепіпеда реального факторного простору

не складає особливих труднощів та не вносить суттєвих змін в якість характеристик розподілу. Рівномірність розподілу збільшує ймовірність попадання хоча б деяких з точок в області екстремумів чи перегинів гіперповерхні відгуку. З цих причин математичний опис багатовимірної поверхні виявляється найбільш строгим, ніж якби зондування проводилося в точках, розташованих якимось іншим чином. З ростом розмірності простору понад три проблема побудови плану експерименту суттєво складнішає. Важливо також забезпечити компроміс між обмеженою кількістю використовуваних точок спостереження і кількістю інформації, яку можна отримати з допомогою ретельно відібраних точок. Методи генерування одновимірних квазівипадкових розширюваних послідовностей, шо характеризуються низькою узагальненою розбіжністю (generalized discrepancy) та зменшеною ймовірністю до локальної негомогенності, добре опрацьовані лослідниками [32]. Сліл вілзначити. шо квазівипалкові послідовності застосовуються в випадках, коли перевага віддається отриманню розподілів випадкових чисел з високим степенем рівномірності, а їх кореляція не є важливою. Розбіжність є кількісною характеристикою, що використовується для вимірювання відхилення розподілу сформованої послідовності від ідеального рівномірного розподілу, тобто виконує функції міри неоднорідності [36]. Чим менше значення розбіжності, тим якіснішою в сенсі гомогенності є послідовність. За допомогою розбіжності можна також характеризувати й багатовимірні плани експериментів [37]. Частіше за все в процесі створення багатовимірних планів експериментів із низькою розбіжністю використовуються певні комбінації декількох одновимірних послідовностей, але їх оптимальний вибір складає окрему проблему, вирішення якої не є тривіальною, що відзначається, наприклад, в [39]. Надалі вважатимемо багатовимірний план експерименту ефективним, якщо вибір множини векторів, гіперкубі, розподілених одиничному реалізується безальтернативно, В забезпечуючи йому гарантовано низьку розбіжність без додаткових досліджень щодо складу комбінацій.

Нині відомими є цілий ряд квазівипадкових послідовностей з низькою розбіжністю [38, 40], серед яких послідовність Ван-дер-Корпута (Van-der-Corput

sequences), Холтона (Halton sequences), Фора (Faure sequences), ЛП_т-послідовність Соболя (Sobol's sequences), Нідеррайтера (Niederreiter sequences), тощо. При узагальненні на плани більшої розмірності всім їм притаманна необхідність оптимізованого вибору так званих базисних параметрів (наприклад, напрямних чисел для послідовностей Соболя), що потребує додаткових зусиль та є недоліком, який ускладнює їх застосування на практиці.

В [41] Мартіном Робертсом (Martin Roberts) запропоновано один із нових сучасних варіантів квазівипадкових послідовностей з якісно низьким показником розбіжності – безпараметричну адитивну рекурсивну R–послідовність Кронекера з використанням ірраціональних чисел, своє чергою отриманих на основі узагальненої послідовності Фібоначчі (золотого перетину). Показано, що R–послідовність характеризується незначною величиною узагальненої розбіжності навіть при суттєвому зростанні об'єму вибірки згенерованих точок. Але в статті автора наведено лише результати суб'єктивних досліджень щодо якості рівномірного розподілу двовимірних R₂–послідовностей, що не є достатньо переконливим при використанні багатовимірних планів.

Рекурсивну R_d-послідовність в *s*-вимірному просторі математично можна записати у вигляді [41]:

$$R_{s}\left(\phi_{s}\right): \quad t_{n} = \left\{N \cdot \alpha\right\}, \qquad (2.32)$$

де N – кількість точок плану N = 1, 2, 3,...;

$$\alpha$$
 – ірраціональне число, $\alpha = \left(\frac{1}{\phi_s}, \frac{1}{\phi_s^2}, \frac{1}{\phi_s^3}, \dots, \frac{1}{\phi_s^s}\right);$

 ϕ_s - унікальний позитивний корінь рівняння $x^{s+1} = x+1$. Для $s = 1, \phi_1 = 1.618033...;$ для $s = 2, \phi_2 = 1.324717...;$ для $s = 3, \phi_3 = 1.220744...$

Як кількісну міру неоднорідності множини векторів, які розподілені в одиничному гіперкубі, для подальших досліджень використовуватимемо два різновиди розбіжності відносно L_2 -норми: центровану розбіжність (the centered discrepancy) та циклічну розбіжність (the wrap-around discrepancy), які є

інваріантними щодо перемаркування й упорядкування факторів та відносно обертання координат.

Показники розбіжності для *N* точок плану в *s*-вимірному просторі обчислюються відповідно до співвідношень [42]:

• центрована розбіжність

$$\left(CD\left(D_{n}\right) \right)^{2} = \left(\frac{13}{12}\right)^{s} - \frac{2}{N} \cdot \sum_{k=1}^{N} \prod_{j=1}^{s} \left[1 + \frac{1}{2} \cdot \left| x_{kj} - 0.5 \right| - \frac{1}{2} \cdot \left| x_{kj} - 0.5 \right|^{2} \right] + \frac{1}{N^{2}} \cdot \sum_{k=1}^{N} \sum_{j=1}^{N} \prod_{i=1}^{s} \left[1 + \frac{1}{2} \cdot \left| x_{ki} - 0.5 \right| + \frac{1}{2} \cdot \left| x_{ji} - 0.5 \right| - \frac{1}{2} \cdot \left| x_{ki} - x_{ji} \right| \right]$$

$$(2.33)$$

• циклічна розбіжність

$$\left(WD(P)\right)^{2} = \left(\frac{4}{3}\right)^{s} + \frac{1}{N^{2}} \cdot \sum_{k=1}^{N} \sum_{j=1}^{N} \prod_{i=1}^{s} \left[\frac{3}{2} - \left|x_{ki} - x_{ji}\right| \cdot \left(1 - \left|x_{ki} - x_{ji}\right|\right)\right].$$
(2.34)

Вважається, що нижче значення розбіжності при порівнянні планів експерименту притаманно більш рівномірному, а, відповідно, більш бажаному плану. Для більшої наочності порівняльного аналізу планів одночасно також використовуватимемо графічне представлення згенерованих даних у вигляді діаграм Вороного. Спочатку розглядатимуться двовимірні плани, на яких легко відпрацювати надійну методологію досліджень, що згодом поширюватиметься на три- та інші багатовимірні простори. При чисельних експериментах використовувалися наступні вихідні дані таблиця 2.1, 2.2.

No m/m	R ₂ : $s=2$		$R_3: s=3$			R ₄ : <i>s</i> =4			
Ј№ П/П	x2	y2	x3	y3	z3	x4	y4	z4	q4
1	0.255	0.07	0.319	0.171	0.05	0.357	0.234	0.129	0.039
2	0.009755	0.64	0.138	0.842	0.599	0.213	0.968	0.757	0.577
3	0.765	0.21	0.958	0.513	0.149	0.07	0.702	0.386	0.116
4	0.52	0.779	0.777	0.184	0.699	0.927	0.436	0.015	0.654
5	0.274	0.349	0.596	0.855	0.249	0.783	0.169	0.644	0.193
6	0.029	0.919	0.415	0.526	0.798	0.64	0.903	0.272	0.732
7	0.784	0.489	0.234	0.197	0.348	0.497	0.637	0.901	0.27
8	0.539	0.059	0.053	0.868	0.898	0.353	0.371	0.53	0.809
9	0.294	0.629	0.873	0.539	0.447	0.21	0.105	0.158	0.347
10	0.049	0.198	0.692	0.21	0.997	0.067	0.839	0.787	0.886
	•••								

Таблиця 2.1 - Вихідні дані для R_d-послідовностей розмірністю s

Мо п/п	R ₂ : $s=2$		R ₃ : <i>s</i> =3			R ₄ : <i>s</i> =4			
JN≌ 11/11	x2	y2	x3	y3	z3	x4	y4	z4	q4
120	0.085	0.881	0.801	0.025	0.464	0.301	0.567	0.945	0.132
121	0.84	0.451	0.62	0.696	0.014	0.158	0.301	0.574	0.67
122	0.595	0.021	0.439	0.367	0.563	0.014	0.035	0.202	0.209
123	0.35	0.59	0.258	0.038	0.113	0.871	0.769	0.831	0.747
124	0.105	0.16	0.077	0.709	0.663	0.728	0.503	0.46	0.286
125	0.86	0.73	0.897	0.38	0.213	0.584	0.236	0.088	0.825
126	0.615	0.3	0.716	0.051	0.762	0.441	0.97	0.717	0.363
127	0.369	0.87	0.535	0.723	0.312	0.298	0.704	0.346	0.902
128	0.124	0.44	0.354	0.394	0.862	0.154	0.438	0.974	0.44

Таблиця 2.2 - Вихідні дані ЛП_т-послідовностей (N=128) [43, 44]

ξ_1	ξ_2	ξ_3	ξ_4	ξ ₆	ξ_7
0.5	0.5	0.5	0.5	0.5	0.5
0.25	0.75	0.25	0.75	0.75	0.25
0.75	0.25	0.75	0.25	0.25	0.75
0.125	0.625	0.875	0.875	0.125	0.375
0.625	0.125	0.375	0.375	0.625	0.875
0.375	0.375	0.625	0.125	0.875	0.125
0.875	0.875	0.125	0.625	0.375	0.625
0.0625	0.9375	0.6875	0.3125	0.0625	0.4375
0.5625	0.4375	0.1875	0.8125	0.5625	0.9375
0.3125	0.1875	0.9375	0.5625	0.8125	0.1875
•••	•••	•••	•••	•••	•••
0.117188	0.117188	0.664063	0.648438	0.523438	0.929688
0.617188	0.617188	0.164063	0.148438	0.023438	0.429688
0.367188	0.867188	0.914063	0.398438	0.273438	0.679688
0.867188	0.367188	0.414063	0.898438	0.773438	0.179688
0.242188	0.742188	0.289063	0.273438	0.648438	0.554688
0.742188	0.242188	0.789063	0.773438	0.148438	0.054688
0.492188	0.492188	0.039063	0.523438	0.398438	0.804688
0.992188	0.992188	0.539063	0.023438	0.898438	0.304688
0.00390625	0.996094	0.308594	0.574219	0.347656	0.675781

Продовження таблиці 2.2

ξ_9	ξ_{10}	ξ_{11}	ξ_{13}	ξ_{20}
0.5	0.5	0.5	0.5	0.5
0.25	0.75	0.25	0.25	0.75
0.75	0.25	0.75	0.75	0.25
0.875	0.625	0.625	0.875	0.125
0.375	0.125	0.125	0.375	0.625
0.625	0.375	0.875	0.625	0.875
0.125	0.875	0.375	0.125	0.375
0.8125	0.6875	0.0625	0.4375	0.9375
0.3125	0.1875	0.5625	0.9375	0.4375
0.5625	0.4375	0.3125	0.1875	0.1875
•••	•••	•••	•••	•••
0.960938	0.210938	0.773438	0.257813	0.617188
0.460938	0.710938	0.273438	0.757813	0.117188
0.710938	0.960938	0.523438	0.0078125	0.367188
0.210938	0.460938	0.023438	0.507813	0.867188
0.085938	0.585938	0.398438	0.632813	0.742188
0.585938	0.085938	0.898438	0.132813	0.242188
0.335938	0.335938	0.148438	0.882813	0.492188
0.835938	0.835938	0.648438	0.382813	0.992188
0.035156	0.097656	0.449219	0.074219	0.253906

Наведений в табл.2.2 набір послідовностей було вибрано за результатами чисельних експериментів для наочної демонстрації описаних далі найбільш показових в сенсі їх однорідності планів. При експериментах проводився повний перебір комбінацій (ξ_i , ξ_j) i=1...6, j=1...20 для двовимірних планів та (ξ_i , ξ_j , ξ_k), i=1...6, j=1...20, k=1...20 - для тривимірних [44]. Чотиривимірні та п'ятивимірні плани створювалися аналогічно на основі попередньо отриманих дво- та тривимірних планів, де (ξ_i , ξ_j , ξ_k , ξ_m), m=1...20 та (ξ_i , ξ_j , ξ_k , ξ_m , ξ_l), l=1...20. При цьому зміни індексів і, j, k виконувалися в межах раніше зазначених границь.

Результати досліджень проілюструємо (рис. 2.6-2.9) спочатку для двовимірних та тривимірних планів відповідно. Отримані показники центрованої розбіжності за формулою (2.33) та циклічної розбіжності (2.34) для двовимірних планів, а саме для безпараметричних R₂–послідовностей та деяких комбінацій ЛП_т–послідовностей наведено в табл. 2.3, 2.4 [44].

На рис.2.6 містяться діаграми Вороного кращих за показниками розбіжності варіантів планів експериментів на основі ЛП_т-послідовностей та R₂-послідовності. Відзначимо, що у близьких за гомогенністю планів експериментів на основі ЛП_тпослідовностей не завжди оцінка результатів за обома показниками розбіжності є однозначною.

Водночас асоціативний зв'язок щодо однорідності розподілу між графічними зображеннями та числовими показниками прослідковується не завжди достатньо чітко, що демонструють приклади R₂- та (ξ_4, ξ_9) ЛП_т-послідовностей. Хоча двовимірні ЛП_т-послідовності і належать до послідовностей з малим розходженням, проте існують і такі їх комбінації, що не демонструють його, наприклад, комбінації, які представлено на рис. 2.7.

Тому вибір «кращих» і «гірших» пар ЛП_т-послідовностей потребує додаткових досліджень, часові витрати на які для отримання позитивних результатів важко оцінити внаслідок випадковості.

Із отриманих результатів показників розбіжності відносно L₂-норми для двовимірних планів (табл. 2.3, 2.4) та візуального аналізу діаграм Вороного можна переконатися, що існують такі комбінації ЛП_т-послідовностей, які мають як кращі, так і дещо гірші показники узагальненої розбіжності у порівнянні із безпараметричними R₂-послідовностями.

При дослідженні тривимірних планів отримано показники центрованої розбіжності та циклічної розбіжності, які наведено в табл. 2.5.

	Квазіпослідовності							
Показники		$\Pi\Pi_{\tau}$						
	R_2	$\left(\xi_{1},\xi_{2}\right)$	$\left(\xi_{1},\xi_{7}\right)$	$\left({{\xi _4},{\xi _{11}}} ight)$	$\left(\xi_{2},\xi_{7}\right)$	$\left(\xi_{7},\xi_{15}\right)$		
Центрована розбіжність ×10 ⁻⁴	5.261	0.7805	0.9471	0.6876	0.758	0,7097		
Циклічна розбіжність	3.555938	3.555628	3.555688	3.555708	3.555669	3.555717		

Таблиця 2.3 - Показники узагальненої розбіжності для кращих варіантів двовимірних планів

Таблиця 2.4 - Показники узагальненої розбіжності для невдалих варіантів двовимірних планів

	Квазіпослідовності								
Показники		$\Pi_{ au}$							
Показники	$\left(\xi_3,\xi_9\right)$	$\left(\xi_4,\xi_{13}\right)$	$\left(\xi_{2},\xi_{16}\right)$	$\left({{\xi _2},{\xi _{10}}} ight)$	$\left(\xi_{3},\xi_{13}\right)$	$\left(\xi_{2}^{},\xi_{20}^{} ight)$	$\left(\xi_4,\xi_9\right)$	$\left(\xi_{6},\xi_{10} ight)$	
Центрована розбіжність ×10 ⁻⁴	69.35	5.413	5.884	65.55	4.588	7.141	5.102	4.883	
Циклічна розбіжність	3.557467	3.557183	3.557771	3.557398	3.557328	3.556283	3.556143	3.555877	

Рисунок 2.6 – Візуалізація рівномірності двовимірних планів у вигляді діаграм Вороного: a) R₂-послідовність; б-е)

ЛП_т-послідовності $(\xi_1, \xi_2), (\xi_1, \xi_7), (\xi_4, \xi_{11}), (\xi_2, \xi_7), (\xi_7, \xi_{15})$ відповідно

унок 2.7 - Візуальний аналіз рівномірності двовимірних планів у вигляді діаграм Вороного, утворених л послідовностями: a) (ξ_2, ξ_{10}) ; б) (ξ_3, ξ_{13}) ; в) (ξ_2, ξ_{20}) ; г) (ξ_4, ξ_9) ; д) (ξ_3, ξ_9) ; е) (ξ_4, ξ_{13})

утворених ЛП_т-послідовностями: ж)
$$(\xi_2, \xi_{16})$$
; з) (ξ_6, ξ_{10})

	Квазіпослідовності							
Панаринин		ЛΠτ						
Показники	\mathbf{R}_3	$\left(\xi_6,\xi_7,\xi_{12}\right)$	$\left(\xi_1,\xi_2,\xi_3\right)$	$\left(\boldsymbol{\xi}_{2},\boldsymbol{\xi}_{10},\boldsymbol{\xi}_{6}\right)$	$\left(\xi_3,\xi_4,\xi_9\right)$			
Центрована Розбіжність ×10 ⁻⁴	7.859	1.769	1.947	77.169	80.93			
Циклічна розбіжність	4.741793	4.741183	4.741111	4.743848	4.744208			

Таблиця 2.5 - Показники узагальненої розбіжності для тривимірних планів

Тут спостерігається чітко виражена однозначність в оцінках неоднорідності за допомогою чисельних показників розбіжності у відносно близьких за гомогенністю планів експериментів на основі R₃- та $(\xi_6, \xi_7, \xi_{12}), (\xi_1, \xi_2, \xi_3)$ ЛП_т-послідовностей, а тим більш у значно більш «поганого» плану $(\xi_3, \xi_4, \xi_9), (\xi_2, \xi_{10}, \xi_6)$. При цьому тенденцію високої гомогенності розподілу багатовимірних КПЕ також можна спостерігати, що проілюстровано проекціями точок для тривимірного плану на рис. 2.8. Ті ж самі висновки можна зробити на основі аналізу відповідних діаграм Вороного (рис.2.9).

Рисунок 2.8 - Матричне представлення R₃-послідовностей в двовимірних проекціях

послідовностей $\left(\xi_{6},\xi_{7},\xi_{12}\right)$

Продовження рисунка 2.9 - Діаграми Вороного для проекцій тривимірних планів: в) (ξ_3, ξ_4, ξ_9) ; г) (ξ_2, ξ_{10}, ξ_6) відповідно

На завершення спробуємо узагальнити результати досліджень з дотриманням запропонованої раніше парадигми для створення багатовимірних планів експериментів. Результати обчислень містяться в таблицях 2.6 та 2.7.

Зіставлення отриманих результатів розбіжності не дозволяє зробити висновки щодо однозначного вибору планів при користуванні одночасно сукупністю двох показників, про що свідчать, наприклад, порівняння пар R₄- та $(\xi_1, \xi_2, \xi_{10}, \xi_{15})$ ЛП_т-послідовностей для чотиривимірного плану або $(\xi_1, \xi_2, \xi_3, \xi_5, \xi_7)$ та $(\xi_6, \xi_7, \xi_{12}, \xi_{14}, \xi_3)$ ЛП_т-послідовностей й інших для п'ятивимірних планів. Тобто можна стверджувати, що на основі ЛП_тпослідовностей вдається створювати кращі за показниками гомогенності багатовимірні плани експерименту. Але довільне поєднання векторів в плані не приводить автоматично до бажаного результату. Водночас якщо вимоги до плану дозволяють обмежитися не ідеальним його варіантом з гарантовано низькою розбіжністю, то це можна зробити з використанням R_d-послідовностей без ризику отримання «аномальних» різновидів, як в випадках з ЛП_т-послідовностями [44].

Реалізація КПЕ сукупності безпараметричних адитивних рекурсивних одновимірних R–послідовностей та комбінацій ЛП_т–послідовностей, здійснюється за допомогою створеного програмного продукту [45].

	Квазіпослідовності							
			ЛПτ					
Показники	R_4	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_5, \boldsymbol{\xi}_7 \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_3, \boldsymbol{\xi}_5 \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_6, \boldsymbol{\xi}_7, \\ \boldsymbol{\xi}_{12}, \boldsymbol{\xi}_{14} \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_{10}, \boldsymbol{\xi}_{19} \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_2, \boldsymbol{\xi}_6, \\ \boldsymbol{\xi}_{20}, \boldsymbol{\xi}_{10} \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \\ \boldsymbol{\xi}_{10}, \boldsymbol{\xi}_{15} \end{pmatrix}$	
Центрована розбіжність ×10 ⁻³	3.613	0.5245	0.4528	0.4573	8.248	10.143	8.092	
Циклічна розбіжність	6.326442	6.322127	6.322074	6.32235	6.325789	6.330247	6.325179	

Таблиця 2.6 - Показники узагальненої розбіжності для чотиривимірних планів

Таблиця 2.7 - Показники узагальненої розбіжності для п'ятивимірних планів

	Квазіпослідовності								
			Π_{τ}						
Показники	R ₅	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3, \\ \boldsymbol{\xi}_5, \boldsymbol{\xi}_7 \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3, \\ \boldsymbol{\xi}_5, \boldsymbol{\xi}_6 \end{pmatrix}$	$\begin{pmatrix} \xi_{6},\xi_{7},\xi_{12},\\\xi_{14},\xi_{3} \end{pmatrix}$	$\begin{pmatrix} \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_5, \\ \boldsymbol{\xi}_7, \boldsymbol{\xi}_{10} \end{pmatrix}$	$\begin{pmatrix} \xi_1, \xi_2, \xi_{10}, \\ \xi_{19}, \xi_{16} \end{pmatrix}$	$\begin{pmatrix} \xi_2, \xi_6, \xi_{20}, \\ \xi_{10}, \xi_{16} \end{pmatrix}$		
Центрована Розбіжність ×10 ⁻³	1.959	0.973	0.946	0.971	9.391	11.113	12.357		
Циклічна розбіжність	8.431419	8.430584	8.430845	8.430928	8.435925	8.44094	8.446635		

2.3.2. Створення методу побудови багатовимірних комітетних адитивних нейромережевих метамоделей вихрострумових перетворювачів

При створенні метамоделей для складних випадків топології гіперповерхонь відгуку широке застосування завдяки своїм універсальним апроксимаційним властивостям знаходять штучні нейронні мережі на радіально-базисних функціях RBF-ANN та багатошарових персептронах MLP-ANN, що було показано в огляді [46] та розділі 1.4.

Сформулюємо задачу багатовимірної апроксимації математично для ряду структур СЗ ВСП, які представлено на рис.2.3 у вигляді функціональних апроксимаційних залежностей розподілу ГВС. В табл.2.8 наведено різновиди таких залежностей, де x та y є просторовими координатами на поверхні ОК в зоні контролю.

Таб	лиця 2.8 - Різнов	иди апроксима	ційних залежностей розподілу ГВС	ВСП
		Геометриция		

C	труктура СЗ	Геометрична	Функціональна апроксимаційна
	ВСП	форма СЗ	залежність ГВС
1	планарна	кругова	$\hat{J} = f(x, y, r_0)$
2	об'ємна		$\hat{J} = f(x, y, r_0, z_0),$
3	планарна	квадратна	$\hat{J}=f(x, y, a)$
		прямокутна	$\hat{J}=f(x, y, a, b)$
4	об'ємна	квадратна	$\hat{J}=f(x, y, a, z_0)$
		прямокутна	$\hat{J} = f(x, y, a, b, z_0)$

У випадках коли гіперповерхні відгуку мають суттєву просторову неоднорідність та нерегулярну поведінку отримати глобальну НМ-метамодель з прийнятною точністю методами, що розглянуто в розділі 1.4 достатньо важко.

Ефективність використання нейромережевих метамоделей на деяких прикладах $\hat{J}=f(x, y)$ показано в роботах [20, 47, 48], окрім того, особливості їх застосування відповідно до задач синтезу ВСП розглянуто в роботах [19, 21]. Слід

зазначити, що у випадку побудови метамоделі при варіації тільки двох змінних $\hat{J}=f(x, y)$, цілком достатньо використовувати одинарні RBF- та MLP-метамоделі, які мають відносне значення MAPE на етапі навчання до 6 %, а на етапі відтворення - до 8-9 % [19, 21, 48].

В роботі [11] розглянутий найпростіший випадок побудови апроксимаційної моделі для кругового ВСП з планарною структурою СЗ при варіюванні трьох параметрів $\hat{J} = f(x, y, r_0)$. Отримані результати середньої величини модельної похибки від 22 % до 29 % показують неможливість досягнення необхідної точності апроксимаційної моделі за допомогою глобальної одинарної RBF-ANN мережі. І тільки застосування комітетів НМ із прийняттям рішення усередненням за ансамблем з процедурою підсилення boosting дозволило отримати задовільну точність апроксимації, а саме на етапі навчання 18.08 %, а на етапі відтворення до та 19.8 %. Тоді як при використанні іншого методу у вигляді адитивної НМ вдалося досягти зменшення відносної величини середньої модельної похибки з 22.6 % до 10.12 % на етапі навчання та з 31 % до 15.93 % на етапі відтворення [49]. Порівняльний аналіз свідчить, що побудова метамоделі за допомогою комітету нейронних мереж та адитивних мереж дає покращення *MAPE* багатовимірної поверхні відгуку у порівнянні з одинарними мережами.

Значно покращити точність апроксимаційної моделі $\hat{J} = f(x, y, r_0)$ вдалося застосуванням гібридного підходу, коли одночасно використовується технологія декомпозиції області пошуку та HM, побудованих на техніках асоціативних машин із різними методами отримання рішення. Так в роботі [13] запропоновано використовувати адитивну НМ-регресію [46] з декомпозицією простору пошуку та усередненням за ансамблем. Для отримання прийнятної MAPE, % на рівні 4.78% -6.76 % виявилося достатнім розбиття простору на три підобласті за радіусом витка СЗ та для кожної із отриманих підобластей застосування адитивної НМ-регресії із усередненням за ансамблем на останньому рівні апроксимації та підсиленням (boosting). здійснювалося підвибірок Підсилення шляхом формування 3 використанням процедури беггінг.

Складніший приклад апроксимаційної задачі для кругового рухомого НВСП $\hat{J} = f(x, y, r_0, z_0)$, що є характерною для об'ємної структури C3 розглянуто в роботах [16, 50]. Внаслідок нерегулярної поведінки гіперповерхні відгуку ГВС в цьому випадку виконується декомпозиція області пошуку як за висотою розташування C3 перетворювача, так і за радіусом її складових. В кожній області декомпозиції кількість точок КПЕ задається індивідуально. Завдяки цьому вдається досягти певного компромісу між точністю побудови апроксимаційної моделі і мінімальною кількістю точок $N_{\mu a \sigma v}$. КПЕ. Для цього випадку, щоб забезпечити необхідну точність виявилося недостатньо реалізувати запропонований вище підхід. Тому адитивна НМ-регресія ускладнена, а саме на проміжних її рівнях застосовано комітети HM із тих мереж, продуктивність яких не менша ніж 95 %. Використаний спосіб забезпечує прийнятну похибку *MAPE* на етапі навчання HM, яка змінюється від 4.35 % до 19.33 % та від 6.22 % до 21.31 % - на етапі відтворення гіперповерхні

Тому для задач багатовимірної регресії запропоновано застосування гібридного підходу, що полягає:

• в одночасному використанні декомпозиції області дизайну на декілька підобластей, де здійснюють розв'язок задач локальної апроксимації, з наступною «зшивкою» складових частин апроксимацій в єдину неперервну модель;

• та множинних НМ, побудованих на техніках асоціативних машин із різними методами отримання рішення. Поєднання при формуванні вихідного сигналу здійснюють за допомогою лінійної комбінації вихідних сигналів окремих НМ, зокрема усередненням за ансамблем. Крім того, передбачено, що НМ працюють на основі методу підсилення шляхом бустінгу та беггінгу. Це дозволяє вносити випадкові зміни до масиву навчальної вибірки, що необхідні з метою подальшого створення декількох альтернативних моделей, які засновані на різних підмножинах даних.

Важливим атрибутом створеного методу є використання адитивного принципу побудови регресійної метамоделі. Ідея адитивної НМ-регресії полягає в

багаторівневому прямому східчастому моделюванні: побудові регресійної моделі першого рівня; розрахунку похибки апроксимації гіперповерхні, отриманої на навчальній множині; мінімізації залишків за допомогою НМ-метамоделі другого рівня, для чого початкові цільові значення замінюють відповідними залишками перед навчанням другої моделі; повторення процесу доти, поки не буде досягнуто необхідної точності НМ-регресійної моделі остаточного рівня; створення кінцевої НМ-метамоделі шляхом додавання вкладів від декількох НМ-регресійних моделей всіх рівнів. Кількість проміжних рівнів адитивної НМ-регресії визначається заданим значенням відносної похибки апроксимації *МАРЕ*, %.

При цьому для утворення комітетів НМ використовуються лише мережі, які мають найбільшу продуктивність навчальної, тестової та контрольної вибірок, наприклад, більше ніж 90 %. Найкращі мережі відбираються за сукупністю об'єктивних статистичних показників, а саме коефіцієнту детермінації для навчальної, контрольної та тестової вибірок; відношенню стандартних відхилень *S.D.ratio*; середньої відносної величини модельної похибки *MAPE*,%., суми квадратів залишків SS_R , середнього квадрата залишків MS_R , а також суб'єктивною оцінкою діаграм розсіювання і гістограм залишків [51, 20].

Поєднання всіх цих обчислювальних технологій дозволило створити метод, два різновиди якого схематично продемонстровано на рис.2.10. Будь-які утворені структури НМ-метамоделей потребують обов'язкового оцінювання адекватності та інформативності за сукупністю статистичних показників детальний перелік яких наведено в наступному розділі 2.3.3.

На рисунку 2.10 а показано архітектуру асоціативної машини, де застосовано адитивний метод побудови метамоделі і остаточне рішення приймається усередненням за ансамблем тільки на останньому рівні [13-15]. А на рисунку 2.10 б показано аналогічну мережу, але в якій рішення приймається усередненням за ансамблем на кожному рівні [16, 60].

Як функція активації нейронів прихованого шару RBF-мережі використовується функція Гауса. Тоді вихід нейронної мережі формується

лінійною комбінацією виходів нейронів прихованого шару і описується формулою [16]:

$$\hat{J}(x, y, r_0, z_0) = \sum_{i=1}^m w_i \cdot \exp\left(-\frac{\left(x - c_{x_i}\right)^2 + \left(y - c_{y_i}\right)^2 + \left(r_0 - c_{r_i}\right)^2 + \left(z_0 - c_{z_i}\right)^2}{a_i^2}\right),$$

де *m* – кількість нейронів прихованого шару;

w_i - ваговий коефіцієнт зв'язку вихідного нейрона з *i*-м нейроном прихованого шару;

 $c_{x_i}, c_{y_i}, c_{r_i}, c_{z_i}$ - координати центру *i*-го нейрона;

Рисунок 2.10 - Побудова асоціативних машин адитивним методом:

а) прийняття рішення усередненням за ансамблем на останньому рівні;

б) прийняття рішення усередненням за ансамблем на кожному проміжному рівні

2.3.3. Перевірка адекватності та інформативності метамоделей рухомих вихрострумових перетворювачів

Завершальним етапом побудови метамоделі є перевірка її адекватності. В процесі її створення виконується багатоступенева валідація, мета якої полягає в контролі багатьох чисельних показників, отриманих при побудові метамоделі, включаючи якість НМ та оцінки відновлення з її використанням поверхні відгуку. Для перевірки відповідності отриманої функції відгуку експериментальним даним необхідно визначити:

• адекватність математичної моделі за критерієм Фішера. Адекватність зазвичай встановлюється перевіркою *F*-критерію гіпотези про статистичну незначну відмінність дисперсії адекватності σ_R^2 та дисперсії відтворюваності σ_D^2 результатів експериментів, за якими були отримані коефіцієнти математичної моделі [61, 32, 49]. Якщо $F_{\nu_D;\nu_R}^{ekcn} > F_{\alpha;\nu_D;\nu_R}^{kpum}$, де $F_{\nu_D;\nu_R}^{ekcn} = \frac{MS_D}{MS_R}$ модель адекватна і прогноз результатів за моделлю не суперечить результатам дослідів;

• оцінку відповідності нулю різниці (залишків) між фактичним і прогнозованим значенням залежної змінної;

 оцінку відповідності залишків нормальному розподілу (для перевірки нормальності розподілу залишків використовують критерій Колмогорова-Смірнова, χ²-квадрат та інші).

Перевірка моделі на інформативність проводиться шляхом розрахунку множинного коефіцієнта кореляції R та перевірки його статистичної значущості. Для подальших обчислень зручно використовувати R^2 -коефіцієнт детермінації (міру визначеності). Коефіцієнт детермінації R^2 показує відношення між розсіюванням, що зумовлено рівнянням регресії \hat{f}_i відносно загального середнього за всіма результатами дослідів \bar{f} , та розсіюванням дослідів \bar{f} [51, 20, 39]:

$$R^{2} = \frac{SS_{D}}{SS_{T}} = \frac{SS_{T} - SS_{R}}{SS_{T}} = 1 - \frac{SS_{R}}{SS_{T}}.$$
 (2.35)

Перевірку гіпотези про значущість множинного коефіцієнта кореляції (інформативність моделі) виконують з використанням *F*-критерію Фішера $F_{\nu_D;\nu_R}^{ekcn} > F_{\alpha;\nu_D;\nu_R}^{kpum}$, де $F_{\nu_D;\nu_R}^{ekcn} = \frac{R^2}{1-R^2} \cdot \frac{v_R}{v_D}$. Модель вважають інформативною при R^2 >0.95 та значимо достовірною при рівні значущості за *F*-критерієм *p*≤0.05 (достовірність ≥0.95) [51, 20, 39].

На етапі відтворення поверхні відгуку адекватність отриманої метамоделі оцінювалася за показниками [51, 20, 39]:

- сума квадратів регресії $SS_D = \sum_{i=1}^{N} (\hat{f}_i \overline{f})^2;$
- сума квадратів залишків $SS_R = \sum_{i=1}^N \hat{u}_i^2 = \sum_{i=1}^N (f_i \hat{f}_i)^2;$
- загальна сума квадратів $SS_T = \sum_{i=1}^N (f_i \overline{f})^2;$

• середні квадрати регресії -
$$MS_D = \frac{SS_D}{v_D}$$
, залишків - $MS_R = \frac{SS_R}{N-n-1}$

загальний - $MS_T = \frac{SS_T}{v_T}$, де $v_D = n$, $v_R = N - n - 1$, $v_T = N - 1$ - число степенів свободи;

• дисперсія відтворюваності $\sigma_D^2 = \frac{SS_D}{N-1}$, дисперсія адекватності $\sigma_R^2 = \frac{SS_R}{N-n-1}$, загальна дисперсія $\sigma_T^2 = \frac{SS_T}{N-1}$;

• стандартні похибки оцінки відтворюваності - $s_D = \sqrt{\sigma_D^2}$, оцінки адекватності - $s_R = \sqrt{\sigma_R^2}$, загальна - $s_T = \sqrt{\sigma_T^2}$;

- коефіцієнт множинної детермінації R^2 ;
- відношення стандартних відхилень *S.D.ratio* = $\frac{S.D_R}{S.D_T}$;

• середня відносна величина модельної похибки (або середня похибка

апроксимації)
$$MAPE = \frac{100\%}{N} \cdot \sum_{i=1}^{N} \frac{|\hat{u}_i|}{f_i},$$

де $\hat{u}_i = f_i - \hat{f}_i$ - залишки; f_i - задана залежна змінна;

 \hat{f}_i - вихідний параметр розрахований за допомогою регресійної моделі;

N – кількість спостережень; *n* – кількість заданих незалежних змінних.

2.4. Оптимізаційні алгоритми пошуку глобального екстремуму в задачах синтезу рухомих вихрострумових перетворювачів

Цільову функцію для оптимального синтезу переважно формулюють як квадрат відхилення:

$$F_{target} = \sum_{i=1}^{N} \left(\sum_{k=1}^{M} J_{ik} - J_{reference} \right)^2 \to \min, \qquad (2.36)$$

де *J_{reference}* – бажане значення ГВС в контрольній точці;

J_{ik} – ГВС в контрольній точці ОК з номером *i*, створена *k*-ою котушкою системи збудження ВСП;

N – кількість контрольних точок в зоні;

М – кількість котушок у системі збудження кругового ВСП.

Для ефективного забезпечення оптимального синтезу ВСП в сенсі підвищення вимог до точності в реалізації заданого розподілу ГВС можливі і альтернативні варіанти формулювання функції цілі [14]. Одним із таких альтернативних варіантів є пошук мінімуму функції, що здійснюється за максимальним значенням різниці J_{ik} - $J_{reference}$, так званий мінімаксний критерій, який передбачає дотримання жорстких вимог до точності синтезу в кожній контрольній точці [14]:

$$F_{target} = \max \left| J_{ik} - J_{reference} \right| \to \min.$$
(2.37)

Проте не всі методи оптимізації можуть забезпечити реалізацію цього критерію через порушення гладкості. Тоді як використання середньостепеневої апроксимації мінімаксного критерію теоретично дозволяє виправити ситуацію щодо підвищення точності. Функція цілі при середньостепеневої апроксимації мінімаксного критерію має вигляд [14]:

$$F_{target} = \sum_{i=1}^{N} \left(\sum_{k=1}^{M} J_{ik} - J_{reference} \right)^{\gamma} \to \min, \qquad (2.38)$$

де γ - степінь апроксимації, $\gamma = 3, 4, 5...$

Цільова функція в загальному випадку задається із обмеженнями на шукані параметри $a_i \leq x_i \leq b_i$, де a_i , b_i – мінімальне та максимальне значення параметру. Шуканими параметрами в залежності від структури СЗ можуть бути: радіуси секційних котушок, лінійні розміри рамкової СЗ, висоти розташування СЗ над ОК, зміщення котушок одна відносно іншої. Для такого підходу необхідно виконати перехід від задачі умовної оптимізації до безумовної методом заміни змінних за однією із формул [52]:

$$x_{i} = b_{i} + (a_{i} - b_{i}) \cdot \sin^{2}(z_{i}),$$

$$x_{i} = 0.5 \cdot (a_{i} - b_{i}) + 0.5 \cdot (b_{i} - a_{i}) \cdot \sin(z_{i}).$$
(2.39)

При виборі методу оптимізації необхідно враховувати певні особливості, що є характерними при такому формулюванні задачі нелінійного математичного програмування:

• наявність значної кількості локальних екстремумів, тобто багатоекстремальність задачі;

• необхідність пошуку глобального екстремуму;

• складна топологія гіперповерхні пошуку, яка характеризується багатовимірною «яроподібністю», наявністю «плато», точок перегину поверхні тощо;

• наявність обмежень, введення яких до цільової функції ще більш ускладнює топологію поверхні пошуку;

• суттєва нелінійність та можлива недиференційованість функції цілі;

• алгоритмічне або складне аналітичне представлення цільової функції, що потребує значних обчислювальних ресурсів та затрат часу для розрахунків,

обумовлює використання громіздких чисельних методів та часто становить непросту самостійну задачу.

Всім цим вимогам задовольняють сучасні метаевристичні стохастичні алгоритми оптимізації як еволюційні, так і поведінкові, які засновані на моделюванні колективної поведінки систем, що самоорганізуються та складаються з агентів які взаємодіють [53, 54].

2.4.1. Стохастичні метаевристичні методи розв'язку задач глобальної оптимізації

Методи розв'язку задач глобальної оптимізації умовно розділяють на детерміновані і стохастичні. Широке застосування знайшли стохастичні методи пошуку, що застосовують випадковість та, які для такого типу задач ефективніші і дозволяють відшукувати добрі, тобто досяжні оптимальні (субоптимальні) розв'язки [53].

Серед стохастичних методів особливе місце займають евристичні методи, які засновані на імітації природних процесів живої природи і реалізують адаптивний випадковий пошук. До таких методів відносять еволюційні та поведінкові [53, 54].

З-посеред еволюційних метаевристичних методів оптимізації найпоширенішими є генетичні алгоритми (ГА). Генетичні алгоритми імітують еволюційний процес природного відбору особин, кожний із яких асоціюється з можливим варіантом розв'язку задачі, що триває декілька життєвих циклів до виконання критерію зупинки. Тоді як поведінкові методи засновані на моделюванні колективної поведінки самоорганізованих систем, що складаються із елементів які взаємодіють. Тобто поведінкові метаевристичні методи оптимізації моделюють колективний розум. В основі поведінкових методів оптимізації закладена біонічна ідея колективної адаптації, тобто механізм розповсюдження інформації в «зграї», «рої», «косяку», що зумовлено вищістю групового інтелекту над розумовими здібностями одного окремого індивідууму [53, 54].

На сьогодні існує ціла низка відомих біонічних популяційних метаевристичних поведінкових алгоритмів, серед яких мурашиний (Ant Colony
Optimization), бджолиний (Bee Colony Optimization), зозулі (Cuckoo Search Algorithm), світлячків (Glowworm Swam Optimization), мавпячий (Monkey Search Algorithm), бактерій (Bacterial Optimization) та інші.

Особливе місце займає алгоритм оптимізації роєм частинок (Particle Swarm Optimization – PSO), що зумовлено можливістю його застосування для ефективного розв'язку широкого кола задач оптимізації, зокрема непереривної, дискретної, комбінаторної та багатокритеріальної [53].

Одним зі способів покращення пошукових властивостей оптимізаційного алгоритму є його гібридизація з одним або декількома методами пошуку. З одного боку такий підхід дозволяє використовувати переваги кожного із методів, що входить до алгоритму, а з іншого – потребує більшої кількості параметрів стратегії алгоритму. В методі гібридизації зі схемою вкладення алгоритми працюють паралельно або послідовно протягом деякої кількості заданих ітерацій [55]. Для високорівневої гібридизації вкладенням застосовні методи зберігають значну автономію і в кінцевому алгоритмі легко виділяється кожен із них [56-58]. При низькорівневій гібридизації вкладенням комбіновані методи інтегровані настільки сильно, що виділити їх неможливо. Гібридизація типу препроцесор/постпроцесор передбачає, що оптимізація першочергово проводиться одним методом, який знаходить приблизне місце локалізації глобального оптимуму розв'язуваної задачі, а потім запускається інший алгоритм, що уточнює знайдений розв'язок [56-58].

2.4.2. Алгоритм оптимізації роєм частинок PSO зі стратегією випадкової топології зв'язків

Ключовою особливістю методу PSO є наявність зв'язків між частинками, які визначають, наскільки ефективний процес передачі інформації між окремими агентами рою. Існує два основних підходи їх організації: gbest i lbest [52, 53].

Канонічна версія PSO використовує підхід gbest, в цьому випадку кожна частка рою пов'язана з усіма іншими частинками (топологія «зірка» - див. рис.2.11 а). В результаті кожна частка прагне переміщуватися в бік найкращого розв'язку *g*, знайденого всім роєм. У локальному методі lbest частка обмінюється

інформацією лише з кількома сусідами, орієнтуючись на найкращий знайдений ними розв'язок g_i . При цьому сусідство не обов'язково означає, що частинки знаходяться поруч, а лише визначає, які особи рою інформують дану *i*-у частинку. При використанні підходу gbest рій, як правило, швидше сходиться до розв'язку, проте висока швидкість збіжності призводить до менш докладного дослідження простору розв'язків. У методі lbest швидкість збіжності до розв'язку нижче, однак, ймовірність попадання в локальний оптимум менше.

а) б)
 Рисунок 2.11 - Варіанти топології рою частинок [53]:
 а) «зірка»; б) «кільце»

Найпростішим випадком, що реалізує підхід lbest, є топологія «кільце» (див. рис.2.11 б). У цьому випадку кожна *i*-та частинка рою має тільки двох інформаторів: (*i*-1) -*y* та (*i*+1) -*y* частки; $i = \overline{2, s-1}$. При цьому 1-у частку інформує 2-га і *s*-та частки, а *s*-ту - частинки з номерами 1 та (*s*-1).

Оскільки найкращої топології зв'язків між частинками рою, що підходить для будь-якого завдання оптимізації, не існує, то часто використовується випадкова топологія, яка може змінюватися від ітерації до ітерації. Для визначення сусідства застосовується матриця інцидентності L розміру $s \times s$, елементи якої $L_{ij} = 1$ в разі, коли частка j інформує частку i і $L_{ij} = 0$ в іншому випадку. Ця матриця в загальному випадку несиметрична, тобто з того, що *i*-та частинка інформує *j*-ту не слідує наявність зворотного обміну інформацією про знайдений найкращий розв'язок.

Для мультимодальних задач і завдань високої розмірності бажано, щоб середнє число сусідів у частинки було не дуже велике. З іншого боку, збільшення кількості інформаторів зазвичай збільшує швидкість збіжності алгоритму. А іноді корисно, щоб частка якийсь час зовсім не мала сусідів і проводила тільки локальний пошук навколо свого найкращого рішення *p*, знайденого на минулих ітераціях. Тому, виходячи з цих міркувань, для отримання кращих результатів більш доцільно використовувати змінну кількість інформаторів.

Топологія зв'язків не залишається однією і тією ж протягом всієї роботи алгоритму, а періодично змінюється. В цьому алгоритмі оптимізації зв'язки між частинками оновлюються, якщо після завершення поточної ітерації не відбулося поліпшення глобального розв'язку рою g. Ця ситуація може свідчити про те, що випадково згенерована топологія виявилася невдалою і, отже, її потрібно змінити, або ж наявні підрої вже знайшли свої локальні оптимуми, і, для забезпечення глобального пошуку, необхідно перебудувати зв'язки.

При випадковій організації зв'язків, кожна частка повинна інформувати не більше K інших частинок. З цією метою в матриці зв'язків L в кожному стовпці j вибирається випадковим чином K інформованих частинок i, причому не виключається ймовірність повторного вибору. Всі частинки рою інформують самі себе, тому для елементів головної діагоналі матриці інцидентності $L_{ii} = 1$. При такому способі ініціалізації зв'язків кожна j-та частинка може одночасно інформувати від 1 до K + 1 частинок, а довільна i-та частинка може мати від 1 до s інформаторів, але з нерівномірно розподіленою ймовірністю. Імовірність p(n)того, що частка має рівно n інформаторів, включаючи себе, визначається за формулою [53]:

$$p(n) = C_{s-1}^{n-1} \left(\frac{K}{s}\right)^{n-1} \left(1 - \frac{K}{s}\right)^{s-n},$$
(2.40)

де C_{s-1}^{n-1} - число сполучень із (s-1) елементів по (n-1) елементу.

Графік розподілу ймовірності установки різної кількості зв'язків між частинками рою для декількох значень K при розмірі рою s = 20 показаний на

рис.2.12. З графіка видно, що з найбільшою ймовірністю у кожної частинки буде близько K інформаторів, проте їх кількість може бути і менше, що корисно для локального пошуку, і більше, що робить благотворний вплив на глобальний пошук і швидкість збіжності.

При випадковій генерації одного зв'язку для *i*-ї частинки в рої розміром *s*, ймовірність того, що деяка *j*-та виявиться її інформатором дорівнює 1/s, ймовірність того, що вона не буде обрана, становить 1-1/s.

Рисунок 2.12 - Розподіл ймовірності установки *п* зв'язків [63]

Тоді ймовірність, що при встановленні K випадкових зв'язків (можливо з повторами) ця частка не потрапить в список її сусідів складе $(1-1/s)^K$. В результаті ймовірність того, що *j*-та частинка буде інформатором *i*-ї має значення $p = 1 - (1 - 1/s)^K$. Імовірність того, що *j*-та частка не стане інформатором *i*-ї після закінчення *t* ітерацій алгоритму PSO дорівнює $p = (1 - 1/s)^{K^t}$. Остаточно, ймовірність того, що після *t* ітерацій інформація про знайдений *j*-ю часткою розв'язок буде передана *i*-ї, виявиться рівною [53]:

$$p = 1 - (1 - 1/s)^{K^{t}}.$$
(2.41)

Ця ймовірність збільшується дуже швидко з ростом t (див. рис.2.13), Тому при використанні випадкової топології параметр K не повинен бути занадто великим, щоб уникнути надмірно швидкого поширення інформації в рої, а значить і

можливості передчасної збіжності до локального розв'язку. При використанні випадкової топології для більшості випадків добрі результати вдається досягти при K = 3 (s = 20).

Рисунок 2.13 - Імовірність повної поінформованості рою через *t*-ітерацій (s = 20)

З формули (2.41) маємо, що для того, щоб довільні дві частинки рою обмінялися інформацією з імовірністю *р* повинна пройти кількість ітерацій, що обчислюється відповідно до виразу [53]:

$$t = \frac{\ln\left[\frac{\ln(1-p)}{\ln(1-1/s)}\right]}{\ln K}.$$
 (2.42)

Отже, якщо розв'язувана задача оптимізації має велику розмірність, або характер топографії цільової функції заздалегідь невідомий доцільним є застосування випадкової динамічно змінної топології зв'язків [52, 53].

2.4.3. Гібридний меметичний алгоритм оптимізації на основі генетичного з локальним пошуком симплексним методом Нелдера-Міда

Більшість метаевристичних алгоритмів дозволяють досліджувати весь простір пошуку, проте вони менш ефективні при вивченні окремих невеликих його ділянок.

Дослідження останніх років показують, що ГА є найкращими із наявних методів при розв'язку багатоекстремальних задач оптимізації. Такі задачі успішно розв'язуються ГА, але значні затрати часу на їх розв'язок стримують їх

застосування в складних задачах, що відрізняються великими обсягами розрахунку цільової функції, які задаються або аналітично, або алгоритмічно [52].

Важливою особливістю ГА є те, що генетичні оператори кросовера, мутації та інверсії в процесі генерування нащадків не використовують інформацію про локальний рельєф поверхні цільової функції і ця властивість є перспективною. Генерування нащадків в ГА здійснюється випадково. Тому в процесі еволюції існують і невдалі нащадки, які в підсумку збільшують кількість звернень до цільової функції, що збільшує час пошуку глобального екстремуму. Гібридний алгоритм на основі генетичного з локальним пошуком методом Нелдера–Міда здатен з необхідною точністю здійснити пошук глобального екстремуму з найменшою кількістю звернень до цільової функції [52, 53].

Цей гібрид ГА зберігає в собі генетичні якості стохастичної селекції популяції пошукових точок, а для виключення невдалих нащадків при їх генеруванні в алгоритмі застосовується процедура регулярного пошуку локальних екстремумів. Одним із найбільш популярних і ефективних методів локального пошуку, що не вимагає обчислення похідних цільової функції є алгоритм Нелдера-Міда [52, 53]. Цей пошуковий алгоритм в своїй роботі використовує операції відображення, розтягування, редукцію симплекса. Кількість стискання та вершин В багатограннику зазвичай вибирається більшим на одиницю ніж розмірність простору пошуку. На кожній ітерації методу здійснюється сортування наявних вершин за значенням функції, яка оптимізується і найгірша за значенням цільової функції вершина відображується через центр тяжіння інших вершин багатогранника. Якщо отримана після відображення точка буде найкраща за інші в симплексі вершин, то багатогранник розтягується в цьому перспективному напрямку пошуку. При невдалому відображенні здійснюється його стискання. У випадку невдачі, що може свідчити, що пошук здійснюється в околі оптимальної точки і наявний багатогранник занадто великий для пошуку, координати всіх його точок, окрім найкращої, перераховуються так, що багатогранник стискається у напрямку до точки з мінімальним значенням функції, яка оптимізується.

Параметрами алгоритму Нелдера-Міда є коефіцієнти відображення, стискання і розтягування, які зазвичай вибираються рівними 1, 0.5, 2 відповідно.

Окрім того, в процесі регулярного пошуку гібрид ГА здатен знайти глобальний екстремум за межами заданого діапазону зміни змінних [52, 53].

2.4.4. Гібридний алгоритм оптимізації роєм частинок з еволюційним формуванням складу рою

В роботах [59-61] показано, що метод оптимізації роєм частинок у більшості випадків більш ефективний, ніж генетичні алгоритми при оптимізації унімодальних та «яроподібних» функцій і дозволяє відшукувати прийнятний розв'язок за меншу кількість обрахунків цільової функції. Проте при оптимізації багатоекстремальних функцій, ГА за рахунок оператора мутації має більше шансів уникнути потрапляння в локальний оптимум [53]. Отже, гібридизація цих двох методів є корисною для розв'язку широкого класу задач.

В роботі [53] наводиться опис гібридного методу оптимізації роєм частинок з еволюційним формуванням складу популяції, що побудований на основі алгоритму PSO із випадковою топологією зв'язків із додаванням до нього генетичних операторів. В описаному алгоритмі PSO-GA [53] як оператор кросовера використовується нерівномірне схрещування [62], яке є найбільш вдалим для пошуку оптимуму функцій багатьох дійсних змінних. На відміну від звичайного ГА із дійсними хромосомами, схрещування здійснюється не тільки для координат, але і для швидкості частинок. При такому способі схрещування нащадки виявляються всередині гіперкубу в протилежних діагональних вершинах якого розташовані частинки-батьки. Як оператор мутації для нащадків рою частинок застосовується звичайна гаусівська мутація, в якій, щоб уникнути виходу за межі простору пошуку враховується відстань до границі простору пошуку. Оскільки процес передачі інформації між частинками відіграє важливу роль при пошуку оптимуму, то з метою підвищення ефективності ГА також додатково вводиться оператор кросовера для зв'язків. При його застосуванні нащадок копіює кожний зв'язок випадково у одного із батьків. При цьому середня кількість зв'язків практично не змінюється [53].

Перед застосуванням генетичних операторів частинки рою сортуються від найкращого до найгіршого плинного значення цільової функції. Тобто на початок рою потрапляють найкращі частинки, які надалі будуть батьківськими особинами. Результати тестування на різноманітних функціях свідчать про те, що ГА дозволяє за ту ж кількість обрахунків цільової функції знайти кращий розв'язок [53]. Як зазначають автори [53], пошукові властивості алгоритму PSO-GA можна покращити шляхом підбору значень параметрів генетичних операторів для конкретної задачі. Отже, гібридизація метода роєм частинок з генетичними алгоритмами позитивно відображається як на якості, так і на швидкості пошуку розв'язку.

Отже, враховуючи практично відсутню апріорну допоміжну інформацію щодо топології гіперповерхні відгуку, в якості алгоритмів пошуку оптимуму обрано стохастичні метаевристичні їх різновиди. Вони є досить потужними засобами розв'язку оптимізаційних задач у випадках багатовимірності, багатоекстремальності, наявності обмежень на змінні, недиференційовності, багатовимірного ярового виду цільових функцій. Тому доцільно використовувати в дослідженнях групи алгоритмів, які дозволяють відшукувати субоптимальні, тобто досяжно близькі до точних, розв'язки задачі.

Різновидами таких алгоритмів є еволюційний меметичний гібридний генетичний алгоритм з локальним пошуком екстремуму симплексним методом Нелдера-Міда; біонічний поведінковий алгоритм оптимізації роєм часток зі стратегією випадкової топології зв'язків, який заснований на моделюванні колективної поведінки самоорганізованих систем, що складений з елементів, які взаємодіють; низькорівневий гібридний алгоритм оптимізації роєм часток із еволюційним формуванням складу рою, який об'єднує високу пошукову здатність до знаходження глобального екстремуму, що властива ГА з ефективністю його визначення в умовах ярового характеру цільової функції, яка є відмінною особливістю ройових алгоритмів. Всім цим алгоритмам притаманна значна швидкість збіжності в умовах високої розмірності простору пошуку. 2.5. Верифікація результатів синтезу систем збудження рухомих вихрострумових перетворювачів з використанням "точних" математичних моделей

Верифікація результатів синтезу СЗ рухомих ВСП здійснюється в наступній послідовності (рис.2.14):

• Отримані параметри СЗ в результаті оптимального синтезу, такі як, кількість секцій *M_i*, MPC - *Iw_i*, геометричні параметри, просторові координати розташування СЗ у просторі підставляються в вирази (2.29)-(2.31) «точної» електродинамічної математичної моделі ВСП із врахуванням параметру форми для кожного виду форми котушки.

• Задаються електрофізичні параметри ОК та параметри джерела збудження СЗ та розраховується синтезований розподіл ГВС.

• Розраховується похибка синтезу в кожній точці N заданої зони контролю

за формулою: $\delta_i = \frac{J_{i.cuhm.} - J_{i.ref.}}{J_{i.ref.}} \cdot 100\%$, де i = 1...N, $J_{i.ref.}$ - заданий бажаний

розподіл ГВС.

Рисунок 2.14 - Алгоритм виконання оцінки похибки синтезу

2.6. Висновки до другого розділу

1. Однакова реакція ВСП на дефекти суцільності та структури об'єкту можлива лише в випадку його однорідної чутливості в зоні контролю, що можна реалізувати спеціальною конструкцією СЗ. Запропоновано різновиди СЗ перетворювачів, які уявляють собою сукупність окремих секцій котушки, включених послідовно-узгоджено або послідовно-зустрічно «за полем» та розмішених в одній площині (планарна структура), в просторі (об'ємна структура) чи в гібридному змішаному варіанті (гібридна структура).

2. Технічні та електричні характеристики секційних котушок СЗ, отримуються в результаті розв'язку оберненої задачі електродинаміки відносно цих параметрів, вхідними даними для якої є бажаний, апріорі заданий, розподіл ГВС в об'єкті, що забезпечує однорідну, тобто рівномірну, чутливість перетворювачів в зоні контролю. Для розв'язку обернених задач електродинаміки в загальному випадку необхідно мати «точну» математичну модель для розрахунку ГВС в залежності від електрофізичних параметрів об'єкту, частоти струму збудження, геометрії ОК та перетворювача.

3. Для багатовимірних планів експерименту зі збільшенням розмірності простору все складніше відшукувати комбінації ЛП_т-послідовностей, які мають найкращі показники узагальненої розбіжності, що потребує значних часових ресурсів. Хоча використання комбінацій ЛП_т-послідовностей все ж таки показує кращі результати в результаті вдалого вибору напрямних чисел. На основі ЛП_тпослідовностей вдається створювати кращі за показниками гомогенності багатовимірні плани експерименту. Але довільне поєднання векторів в плані не приводить автоматично до бажаного результату. Водночас якщо вимоги до плану дозволяють обмежитися не ідеальним його варіантом з гарантовано низькою розбіжністю, то це можна зробити з використанням R_d-послідовностей без ризику отримання «аномальних» різновидів, як в випадках з ЛП_т-послідовностями. Створено метод побудови багатовимірних однорідних КПЕ з гарантовано низькими показниками центрованої та циклічної розбіжностей на основі комбінацій квазівипадкових R_d-послідовностей.

Застосування технології сурогатної оптимізації дозволяє розв'язувати 4. залачі оптимального синтезу 3 використанням метамоделей BCII. які обчислювальною продуктивністю. характеризуються високою Створення апроксимаційних моделей (метамоделей) ВСП, що з прийнятною точністю відтворюють багатовимірні в загальному випадку поверхні відгуку, є дуже важливим етапом методу сурогатної оптимізації, який визначає в кінцевому результаті успішність синтезу апріорі заданого однорідного розподілу ГВС в зоні контролю об'єкта.

5. Створено метод побудови багатовимірних метамоделей із застосуванням гібридного підходу, що полягає: в одночасному використанні декомпозиції області дизайну на декілька підобластей, де здійснюють розв'язок задач локальної апроксимації, з наступною «зшивкою» складових частин апроксимацій в єдину неперервну модель; та множинних НМ, побудованих на техніках асоціативних машин із різними методами отримання рішення. Поєднання при формуванні вихідного сигналу здійснюють за допомогою лінійної комбінації вихідних сигналів окремих НМ, зокрема усередненням за ансамблем. Крім того, передбачено, що НМ працюють на основі методу підсилення шляхом бустінгу та бегінгу. Це дозволяє вносити випадкові зміни до масиву навчальної вибірки, що необхідні з метою подальшого створення декількох альтернативних моделей, які засновані на різних підмножинах даних.

6. Враховуючи практично відсутню апріорну допоміжну інформацію щодо топології гіперповерхні відгуку, в якості алгоритмів пошуку оптимуму обрано стохастичні метаевристичні їх різновиди. Вони є досить потужними засобами розв'язку оптимізаційних задач у випадках багатовимірності, багатоекстремальності, наявності обмежень на змінні, недиференційовності, багатовимірного ярового виду цільових функцій. Тому доцільно використовувати в дослідженнях групи алгоритмів, які дозволяють відшукувати субоптимальні, тобто досяжно близькі до точних, розв'язки задачі.

7. Різновидами таких алгоритмів є еволюційний меметичний гібридний генетичний алгоритм з локальним пошуком екстремуму симплексним методом

Нелдера-Міда; біонічний поведінковий алгоритм оптимізації роєм часток зі стратегією випадкової топології зв'язків, який заснований на моделюванні колективної поведінки самоорганізованих систем, що складений з елементів, які взаємодіють; низькорівневий гібридний алгоритм оптимізації роєм часток із еволюційним формуванням складу рою, який об'єднує високу пошукову здатність до знаходження глобального екстремуму, що властива генетичним алгоритмам, з ефективністю його визначення в умовах ярового характеру цільової функції, яка є відмінною особливістю ройових алгоритмів. Всім цим алгоритмам притаманна значна швидкість збіжності в умовах високої розмірності простору пошуку.

В розділі побудована методологія сурогатного оптимального синтезу 8. всього класу рухомих ВСП із однорідною чутливістю в зоні контролю, що складена з сукупності методів, а саме методу створення «точної» електродинамічної моделі взаємодії СЗ ВСП з ОК; створеного методу генерування багатовимірних однорідних комп'ютерних планів експериментів з гарантовано низькими розбіжностей основі комбінацій на квазівипадкових R_dпоказниками послідовностей; створеного адитивного комітетного нейромережевого методу побудови багатовимірних метамоделей СЗ ВСП; методів пошуку глобальних екстремумів цільової функції засобами умовної стохастичної метаевристичної оптимізації; методу остаточної оцінки похибки синтезу бажаного розподілу ГВС за «точною» електродинамічною моделлю.

Список використаних джерел до розділу 2

1. Gal'chenko V.Ya., Vorob'ev M.A. Structural synthesis of attachable eddycurrent probes with a given distribution of the probing field in the test zone // Russian Journal of Nondestructive Testing. - 2005. – V. 41. - N_{2} 1. - P. 29–33.

2. Гальченко В.Я., Павлов О.К., Воробйов М.О. Нелінійний синтез магнітних полів збудження вихрострумових перетворювачів дефектоскопів // Методи і прилади контролю якості. - 2002. - № 8. - С. 3-5.

3. Норенков И.П. Основы автоматического проектирования. Москва: Издво МГТУ им. Баумана. 2002. 336 с. 4. Норенков И.П. Автоматизированное проектирование. Учебник. Серия: Информатика в техническом университете. Москва: Изд-во МГТУ им. Н.Э. Баумана, 2000. 188 с.

5. Ли К. Основы САПР (САD/CAV/CAE). Санкт-Петербург: Питер, 2006. 580 с.

6. Корячко В.П., Курейгин В.М., Норенков И.П. Теоретические основы САПР. Москва: Энергоатомиздат, 1987. 400 с.

7. Андронов С.А. Методы оптимального проектирования. Санкт-Петербург: СПбГУАП, 2001. 168 с.

8. Аветисян Д.А. Автоматизация проектирования электротехнических систем и устройств. Москва: Высшая школа, 2005. 511 с.

9. Свирщева Э.А. Структурный синтез неизоморфных систем с однородными компонентами. Харьков: ХТУРЕ, 1998. 256 с.

10. Черноруцкий И.Г. Оптимальный параметрический синтез. Ленинград: Энергоатомиздат, 1987. 128 с.

Побудова RBF-метамоделей структур збудження рухомого концентричного вихрострумового перетворювача [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Електротехніка та електромеханіка. – 2019. – № 2. – С. 28-38.

12. Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems [Text] / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov // Eastern-European Journal of Enterprise Technologies. – 2018. - N_{2} 5/5 (95). - P. 39-46.

13. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. Nonlinear surrogate synthesis of the surface circular eddy current probes // Przegląd elektrotechniczny. – 2019. - N_{2} 9. – P. 76-82.

14. Оптимальний сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів із рівномірною чутливістю в зоні контролю [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Вісник

Херсонського національного технічного університету. – 2019. – № 2(69). -Частина 2. - С. 118-125.

15. Линейный синтез несоосных накладных вихретоковых преобразователей [Текст] / В. Я. Гальченко, Р. В. Трембовецкая, В. В. Тычков // International Journal "NDT Days". - 2019. – Vol. 2. – Issue. 3. - Р. 259-268.

 Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system / R.V. Trembovetska, V.Y. Halchenko, V.V. Tychkov // International Scientific Journal «Mathematical Modeling». – 2019. vol. 3. - Issue 4. - P. 113-116.

17. Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, A. V. Storchak // International Journal "NDT Days". - 2020. – Vol. 3. – Issue. 4. - P. 184-190.

Linear synthesis of frame eddy current probes with a planar excitation system / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, C. V. Bazilo // International Scientific Journal «Mathematical Modeling». – 2020. - vol. 4. - Issue 3. – P. 86-90.

 The RBF-Metamodel Development of Surface Eddy-Current Probe for the Surrogate Optimal Synthesis Problem [Text] / V. Ya. Halchenko, R. V. Trembovetska, V. V. Tychkov // International Journal "NDT Days". – 2018. – Vol.
 I, Issue 4. – P. 425-433.

20. Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – с. 60-72.

21. Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як складова сурогатного оптимального синтезу [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Вісник Херсонського національного технічного університету. – 2018. – № 3 (66). – Т. 1. – С. 32–38.

22. Відновлення приповерхневих радіальних профілів електрофізичних характеристик циліндричних об'єктів при вихрострумових вимірюваннях із наявністю апріорних даних. Формування вибірки для побудови сурогатної моделі / В.Я. Гальченко, В.В. Тичков, А.В. Сторчак, Р.В. Трембовецька // Український метрологічний журнал. – 2020. – № 1. – С. 35-50.

23. Itaya T., Ishida K., Kubota Y. et al. Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab // Progress In Electromagnetics Research M. - 2016. - V. 47. - P. 1-12.

24. Itaya T., Ishida K., Tanaka A.et al. Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab // IET Science, Measurement & Technology. – 2012. V. 6. - N_{2} 2. – P. 43–51.

25. Ishida T., Itaya T., Tanaka A. et al. Magnetic Field Analysis of an Arbitrary Shaped Coil Using Shape Functions // IEEE Transactions on Magnetics. – 2009. – V.
45. - № 1. – P. 104–112.

26. Panas S.M., Kriezis E.E. Eddy current distribution due to a rectangular current frame moving above a conducting slab // Archiv für Elektrotechnik. – 1986. - V. 69. - № 3. – P. 185–191.

27. Thollon F., Lebrun B., Burais N. et al. Numerical and experimental study of eddy current probes in NDT of structures with deep flaws // NDT & E international. – 1995. – P. 97–102.

28. Theodoulidis T., Bowler J.R. Interaction of an eddy-current coil with a rightangled conductive wedge // IEEE Transactions on Magnetics. – 2010. – P. 1034–1042.

29. Itaya T., Ishida K., Tanaka A., Takehira N., Miki T. A New Analytical Method for Calculation of the Eddy Current Distribution and its Application to a System of Conductor-Stab and Rectangular Coil // PIERS Online. – $2011. - V. 7. - N_{\odot}$ 8, P. 766-770.

30. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. - 2-е изд., испр. - М.: Наука. Гл. Ред. Физ.-мат. Лит., 1982. - 621 с. (т. VIII).

31. Поливанов К.М. Электродинамика движущихся тел / К.М. Поливанов. -М. : Энергоиздат, 1982. - 192 с.

32. Santner T.J., Williams B.J., Notz W.I. The Design and Analysis of Computer Experiments. New York : Springer (Springer series in statistics); 2nd ed. - 2018. - 446 p.

33. Koziel S., Yang Xin-She. Computational Optimization, Methods and Algorithms. Springer-Verlag Berlin Heidelberg (Studies in Computational Intelligence); 1st ed. - 2016. – 292 p.

34. Ping J., Qi Z., Xinyu S. Surrogate Model-Based Engineering Design and Optimization. Springer (Springer Tracts in Mechanical Engineering); 1st ed. - 2020 edition (3 January 2020). – 252 p.

35. El-Ghazali T. Metaheuristics From Design To Implementation. Wiley: (Wiley Series on Parallel and Distributed Computing); 1st ed. – 2009. – 618 p.

Кельтон В., Лоу А. Имитационное моделирование. - 3-е изд. — СПб.;
 Питер: Киев: Издательская группа BHV, 2004. – 847 с.

37. Kuipers L., Niederreiter H., Uniform distribution of sequences. A Wileyinterscience publication, 1974. - 406 p.

 Джекел П. Применение методов Монте-Карло в финансах. - М.: Интернет-трейдинг, 2004. – 256 с.

39. Радченко С.Г. Методология регрессионного анализа: монография / Станіслав Радченко. – Київ: «Корнійчук», 2011. – 375 с.

40. Hellekalek P., Larcher G., Beck J. and others. Random and Quasi-Random Point Sets. Springer: (Lecture notes in statistics 138); 1st ed. 1998 edition (9 October 1998). – 334 p.

41. Roberts M. The unreasonable effectiveness of quasirandom sequences. -May 2018. - [online] <u>http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/</u>.

42. Elsawah M. Constructing Uniform Experimental Designs: In View of Centered and Wrap-around Discrepancy. LAP LAMBERT Academic Publishing: (Theory of probability, stochastics, mathematical statistics); 1st ed. – 2014. - 168 p.

43. Соболь И.М., Статников Р.Б. Выбор оптимальных параметров в задачах со многими критериями. 2-е изд., перераб. и доп. - Москва: Дрофа, 2006. - 175 с.

44. The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence / Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. // Applied Computer Systems. – 2020. – vol. 25, no. 1, pp. 70-76.

45. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. (Україна). Свідоцтво 102018 Україна про реєстрацію авторського права на твір «Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R-послідовностей»»; заявник та власник Гальченко В.Я., Трембовецька Р.В., Тичков В.В. - №103492; заявл.24.12.20; зареєстровано 25.01.21 в Державному реєстрі свідоцтв про реєстрацію авторського права на твір.

46. Методи створення метамоделей: стан питання / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков, А.В. Сторчак // Вісник Вінницького політехнічного інституту. - 2020. – № 4 (151). - С. 74 – 88.

47. Trembovetska R. V., Halchenko V. Ya., Tychkov V. V. The Approximation Surface Review of the Multidimensional Target Function for Surrogate Optimization Problem. *Advanced Information Systems and Technologies*: VI International scientific conference, Sumy, 16–18 May, 2018 : proceedings. – [Edited by S. I. Protsenko, V. V. Shendryk]. – Sumy: Sumy State University, 2018. P. 34–38. 48. Трембовецька Р. В., Гальченко В. Я., Тичков В. В. Побудова MLPметамоделі накладного вихрострумового перетворювача для задач сурогатного оптимального синтезу. *Технічні вісті*. 2018. № 1(47), № 2(48). С. 27-31.

49. Трембовецька Р. В., Гальченко В. Я., Тичков В. В. Методи покращення точності нейромережевих метамоделей накладних вихрострумових перетворювачів для сурогатного синтезу. *Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2018)* : 2-nd scientific conference with international participation, Poland, Lublin, 15–19 october 2018. : Conference proceedings. – Poland : USNDT. 2018. № 2. P. 47-49.

50. Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, A. V. Storchak // International Journal "NDT Days". - 2020. – Vol. 3. – Issue. 4. - P. 184-190.

Бринк Х., Ричардс Дж., Феверолф М. Машинное обучение. Спб.: Питер.
 2017.

52. Гальченко В.Я., Трембовецкая Р.В., MathCAD: математические методы и инструментальные средства оптимизации. Черкассы: ЧП Гордиенко Е.И., 2018.

53. Гальченко В.Я., Якимов А.Н. Популяционные метаэвристические алгоритмы оптимизации роем частиц: Учебное пособие. Черкассы: ФЛП Третяков А.Н., 2015. 160 с.

54. Скобцов Ю.А., Федоров Е.Е. Метаэвристики: монография. Донецк: Ноулидж, 2013. 426 с.

55. Wong X. Hybrid nature-inspired computation method for optimization. Doctoral Dissertation. – Helsinki University of Technology. – 2009. – 161 p.

56. Антух А.Э., Карпенко А.П. Глобальная оптимизация на основе гибридизации методов роя частиц, эволюция разума и клональной селекции // Наука и образование: электронное научно-техническое издание. – 2012. – № 8. – Режим доступа: http://technomag.edu.ru/doc/431723.html.

57. Krasnogor N. Studies on the Theory and Design Space of Memetic Algorithms // Ph.D. Thesis. – Faculty of Computing. – Mathematics and Engineering University of the West of England. – Bristol, U.K. – 2002. – 289 p.

58. El-Ghazali Talbi. Metaheuristics. From design to implementation. – New Jersey: Wiley, 2009. – 618 p.

59. Angeline P. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences // Evolutionary Programming VII (Berlin: Springer). – 1998. – P. 601-610.

60. Hassan R., Cohanim B., Weck O., Venter G. A comparison of particle swarm optimization and the genetic algorithm // 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. – 2005. – P. 1-13.

61. Гальченко В.Я., Якимов А.Н., Остапущенко Д.Л.Поиск глобального оптимума функций с использованием гибрида мультиагентной роевой оптимизации с эволюционным формированием состава популяции // Информационные технологии. – 2010. – № 10. – С. 9-16.

62. Неитеративные, эволюционные и мультиагентные методы синтеза нечеткологичных и нейросетевых моделей: Монография / [под ред. С.А. Субботина]. – Запорожье: Издательство ЗНТУ, 2009. – 375 с.

РОЗДІЛ З. МЕТОД СУРОГАТНОГО ОПТИМАЛЬНОГО ПАРАМЕТРИЧНОГО СИНТЕЗУ КРУГОВИХ РУХОМИХ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

3.1. «Точна» електродинамічна модель рухомих кругових накладних вихрострумових перетворювачів

Розглядаємо в якості структури збудження рухомого НВСП одинарний виток кругової форми із радіусом r_0 (рис. 3.1, a), який збуджується змінним струмом I частотою ω . Дана структура розташована на висоті z_0 над ОК товщиною d з постійною питомою електричною провідністю σ та магнітною проникливістю μ_r (рис. 3.1). Швидкість руху перетворювача $\vec{v} = (v_x, v_y, 0)$ є сталою.

Рисунок 3.1 - Геометрична модель котушки збудження ВСП у вигляді одинарного витка кругової форми

Аналітичний розв'язок системи рівнянь (2.6) за прийнятих припущень у розділі 2.2 з урахуванням умов неперервності тангенціальних складових напруженості магнітного поля $H_{1t} = H_{2t}$, та нормальних складових магнітної індукції $B_{1n} = B_{2n}$. на границях розділу середовищ z = 0 та z = -d, дозволив авторам [1-4] отримати «точні» функціональні залежності розподілу компонент магнітної індукції B_x , B_y , B_z в середовищі ОК:

$$B_{2x} = \frac{\mu_0 \cdot \mu_r \cdot I}{8 \cdot \pi^2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi}{\eta \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\begin{cases} -(1 + \lambda_0) \cdot e^{2 \cdot \gamma \cdot d} + \\ +\nu_0 \cdot e^{(\gamma - \sqrt{\xi^2 + \eta^2}) \cdot d} \end{cases} \cdot e^{\gamma \cdot z} + \\ +\nu_0 \cdot e^{(\gamma - \sqrt{\xi^2 + \eta^2}) \cdot d} \end{cases} \cdot e^{\gamma \cdot z} + \begin{cases} 1 + \lambda_0 - \nu_0 \cdot e^{(\gamma - \sqrt{\xi^2 + \eta^2}) \cdot d} \end{cases} \cdot e^{-\gamma \cdot z} \end{bmatrix} \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S(\xi, \eta) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta, \end{cases}$$
(3.1)

$$B_{2y} = \frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{(1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} + \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S\left(\xi, \eta\right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$(3.2)$$

$$B_{2z} = j \cdot \frac{\mu_0 \cdot \mu_r \cdot I}{8 \cdot \pi^2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^2 + \eta^2}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_0) \cdot e^{2 \cdot \gamma \cdot d} + v_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_0 - v_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S(\xi, \eta) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$(3.3)$$

де *B*_{2*x*}, *B*_{2*y*}, *B*_{2*z*} – складові магнітної індукції за просторовими координатами; *v*_x, *v*_y – складові швидкості руху кругового НВСП відносно ОК.

Ці вирази є адекватними у локальній системі координат (ЛСК), де початок координат співпадає з центром витка. Кратні невласні інтеграли першого роду, які вони містять, розраховуються чисельно методом усічення.

Вирази (3.1)-(3.2) дозволяють отримати «точну» математичну модель розподілу ГВС для кругового НВСП. Для цього визначаються похідні за складовими магнітного потоку:

$$\begin{aligned} \frac{\partial B_x}{\partial z} &= \frac{\mu_0 \cdot \mu_r \cdot I}{8 \cdot \pi^2} \cdot \int_{-\infty -\infty}^{\infty} \int_{-\infty -\infty}^{\infty} \frac{\xi}{\eta \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\begin{cases} -(1 + \lambda_0) \cdot e^{2 \cdot \gamma \cdot d} + \\ \nu_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \end{cases} \cdot e^{-\gamma \cdot z} \cdot \gamma + \\ + \left\{ 1 + \lambda_0 - \nu_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \right\} \cdot (-e^{-\gamma \cdot z} \cdot \gamma) \left] \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot S\left(\xi, \eta\right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta, \end{aligned}$$

$$\frac{\partial B_{y}}{\partial z} = \frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{(1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} \cdot \gamma + \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot (-e^{-\gamma \cdot z} \cdot \gamma) \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S\left(\xi, \eta\right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$\begin{aligned} \frac{\partial B_{z}}{\partial x} &= j \cdot \frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^{2} + \eta^{2}}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \left] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S(\xi, \eta) \cdot \left(-\xi \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta, \end{aligned}$$

$$\begin{aligned} \frac{\partial B_{z}}{\partial y} &= j \cdot \frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^{2} + \eta^{2}}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S\left(\xi, \eta\right) \cdot \left(-\eta \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta. \end{aligned}$$

Тоді складові ГВС за просторовими координатами *x*, *y*, *z* відповідно визначаються за формулами (2.17)-(2.19) [1]:

$$J_{x} = -\frac{I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\gamma^{2} - \xi^{2} - \eta^{2}}{\eta \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S\left(\xi, \eta\right) \cdot e^{-j\left(x \cdot \xi + y \cdot \eta\right)} d\xi d\eta,$$

$$J_{y} = \frac{I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi \cdot \left(\gamma^{2} - \xi^{2} - \eta^{2}\right)}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S\left(\xi, \eta\right) \cdot e^{-j\left(x \cdot \xi + y \cdot \eta\right)} d\xi d\eta.$$

$$(3.5)$$

В реальних конструкціях ВСП в якості структури збудження застосовується не один виток (рис. 3.1, *a*–*в*), а котушка, яка має *w* витків (рис. 3.2). Тоді для розрахунку розподілу ГВС необхідно математичну модель (3.1)–(3.3) доповнити інтегруванням за площею поперечного перетину котушки.

Рисунок 3.2 - Геометрична модель кругової СЗ із котушками з прямокутним поперечним перетином

Для круглої котушки з прямокутним поперечним перетином *a* × *b* (рис. 3.2) інтегрування за площею задається виразом [2]:

$$\frac{w}{a \cdot b} \cdot \int_{-a/2}^{a/2} -j \cdot \frac{2 \cdot \pi \cdot (r_m + p) \cdot \eta}{\sqrt{\xi^2 + \eta^2}} \cdot J_1 \left((r_m + p) \cdot \sqrt{\xi^2 + \eta^2} \right) dp \times \\
\times \left[\frac{e^{z_m \cdot \sqrt{\xi^2 + \eta^2}}}{\sqrt{\xi^2 + \eta^2}} \cdot \left(e^{-\left(\frac{b}{2} \cdot \sqrt{\xi^2 + \eta^2}\right)} - e^{\left(\frac{b}{2} \cdot \sqrt{\xi^2 + \eta^2}\right)} \right) \right] = \frac{w}{a \cdot b} \cdot I_s(r_m, a) \cdot I_E(z_m, b),$$
(3.6)

де $I_s()$, $I_E()$ – відповідні функціональні залежності з інтегральними операторами;

*J*₁ – функція Бесселя 1-го роду 1-го порядку від комплексного аргументу;

 $a = r_2 - r_1; b = z_2 - z_1; r_m = (r_1 + r_2)/2; z_m = (z_1 - z_2)/2$ - середнє значення радіусу та висоти розташування котушки відповідно.

Для розрахунку «точних» електродинамічних математичних моделей (3.1)– (3.5) розроблено програмне забезпечення мовою програмування MathCAD.

Розрахунок розподілу ГВС для витка котушки збудження круглої форми з метою його візуалізації виконувався для випадку варіювання двох параметрів J = f(x, y) (рис. 3.1) та фіксованих інших за формулами (3.4)–(3.5) «точної» математичної моделі при наступних вихідних даних: для випадку нерухомого НВСП – x = 0...30 мм, y = 0...30 мм, r = 5 мм; для випадку рухомого НВСП – v = (40; 0; 0) м/с; x = -30...30 мм, y = 0...30 мм, r = 5, 10, 15 мм; товщина струмопровідного матеріалу d = 10 мм; висота розташування витка котушки над

ОК $z_0 = 3$ мм; частота f = 100 Гц; електрофізичні параметри матеріалу $\sigma = 3.745 \cdot 10^7$ См/м, $\mu_r = 1$, сила струму I = 1 А.

На рис. 3.3 а-з показано 3D–розподіл ГВС та ліній рівня для деяких радіусів витків котушки збудження. Так, на рис. 3.3 а, б наведено результати моделювання для нерухомого НВСП, а на рис. 3.3, в-з – результати розрахунку розподілу ГВС при врахуванні ефекту швидкості.

Рисунок 3.3 - Розподіл ГВС в ОК в зоні контролю 30×30 мм визначений за «точною» математичною моделлю: а, б) НВСП нерухомий, котушка збудження *r* = 5 мм НВСП; в, г) рухомий, котушка збудження *r* = 5 мм

Продовження рисунка 3.3 - Розподіл ГВС в ОК в зоні контролю 30×30 мм визначений за «точною» математичною моделлю: д, е) НВСП рухомий, котушка збудження *r* = 10 мм; ж, з) НВСП рухомий, котушка збудження *r* = 15 мм

Затрати часу на розрахунок ГВС для тестової області за «точною» математичною моделлю для випадків нерухомого перетворювача та при врахуванні ефекту швидкості складає від 3.5 до 20 годин відповідно [5].

3.2. Побудова метамоделей кругових накладних вихрострумових перетворювачів

Планарна (пласка) кругова структура C3 характеризується наявністю M котушок із радіусами r_{0i} (i = 1...M) із рівномірним $\Delta r = \text{const}$ або нерівномірним $\Delta r = \text{var}$ їх розташуванням, що знаходяться на одній висоті z_0 над ОК. На відміну від планарної структури C3 для характеристики об'ємної додається ще один параметр, а саме висота розташування котушок z_{0i} над ОК [6]. Координати контрольних точок Q_{i} , i = 1...N задаються в глобальній системі координат (ГСК),

потім перераховуються в k-ту ЛСК. В ЛСК розрахунок ГВС виконується в кожній контрольній точці за виразами (3.4), (3.5), а потім результуючі значення отримуються як суперпозиція в кожній точці i = 1...N від всіх M котушок (рис. 3.4).

Схема їх включення – зустрічна або узгоджена, а струм живлення I може бути як однаковим, так і різним для кожної із котушок. Як варіант структури збудження на рис. 3.4 а показана система концентричних котушок із різними радіусами, що розташована на однаковій висоті z_0 над ОК. На рис. 3.4 б показана система збудження із котушок різних радіусів, що розташовані на однаковій висоті, при цьому центри котушок зміщені, тобто котушки не концентричні. Рис. 3.4 в демонструє систему котушок із різними радіусами, котрі розташовані на різних висотах та зі зміщенням центрів одного відносно інших [6].

Рисунок 3.4 - Геометричні моделі структур збудження НВСП [6]:

а) система концентричних котушок, де котушки розташовані на одній висоті z₀;
б) система котушок, де котушки розташовані на одній висоті z₀, центри котушок
зміщені; в) система котушок, де котушки розташовані на різних висотах, центри котушок зміщені; г) загальне розташування глобальної та локальних систем координат котушок

Сформулюємо задачу багатовимірної апроксимації математично для ряду структур СЗ НВСП у вигляді функціональних апроксимаційних залежностей розподілу ГВС. В табл. 2.8 наведено різновиди таких залежностей, де x та y є просторовими координатами на поверхні ОК в зоні контролю. В наступних розділах детально розглядається побудова багатовимірних апроксимаційних моделей для деяких випадків структур СЗ НВСП.

3.2.1. Метамодель кругового накладного вихрострумового перетворювача із планарною структурою системи збудження і перевірка її адекватності та інформативності

Метамодель для випадку НВСП (рис.3.4 а) будується згідно із запропонованою методологією, що наведена в розділі 2 та апробована в роботах [7, 8]. Використовуючи математичну модель для рухомого НВСП, виконуємо побудову метамоделі при варіюванні трьох параметрів в межах x = 0...30 мм; y = 0...30 мм; r = 2...15 мм. В області пошуку виконано декомпозицію на три підобласті: $2 \le r \le 6$ мм, $6 < r \le 11$ мм, $11 < r \le 15$ мм [9, 10].

Оскільки топологія гіперповерхні відгуку складна, тому план експерименту для функції-замісника створення реалізовано допомогою рівномірного за комп'ютерного заповнення точками багатовимірного простору пошуку, а саме, з використанням сукупності ЛП_т-послідовностей Соболя $\xi_1, \xi_2, ..., \xi_{52}$ [11, 12]. Так, наприклад. для підобласті 2 ≤ *r* ≤ 6 мм розглядалися такі випадки ЛΠ_τпослідовностей як (ξ_1 , ξ_2 , ξ_5) і (ξ_1 , ξ_3 , ξ_5) та обрано комбінацію, що має кращі показники центрованої та циклічної розбіжностей 6.366 · 10⁻⁶, 4.740755 відповідно для кількості точок *N_{навч}*=1036 [13]. Для визначеності розглянемо модельний в якому в зондувальних точках приклад, 3 отриманими координатами розраховувалися значення ресурсомісткої «точної» моделі при наступних вихідних даних: d = 10 мм; $z_0 = 3$ мм; частота f = 1 кГц; електрофізичні параметри матеріалу $\sigma = 3.745 \cdot 10^7$ CM/M, $\mu_r = 1$.

Реалізований КПЕ, в точках якого розраховано значення ГВС за «точною» електродинамічною моделлю (3.4), (3,5) для кожної декомпозиційної підобласті, представлено на рис.3.5. Кількість точок КПЕ наведено в таблиці 3.1.

Рисунок 3.5 – Комп'ютерний план експерименту на основі ЛП_τ-послідовностей для підобластей: а) вихідні дані - координати зондувальних точок, в яких розраховувалися значення ресурсомісткої функції розподілу ГВС;
б), в), г) навчальна вибірка представлена у вигляді ліній рівня узагальненого зрізу розподілу ГВС

Для кожної із підобластей створено групи RBF-нейронних мереж для плану експерименту із кількістю точок $N_{\mu a \theta \Psi_{-}} \in N_{ei \partial m \theta_{-}}$, з яких відібрані найкращі (табл. 3.1) за показниками коефіцієнту детермінації R^2 , відношення стандартних відхилень *S.D.ratio*; середньої відносної величини модельної похибки (або середньої похибки апроксимації) *МАРЕ*, %, діаграм розсіювання та гістограм залишків [11, 14]. Діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі навчання та гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку представлено на рис.3.6.

Таблиця 3.1 – Відомості щодо побудови метамоделі НВСП з планарною структурою СЗ у вигляді кругових витків

	Декомпозиційні підобласті	N _{навч.} /N _{відтв.}	Композит нейромереж	Метамоделі, що є складовими композиту	Комітет мереж
-			J_1	RBF-3-299-1(1)	-
			J_2	RBF-3-302-1(5)	-
			J_3	RBF-3-300-1(30)	-
		1026/2060	J_4	RBF-3-305-1(46)	-
	$2 \le r \le 6 \text{ MM}$	1030/2000		RBF-3-297-1(4)	No.4 No.0
				RBF-3-298-1(9)	JN04, JN09,
			$J_5 \equiv J_\Sigma$	RBF-3-299-1(12)	$JN \subseteq I \angle$, $M \simeq 4.9$
			-	RBF-3-306-1(48)	JN <u>9</u> 40
			J_1	RBF-3-329-1(8)	-
			J_2	RBF-3-332-1(1)	-
			J_3	RBF-3-328-1(8)	-
	6 < <i>r</i> ≤ 11 мм	1299/2575		RBF-3-326-1(3)	№3,
			$J_4=J_{\Sigma}$	RBF-3-329-1(20)	№20,
				RBF-3-326-1(42)	№42,
				RBF-3-332-1(80)	Nº80
			J_1	RBF-3-297-1(2)	-
			J_2	RBF-3-300-1(11)	-
	11 < <i>г</i> ≤ 15 мм	1040/2060	J_3	RBF-3-300-1(13)	-
			J_4	RBF-3-306-1(77)	-
				RBF-3-297-1(1)	N <u>∘</u> 1,
			$J_5 = J_{\varSigma}$	RBF-3-301-1(22)	№22,
				RBF-3-309-1(63)	Nº63
	Scatterplot of J1+J2+J3+J4+J5	5 against Jplan_norm		Histogram of MAPE	_J5
1		1		260 26%	
				240	
(1.7			200	
SL+ 15		1. A.		180	18%
J3+J4	.5	6		5 100 5 140	
1+J2+),4		-	Ž 120	10%
),3		-	80	<u> </u>
(0,2			60 4%	5%
(),1		-	20 1% 1% 1% 1%	3%0 1%
(0,0 0,1 0,2 0,3 0,4 0,5	0.6 0.7 0.8 0.9 1	-	0 -0,2412 -0,1851 -0,1290 -0,0729 -0,0168	0,0393 0,0954 0,1515
	Jplan_no	orm		-0,2132 -0,1571 -0,1010 -0,0449 0,0 MAPE_J5	112 0,0673 0,1234 0,17
	a) $2 \leq r \leq$	б мм		б) 2 ≤ <i>r</i> ≤ 6	ММ

Рисунок 3.6 – Деякі показники якості метамоделі: а) діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі навчання; б) гістограми розподілу відносної модельної похибки апроксимації гіперповерхонь відгуку

Продовження рисунка 3.6 – Деякі показники якості метамоделі: в), д) діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі навчання; г), е) гістограми розподілу відносної модельної похибки апроксимації гіперповерхонь відгуку

Для створення метамоделі використано всі три підходи: спочатку виконано декомпозицію простору пошуку, в кожній області якого отримано апроксимаційні залежності із використанням композиту нейронний мереж, а на завершальному етапі побудови композиту застосовано bagging - комітет для нейронних мереж, що мають із продуктивність більше 90 %. Така побудова асоціативних машин адитивним методом із прийняттям рішення усередненням за ансамблем на останньому рівні показана на рис.2.10 а. Верифікація метамоделі в цілому виконана перевіркою правильності відтворюваності поверхні відгуку у всіх трьох підобластях. На рис. 3.7 наведено результати відновлення поверхні відгуку для НВСП із планарною структурою СЗ, отримані за допомогою гібриду композит - комітет нейромереж, що виконано у всьому діапазоні варіації змінних на більшій кількості точок $N_{відтв.} > N_{навч}$. В цьому випадку на зрізи поверхні за радіусами припадає близько 511 точок, що є доволі інформативним.

Окрім цього, якість отриманої метамоделі додатково перевірена відтворенням гіперповерхні відгуку за формулою, що описує вихід адитивної НМ-регресійної залежності на основі RBF-нейромереж (1.12) та вагових коефіцієнтів, які визначені для цієї метамоделі. Так на рис.3.8 для прикладу наведено відтворення гіперповерхні відгуку для зрізів $r = 4.5 \text{ мm} \cup z_0 = 3 \text{ мm}, r = 9.75 \text{ мm} \cup z_0 = 3 \text{ мm};$ $r = 14.5 \text{ мm} \cup z_0 = 3 \text{ мm}.$

На етапі відтворення поверхні відгуку адекватність отриманої метамоделі оцінювалася за показниками: сума квадратів відповідно регресії, залишків, загальної; середніх квадратів тих самих показників; дисперсії відтворюваності, адекватності, загальної; стандартної похибки оцінки відтворюваності, оцінки адекватності, загальної; коефіцієнту детермінації; *S.D.ratio; MAPE* [11, 14].

Деякі із цих показників наведено в (табл.3.2) для кожної із підобластей, які отримано на останньому каскаді композиту, а на рис. 3.9 показано діаграми розсіювання та гістограми розподілу похибки *МАРЕ* для кожної із декомпозиційних областей.

в) 14 ≤ r ≤ 15 мм

Рисунок 3.7 - Результати відтворення розподілу ГВС у декомпозиційних

підобластях за допомогою створеної метамоделі

Рисунок 3.8 - Відновлення поверхні відгуку за допомогою створеної метамоделі, що представлено лініями рівня розподілу ГВС для деяких зрізів

Таблиця 3.2 – Вибіркові показники оцінки адекватності метамоделі НВСП з планарною структурою СЗ

	MAPE,%		M	S _R	SS _R		
Декомпозиційна підобласть, мм	навчання	відтворення	Навчання	відтворення	Навчання	відтворення	
$2 \le r \le 6$	5.38	6.76	$3.8 \cdot 10^{-5}$	0.00029	0.0394	0.597	
$6 < r \le 11$	4.48	4.8	$8.94 \cdot 10^{-5}$	0.000146	0.116	0.378	
$11 < r \le 15$	3.56	4.78	$13.6 \cdot 10^{-5}$	0.000379	0.142	0.782	

Рисунок 3.9 - Верифікація створеної метамоделі: а), в) діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі відтворення; б), г) гістограми розподілу відносної модельної похибки апроксимації гіперповерхонь відгуку

Продовження рисунка 3.9 - Верифікація створеної метамоделі: д) діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі відтворення; е) гістограми розподілу відносної модельної похибки апроксимації гіперповерхонь відгуку

Для перевірки відповідності отриманої функції відгуку експериментальним даним встановлювалась адекватність отриманої математичної моделі за критерієм Фішера [11, 12, 14]:

$$F_{\nu_D;\nu_R}^{e\kappa cn} > F_{\alpha;\nu_D;\nu_R}^{\kappa pum}, \qquad (3.7)$$

де $F_{\alpha;v_D;v_R}^{kpum}$ - критичне значення критерію Фішера, заздалегідь розраховане

значення з певним рівнем значущості а;

 $F_{\nu_D;\nu_R}^{e\kappa cn} = \frac{MS_D}{MS_R}$ - отримане експериментальне значення критерію Фішера;

 $v_D = n, v_R = N - n - 1$ - число степенів свободи;

N – кількість спостережень;

n – кількість заданих незалежних змінних.

На рис. 3.10 наведені деякі статистичні показники, отримані за допомогою універсальної комп'ютерно-інтегрованої системи STATISTICA [15]. Використовуючи їх оцінені адекватність та достовірність отриманих метамоделей для зазначених підобластей.

Working_error_2_5 мм* - Descriptive statistics (Table_x_y_r0_r_2_5)								
Working_error_2_5 мг - ЗМ Карты линий	Descriptive statistics (Table_x_y_r0_r_2_5)							
🖶 🔲 Correlations (Tabl		N набл.	Среднее	Сумма	Минимум	Максим.	Дисперсия	Ст.откл.
🖃 🔤 3М Карты лин	Переменная							
Карты лин	Jplan_norm	2060	0,083896	172,8260	0,000000	1,000000	0,023062	0,151862
Пистограм	J1+J2+J3+J4+J5	2060	0,083215	171,4231	-0,018909	0,967497	0,022764	0,150879
Карты лин	J5_остатки	2060	0,000677	1,3952	-0,467543	0,179869	0,000290	0,017027
Карты лин	J5_остатки - Абс. Ост.	2060	0,004231	8,7152	0,000002	0,467543	0,000272	0,016507
Диаграмм	SSR	2060	0,000290	0,5979	0,000000	0,218596	0,000026	0,005128
Descriptive sta	SSD	2060	0,022754	46,8729	0,000000	0,780751	0,007024	0,083809
	SST	2060	0,023051	47,4851	0,000000	0,839246	0,007257	0,085187

a) $Z \leq r \leq 0$ MM

Working_error_r_6_10 - Descriptive statistics (Table_x_y_r0_r_6_10)									
Working_error_r_0									
	Переменная	N набл.	Среднее	Сумма	Минимум	Максим.	Дисперсия	Ст.откл.	Станд. ошибки
⊞ ⊑ , J_2	Jplan_norm	2575	0,188141	484,4635	0,000000	1,000000	0,055578	0,235750	0,004646
	J_1+J_2+J_3+J_4	2575	0,187426	482,6222	0,001057	1,021917	0,055248	0,235050	0,004632
— J_4 ансамоль	J_4 остатки	2575	0,000715	1,8413	-0,089018	0,159610	0,000146	0,012102	0,000238
⊕ Таблица г	SSR	2575	0,000147	0,3783	0,000000	0,025475	0,000001	0,000923	0,000018
🗄 📗 Таблица г	SST	2575	0,055556	143,0579	0,000000	0,659117	0,012781	0,113053	0,002228
🛓 🔲 Таблица г	SSD	2575	0,055227	142,2107	0,000000	0,695184	0,012646	0,112455	0,002216

E		Working_error_r_11_15 - Descriptive statistics (Table_x_y_r0_r_11_15)							
Working_error_r_11_1		Descriptive	statistics (Tal	ble_x_y_r0_r_	11_15)				
ЭМ Карты линии		N набл.	Среднее	Сумма	Минимум	Максим.	Дисперсия	Ст.откл.	
🖶 📑 2М Диаграммы (Переменная								
🗎 - 📑 J_1	Jplan_norm	2060	0,307579	633,6120	0,000000	1,000000	0,079280	0,281568	
🖶 📮 J_2	J_1+J_2+J_3+J_4+J_5	2060	0,305711	629,7639	0,012394	1,061280	0,078701	0,280537	
🕀 📑 J_3	J_5 остатки	2060	0,001868	3,8481	-0,106473	0,370844	0,000376	0,019404	
⊕ ⊑ , J_4	SSR	2060	0,000380	0,7824	0,000000	0,137525	0,000013	0,003545	
🖨 🖓 J_5	SST	2060	0,079242	163, 0,7824	0,000000	0,479627	0,011183	0,105748	
🚊 🛄 ансамбль_1+	SSD	2060	0,078666	162,0520	0,000000	0,568261	0,010675	0,103319	

в) 11 < *r* ≤15 мм

Рисунок 3.10 - Статистичні показники для оцінки адекватності метамоделі для підобластей

Тоді отримана метамодель $J_{\sum ансамбль}$ для підобласті $2 \le r \le 6$ мм має експериментальне значення показника Фішера $F_{\nu_D;\nu_R}^{eксn} = F_{3;2056}^{ekcn} = 78.886$, а критичне значення цього критерію з рівнем значущості $\alpha = 5$ % та числом степенів свободи $\nu_R = 2056$, $\nu_D = 3$ складає $F_{\alpha;\nu_D;\nu_R}^{kpum} = F_{0.05;3;2056}^{kpum} = 2.6$ [15]. Отже, умова (3.7) виконується,

метамодель адекватна і прогноз результатів за моделлю не суперечить дійсності.

За допомогою модуля Correlation matrices отримані значення коефіцієнту кореляції та коефіцієнту детермінації (рис.3.11). З їх використанням оцінюється інформативність метамоделей для кожної підобласті.

Рисунок 3.11 - Статистичні показники для оцінки інформативності метамоделі для підобластей

Перевірка моделі на інформативність проводиться шляхом розрахунку коефіцієнту детермінації R^2 за формулою (2.35). Перевірку гіпотези про значущість множинного коефіцієту кореляції R^2 (інформативність моделі) виконано з використанням *F*-критерію Фішера (3.7) [11, 12, 14], де:

$$F_{\nu_{D};\nu_{R}}^{e\kappa cn} = \frac{R^{2}}{1-R^{2}} \cdot \frac{\nu_{R}}{\nu_{D}}.$$
(3.8)

Метамодель інформативна, оскільки $R^2 > 0.95$ (рис.3.11 а), та значимо достовірна за *F*-критерієм при рівні значущості 5 %, оскільки умова (3.7) виконується для експериментального значення $F_{3:2056}^{e\kappa cn} = 75.812$ [15].
Для підобласті 6 < $r \le 11$ мм експериментальне значення показника Фішера складає $F_{v_D;v_R}^{e\kappa cn} = F_{3;2571}^{e\kappa cn} = 375$, а критичне значення Фішера з рівнем значущості

 $\alpha = 5 \%$ та числом степенів свободи $v_R = 2571$, $v_D = 3$ дорівнює $F_{0.05;3;2571}^{kpum} = 2.6$ [15]. Умова (3.7) виконується, метамодель для цієї підобласті адекватна.

Експериментальне значення *F*-критерію Фішера для перевірки гіпотези про значущість множинного коефіцісту кореляції складає $F_{3;2571}^{e\kappa cn} = 331.91$. Отже, метамодель $J_{\sum \kappa omimem}$ для даної підобласті інформативна, оскільки $R^2 > 0.95$ (рис.3.11 б), та значимо достовірна за *F*-критерієм Фішера при $\alpha = 5$ %.

Для піддіапазону $11 < r \le 15$ мм отримано експериментальне значення критерію Фішера $F_{\nu_D;\nu_R}^{e\kappa cn} = F_{3;2057}^{e\kappa cn} = 207$ [15]. Як і для попередніх випадків табличне

значення критерію Фішера складає $F_{0.05;3;2057}^{kpum} = 2.6$. Отримана метамодель також адекватна за умовою (3.7).

Експериментальне значення *F*–критерію Фішера для перевірки гіпотези про значущість R^2 складає $F_{3;2057}^{e\kappa cn} = 198.6$ [15]. У результаті, отримана метамодель для підобласті 11 < $r \le 15$ мм інформативна, оскільки $R^2=0.995$ (рис.3.11 в), та значимо достовірна за *F*–критерієм Фішера при $\alpha = 5$ %. 3.2.2. Метамодель кругового накладного вихрострумового перетворювача із об'ємною структурою системи збудження і перевірка її адекватності та інформативності

Гомогенна об'ємна СЗ являє собою сукупність послідовно з'єднаних секційних котушок з внутрішнім та зовнішнім радіусами r_1 і r_2 й прямокутним перетином, ширина та висота якого визначаються лінійними розмірами a, b. Котушки живляться змінним струмом I частотою ω з відповідним включенням зустрічним або узгодженим "за полем" та розташовані на висоті z_{mi} над ОК. Розташування котушок НВСП із об'ємною структурою СЗ може бути як рівномірним, коли Δr =const, $z_1 = z_k$ = const, так і нерівномірним Δr =const, $z_1 \neq z_k$ (рис. 3.12) [16].

Рисунок 3.12 – Розташування секцій котушок НВСП з об'ємною гомогенною структурою СЗ: а) рівномірне Δr =const, $z_1 = z_k$ = const; б) нерівномірне Δr =const, $z_1 \neq z_k$

В досліджуваному випадку метамодель є функцією чотирьох аргументів – просторових координат *x*, *y*, радіусів КЗ та висот їх розташування над ОК (табл.2.8).

Враховуючи нелінійність та нерегулярну поведінку гіперповерхні відгуку, для створення метамоделі використано гібридний підхід, коли одночасно застосувалися технології декомпозиції області пошуку та HM, побудовані на техніках асоціативних машин із груповими методами отримання рішення. Декомпозиція простору пошуку має сенс, оскільки, по-перше, для процедури адекватного навчання RBF-мереж із чотирма змінними необхідна велика кількість прикладів; по-друге, в діапазоні зміни радіуса існує великий розмах значень ГВС безпосередньо в області під котушкою та поза нею. Все це унеможливлює використання глобальної RBF-нейромережі через велику похибку для отриманої таким чином метамоделі. Тому простір пошуку розбивається на декілька підобластей: за висотою розташування HBCП над OK - I_z ($2 \le z \le 3$ мм), II_z ($3 < z \le 4$ мм) та за радіусом котушки - I_r ($2 \le r \le 3$ мм), II_r ($3 < r \le 5$ мм), III_r ($5 < r \le 8$ мм), IV_r ($8 < r \le 10$ мм), V_r ($10 < r \le 12$ мм), VI_r ($12 < r \le 15$ мм) [16]. Побудова метамоделей виконується в кожній окремій підобласті і кінцева сурогатна модель отримується за допомогою «зшивки» складових частин. З цих же причин кількість вузлових для апроксимації точок плану експерименту (ПЕ) задається для кожної підобласті факторного простору різною відповідно до поведінки гіперповерхні відгуку з метою максимально точного її відтворення (табл.3.3).

Вихідні дані для побудови метамоделі: x = -45...45 мм; y = 0...35 мм, радіуси КЗ r = 2...15 мм, висоти їх розташування над ОК $z_m = 2...4$ мм. Також задаємося геометричними та електрофізичними параметрами ОК: d = 10 мм, $\sigma = 3.745 \cdot 10^7$ См/м, $\mu_r = 1$, швидкістю руху перетворювача відносно ОК v = (40; 0; 0) м/с та частотою струму збудження f = 5 кГц [16].

Метамодель для випадку НВСП (рис.3.12) будується згідно із запропонованою методологією.

З врахуванням переваг, які відзначено в розділі 2.3.1 та в роботі [13], для дослідження застосовано багатовимірний КПЕ на основі квазівипадкової безпараметричної адитивної R_d-послідовності Кронекера з використанням ірраціональних чисел, які своєю чергою отримані на основі узагальненої послідовності Фібоначчі. Якість розподілу оцінюється за показниками центрованої та циклічної розбіжності для *N_{навч}* точок плану в чотиривимірному просторі. Реалізація R₄-послідовностей спочатку виконана в одиничному

гіперкубі, а далі виконано масштабування отриманих R₄-послідовностей на діапазон абсолютних величин змінних, що зазначені вище.

Реалізований КПЕ, в точках якого розраховано значення ГВС за «точною» електродинамічною моделлю (3.4), (3,5) для $I_z \cup III_r$ декомпозиційної підобласті, представлено на рис.3.13 а, а для підобласті $II_z \cup V_r$ - рис.3.13 б та в додатку В.

Рисунок 3.13 - Навчальна вибірка представлена у вигляді ліній рівня узагальнених зрізів ГВС з точками ЛП_т–послідовності для декомпозиційних підобластей: а), б), в) І_z ∪ ІІІ_r; г) ІІ_z ∪ V_r

Для цього випадку, щоб забезпечити необхідну точність, виявилося недостатньо реалізувати підхід запропонований в розділі 2, що проілюстровано на рис.2.10 а. Тому адитивна НМ-регресія ускладнена, а саме на проміжних її рівнях застосовано комітети НМ із тих мереж, продуктивність яких не менша ніж 95 % (рис.2.10 б) [16]. Кількість проміжних рівнів адитивної НМ-регресії визначалась отриманим значенням похибки *МАРЕ, %*. Найкращі моделі відбиралися за сукупністю об'єктивних статистичних показників, що зазначені в розділі 2.3.3 та суб'єктивною оцінкою діаграм розсіювання та гістограм залишків.

Діаграми розсіювання значень чотиривимірної апроксимаційної функції на етапі навчання для декомпозиційної підобласті І_z ∪ Ш_r представлено на рис.3.14 а-в, а для підобласті І_z ∪ V_r - 3.14 г. Гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку - на рис.3.15.

Рисунок 3.14 - Діаграми розсіювання значень чотиривимірної апроксимаційної функції на етапі навчання для декомпозиційних підобластей: а), б) І_z ∪ Ш_r

Продовження рисунка 3.14 - Діаграми розсіювання значень чотиривимірної апроксимаційної функції на етапі навчання для декомпозиційних підобластей: в) І_z ∪ ІІІ_r; г) ІІ_z ∪ V_r

Рисунок 3.15 - Гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку на етапі навчання для декомпозиційних підобластей

Наступним етапом запропонованої методології є верифікація створеної метамоделі у всіх декомпозиційних підобластях. На рис. 3.16 а-в для підобласті І_z ∪ ІІІ_r, та на рис. 3.16 г для підобласті ІІ_z ∪ V_r наведено результати відтворення

поверхні відгуку для рухомого НВСП з об'ємною структурою СЗ, отримані за допомогою багатовимірної адитивної НМ-регресії, що виконано у всьому діапазоні варіації змінних на більшій кількості точок ніж використовувалося на етапі навчання $N_{відтв.} > N_{навч.}$

3D Wafer Plot of J 1+//J-5 against x and y

3D Wafer Plot of J_1+//+J_5 against x and y; categorized by Subset

0,020

Рисунок 3.16 - Відновлення поверхні відгуку НВСП з об'ємною структурою СЗ за допомогою метамоделей на основі адитивної НМ-регресії, що представлено графічно лініями рівня узагальнених зрізів розподілу ГВС для декомпозиційних підобластей: а), б), в) І_z ∪ ІІІ_r; г) ІІ_z ∪ V_r

За формулою, що описує вихід адитивної НМ-регресійної залежності (1.12) та її складових - вагових коефіцієнтів, які отримані для цієї метамоделі, здійснюється відтворення гіперповерхні відгуку. Так на рис.3.17 для прикладу наведено відтворення гіперповерхні відгуку для декількох зрізів.

Рисунок 3.17 - Відновлення поверхні відгуку за допомогою створеної метамоделі, що представлено лініями рівня розподілу ГВС для деяких зрізів

Сукупність статистичних показників, а саме *MAPE*, сума квадратів залишків SS_R , середні квадрати залишків MS_R отриманої метамоделі на етапі її навчання та відтворення наведено в табл. 3.3. Діаграми розсіювання значень чотиривимірної

апроксимаційної функції на етапі навчання для декомпозиційних підобластей $I_z \cup III_r$ та $II_z \cup V_r$ представлено на рис.3.18. Гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку для цих же підобластей - на рис.3.19.

Рисунок 3.18 - Діаграми розсіювання значень чотиривимірної апроксимаційної функції на етапі відтворення для декомпозиційних підобластей:

а), б), в) $I_z \cup III_r$; г) $II_z \cup V_r$

Рисунок 3.19 - Гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку на етапі відтворення для декомпозиційних підобластей

Перевірка відповідності отриманої функції відгуку експериментальним даним здійснюється за критерієм Фішера у послідовності, що наведена в розділі 2.3.3. Результат відповідності метамоделей цьому критерію для кожної декомпозиційної підобласті наведено в табл.3.4. Умова (3.7) виконується для всіх декомпозиційних підобластей, отже створена метамодель для кожної підобласті адекватна.

			$MS_{R} \cdot 10^{-3} SS_{R}$					
Познанения	Пекомпориційца	N /	MAI	PE,%	середній	квадрат	сума кн	вадратів
пілобласті	декомпозицина	I ч _{навч.} / N			залиц	іків	зали	шків
підобласті	підобласть	I № відтв.	Навча-	Відтво- Навча- Від		Відтво-	Навча-	Відтво-
			ння	рення	ння	рення	ння	рення
		Iz	$z: 2 \leq z \leq z$	3 мм				
Ir	$2 \le r \le 3$	672/1210	5.15	6.51	0.233	0.577	0.157	0.699
II_r	$3 < r \leq 5$	1200/2420	10.7	15.31	0.819	2.5	0.983	6.08
III_r	$5 < r \le 8$	1749/3680	19.09	21.31	1.76	2.95	3.09	10.88
IV _r	$8 < r \le 10$	1312/2696	18.72	20.28	1.34	3.05	1.76	8.17
Vr	$10 < r \le 12$	1281/2637	19.33	20.98	2.13	4.05	2.74	10.69
VIr	$12 < r \le 15$	2130/3630	15.31	21.2	1.19	4.17	2.551	15.14
$\text{II}_z \ 3 < z \leq 4 \text{ mm}$								
Ir	$2 \le r \le 3$	900/1800	4.35	6.22	0.276	0.513	0.249	0.925
II_r	$3 < r \leq 5$	1295/2500	6.66	10.04	0.816	1.51	1.057	3.79
III _r	$5 < r \le 8$	2089/4153	9.51	12.76	1.15	1.84	2.415	7.8
IV _r	$8 < r \le 10$	1504/2900	12.68	19.74	1.03	3.03	1.551	8.8
Vr	$10 < r \le 12$	1428/2600	9.42	14.8	1.09	2.05	1.57	5.35
VIr	$12 < r \le 15$	2518/4050	14.67	20.57	1.05	2.88	2.659	11.704

Таблиця 3.3 – Вибіркові показники оцінки адекватності метамоделі НВСП з об'ємною структурою СЗ

Таблиця 3.4 – Ст	гатистичні	показники	оцінки	адекватності	метамоделі	НВСП з	об'ємною	структурою	СЗ за	критерієм
Фішера										

		$MS_{R} \cdot 10^{-3}$	SS_R	MS _D	SS _D			
Позначення	N.	середній	сума	середній	сума	$F^{e\kappa cn} = \frac{MS_D}{MS_D}$	Критичне значення	
підобласті	I N відтв.	квадрат	квадратів	квадрат	квадратів	$V_D; V_R = MS_R$	критерію Фішера	
		залишків	залишків	регресії	регресії			
$I_z: 2 < z \le 3 \text{ mm}$								
Ir	1210	0.577	0.699	0.0422	51.119	73.21	F ^{крит} 0.05;4;1205 =2.379	
II_r	2420	2.5	6.08	0.0551	133.35	22.04	F ^{крит} 0.05;4;2415 =2.375	
III _r	3680	2.95	10.88	0.0611	225.111	20.736	F ^{крит} 0.05;4;3675 =2.374	
IVr	2696	3.05	8.17	0.067	180.64	21.96	F ^{крит} 0.05;4;2691 =2.375	
Vr	2637	4.05	10.69	0.0672	177.45	16.61	F ^{крит} 0.05;4;2632 =2.375	
VIr	3630	4.17	15.14	0.0678	246.42	16.28	F ^{крит} 0.05;4;3625 =2.374	
				$II_z 3 < z \le 4$	MM			
Ir	1800	0.513	0.925	0.0381	68.68	74.26	F ^{крит} 0.05;4;1795 =2.376	
II _r	2500	1.51	3.79	0.0548	137.211	36.35	F ^{крит} 0.05;4;2495 =2.375	
III _r	4153	1.84	7.8	0.0728	302.796	39.61	F ^{крит} 0.05;4;4148 = 2.374	
IV _r	2900	3.03	8.8	0.0721	209.212	23.79	F ^{крит} 0.05;4;2895 =2.375	
V _r	2600	2.05	5.35	0.08029	208.763	39.195	F ^{крит} _{0.05;4;2595} =2.375	
VIr	4050	2.88	11.704	0.0721	292.142	25.046	F ^{крит} 0.05;4;4045 = 2.374	

3.3. Сурогатний параметричний оптимальний синтез систем збудження кругових накладних вихрострумових перетворювачів

3.3.1. Сурогатний синтез накладних вихрострумових перетворювачів з планарною структурою системи збудження та верифікація результатів синтезу

Надалі за допомогою отриманої в розділі 3.2.1 метамоделі реалізовувалася задача оптимального синтезу. Розрізняють лінійний та нелінійний сурогатний синтез вихрострумових перетворювачів. В рамках лінійного синтезу апріорі заданий рівномірний розподіл ГВС (рис.3.20) отримується визначенням МРС кожної котушки в системі збудження НВСП при умові заданої їх кількості та координат розміщення у просторі [9, 10]. В роботі [17] розглядався нелінійний синтез, а саме варіант змішаного синтезу, коли одночасно визначаються всі змінні,

які входять до розрахункової формули лінійно та нелінійно. Структура збудження складається із М котушок, які коаксіально з довільними радіусами r_k (k=1...M)розташовані на однаковій відстані *Z.*0 над ОК. Bci котушки підключені послідовно-зустрічно або послідовно-узгоджено і мають різну МРС *Iw_k*(рис.3.4 а) [17].

Задача параметричного синтезу полягає у одночасному визначенні значень МРС *Iw_k* в кожній із котушок та

відповідно їх радіусів, які забезпечать наближення створеного розподілу ГВС до заданого. На рис.3.21 проілюстровано результат синтезу неспіввісного НВСП, який має заданий П-подібний розподіл ГВС:

$$J_{reference} = \begin{cases} 0 \text{ при } 0 \le r \le 4.5 \cdot 10^{-3} \text{ м}; \text{ та } r > 14.55 \cdot 10^{-3} \text{ м} \\ 5000 \text{ A/}_{\text{M}^2} \text{ при } 4.5 \cdot 10^{-3} < r \le 14.55 \cdot 10^{-3} \text{ м} \end{cases}.$$
(3.9)

Контрольні точки в області адекватності метамоделі ($x \times y$) = (30×30) мм розташовувалися рівномірно й їх кількість була достатньо великою та складала 210. Для розв'язку обернених нелінійних задач доцільно використовувати алгоритми оптимізації, які не застосовують похідні і добре зарекомендували себе при пошуку глобального екстремуму багатовимірних «яроподібних» цільових функцій [18, 19]. Так застосовувався популяційний метаевристичний алгоритм оптимізації роєм частинок з еволюційним формуванням складу рою, що являє собою низькорівневу гібридизацію генетичного алгоритму і алгоритму РSO і має високу збіжність [20]. Надалі розв'язок задачі оптимального синтезу для заданого П-подібного розподілу (3.9) знаходився шляхом визначення мінімуму цільової функції (2.36) з обмеженням. Для такого підходу довелося виконати перехід від задачі умовної оптимізації до безумовної, методом заміни змінних. Тобто накладено на шукані параметри r_k обмеження $r_{min} \le r_k \le r_{max}$ і здійснена заміна змінних [21], що дозволяє знайти фізично реалізований розв'язок.

Результати чисельних експериментів нелінійного синтезу НВСП представлено на рис. 3.21 а-г лініями рівня розподілу ГВС, який отриманий за «точною» електродинамічною моделлю, а параметри МРС котушок в табл. 3.5.

Параметри <i>k</i> -ї котушки системи	1	2	3	4	5	6	7
	$\frac{0.8633}{11.6231}$	$\frac{3.737}{2.817}$	$\frac{1.816}{3.09}$	$\frac{6.117}{2.492}$	-	-	-
$\frac{Iw_k}{r_k \cdot 10}, \frac{A \times \textit{витки}}{M}$	$\frac{0.7}{12.672}$	$\frac{2.375}{7.032}$	$\frac{-0.891}{8.591}$	$\frac{-1.342}{4.443}$	$\frac{1.603}{2}$	-	-
K	$\frac{-0.471}{3.466}$	$\frac{0.384}{1.047}$	$\frac{0.728}{12.612}$	$\frac{0.352}{5.321}$	$\frac{0.304}{5.365}$	$\frac{0.544}{2}$	-
	$\frac{0.383}{6}$	$\frac{-0.325}{3.471}$	$\frac{-1.729}{5.937}$	$\frac{0.692}{12.648}$	$\frac{0.610}{6.957}$	$\frac{1.465}{5.623}$	$\frac{-0.140}{4.286}$

Таблиця 3.5 – Результати розрахунку параметрів котушок різних структур системи збудження НВСП

Знак «-» означає зустрічне включення котушки.

З метою порівняння отриманих результатів на рис.3.21 д наведено розподіл, що утворений класичним аналогом у вигляді одинарного витка з r = 12.5 мм. При цьому площі зони однорідності розподілу ГВС синтезованої конструкції в порівнянні з класичним аналогом складають $S_{C3} = 125.66 \text{ мм}^2$ та $S_{sum.} = 90.27 \text{ мm}^2$ відповідно.

Рисунок 3.21 - Розв'язок розподілу ГВС НВСП для різноманітних структур збудження у вигляді ліній рівня:

а) *М*=4; б) *М*=5; в) *М*=6; г) *М*=7; д) одинарний виток *r*=12.5 мм

Також лініями рівня на рис. 3.22 показано абсолютне значення похибки отриманого розв'язку. Значення приведеної похибки синтезу в зоні контролю 4.5 мм $\leq r \leq 14.55$ мм для різних структур систем збудження при *M*=4, 5, 6, 7 відповідно складає 9.12 %; 8.68 %; 8.59 %; 8.07 %.

Рисунок 3.22 — Лінії рівня розподілу абсолютного значення похибки синтезу різноманітних структур збудження: а) M=4; б) M=5; в) M=6; г) M=7

3.3.2. Сурогатний синтез накладних вихрострумових перетворювачів з об'ємною структурою системи збудження та верифікація результатів синтезу

Отже, отримана в розділі 3.2.2 RBF-метамодель CB HBCП використовується в формулі (2.36) квадратичного цільового функціонала замість «точної» електродинамічної математичної моделі (3.4), (3.5), а далі розв'язується задача лінійного оптимального синтезу із обмеженнями, тобто визначається MPC Iw_i кожної котушки C3, що в підсумку забезпечує близький до однорідного розподіл ГВС на поверхні OK в зоні контролю [22]. Розв'язком задачі є параметри об'ємної C3, а саме середні радіуси K3 r_{mi} , їх середня висота z_{mi} розташування над OK та значення MPC Iw_i для кожної котушки, що забезпечують наперед заданий розподіл ГВС на поверхні в зоні контролю. На шукані параметри накладено обмеження $r_{\min} \le r_m \le r_{\max}, z_{\min} \le z_m \le z_{\max}$ і здійснена заміна змінних [22], що дозволяє знайти фізично реалізований розв'язок.

При чисельному моделюванні задаємося низкою структур СЗ з різною кількістю котушок M=3...5, які рівномірно розташовувалися над ОК Δz_{mi} , а середні радіуси сусідніх котушок змінювалися із кроком Δr_m (рис.3.12 а) [22]. Також в якості вихідних даних задається бажаний розподіл ГВС інтенсивністю $J_{reference}=80000$ А/м² (рис.3.23, графік 1) на поверхні ОК в зоні контролю 7 мм $\leq r \leq 20$ мм, який необхідно реалізувати синтезованою СЗ.

Розв'язок цієї задачі отримано стохастичними алгоритмами пошуку глобального екстремуму, які розглянуто в розділі 2.4. В результаті попереднього аналізу результатів синтезу відібрані декілька структур СЗ, що мають близький до однорідного розподіл ГВС в широкій зоні відносно заданої $l_{ref} = 13$ мм. Результати чисельних експериментів лінійного синтезу об'ємних СЗ НВСП представлені розподілом ГВС на рис. 3.23 (графік 2) із вказанням отриманої ширини зони контролю *L*, а параметри МРС для відповідних котушок наведені в тал.3.6 [22].

Отримані результати лінійного синтезу СЗ (рис.3.23) показують, що найбільшу ширину, де розподіл ГВС на поверхні в зоні контролю близький до однорідного, має структура із кількістю котушок M=5. Порівняльний візуальний аналіз ширини L розподілу ГВС (рис.3.23 г, графік 2) і її ж, але отриманий від одинарного витка як джерела поля збудження (рис.3.23 г, графік 3), однозначно вказує на кращі результати, отримані синтезованою об'ємною СЗ. Найкращі результати має СЗ (варіант 4, табл.3.7) для якої ширина однорідної зони L = 9.2 мм, що складає 70.7 % від бажаного значення.

	Синтезовані системи збудження												
N⁰		варі	ант 1		варіант 2			варіант 3			варіант 4		
п.п	r_m ,	Zm,	Iw,	r_m ,	Zm,	Iw,	r_m ,	$r_m, z_m, Iw,$		r_m ,	Zm,	Iw,	
	MM	MM	А×витки	MM	MM	А×витки	MM	ММ	А×витки	MM	MM	А×витки	
1	5	2	-0.437	4	2.2	-0.334	3	2.3	-1.609	4.5	2.7	-2.915	
2	8	2.5	-0.045	7	2.7	0.149	6	2.6	0.151	7	3.0	3.52	
3	11	3	0.497	10	3.2	-0.492	9	2.9	-0.859	9.5	3.3	-1.688	
4	14	3.5	1.174	13	3.7	2.061	12	3.2	2.05	12	3.6	0.965	
							15	3.5	0.783	14.5	3.9	0.89	

Таблиця 3.6 - Результати розрахунку параметрів котушок різноманітних структур об'ємної системи збудження НВСП

Рисунок 3.23 – Розподіл ГВС і ширина зони контролю структур збудження:

а) варіант 1; б) варіант 2; в) варіант 3; г) варіант 4

Розв'язок нелінійної ОЗ отримано стохастичними алгоритмами пошуку глобального екстремуму, а саме гібридним алгоритмом на основі генетичного з локальним пошуком симплексним методом Нелдера-Міда та популяційним метаевристичним алгоритмом оптимізації роєм частинок з еволюційним формуванням складу рою, що являє собою низькорівневу гібридизацію генетичного алгоритму й алгоритму PSO. Конструкції синтезованих C3 перетворювачів показані схематично на рис.3.24. Чисельні результати синтезу НВСП при апріорі заданому П-подібному розподілі ГВС в зонах контролю 7 мм $\leq r \leq 20$ мм та 5 мм $\leq r \leq 20$ мм для трьох об'ємних C3 НВСП зі структурами з 3, 4 та 5 котушок представлено на рис. 3.25. Кількість контрольних точок у функціоналі складала N_k =60, вони розташовувалися рівномірно на поверхні ОК в області адекватності метамоделі.

а) *М*=3; б) *М*=4; в) *М*=5

Для цих C3 за «точними» математичними моделями отримано розподіли ГВС вздовж осі *Ox* (графік 1 на рис.3.25 а-в). Для порівняння там же наведено

бажаний розподіл ГВС (графік 2) та розподіли, утворені одинарним витком, що має радіус 15 мм та розташований на висотах 2 та 4 мм над ОК відповідно (графіки 3, 4). Також для наочності синтезований розподіл ГВС представлено у вигляді ліній рівня (рис.3.25 г-е).

Рисунок 3.25 - Чисельні результати синтезу: а), б), в) розподіли ГВС вздовж осі Ох; г), д), е) лінії рівня розподілу ГВС

Спостерігається певне не виконання умов синтезу щодо інтенсивності ГВС в зоні контролю, яких не вдається уникнути при послідовному ускладненні структури СЗ. Але цей факт не є критичним тому, що позитивні тенденції щодо зони однорідності розподілу ГВС є стійкими та саме це є надважливим. Також очевидними в цьому сенсі є переваги синтезованих СЗ перед їх класичними аналогами - одинарними витками. Так зона однорідності розподілу ГВС, що забезпечується одинарним витком складає $S_{aum.} = 87.96 \text{ } MM^2$, а синтезованою СЗ із M=4 секційних котушок - $S_{C3} = 301.44 \text{ } MM^2$. Порівняльний аналіз НВСП із планарними [17] та об'ємними коаксіальними СЗ свідчить щодо більших потенційних можливостей останніх для забезпечення вимог однорідності. Це можливо пояснити більшою варіабельністю структур СЗ, що обумовлено дозволеним просторовим розташуванням окремих секційних котушок.

3.4. Висновки до третього розділу

1. Створено алгоритми та програмно реалізовано розрахунки розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для кругових НВСП із врахуванням ефекту швидкості.

2. В рамках запропонованого єдиного методологічного підходу створено багатовимірну НМ-метамодель кругового рухомого НВСП з планарною структурою системи збудження. Для її побудови створено багатовимірний комп'ютерний план експерименту, в точках якого розраховано значення ГВС за «точною» електродинамічною моделлю. Для створення метамоделі виконано декомпозицію простору пошуку на три підобласті, в кожній із яких отримано апроксимаційні залежності із використанням композиту нейронних мереж, а на завершальному етапі побудови композиту застосовано bagging - комітет для нейронних мереж, що мають найбільшу продуктивність. Здійснена верифікація отриманої метамоделі та статистичними методами перевірена її адекватність та інформативність. Розроблені програмні засоби апроксимації багатовимірних поверхонь відгуку з прийнятною похибкою. Так відносна похибка апроксимації для

метамоделі НВСП з планарною структурою системи збудження не перевищує 6.76 % для всіх областей декомпозиції. Час обчислення в одній точці за створеною нейромережевою метамоделлю складає менше ніж 1 с на противагу часу в 23 – 54 с при розрахунку за «точною» електродинамічною моделлю.

3. В рамках запропонованого єдиного методологічного підходу створено багатовимірну НМ-метамодель кругового рухомого НВСП з об'ємною структурою системи збудження. Розроблені програмні засоби апроксимації багатовимірних поверхонь відгуку з прийнятною похибкою. Так відносна похибка апроксимації для метамоделі НВСП з об'ємною структурою – змінюється від 6.22 % до 21.31 % в деяких випадках. Таке значення похибки вдалося досягти завдяки ускладненню адитивної НМ-регресії, а саме на проміжних її рівнях застосовано комітети НМ із тих мереж, продуктивність яких не менша ніж 95%. Час обчислення в одній точці за створеною нейромережевою метамоделлю складає до 4 с на противагу часу в 23 – 54 с при розрахунку за «точною» електродинамічною моделлю.

4. Розв'язок задачі оптимального синтезу для заданого П-подібного розподілу знаходився шляхом визначення мінімуму цільової функції з обмеженнями на шукані параметри. Обмеження на розміри зони контролю та геометричні параметри секційних котушок СЗ ВСП у вигляді двосторонніх нерівностей враховано шляхом заміни змінних та зведенням задачі умовної оптимізації до безумовної з наступним поверненням до початкових змінних. Такий підхід дозволив знайти фізично реалізований розв'язок.

5. Виконано реалізацію розв'язку задачі нелінійного синтезу СЗ НВСП з планарною структурою СЗ у вигляді відповідного програмного забезпечення. На чисельних експериментах доведено його адекватність. Похибка синтезу системи збудження НВСП з планарною структурою складає 8.07 %. При цьому площі зони однорідності розподілу ГВС синтезованої конструкції в порівнянні з класичним аналогом складають $S_{C3} = 125.66 \ mm^2$ та $S_{sum.} = 90.27 \ mm^2$ відповідно.

6. Виконано реалізацію розв'язку задачі нелінійного синтезу СЗ НВСП з об'ємною структурою СЗ у вигляді відповідного програмного забезпечення. На чисельних експериментах продемонстровано переваги синтезованих СЗ НВСП з

об'ємною структурою перед їх класичними аналогами, а також СЗ із планарною структурою. Зона однорідності розподілу ГВС, що забезпечується одинарним витком складає $S_{oum.} = 87.96 \text{ мm}^2$, а синтезованою СЗ із M=4 секційних котушок - $S_{C2} = 301.44 \text{ мm}^2$.

Список використаних джерел до розділу 3

1. Itaya T., Ishida K., Kubota Y. et al. Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab // Progress In Electromagnetics Research M. - 2016. - V. 47. - P. 1-12.

 Itaya T., Ishida K., Tanaka A.et al. Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab // IET Science, Measurement & Technology. – 2012. V. 6. - № 2. – P. 43–51.

3. Ishida T., Itaya T., Tanaka A. et al. Magnetic Field Analysis of an Arbitrary Shaped Coil Using Shape Functions // IEEE Transactions on Magnetics. – 2009. – V. 45.
- № 1. – P. 104–112.

4. Itaya T., Ishida K., Tanaka A., Takehira N., Miki T. A New Analytical Method for Calculation of the Eddy Current Distribution and its Application to a System of Conductor-Stab and Rectangular Coil // PIERS Online. – 2011. – V. 7. - № 8, P. 766-770.

5. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V. Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems // Eastern-European Journal of Enterprise Technologies. $-2018. - V.95. - N_{\odot} 5/5. - P. 39-46.$

6. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Побудова RBFметамоделей структур збудження рухомого концентричного вихрострумового перетворювача // Електротехніка та електромеханіка. - 2019. - № 2. - С. 28-38.

7. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V. The RBF-Metamodel Development of Surface Eddy-Current Probe for the Surrogate Optimal Synthesis Problem // International Journal "NDT Days". – 2018. – V. 1. - № 4. – P. 425-433.

8. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як

складова сурогатного оптимального синтезу // Вісник Херсонського національного технічного університету. – 2018. – Т. 66. - № 3.1 – С. 32–38.

9. Трембовецька Р.В., Гальченко В.Я., Тичков В.В. Оптимальний сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів із рівномірною чутливістю в зоні контролю // Вісник Херсонського національного технічного університету. – 2019. – Т. 69. - № 2.2. - С. 118-125.

10. Гальченко В.Я., Трембовецкая Р.В., Тычков В.В. Линейный синтез несоосных накладных вихретоковых преобразователей // International Journal "NDT Days". - 2019. – V. 2. – №. 3. - Р. 259-268.

11. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – С. 60-72.

12. Радченко С.Г. Методология регрессионного анализа: монография. Київ: «Корнійчук», 2011. – 376 с.

13. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence // Applied Computer Systems. – 2020.
– V. 25. - №. 1. - P. 70-76.

14. Бринк Х., Ричардс Дж., Феверолф М. Машинное обучение. Спб.: Питер. 2017.

15. Трембовецька Р.В., Гальченко В.Я., Тичков В.В., Сторчак А.В. Оцінка точності нейромережевих метамоделей кругових накладних вихрострумових перетворювачів // Вісник Черкаського державного технологічного університету. – 2019. – № 2. – С. 18-29.

16. Trembovetska R.V., Halchenko V.Y., Tychkov V.V. Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system // International Scientific Journal «Mathematical Modeling». – 2019. - V. 3. - № 4. - P. 113-116.

17. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. Nonlinear surrogate synthesis of the surface circular eddy current probes // Przegląd elektrotechniczny. – 2019. - № 9. – P. 76-82.

18. Gal'chenko V.Y., Yakimov A.N., Ostapushchenko D.L., Pareto-optimal parametric synthesis of axisymmetric magnetic systems with allowance for nonlinear properties of the ferromagnet // Technical Physics. – 2012. – V. 82. - No 7. – P. 1-7.

19. Galchenko V.Ya., Yakimov A.N. A turmitobionic method for the solution of magnetic defectometry problems in structural-parametric optimization formulation // Russian Journal of Nondestructive Testing. – 2014. - N_{2} 2. – P. 10-24.

20. Гальченко В.Я., Якимов А.Н., Остапущенко Д.Л. Поиск глобального оптимума функций с использованием гибрида мультиагентной роевой эволюционным формированием популяции // оптимизации с состава Информационные технологии. – 2010. - № 9. – С. 9-16.

21. Гальченко В.Я., Трембовецкая Р.В. MathCAD: математические методы и инструментальные средства оптимизации. Черкассы: ЧП Гордиенко Е.И., 2018. - 516 с.

22. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V., Storchak A.V. Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System // International Journal "NDT Days". - 2020. – V. 3. – №. 4. - P. 184-190.

РОЗДІЛ 4. МЕТОД СУРОГАТНОГО ОПТИМАЛЬНОГО ПАРАМЕТРИЧНОГО СИНТЕЗУ РАМКОВИХ РУХОМИХ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

4.1. «Точна» електродинамічна модель рухомих рамкових накладних вихрострумових перетворювачів

Зупинимося далі на джерелі збудження ЕМП у вигляді одинарного витка прямокутної форми та розглянемо для нього розв'язок «точної» електродинамічної задачі. Прямокутний виток із розмірами $a \ge b$ живиться змінним струмом Iчастотою ω та розташований на висоті z_0 над ОК товщиною d з постійною питомою електричною провідністю σ та магнітною проникністю μ_r (рис.4.1). Середовище вважалося лінійним, ізотропним і однорідним. Швидкість переміщення витка $\vec{v} = (v_x, v_y, 0)$ відносно ОК постійна.

Рисунок 4.1 - Геометрична модель рамкового НВСП

Взаємодія джерела поля у вигляді одинарного витка із ОК визначається співвідношеннями комплексних складових магнітної індукції за просторовими координатам B_x , B_y , B_z [1-4], які отримано в результаті розв'язку диференціальних рівнянь Максвела за умови непереривності тангенціальних $H_{1t} = H_{2t}$ і нормальних $B_{1n} = B_{2n}$ складових поля на границях розділу середовищ z = 0 та z = -d:

$$B_{2x} = -j \frac{\mu_0 \cdot \mu_r \cdot I}{2 \cdot \pi^2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin(a \cdot \xi) \cdot \sin(b \cdot \eta)}{\eta \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\begin{cases} -(1 + \lambda_0) \cdot e^{2 \cdot \gamma \cdot d} + \left(\int_{-\infty}^{\infty} -\sqrt{\xi^2 + \eta^2} \right) \cdot d \\ + V_0 \cdot e^{\gamma \cdot z} + V_0 \cdot e^{\gamma \cdot z} + V_0 \cdot e^{\gamma \cdot z} \\ + V_0 \cdot e^{\gamma \cdot z} + V_0 \cdot e^{\gamma \cdot z} \end{bmatrix} \cdot e^{-z \cdot \sqrt{\xi^2 + \eta^2}} \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$(4.1)$$

$$B_{2y} = -j \frac{\mu_0 \cdot \mu_r \cdot I}{2 \cdot \pi^2} \cdot \int_{-\infty -\infty}^{\infty} \int_{-\infty -\infty}^{\infty} \frac{\sin(a \cdot \xi) \cdot \sin(b \cdot \eta)}{\xi \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\begin{cases} -(1 + \lambda_0) \cdot e^{2 \cdot \gamma \cdot d} + \left(1 + \lambda_0 - \sqrt{\xi^2 + \eta^2}\right) \cdot d \\ + \sqrt{\xi^2 + \eta^2} + \sqrt{\xi^2 + \eta^2} - \frac{\xi}{\xi} \cdot (1 - e^{2 \cdot \gamma \cdot d}) \\ + \sqrt{\xi^2 + \eta^2} \cdot e^{-\gamma \cdot z} \end{bmatrix} \cdot e^{-\gamma \cdot z} \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$(4.2)$$

$$B_{2z} = \frac{\mu_0 \cdot \mu_r \cdot I}{2 \cdot \pi^2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\left(\xi^2 + \eta^2\right) \cdot \sin\left(a \cdot \xi\right) \cdot \sin\left(b \cdot \eta\right)}{\xi \cdot \eta \cdot \gamma \cdot \left(1 - e^{2 \cdot \gamma \cdot d}\right)} \cdot \left[\begin{cases} -\left(1 + \lambda_0\right) \cdot e^{2 \cdot \gamma \cdot d} + \left(y - \sqrt{\xi^2 + \eta^2}\right) \cdot d \\ + \nu_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \end{cases} \cdot e^{\gamma \cdot z} - \left(1 + \lambda_0 - \nu_0 \cdot e^{\left(\gamma - \sqrt{\xi^2 + \eta^2}\right) \cdot d} \right] \cdot e^{-\gamma \cdot z} \\ + \nu_0 \cdot e^{-z \cdot \sqrt{\xi^2 + \eta^2}} \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta.$$

$$(4.3)$$

Тоді складові ГВС за просторовими координатами *x*, *y*, *z* відповідно визначаються за формулами (2.29)-(2.30) із врахуванням (4.1)-(4.3):

$$\begin{split} J_{x} &= j \cdot \frac{I}{2 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\left(\gamma^{2} - \xi^{2} - \eta^{2}\right) \cdot \sin\left(a \cdot \xi\right) \cdot \sin\left(b \cdot \eta\right)}{\eta \cdot \xi \cdot \left(1 - e^{2 \cdot \gamma \cdot d}\right)} \times \\ &\times \left[\begin{cases} -\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + \right] \\ + \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \end{cases} \cdot e^{\gamma \cdot z} - \left\{ 1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \times \\ &\times e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot e^{-j\left(x \cdot \xi + y \cdot \eta\right)} d\xi d\eta, \end{split}$$

$$(4.4)$$

$$J_{y} = j \cdot \frac{I}{2 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\left(\gamma^{2} - \xi^{2} - \eta^{2}\right) \cdot \sin\left(a \cdot \xi\right) \cdot \sin\left(b \cdot \eta\right)}{\eta \cdot \gamma \cdot \left(1 - e^{2 \cdot \gamma \cdot d}\right)} \times \\ \times \left[\begin{cases} -\left(1 + \lambda_{0}\right) \cdot e^{2 \cdot \gamma \cdot d} + \\ +\nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \end{cases} \cdot e^{\gamma \cdot z} - \begin{cases} 1 + \lambda_{0} - \nu_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \end{cases} \cdot e^{-\gamma \cdot z} \right] \times$$

$$\times e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot e^{-j\left(x \cdot \xi + y \cdot \eta\right)} d\xi d\eta.$$

$$(4.5)$$

Створені алгоритми та програмно реалізовано розрахунки розподілу ГВС в ОК за «точними» електродинамічними моделями (4.1)-(4.5) для рамкового НВСП із врахуванням ефекту швидкості (рис.4.2). Розрахунок здійснювався за наступних вихідних даних: просторові координати зони контролю x = -30...30 мм; y = -30...30 мм; розміри одинарних витків СЗ a = 3 - 15 мм, b = 3 - 15 мм. Всі інші параметри є сталими і дорівнювали: d = 10 мм, $z_0 = 3$ мм, $\vec{v} = (40,0,0)$ м/с, частота струму збудження f = 1 кГц, електрофізичні параметри матеріалу ОК відповідно $\sigma = 3.745 \cdot 10^7$ См/м та $\mu_r = 1$.

Рисунок 4.2 - Розподіл ГВС на поверхні ОК, представлений у вигляді 3D та ліній рівня, створений одинарним витком прямокутної форми: а) з розмірами 5 × 5 мм; б) з розмірами 7 × 7 мм

Продовження рисунка 4.2 - Розподіл ГВС на поверхні ОК, представлений у вигляді 3D та ліній рівня, створений одинарним витком прямокутної форми: в) з розмірами 9 × 9 мм; г) з розмірами 11 × 11 мм; д) з розмірами 13 × 13 мм;

е) з розмірами 15 × 15 мм

Розподіл ГВС має суттєво нелінійну характеристику в зоні контролю (рис.4.2) i покращити його, а саме наблизити до бажаного однорідного, можна використанням системи котушок збудження різноманітних структур, як показано автором на прикладі кругових ВСП [5-8].

Затрати часу на розрахунок ГВС для тестової області за «точною» математичною моделлю для випадків нерухомого перетворювача та при врахуванні ефекту швидкості складає від 2.5 до 9 годин відповідно [9].

Аналітична математична модель прямокутної котушки СЗ НВСП (рис.4.3) отримується на основі математичної моделі тонкого прямокутного витка (4.1)-(4.5) додатковим інтегруванням за площею поперечного перетину за умови сталої густини струму в ньому.

а) загальний вигляд; б) перетин А-А

виразах (4.1)-(4.5) складова $S(\xi,\eta) \cdot e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}}$ А саме, В де $S(\xi,\eta) = -j \cdot \frac{4}{\xi} \cdot sin(a \cdot \xi) \cdot sin(b \cdot \eta)$ замінюється співвідношеннями, що отримані

інтегруванням за площею поперечного перетину [2]:

$$\frac{w}{q \cdot \tau} \cdot \left[\int_{-\frac{q}{2}}^{\frac{q}{2}} \sin\left(\left(a_{m} + p\right) \cdot \xi\right) \cdot \sin\left(\left(b_{m} + p\right) \cdot \eta\right) dp \right] \cdot \left[\int_{z_{m} - \frac{\tau}{2}}^{z_{m} + \frac{\tau}{2}} e^{-g \cdot \sqrt{\xi^{2} + \eta^{2}}} dg \right] = , (4.6)$$
$$= \frac{w}{q \cdot \tau} \cdot I_{s}\left(a_{m}, b_{m}, q\right) \cdot I_{E}\left(z_{m}, \tau\right)$$

де $q = b_2 - b_1$; $\tau = z_2 - z_1$; $a_m = (a_1 + a_2)/2$; $b_m = (b_1 + b_2)/2$; $z_m = (z_1 + z_2)/2$ - середнє значення розмірів та висоти розташування котушки над ОК відповідно;

р, *g* – змінні інтегрування.

Аналітичний вираз для складової $I_E(z_m, \tau)$ має наступний вигляд [2]:

$$I_{E}(z_{m},\tau) = \int_{z_{m}-\tau/2}^{z_{m}+\tau/2} e^{-g\cdot\sqrt{\xi^{2}+\eta^{2}}} dg = \frac{e^{z_{m}\cdot\sqrt{\xi^{2}+\eta^{2}}}}{\sqrt{\xi^{2}+\eta^{2}}} \cdot \left(e^{-\left(\frac{\tau}{2}\cdot\sqrt{\xi^{2}+\eta^{2}}\right)} - e^{\left(\frac{\tau}{2}\cdot\sqrt{\xi^{2}+\eta^{2}}\right)}\right)$$
(4.7)

Остаточна математична модель секційної котушки СЗ НВСП, що визначає розподіл ГВС на поверхні ОК визначається за формулами (4.4), (4.5) із врахуванням вище наведених співвідношень.

4.2. Побудова метамоделі рамкового рухомого накладного вихрострумового перетворювача з планарною структурою системи збудження і перевірка її адекватності та інформативності

Планарна структура СЗ прямокутної форми складається із сукупності послідовно з'єднаних секційних котушок із розмірами сторін $a_i \times b_i$ й прямокутним перетином, ширина та висота якого для кожної котушки є індивідуальною $q_i \times \tau_i$ (рис.4.4). Котушки включені зустрічно або узгоджено "за полем" та розташовані на однаковій середній висоті z_{0m} над ОК. При цьому кожна *i*-та з M котушок збудження (*i*=1,...,M) розташована в просторі рівномірно $\Delta a = \text{const}, \Delta b = \text{const}$ (рис.4.4) [10].

Рисунок 4.4 – Планарна структура СЗ прямокутної форми

Функціональна апроксимаційна залежність розподілу ГВС для рухомого рамкового НВСП є багатовимірною $\hat{J}=f(x, y, a, b)$ та залежить від декількох параметрів, а саме просторових координат x й y на поверхні ОК в зоні контролю та геометричних розмірів a і b секцій котушок C3. Для побудови багатовимірної апроксимаційної моделі добре зарекомендували себе завдяки універсальним апроксимаційним властивостям RBF-нейронні мережі, тобто НМ на радіальнобазисних функціях. При цьому, як було неодноразово показано в ряді робіт [5-8], використовувати одинарну RBF-нейромережу не доцільно з огляду на велику похибку отриманої таким чином метамоделі. Тому використано гібридний підхід із одночасним застосуванням декомпозиції області пошуку та асоціативних технік НМ [5, 7, 8, 11]. Для побудови багатовимірної метамоделі створюється масив навчальної вибірки розрахунком розподілу ГВС за функціональними в загальному випадку залежностями (4.4), (4.5). Для утворення такого масиву застосовано комп'ютерні методи рівномірного заповнення гіперпростору пошуку опорними точками, тобто оптимальний КПЕ [12, 13]. Використання КПЕ за умови невизначеності топології гіперповерхні збільшує ймовірність потрапляння опорних точок в області екстремумів та перегинів. Як показано в дослідженні [12] та розділі 2.3.1, найкращі характеристики гомогенності багатовимірних ПЕ забезпечуються на основі квазівипадкових безпараметричних адитивних рекурсивних R-послідовностей та комбінацій ЛП_т-послідовностей Соболя.

Згідно з алгоритмом сурогатної оптимізації першим етапом є побудова метамоделі ВСП на основі КПЕ. Оскільки топологія гіперповерхні відгуку складна, тому КПЕ для багатовимірного плану реалізовано на основі комбінації ЛП_т-послідовностей Соболя, які мають кращі показники центрованого та циклічного розходжень, а саме послідовностей ($\xi_6, \xi_7, \xi_{12}, \xi_{14}$) [12].

Надалі обмежимося розглядом окремого випадку прямокутної рамки, а саме квадратної рамки тобто, коли середні розміри рівні $a_{mi} = b_{mi}$ та відповідно приріст Δ параметру сталий $\Delta a = \Delta b = \text{const.}$ Метамодель, як функція трьох параметрів $\hat{J}=f(x, y, a_m)$ будується для рухомої структури C3 в вигляді сукупності ампер-витків квадратної форми. Для побудови метамоделі діапазони варіювання змінних наступні: просторові координати зони контролю x = -35...35 мм; y = 0...25 мм; розміри котушок C3 $a_m = 3-15$ мм. При цьому за розміром котушки a_m область пошуку розділена на шість підобластей I_a ($3 \le a \le 5$ мм), II_a ($5 < a \le 7$ мм), III_a ($7 < a \le 9$ мм), IV_a ($9 < a \le 11$ мм), V_a ($11 < a \le 13$ мм), VI_a ($13 < a \le 15$ мм). Всі інші параметри є сталими і дорівнювали: d = 10 мм, $z_m = 3$ мм, $\vec{v} = (40,0,0)$ м/с, частота струму збудження f = 1 кГц, електрофізичні параметри матеріалу OK відповідно $\sigma = 3.745 \cdot 10^7$ См/м та $\mu_r = 1$ [10].

Реалізований КПЕ, в точках якого розраховано значення ГВС за «точною» електродинамічною моделлю (4.4)-(4.5) для кожної декомпозиційної підобласті. На

рис.4.5 представлено такий план для однієї підобласті, а саме Ш_а (7 < *a* ≤ 9 мм), числові значення цього плану наведено в додатку Г, а кількість точок КПЕ - в таблиці 4.2.

Рисунок 4.5 - Навчальна вибірка у вигляді ліній рівня узагальнених зрізів розподілу ГВС з нанесеними точками КПЕ на ЛП_т-послідовностях для підобласті ІІІ_а

Отже, метамоделі отримано для кожної підобласті із застосуванням адитивної НМ-регресії [14, 15]. Одночасно для підвищення точності використано беггінгпроцедуру формування підвибірок. Для утворення комітету НМ відбиралися найкращі мережі за показниками коефіцієнту детермінації R^2 , відношення стандартних відхилень *S.D.ratio*, *MAPE*, % [16-18]. Тоді вихід кожного проміжного рівня НМ формується усередненням за ансамблем НМ, що мають продуктивність більше 90 % [5-8, 10]. Кількість проміжних рівнів визначається рівнем *MAPE*, %, що не перевищує 15 %.

В табл.4.1 для прикладу наведено відомості щодо побудови метамоделі для однієї підобласті 7 < $a \le 9$ мм. По-перше, показано чотири проміжні рівні адитивної НМ-регресії J_1 - J_4 та для кожного із яких представлено складові НМ, що відібрані для утворення комітету. По-друге, в цій же таблиці для кожного проміжного рівня адитивної НМ-регресії наведено отримані чисельні значення *МАРЕ*, середнього квадрату залишків MS_R , стандартної похибки оцінки адекватності S_R . Окрім

наведених в табл.4.1 статистичних показників, створені метамоделі оцінювалися і за низкою інших як якісних, так і кількісних [16-18].

Таблиця 4.1 - Відомості щодо створення метамоделі квадратного рухомого НВСП з планарною структурою СЗ для підобласті III_a (*N_{навч.}* = 2076) на етапах навчання та відтворення поверхні відгуку

		MAI	РЕ,%	М	S _R	S _R		
Рівень адитивної НМ-регресії	Нейронні мережі, що є складовими комітетів	Етап навчання	Етап відтворення	Етап навчання	Етап відтворення	Етап навчання	Етап відтворення	
\hat{J}_1	RBF-3-330-1(32) RBF-3-297-1(83) RBF-3-245-1(386) RBF-3-306-1(200) RBF-3-283-1(291)	11.53	12.14	0.00299	0.00285	0.0547	0.053	
\hat{J}_2	RBF-3-200-1(6)RBF-3-240-1(57)RBF-3-302-1(129)RBF-3-304-1(142)RBF-3-304-1(144)	9.02	9.42	0.00224	0.00228	0.0473	0.0478	
\hat{J}_{3}	RBF-3-300-1(116) RBF-3-297-1(96) RBF-3-274-1(69) RBF-3-281-1(74) RBF-3-300-1(113)	7.96	8.54	0.00187	0.00203	0.0432	0.045	
\hat{J}_4	RBF-3-195-1(2) RBF-3-273-1(11) RBF-3-297-1(36)	7.38	7.97	0.00174	0.00193	0.0416	0.0439	

Наступним необхідним етапом є перевірка якості отриманої метамоделі. Для такої перевірки виконано відтворення гіперповерхні відгуку у всіх підобластях на кількості точок $N_{sidme.} = 4090$ та за сукупністю статистичних показників оцінено її адекватність та інформативність [18]. Результати відтворення у вигляді ліній рівня для деяких узагальнених зрізів поверхні наведено на рис.4.6.

Рисунок 4.6 - Відтворення поверхні відгуку у вигляді ліній рівня узагальнених зрізів розподілу ГВС для підобласті ІІІ_а за допомогою метамоделі для рухомого квадратного НВСП з планарною структурою СЗ

Також для якісної оцінки відтворення гіперповерхні відгуку та кращого візуального сприйняття результатів моделювання представлено графічний матеріал у вигляді діаграм розсіювання (рис.4.7) та гістограм розподілу відносних похибок *MAPE* (рис.4.8).

Разом з тим якість отриманої метамоделі додатково перевіряється відтворенням гіперповерхні відгуку за формулою, що описує вихід адитивної НМрегресійної залежності на основі RBF-нейромереж (1.12). Як приклад у додатку Д неведені отримані вагові коефіцієнти адитивної НМ-регресії. Програмна реалізація розрахунку розподілу ГВС із застосуванням створених метамоделей виконана мовою програмування MathCAD. Так на рис.4.9 для прикладу наведено відтворення гіперповерхні відгуку для зрізів a = 8.5 мм, a = 10.5 мм, a = 14.5 мм на висоті над OK $z_0 = 3$ мм.

В таблиці 4.2 наведені отримані значення деяких статистичних показників на етапі навчання та відтворення нейронних мереж для всіх декомпозиційних областей.

Рисунок 4.7 - Діаграми розсіювання значень багатовимірної метамоделі для

Рисунок 4.8 - Гістограми розподілу відносної модельної похибки апроксимації

гіперповерхні відгуку для підобласті ІІІ_а

Рисунок 4.9 - Відтворення поверхні відгуку за допомогою створеної метамоделі, що представлено лініями рівня розподілу ГВС для деяких зрізів

Таблиця 4.2 – Значення деяких статистичних показників отриманої багатопараметричної адитивної НМ метамоделі рамкового НВСП

			MAI	РЕ,%	S	S _R	$MS_{R} \cdot 10^{-3}$	
Позначення підобласті	Декомпозиційна підобласть	N _{навч.} / N _{відтв.}	навчання	відтворення	навчання	відтворення	навчання	відтворення
Ia	$3 \le a \le 5$	2070/4090	7.78	8.07	2.19	4.84	1.05	1.18
IIa	$5 < a \le 7$	2082/4090	7.55	8.22	3.31	6.28	1.58	1.53
III _a	$7 < a \leq 9$	2076/4090	7.38	7.97	3.6	7.91	1.73	1.93
IV _a	9 < <i>a</i> ≤ 11	2076/4090	8.13	8.69	4.33	9.41	2.08	2.3
Va	$11 < a \le 13$	2081/4090	8.86	9.43	4.73	9.9	2.27	2.42
VIa	$13 < a \le 15$	2143/4162	14.91	14.27	5.49	12.87	2.56	3.09

Перевірка відповідності отриманої функції відгуку експериментальним даним здійснюється за критерієм Фішера у послідовності, що наведена в розділі 2.3.3. Результат відповідності метамоделей цьому критерію для кожної декомпозиційної підобласті наведено в табл.4.3.

Таблиця 4.3 – Статистичні показники оцінки адекватності метамоделі рамкового НВСП з планарною структурою СЗ за критерієм Фішера

Позначення підобласті	Декомпози- ційна підобласть	N _{відтв}	MS _D середній квадрат регресії	SS _D сума квадратів регресії	$F_{\nu_D;\nu_R}^{e\kappa cn} = \frac{MS_D}{MS_R}$	Критичне значення критерію Фішера
Ia	$3 \le a \le 5$	4090	0.0559	228.727	53.26	
IIa	$5 < a \le 7$	4090	0.068	278.485	43.09	ткрит
III _a	$7 < a \le 9$	4090	0.0614	251.14	35.49	$F^{Rpm}_{0.05;3;4086} \equiv 2.607$
IVa	$9 < a \le 11$	4090	0.0599	245.102	28.81	2.007
Va	$11 < a \le 13$	4090	0.0586	239.986	25.84	
VIa	$13 < a \le 15$	4162	0.0589	245.353	23.02	F ^{крит} _{0.05;3;4159} == 2.607

Для перевірки відповідності отриманої функції відгуку експериментальним даним встановлювалась адекватність математичної моделі за критерієм Фішера $F_{\nu_D;\nu_R}^{e\kappacn} > F_{\alpha;\nu_D;\nu_R}^{kpum}$. Вказана умова виконується, отже, метамодель для кожної декомпозиційної підобласті адекватна і прогноз результатів за моделлю не суперечить дійсності.

4.3. Сурогатний оптимальний параметричний синтез систем збудження рамкових накладних вихрострумових перетворювачів та верифікація результатів синтезу

Використовуючи створену адитивну НМ-метамодель, наведемо розв'язок задачі лінійного та нелінійного сурогатного оптимального синтезу НВСП з однорідною чутливістю в зоні контролю. Скористаємося стохастичними алгоритмами оптимізації, які добре зарекомендували себе при пошуку глобальних екстремумів [19-22]. Необхідно зазначити, що із всіх застосованих еволюційних і поведінкових алгоритмів найкращі результати отримано за допомогою гібридних алгоритмів, а саме на основі генетичного з локальним Нелдера-Міда пошуком симплексним методом популяційним та метаевристичним алгоритмом оптимізації роєм частинок з еволюційним формуванням складу рою, що являє собою низькорівневу гібридизацію генетичного алгоритму й алгоритму PSO [22].

Разом з тим задавався бажаний розподіл ГВС, який необхідно отримати в результаті розв'язку задачі, а саме, П-подібний розподіл ГВС інтенсивністю $J_{reference} = 40000 \text{ A/M}^2$ в зоні контролю (7 $\leq x, y \leq 17$) мм (рис.4.10 графік 2).

Далі розв'язується задача лінійного оптимального синтезу із обмеженнями на шукані параметри $a_{min} \le a_i \le a_{max}$ [23], тобто визначається МРС Iw_i кожної котушки СЗ, що в підсумку забезпечує близький до однорідного розподіл ГВС в ОК в зоні контролю. Для чисельного моделювання задавалися варіанти структур СЗ із різною кількістю квадратних котушок M = 3-5, відстань між якими рівномірна $\Delta a = \text{const}$ (рис.4.4). Попередній аналіз результатів синтезу дозволяє відібрати декілька структур СЗ, що мають найкращі наближення до однорідного П-подібного розподілу ГВС, ширина якого в зоні контролю складає $l_{ref} = 10$ мм. Чисельні результати розв'язку задачі синтезу представлено в табл.4.4. Для синтезованих СЗ за «точними» математичними виразами (4.4), (4.5) отримано результати розподілу ГВС вздовж осі ОХ, що показано на рис. 4.10 (графік 1). На цих рисунках графік 2 – це заданий бажаний розподіл ГВС в зоні контролю. Також для порівняння на цих графіках представлено розподіл ГВС, що створюється одинарним витком прямокутної форми (графік 3).

Таблиця 4.4 – Результати лінійного синтезу системи збудження рамкового перетворювача з різноманітними структурами

	Синтезовані системи збудження										
№		M-2		M=4							
		IvI-3	В	аріант 1	варіант 2						
	а, мм	<i>Iw</i> , А×витки	а, мм	<i>Iw</i> , А×витки	а, мм	<i>Iw</i> , А×витки					
1	6.5	-0.656	4.5	-0.421	6.5	-0.898					
2	10.5	1.5	7.5	0	9.16	1.24					
3	14.5	0.75	10.5	1.01	11.82	0.503					
4			14.5	0.364	14.48	0.343					

В таблиці 4.3 знак «-» для MPC означає зустрічне включення котушки.

Рисунок 4.10 – Розподіл ГВС, створений структурами СЗ: a) із трьох котушок б) із чотирьох котушок варіант 1; в) із чотирьох котушок варіант 2

Для наочності результати чисельних експериментів проведеного лінійного синтезу НВСП представлено лініями рівня ГВС на рис.4.11.

Рисунок 4.11 – Розподіл ГВС у вигляді ліній рівня, отриманий в результаті лінійного синтезу структур СЗ: а) для трьох котушок; б) для чотирьох котушок варіант 1; в) для чотирьох котушок варіант 2

Порівняльний візуальний аналіз ширини однорідного розподілу ГВС отриманих структур СЗ із різною кількістю котушок показує майже однаковий результат. Проте перевагу необхідно віддати структурі, що забезпечує його меншою їх кількістю, тобто M = 3.

Якщо синтезовану структуру СЗ порівнювати із одинарним витком прямокутної форми (рис.4.2 е) в сенсі створеного ними однорідного розподілу ГВС, то, безперечно, кращі результати отримано планарною СЗ, що ілюструється графіками на рис.4.10. Отже, в дослідженні чисельними експериментами показана ефективність розв'язку задачі лінійного синтезу рамкового ВСП з планарною структурою СЗ. Так зона однорідності розподілу ГВС, що забезпечується

одинарним витком складає $S_{eum.} = 53.96 \ MM^2$, а синтезованою C3 із M = 3 секційних котушок - $S_{C3} = 162.5 \ MM^2$.

Аналіз результатів лінійного синтезу показує, що має сенс виконати додаткові дослідження з використанням нелінійного синтезу з метою уточнення геометричних розмірів секційних котушок.

Аналогічно здійснювався нелінійний сурогатний синтез. Для чисельного моделювання задавалися варіанти структур C3 із різною кількістю квадратних секційних витків M = 3-5. В результаті розв'язку нелінійної оберненої задачі визначено МРС Iw_i та геометричні розміри секційних витків a_i . Отримані чисельні результати представлено в табл.4.5. Ці параметри в сукупності забезпечують наближення створеного розподілу ГВС (рис.4.13 б, графік 2) до апріорі заданого Подібного (рис.4.13 б, графік 1) на поверхні ОК в зоні контролю.

Таблиця	4.5	-	Результати	нелінійного	сурогатного	синтезу	квадратного
рухомого НВС	СПз	різ	ними варіан	тами структур	ои СЗ		

	Синтезовані системи збудження											
N⁰		M=3		M=4	M=5							
	а, мм	<i>Iw</i> , А×витки	а, мм	<i>Iw</i> , А×витки	а, мм	<i>Iw</i> , А×витки						
1	6.39	-0.837	6.37	-0.649	6.64	-1.495						
2	9.5	1.1	8.183	0.398	7.98	1.246						
3	13.5	1.15	10.23	0.9324	10.96	0.613						
4	-	-	13.49	0.92	11.15	0.205						
5	-					0.82						

Чисельні результати синтезу при апріорі заданому П-подібному розподілі ГВС в зоні контролю 7 $\leq x, y \leq 17$ мм для трьох варіантів НВСП із планарними структурами СЗ та кількістю секційних витків M=3, 4, 5 представлено на рис. 4.12. У вигляді ліній рівня наведено розподіли ГВС $J, \frac{A}{M^2}$, що створюються синтезованими СЗ (рис.4.13 a, б, в) та обчислюються за «точною» електродинамічною моделлю.

Для візуального порівняння синтезованого та апріорі заданого розподілів ГВС представлено графіки їх зміни вздовж осі ОХ (рис.4.13 г, д, е). Також на цих же рисунках показано розподіл ГВС, створений одинарним квадратним витком з розмірами 15×15 мм (рис.4.13, графік 3). Отже, для синтезованих структур C3 порівняльний аналіз отриманих розподілів ГВС показав практично однакове перевищення рівня інтенсивності ВС для всіх варіантів, але такі, що відрізняються виконанням умов однорідності. Перевищення рівня інтенсивності ВС над заданим слід вважати позитивним фактом з причин кращих умов виявлення дефектів. Найкращий результат в сенсі однорідності має C3 із чотирма секційними витками. Відзначимо також, що простіші та складніші за вказану структуру C3 не дозволили досягти кращого результату.

a)

Рисунок 4.12 - Варіанти синтезованих конструкцій СЗ:

а) *М*=3; б) *М*=4; в) *М*=5

³0.01 0.015 0.02 0.025 0.03 0.035

x, m

225

25 J, Am² 22.5 8969 20 8969 5.829×10 17.5 3.481-10 3 15 4.657×10 03-10 12.5 3.486×10 10 -2.314×10 8969 7.5 -1.143×10 5 285.714 2.5 ³0.01 0.015 0.02 0.025 0.03 0.035 0 1.2×10 *x*, *m* J 0 3.5 7 10.5 14 17.5 21 24.5 28 31.5 35 г) a) M=425 m^2 22.5 1.43·10⁴^{6989.911} 6989.911 2 20 5.714×10 17.5 4.729×10 15 3.743×10 12.5 6989.91 6989.91 10 2.757×10 $43 \cdot 10^{4}$ 7.5 1.771×10 5 7.857×10 3-10 2.5 2/103 $0 - \frac{698}{10}$ 0 5×10⁻³0.01 0.015 0.02 0.025 0.03 0.035 7 10.5 14 17.5 21 24.5 28 31.5 35 x, m б) д) *M*=5 $J, A/m^2$ 6181.111 22.5-6181.111 6.5×10 20 -2 17.5-5.4×10 15 -4.3×10 6181.111 12.5-6181.1 3.2×10 10 2.1×10 7.5 1×10 5

e) B) Рисунок 4.13 - Результати синтезу рухомих НВСП з квадратною планарною СЗ, обчислені за "точною" електродинамічною моделлю:

6181

25

2.5

а), б), в) лінії рівня розподілу ГВС; г), д), е) розподіл ГВС вздовж осі Ох

M=3

Всі варіанти структур, що розглядалися, показали кращі результати щодо однорідності розподілу ГВС в порівнянні із класичним НВСП із СЗ у вигляді одинарного квадратного витка.

Отже, в дослідженнях реалізовано метод сурогатного нелінійного параметричного синтезу рухомих НВСП з прямокутною планарною структурою СЗ, що забезпечує близький до однорідного розподіл ГВС на поверхні в зоні контролю об'єкту та має однакову чутливість до дефектів.

На чисельних експериментах проілюстровано ефективність розв'язку задачі нелінійного сурогатного синтезу квадратного рухомого НВСП з планарною структурою СЗ, показано його переваги перед класичним аналогом. Так зона однорідності розподілу ГВС, що забезпечується одинарним витком складає $S_{eum.} = 53.96 \ \text{MM}^2$, а синтезованою СЗ із M = 4 секційних котушок - $S_{C3} = 196.25 \ \text{MM}^2$.

4.4. Висновки до четвертого розділу

1. Створені алгоритми та програмно реалізовано розрахунки розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для рамкового НВСП із врахуванням ефекту швидкості.

2. В рамках запропонованого єдиного методологічного підходу створено багатовимірну НМ-метамодель рамкового рухомого НВСП з планарною структурою системи збудження з використанням комітетів нейромереж та концепції адитивної регресії. Відносна похибка відтворення гіперповерхні відгуку складає від 7.97 % до 14.27 % для різних областей декомпозиції. Обчислювальна продуктивність створеної метамоделі менше ніж 2 с, що значно менше часу розрахунку в 28-33 с, який витрачається на розрахунок за «точною» математичною моделлю в одній точці.

3. На основі створеної методології розроблено метод оптимального синтезу рамкових рухомих НВСП із однорідною чутливістю в зоні контролю з планарною структурою системи збудження. Метод реалізовано програмно та апробовано чисельним моделюванням на низці прикладів, що дозволило довести його

ефективність. Розв'язок задачі оптимального синтезу для заданого П-подібного розподілу знаходився шляхом визначення мінімуму цільової функції з обмеженнями на шукані параметри. Для такого підходу довелося виконати перехід від задачі умовної оптимізації до безумовної методом заміни змінних. На шукані параметри накладено обмеження і здійснена заміна змінних, що дозволило знайти фізично реалізований розв'язок. Для розв'язку обернених нелінійних задач використано алгоритми оптимізації, які не застосовують похідні і добре зарекомендували себе при пошуку глобального екстремуму багатовимірних «яроподібних» цільових функцій. Найкращий результат в сенсі однорідності має C3 із чотирма секційними витками. Так зона однорідності розподілу ГВС, що забезпечується одинарним витком складає $S_{eum.} = 53.96 \, Mm^2$, а синтезованою C3 із M=4 секційних котушок - $S_{C3} = 196.25 \, Mm^2$.

Список використаних джерел до розділу 4

1. Itaya T., Ishida K., Kubota Y. et al. Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab // Progress In Electromagnetics Research M. - 2016. - V. 47. - P. 1-12.

 Itaya T., Ishida K., Tanaka A.et al. Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab // IET Science, Measurement & Technology. – 2012. V. 6. - № 2. – P. 43–51.

 Ishida T., Itaya T., Tanaka A. et al. Magnetic Field Analysis of an Arbitrary Shaped Coil Using Shape Functions // IEEE Transactions on Magnetics. – 2009. – V. 45.
 - № 1. – P. 104–112.

4. Itaya T., Ishida K., Tanaka A., Takehira N., Miki T. A New Analytical Method for Calculation of the Eddy Current Distribution and its Application to a System of Conductor-Stab and Rectangular Coil // PIERS Online. $-2011. - V. 7. - N_{2} 8$, P. 766-770.

5. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. Nonlinear surrogate synthesis of the surface circular eddy current probes // Przegląd elektrotechniczny. – 2019. - № 9. – P. 76-82. 6. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V. Optimal surrogate parametric synthesis of surface circular non-axial eddy current probes with uniform sensitivity in the testing zone // Bulletin of the Kherson National Technical University. - 2019. - V. 69. - N = 2. - P. 118-125.

7. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V. Linear synthesis of nonaxial surface eddy current probes // International Journal "NDT Days". - 2019. - V. 2. -№ 3. - P. 259-268.

8. Trembovetska R.V., Halchenko V.Y., Tychkov V.V. Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system // International Scientific Journal «Mathematical Modeling». - 2019. – V. 36. - № 4 - P. 113-116.

9. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V. Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems // Eastern-European Journal of Enterprise Technologies. $-2018. - V.95. - N_{\odot} 5/5. - P. 39-46.$

10. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V., Bazilo C.V. Linear synthesis of frame eddy current probes with a planar excitation system // International Scientific Journal «Mathematical Modeling». – 2020. - V. 4. - N_{2} 3. – P. 86-90.

11. Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В. Методи створення метамоделей: стан питання // Вісник Вінницького політехнічного інституту. - 2020. – Т. 151. - № 4. - С. 74 – 88.

12. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence // Applied Computer Systems. – 2020. – V. 25, No 1. - P. 70-76.

13. Santner T.J., Williams B.J., Notz W I. The Design and Analysis of Computer Experiments. New York : Springer (Springer series in statistics); 2nd ed. - 2018. - 446 p.

14. Géron A. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd Edition. O'Reilly Media, Inc. 2019. - 856 p.

15. Beyer W., Liebscher M., Beer M., et al. Neural Network Based Response Surface. Methods – a Comparative Study. LS-DYNA Anwenderforum: Ulm. 2006.

16. Бринк Х., Ричардс Дж., Феверолф М. Машинное обучение. Спб.: Питер. 2017.

17. Радченко С.Г. Методология регрессионного анализа: монография. Київ: «Корнійчук», 2011. – 375 с.

18. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – С. 60-72.

19. Скобцов Ю.А., Федоров Е.Е. Метаэвристики: монография. Донецк: Ноулидж, 2013. - 426 с.

20. Гальченко В.Я., Якимов А.Н. Популяционные метаэвристические алгоритмы оптимизации роем частиц: Учебное пособие. Черкассы: ФЛП Третяков А.Н., 2015. - 160 с.

21. Wong X. Hybrid nature-inspired computation method for optimization. Doctoral Dissertation. – Helsinki University of Technology, 2009. – 161 p.

22. Гальченко В.Я., Якимов А.Н., Остапущенко Д.Л. Поиск глобального функций использованием гибрида мультиагентной оптимума с роевой формированием // эволюционным популяции оптимизации с состава Информационные технологии. – 2010. - № 10. - С. 9-16.

23. Гальченко В.Я., Трембовецкая Р.В. MathCAD: математические методы и инструментальные средства оптимизации. Черкассы: ЧП Гордиенко Е.И., 2018. - 516 с.

РОЗДІЛ 5. МЕТОД СУРОГАТНОГО ПАРАМЕТРИЧНОГО ОПТИМАЛЬНОГО СИНТЕЗУ РАМКОВИХ РУХОМИХ ТАНГЕНЦІАЛЬНИХ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

5.1. «Точна» електродинамічна модель рамкових рухомих тангенціальних накладних вихрострумових перетворювачів

Розглянемо джерело збудження ЕМП, яке складається із одинарного витка прямокутної форми, що розташований вертикально до ОК. Прямокутний виток із розмірами $2a \times 2b$ живиться змінним струмом *I* частотою ω та розташований на висоті z_0 над ОК, яка співпадає з його геометричним центром. (рис.5.1). Досліджуваний об'єкт товщиною *d* має постійні питому електричну провідність σ та магнітну проникність μ_r . Середовище вважалося лінійним, ізотропним і однорідним. Швидкість переміщення витка $\vec{v} = (v_x, v_y, 0)$ відносно ОК постійна.

Рисунок 5.1 - Рамкове джерело збуджувального поля у вигляді витка прямокутної форми, що розташоване вертикально до ОК

Взаємодія джерела поля у вигляді одинарного витка із ОК визначається співвідношеннями комплексних складових магнітної індукції за просторовими координатами *B_x*, *B_y*, *B_z* [1-4], які отримані в результаті розв'язку диференціальних

рівнянь Максвела за умови непереривності тангенціальних $H_{1t} = H_{2t}$ і нормальних $B_{1n} = B_{2n}$ складових поля на границі розділу середовищ z = 0 та z = -d:

$$B_{2x} = -\frac{\mu_{0} \cdot \mu_{r} \cdot I}{4 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^{2} \cdot e^{(jx_{0}\cdot\xi)}}{\eta \cdot (\xi^{2} + \eta^{2})} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2 \cdot \gamma \cdot d})} \times \\ \times \left[\begin{cases} -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + \\ -(\sqrt{\xi^{2} + \eta^{2}} - \gamma) \cdot d \\ + \nu_{0} \cdot e^{-\gamma \cdot z} \end{cases} \right] \cdot e^{\gamma \cdot z} + \begin{cases} 1 + \lambda_{0} - \nu_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma) \cdot d} \\ + \lambda_{0} - \nu_{0} \cdot e^{-\gamma \cdot z} \end{cases} \right] \times$$
(5.1)

$$\times e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot \left(e^{a \cdot \sqrt{\xi^{2} + \eta^{2}}} - e^{-a \cdot \sqrt{\xi^{2} + \eta^{2}}} \right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$B_{2y} = -\frac{\mu_{0} \cdot \mu_{r} \cdot I}{4 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi \cdot e^{(jx_{0} \cdot \xi)}}{(\xi^{2} + \eta^{2})} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2 \cdot \gamma \cdot d})} \times \\ \times \left[\begin{cases} -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + \\ -(\sqrt{\xi^{2} + \eta^{2}} - \gamma) \cdot d \\ + v_{0} \cdot e \\ - v_{0} \cdot \sqrt{\xi^{2} + \eta^{2}} \end{cases} + e^{\gamma \cdot z} + \begin{cases} 1 + \lambda_{0} - v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma) \cdot d} \\ 1 + \lambda_{0} - v_{0} \cdot e \\ \end{bmatrix} \cdot e^{-\gamma \cdot z} \end{bmatrix} \right] \times$$
(5.2)

$$\times e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot \left(e^{a \cdot \sqrt{\xi^{2} + \eta^{2}}} - e^{-a \cdot \sqrt{\xi^{2} + \eta^{2}}} \right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta,$$

$$B_{2z} = -j \frac{\mu_0 \cdot \mu_r \cdot I}{4 \cdot \pi^2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi \cdot e^{(jx_0 \cdot \xi)}}{\gamma \cdot \eta} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2 \cdot \gamma \cdot d})} \times \left\{ \begin{cases} -\left(1 + \lambda_0\right) \cdot e^{2 \cdot \gamma \cdot d} + \\ -\left(\sqrt{\xi^2 + \eta^2} - \gamma\right) \cdot d \\ + \nu_0 \cdot e \end{cases} \right\} \cdot e^{\gamma \cdot z} - \begin{cases} 1 + \lambda_0 - \nu_0 \cdot e^{-\left(\sqrt{\xi^2 + \eta^2} - \gamma\right) \cdot d} \\ 1 + \lambda_0 - \nu_0 \cdot e \end{cases} \right\} \cdot e^{-\gamma \cdot z} \end{cases} \times e^{-z_0 \cdot \sqrt{\xi^2 + \eta^2}} \cdot \left(e^{a \cdot \sqrt{\xi^2 + \eta^2}} - e^{-a \cdot \sqrt{\xi^2 + \eta^2}}\right) \cdot e^{-j(x \cdot \xi + y \cdot \eta)} d\xi d\eta.$$
(5.3)

Тоді «точна» математична модель розподілу ГВС всередині ОК визначається через частинні похідні складових магнітної індукції за просторовими координатами *x*, *y*, *z*:

$$J_{x} = \frac{1}{\mu_{0} \cdot \mu_{r} \cdot I} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi \cdot e^{(jx_{0}\xi)}}{\gamma \cdot \eta} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2\gamma \cdot d})} \cdot \left[\begin{cases} -(1 + \lambda_{0}) \cdot e^{2\gamma \cdot d} + \frac{1}{4v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d}} \right] \cdot e^{\gamma \cdot z} \\ +v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \end{cases} \cdot e^{\gamma \cdot z} \\ \times \left(e^{e\sqrt{\xi^{2} + \eta^{2}}} - e^{-a\sqrt{\xi^{2} + \eta^{2}}} \right) \cdot e^{-j(x\xi + \gamma \cdot \eta)} d\xi d\eta \\ = \frac{1}{\theta_{0} \cdot \mu_{r}} \cdot I \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi \cdot e^{(jx_{0},\xi)}}{(\xi^{2} + \eta^{2})} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2\gamma \cdot d})} \cdot \left[\begin{bmatrix} -(1 + \lambda_{0}) \cdot e^{2\gamma \cdot d} + \frac{1}{4v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d}} \\ +v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \end{bmatrix} \cdot e^{\gamma \cdot z} + \frac{1}{4v_{0} \cdot x^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^{2} \cdot e^{(jx_{0},\xi)}}{(\xi^{2} + \eta^{2})} \cdot \frac{\sin(b \cdot \eta)}{(1 - e^{2\gamma \cdot d})} \cdot \left[\left[-(1 + \lambda_{0}) \cdot e^{2\gamma \cdot d} + \frac{1}{4v_{0} \cdot e^{-(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d}} \right] \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0}\sqrt{\xi^{2} + \eta^{2}}} \times \frac{1}{2v_{0}\sqrt{\xi^{2} + \eta^{2}}} \cdot e^{-i(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \right] \cdot e^{\gamma \cdot z} + \frac{1}{4v_{0} \cdot e^{-\sqrt{\xi^{2} + \eta^{2}}}} \cdot e^{-i(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \cdot e^{-j(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \cdot e^{-j(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \cdot e^{-j(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \right] \cdot e^{\gamma \cdot z} + \frac{1}{4v_{0} \cdot e^{-\sqrt{\xi^{2} + \eta^{2}}}} \cdot e^{-i(\sqrt{\xi^{2} + \eta^{2}} - \gamma)d} \cdot e^{-j(\sqrt{\xi^{2} + \eta^{2}} -$$

Розподіл ГВС, отриманий за допомогою «точної» математичної моделі (5.1)-(5.5) для одинарного рамкового витка показано на рис. 5.2. Розрахунок здійснювався за наступних вихідних даних: v = (0; 40; 0) м/с; x = -15...15 мм, y = -25...25 мм, a = 16 мм, b = 16 мм; товщина струмопровідного матеріалу d = 10 мм; висота розташування центру витка над ОК $z_0 = 19$ мм; зміщення витка від початку координат $x_0 = 0$ мм; електрофізичні параметри матеріалу ОК $\sigma = 7.69 \cdot 10^6$ См/м, $\mu_r = 700$, частота f = 4 кГц; струм збудження I = 1 А.

B)

Рисунок 5.2 - Розподіл ГВС на поверхні ОК, представлений у вигляді 3D та ліній рівня та створений одинарним витком прямокутної форми:

а) з розмірами 4 × 4 мм; б) з розмірами 12 × 12 мм; в) з розмірами 16 × 16 мм

Для цього випадку конструкції ВСП затрати часу на розрахунок ГВС також достатньо великі і складають для нерухомого перетворювача 2–3 години, а при врахуванні ефекту швидкості – від 4 до 9 годин [5].

Для верифікації формул (5.4), (5.5) «точної» математичної моделі та аналізу розподілу ГВС всередині ОК з використанням одинарного витка збудження прямокутної форми виконувалося чисельне моделювання для випадку варіювання просторових координат $J_e = f(y, z)$ (рис. 5.3), де J_e - модуль ГВС, та за фіксованих інших параметрів. Для розрахунку застосовувалися вихідні дані, що зазначені вище, та зміни просторової координати в діапазоні z = -0.5...0 мм.

Умовну глибину проникнення вихрових струмів можна теоретично оцінити за формулою:

Рисунок 5.3 - Лінії рівня та графіки розподілу ГВС всередині ОК, створеного одинарним витком прямокутної форми

(5.6)

Розподіл ГВС в цьому випадку визначається складовими за просторовими координатами у та *z* за формулою:

$$J_{e} = \sqrt{\left|J_{y}\right|^{2} + \left|J_{Z}\right|^{2}} .$$
 (5.7)

Тоді складова J_{z} визначається за формулою (2.31) із врахуванням наступних частинних похідних $\frac{\partial B_{y}}{\partial x}, \frac{\partial B_{x}}{\partial y}$: $\frac{\partial B_{y}}{\partial x} = -\frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\xi^{2} + \eta^{2}}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - (5.8) - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S(\xi, \eta) \cdot \left(-\xi \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta,$ $\frac{\partial B_{x}}{\partial y} = -\frac{\mu_{0} \cdot \mu_{r} \cdot I}{8 \cdot \pi^{2}} \cdot \int_{-\infty -\infty}^{\infty} \int_{-\infty -\infty}^{\infty} \frac{\xi^{2} + \eta^{2}}{\eta \cdot \gamma \cdot (1 - e^{2 \cdot \gamma \cdot d})} \cdot \left[\left\{ -(1 + \lambda_{0}) \cdot e^{2 \cdot \gamma \cdot d} + v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{\gamma \cdot z} - (5.9) - \left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S(\xi, \eta) \cdot \left(-\eta \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta,$ $-\left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right] \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S(\xi, \eta) \cdot \left(-\eta \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta,$ $-\left\{ 1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right\} \cdot e^{-\gamma \cdot z} - \left\{ -\left(1 + \lambda_{0} - v_{0} \cdot e^{\left(\gamma - \sqrt{\xi^{2} + \eta^{2}}\right) \cdot d} \right\} \cdot e^{-\gamma \cdot z} \right\} \cdot e^{-z_{0} \cdot \sqrt{\xi^{2} + \eta^{2}}} \cdot S(\xi, \eta) \cdot \left(-\eta \cdot e^{-j(x \cdot \xi + y \cdot \eta)} \cdot j \right) d\xi d\eta,$

котушки.

Для заданих вихідних даних оціночна теоретична глибина проникнення поля складає 0.1 мм. Зіставлення з даними чисельних розрахунків (рис.5.3) дозволяє стверджувати щодо їх адекватності, оскільки $J_{z=0} = 2.516 \cdot 10^4$ A/м²; $J_{z=0.1} = 9.986 \cdot 10^3$ A/м²; $J_{z=0}/J_{z=0.1} = 2.52 \approx 2.71$, що відповідає теоретичним уявленням.

5.2. Варіанти конструкцій тангенціальних накладних вихрострумових перетворювачів

Для подальших досліджень необхідно розглянути можливі варіанти конструкцій тангенціальних НВСП, що відрізняються розташуванням вимірювальної котушки перетворювача (рис.5.4-5.6). Це є важливим, оскільки від її орієнтації у просторі залежить, які складові ГВС J_x , J_y чи J_z формують магнітний потік, що пронизує контур котушки. У першому варіанті (рис.5.4)

Рисунок 5.4 - Варіант розташування вимірювальної котушки перетворювача в площині ХОУ: а) умовне розташування СЗ та вимірювальної котушки; б) розподіл ГВС у вигляді ліній рівня; в) графіки зміни розподілу ГВС вздовж осей ОХ і ОУ

На рис.5.4-5.6, окрім варіантів схематичного розташування котушок НВСП, наведено також розраховані розподіли ГВС у вигляді ліній рівня та графіків їх зміни вздовж осей ОХ і ОҮ. При цьому для всіх варіантів демонструються розподіли ГВС в площині ХОУ на поверхні ОК z = 0.

Також можливими є, так звані, біортогональні варіанти конструкцій НВСП, де використовуються одночасно дві вимірювальні котушки, що розташовані в площинах XOZ та XOY, та інші. При цьому C3 залишається однаковою для всіх варіантів – це виток прямокутної форми із вертикальним розташуванням відносно OK.

Рисунок 5.5 - Варіант розташування вимірювальної котушки перетворювача в площині YOZ: а) умовне розташування C3 та вимірювальної котушки; б) розподіл ГВС у вигляді ліній рівня; в) графіки зміни розподілу ГВС вздовж осей OX і OY

Рисунок 5.6 - Варіант розташування вимірювальної котушки перетворювача в площині XOZ: a) умовне розташування СЗ та вимірювальної котушки; б) розподіл ГВС у вигляді ліній рівня

Продовження рисунка 5.6 - Варіант розташування вимірювальної котушки перетворювача в площині ХОΖ: в) графіки зміни розподілу ГВС вздовж осей ОХ і ОУ

Серед усіх СЗ НВСП тангенціальній її конструкції притаманна найкраща однорідність розподілу ГВС, проте область однорідності є досить незначною. Наприклад, для розглянутого одинарного витка СЗ з розмірами 16×16 мм, область однорідності вздовж осі ОХ складає близько 1 мм, а вздовж осі ОУ – 8 мм (рис.5.2 в). Зазвичай у статичних НВСП зону однорідності можна суттєво розширити використанням прямокутної котушки СЗ, що має певну довжину вздовж осі ОХ, тобто застосуванням джерела однорідного ЕМП. Але для рухомих НВСП внаслідок формування в ОК додаткових вихрових струмів, обумовлених ефектом швидкості, це не є цілком прийнятним. Тому має сенс розглянути дискретизований секціонований аналог такої СЗ, що представляє гомогенну систему прямокутних котушок, конструктивні параметри якої визначаються в результаті оптимального синтезу. Такий підхід успішно застосовувався для синтезу СЗ кругових НВСП з планарними [6-9] та об'ємними структурами [9] й пласких СЗ прямокутної форми з генеруванням магнітного потоку збудження нормального до ОК [10]. 5.3. Побудова метамоделі рамкового тангенціального накладного вихрострумового перетворювача з об'ємною структурою системи збудження і перевірка її адекватності та інформативності

Розглядатимемо рухомий тангенціальний НВСП з прямокутною об'ємною структурою C3, яка складається із сукупності M секційних котушок, кожна з яких містить w_i (i = 1, ..., M) витків. Секційні котушки включені послідовно-зустрічно або послідовно-узгоджено та мають різні МРС Iw_i і живляться змінним струмом I круговою частотою ω . Така прямокутна об'ємна структура C3 характеризується наявністю секційних котушок з геометричними розмірами сторін $2a_i \times 2b_i$ кожної із них. Які зміщені x_{0i} одна відносно іншої від початку системи координат вздовж осі ОХ (рис. 5.1). Положення секційних котушок визначається також висотами z_{0i} їх розташування над ОК. На рис. 5.7 а зображено структуру C3 для якої геометричні центри всіх котушок розміщені на однаковій висоті, тобто $z_{0i} = \text{const}$, а на рис. 5.7 б варіант, коли висота розташування котушок різна $z_{0i} = \text{var}$.

Рисунок 5.7 - Об'ємна структура СЗ прямокутної форми: а) висота розташування над ОК z_{0i} = const; б) висота розташування над ОК z_{0i} = var

В цьому дослідженні надалі розглядається випадок, коли висота для всіх секцій є сталою та дорівнює *z*₀. Для чисельних експериментів використовуватимемо секції квадратної форми.

Згідно з алгоритмом сурогатної оптимізації першим етапом є побудова метамоделі СЗ рухомого рамкового тангенціального НВСП. Тобто розподіл ГВС для такої структури СЗ описується багатовимірною апроксимаційною залежністю $\hat{J}=f(x, y, a, x_0)$, де x й y є просторовими координатами на поверхні ОК в зоні контролю (рис. 5.7 а).

У результаті ефективний чотиривимірний комп'ютерний план експерименту для параметрів, що змінюються в межах: x = 0...15 мм, y = -25...25 мм, a = 4...16 мм, $x_0 = 0...4$ мм, реалізовано на основі сукупності безпараметричних адитивних рекурсивних одновимірних R_d-послідовностей, за допомогою створеного програмного продукту [11]. Ефективність цього КПЕ підтверджується низькими показниками центрованого CD₄ = 8.07·10⁻⁵ та циклічного WD₄ = 6.321 розходжень для кількості точок $N_{hagy.} = 2500$ [11].

Область пошуку за розміром котушки *а* розділялася на шість декомпозиційних підобластей: $I_a (4 \le a \le 6 \text{ мм}), \quad II_a (6 < a \le 8 \text{ мм}), \quad III_a (8 < a \le 10 \text{ мм}), \quad IV_a (10 < a \le 12 \text{ мм}), V_a (12 < a \le 14 \text{ мм}), VI_a (14 < a \le 16 \text{ мм}).$

Для кожної підобласті в отриманих точках КПЕ розраховується розподіл ГВС за функціональними залежностями (5.4), (5.5) за наступних сталих параметрів: d = 10 мм, $z_0 = 19$ мм, $\vec{v} = (0, 40, 0)$ м/с, електрофізичні параметри матеріалу ОК $\sigma = 7.69 \cdot 10^6$ См/м, $\mu_r = 700$, частота f = 4 кГц; струм збудження I = 1 А.

Реалізований КПЕ для декомпозиційної підобласті VI_a представлено на рис.5.8. Надалі застосуванням адитивної НМ-регресії отримано метамоделі для кожної підобласті із наступним об'єднанням отриманих рішень в єдине. При цьому використано декілька методів підвищення точності апроксимаційної моделі, які показали свою ефективність при побудові багатовимірних метамоделей [5-10, 12]. Так на кожному проміжному рівні адитивної НМ-регресії застосовувався комітет мереж із прийняттям рішення шляхом усереднення за ансамблем тих мереж, що мають найбільшу продуктивність (рис. 5.9) [12]. Схема побудови асоціативних машин адитивним методом із прийняттям рішення усередненням за ансамблем на кожному проміжному рівні показана на рис.2.10 б.

Рисунок 5.8 – Навчальна вибірка комп'ютерного плану експерименту представлена у вигляді ліній рівня узагальнених зрізів розподілу ГВС для підобластей: а) ІІ_а; б) VІ_а

Для утворення комітету НМ відбиралися найкращі мережі за показниками продуктивності (рис.5.9), коефіцієнту детермінації R^2 , середньої відносної величини модельної похибки *МАРЕ*, % та суб'єктивним аналізом діаграм розсіювання та гістограм залишків [13-17].

RBF_a_14_16_HaB4* - Summary of active networks (RBF_a_14_16_HaB4)												
ВВF_а_14_16_навч* ∧ <	Sumr	Summary of active networks (RBF_a_14_16_навч)										
Scatterplots (KBI_a_14_10_B	Inde	Net. name	Training	Test perf.	Validation	Training	Test error	Validation	Training	Error	Hidden	Output
🌇 Scatterplot of J_norm again	x		perf.		perf.	error		error	algorithm	functio	activation	activatio
🖕 🞰 🛺 J_1	00	DD5 4 0 40 4	0.004004	0.004454	0.000004	0.000004	0.000450	0.000040	DOCT		0	n
	32	RBF 4-242-1	0,994094	0,994454	0,992391	0,000204	0,000150	0,000218	RBF1	SOS	Gaussian	Identity
Predictions spreadsheet	61	RBF 4-260-1	0,991605	0,992260	0,987073	0,000278	0,000273	0,000387	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet	68	RBF 4-263-1	0,993128	0,992633	0,992576	0,000228	0,000249	0,000224	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet	83	RBF 4-271-1	0,994737	0,992565	0,992295	0,000174	0,000245	0,000235	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet	13	RBF 4-217-1	0,697049	0,563786	0,603383	0,000052	0,000076	0,000046	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet	17	RBF 4-223-1	0,703320	0,706762	0,496881	0,000043	0,000063	0,000104	RBFT	SOS	Gaussian	Identity
	77	RBF 4-233-1	0,701246	0,628314	0,630243	0,000051	0,000075	0,000042	RBFT	SOS	Gaussian	Identity
	92	RBF 4-245-1	0,716376	0,499410	0,662857	0,000049	0,000086	0,000043	RBFT	SOS	Gaussian	Identity
	111	RBF 4-250-1	0,780724	0,685274	0,561244	0,000040	0,000059	0.000051	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet for	14	RBF 3-217-1	0,631026	0,329013	0.261100	0,000023	0,000040	0,000026	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet for	76	RBF 3-228-1	0,605327	0,358470	0.584857	0,000023	0,000044	0.000022	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet for	141	RBF 3-252-1	0.503666	0.340293	0.071157	0.000028	0.000041	0.000034	RBFT	SOS	Gaussian	Identity
Predictions spreadsheet for	150	RBF 3-255-1	0 638303	0 243719	0 318848	0 000018	0 000047	0 000058	RBFT	SOS	Gaussian	Identity
Summary of active network			0,000000	0,210110	0,010010	0,000010	0,000011	0,000000				
- 🌆 Scatterplot of J_1 against J_norr												
Control of 11:12 papiert 1	Summary	of active networks (R	BF_a_14_16_нав	ч) 🄲 Predictio	ns spreadsheet fo	r J_norm (RBF_	а_14_16_навч)	Predictions spre	eadsheet for J_n	orm (RBF_a	_14_16_навч)	Prediction

Рисунок 5.9 - Показники продуктивності та абсолютної похибки адитивної НМрегресії для підобласті 14 < a ≤ 16 мм

Для формування навчальних, тестувальних та контрольних підвибірок застосовується беггінг-процедура. Завдяки такій гібридній побудові адитивної НМ- регресії вдалося отримати значення *MAPE* для складної топології розподілу ГВС на рівні від 2.14 % до 4 % на етапі її навчання (табл.5.2). Діаграми розсіювання значень багатовимірної апроксимаційної функції на етапі навчання (рис.5.10) та гістограми розподілу відносної модельної похибки апроксимації гіперповерхні відгуку представлено на рис.5.11.

Рисунок 5.10 - Діаграми розсіювання значень багатовимірної метамоделі на етапі навчання: а) для підобласті ІІ_а; б) для підобласті VI_а

Рисунок 5.11 - Гістограми розподілу відносної модельної похибки апроксимації

гіперповерхні відгуку на етапі навчання:

а) для підобласті ІІ_а; б) для підобласті VІ_а

В табл. 5.1 наведено відомості щодо побудови метамоделі для однієї підобласті $14 \le a \le 16$ мм. В цій таблиці показано три проміжні рівні адитивної НМ-регресії $J_1 - J_3$ та для кожного із яких представлено складові НМ, що відібрані для утворення комітету, а також отримані чисельні значення *MAPE*. Окрім похибки *MAPE*, створені метамоделі оцінювалися за низкою інших статистичних показників як якісних, так і кількісних [13-17]. На рис. 5.9 наведено НМ, що відібралися для утворення комітету та чисельні значення продуктивності, абсолютної похибки кожної із них.

Верифікація створеної метамоделі здійснювалася перевіркою правильності відтворюваності гіперповерхні відгуку у всій області моделювання на значно більшій кількості точок $N_{eidme.} = 4090$. Отже, отримана метамодель є коректною та забезпечує відтворення поверхні відгуку із максимальною похибкою MAPE = 4.47 %. Крім того, отримана метамодель оцінювалася як на етапі навчання, так і на етапі відтворення, ще за низкою статистичних кількісних показників та деяких якісних [13-17], зокрема за критерієм Фішера перевірена адекватність побудованої сурогатної моделі, а за коефіцієнтом детермінації – її інформативність.

Таблиця 5.1 - Відомості щодо створення метамоделі квадратного рухомого тангенціального НВСП з об'ємною структурою СЗ для узагальненого зрізу 14 < *a* ≤16 мм на етапах навчання (*N*_{навч.} = 2050) та відтворення (*N*_{відтв.} = 4090) поверхні відгуку

Рівень ANN-	Нейронні мережі, що є	MAPE,%			
регресії	складовими комітетів	навчання	відтворення		
	RBF-4-242-1(32)				
î	RBF-4-234-1(16)	7.7	7.88		
J	RBF-4-263-1(68)				
	RBF-4-271-1(83)				
	RBF-4-223-1(17)				
^	RBF-4-217-1(13)	1.0.0			
J	RBF-4-233-1(77)	4.98	5.39		
2	RBF-4-250-1(111)				
	RBF-4-245-1(92)				
	RBF-4-217-1(14)				
î	RBF-4-228-1(76)	4	4.47		
J ₃	RBF-4-252-1(141)				
	RBF-4-255-1(150)				

Результати відтворення у вигляді ліній рівня узагальнених зрізів, діаграми розсіювання та гістограми розподілу похибки *МАРЕ* однієї декомпозиційної підобласті наведено на рис.5.12.

Рисунок 5.12 - Відтворення поверхні відгуку для підобласті 14 < *a* ≤ 16 мм: а) лінії рівня для узагальненого зрізу поверхні; б) діаграма розсіювання; в) гістограма розподілу похибки *МАРЕ*

До того ж якість отриманої метамоделі додатково перевіряється відтворенням гіперповерхні відгуку за формулою, що описує вихід адитивної НМ-регресійної залежності на основі RBF-нейромереж (1.12) та вагових коефіцієнтів, які отримані для цієї метамоделі. Так на рис.5.13 а-в для прикладу наведено відтворення гіперповерхні відгуку для зрізів a = 5.5 мм, a = 11.5 мм, a = 15.5 мм на висоті над ОК $z_0 = 19$ мм при $x_0=0$ мм, а на рис.5.14 г – a = 15.5 мм, $x_0 = 4$ мм

a) $a = 5.5 \text{ MM} \cup z_0 = 19 \text{ MM} \cup x_0 = 0 \text{ MM}$

б) $a = 11.5 \text{ мм} \cup z_0 = 19 \text{ мм} \cup x_0 = 0 \text{ мм}$

в) a = 15.5 мм ∪ z₀ = 19 мм ∪ x₀ = 0 мм г) a = 15.5 мм ∪ z₀ = 19 мм ∪ x₀ = 4 мм
 Рисунок 5.13 - Відновлення поверхні відгуку за допомогою створеної метамоделі, що представлено лініями рівня розподілу ГВС для деяких зрізів

В таблиці 5.2 наведені отримані значення *MAPE*, % на етапі навчання та відтворення створеними метамоделями поверхні відгуку для всіх декомпозиційних областей.

Таблиця 5.2 – Значення *МАРЕ, %* отриманих багатопараметричних метамоделей тангенціального НВСП

			MAPE,%		S	S _R	$MS_R \cdot 10^{-3}$		
Позначення підобласті	Декомпози- ційна підобласть	N _{навч.} / N _{відтв.}	Навчання	відтворення	навчання	відтворення	навчання	відтворення	
Ia	$4 \le a \le 6$	2500/4090	2.37	2.4	0.0974	0.183	0.038	0.0447	
IIa	$6 < a \le 8$	2500/4090	2.14	2.18	0.0745	0.133	0.0298	0.0325	
III _a	$8 < a \le 10$	2510/4090	2.43	2.5	0.105	0.188	0.0418	0.0459	
IVa	$10 < a \le 12$	2500/4090	2.9	2.81	0.115	0.213	0.046	0.052	
Va	$12 < a \le 14$	2500/4090	2.89	2.87	0.118	0.223	0.0472	0.0545	
VIa	$14 < a \le 16$	2500/4090	3.99	4.47	0.11	0.227	0.044	0.0555	

Перевірка відповідності отриманої функції відгуку експериментальним даним здійснюється за критерієм Фішера у послідовності, що наведена в розділі 2.3.3. Результат відповідності метамоделей цьому критерію для кожної декомпозиційної підобласті наведено в табл.5.3.

Таблиця 5.3 – Статистичні показники оцінки адекватності метамоделі рамкового тангенціального НВСП з об'ємною структурою СЗ за критерієм Фішера

Позначення підобласті	Декомпози- ційна підобласть	N _{відтв.}	MS _D середній квадрат регресії	SS _D сума квадратів регресії	$F_{\nu_D;\nu_R}^{e\kappa cn} = \frac{MS_D}{MS_R}$	Критичне значення критерію Фішера
Ia	$4 \le a \le 6$		0.0281	115.024	629.1	
IIa	$6 < a \le 8$		0.0303	123.98	932.7	
III _a	$8 < a \le 10$	4090	0.0321	131.352	699.34	F ^{крит} 0.05;4;4085 =
IVa	$10 < a \le 12$		0.0334	136.887	642.3	=2.374
Va	$12 < a \le 14$]	0.034	139.236	623.85	
VIa	$14 < a \le 16$		0.0312	131.85	562.16	

Для перевірки відповідності отриманої функції відгуку експериментальним даним встановлювалась адекватність отриманої математичної моделі за критерієм Фішера $F_{\nu_D;\nu_R}^{ekcn} > F_{\alpha;\nu_D;\nu_R}^{kpum}$. Вказана умова виконується, отже, метамодель для кожної декомпозиційної підобласті адекватна і прогноз результатів за моделлю не суперечить дійсності. 5.4. Сурогатний оптимальний синтез систем збудження рамкових тангенціальних накладних вихрострумових перетворювачів та верифікація результатів синтезу

Надалі розв'язувалася задача лінійного та нелінійного сурогатного оптимального синтезу, де в формулі цільової функції замість «точної» математичної моделі використовувалася отримана RBF-метамодель тангенціального НВСП. Разом з тим, задавався бажаний розподіл ГВС в зоні контролю (рис.5.14), який необхідно отримати в результаті розв'язку задачі.

Для розв'язку нелінійних обернених задач доцільно застосувати стохастичні алгоритми пошуку глобального екстремуму [18-21]. В цьому дослідженні розв'язок отримано з використанням декількох алгоритмів. Один з яких - гібридний алгоритм на основі генетичного з локальним пошуком симплексним методом Нелдера-Міда, другий — алгоритм рою частинок PSO-RND із випадковою стратегією топології зв'язків, наступний - популяційний метаевристичний алгоритм оптимізації роєм частинок з еволюційним формуванням складу рою, що являє собою низькорівневу гібридизацію генетичного алгоритму й алгоритму PSO [21].

Для задач дефектометрії ідеальною формою розподілу ГВС є П-подібна, коли спостерігається максимальна його локалізація і сконцентрованість в зоні контролю, тоді як поза її межами розподіл має нульове значення. Тобто розподіл ГВС є однорідним в заданій зоні. На рис. 5.14 графік 1 проілюстровано заданий П-подібний розподіл ГВС в ОК $J_{reference}$, що описується виразом:

$$J_{reference} = \begin{cases} 2.4 \cdot 10^4 \cdot A / M^2 & \text{при} \\ 0 & \text{якщо } x, y \text{ інші} \end{cases} \begin{cases} 0 < x \le 5 \cdot 10^{-3} \text{ м} \\ -12 \cdot 10^{-3} \le y \le 12 \cdot 10^{-3} \text{ м} \end{cases}.$$

А на рис. 5.14 б, в цей же розподіл зображений вздовж осі ОХ та ОҮ (графік 1) та для порівняння розподіл ГВС створений одинарним витком розміром 16 × 16 мм (рис.5.14, графік 2). Розподіл ГВС одинарного витка має незначну область однорідності, так вздовж осі ОХ вона складає близько 1 мм, а вздовж осі ОҮ – 8 мм (рис.5.14 б, в). Покращити розподіл ГВС, а саме наблизити його до бажаного

однорідного, можна використанням системи котушок збудження різноманітних структур, як показано на прикладі кругових ВСП [5-9] та рамкових НВСП [10].

Отже, постає задача проектування СЗ рамкового тангенціального НВСП, що забезпечує апріорі заданий однорідний розподіл ГВС в контрольних точках зони ОК.

Рисунок 5.14 – Бажаний та розподіл ГВС, створений одинарним прямокутним витком на поверхні ОК: а) вигляд 3D; б) вздовж осі ОХ; в) вздовж осі ОУ

Для того, щоб отримати наперед заданий розподіл ГВС в рамках лінійного синтезу, наприклад П-подібний (рис. 5.14), необхідно визначити МРС *Iw_i* для кожної із секційних котушок СЗ за умови відомих координат їх розміщення у просторі та їх заданої кількості *M*.

Для чисельного моделювання задавалися варіанти об'ємних структур C3 з різною кількістю квадратних котушок M = 2 - 4, відстань між якими рівномірна (рис. 5.7 а). Попередній аналіз результатів синтезу дозволяє відібрати декілька структур C3, що мають найкращі наближення до однорідного розподілу ГВС. Чисельні результати розв'язку задачі синтезу представлено в табл. 5.4. Отримані в сукупності параметри забезпечують наближення створеного розподілу ГВС до апріорі заданого П-подібного на поверхні ОК в зоні контролю. В табл. 5.4 знак «-» для МРС означає зустрічне включення секційної котушки.

Надалі виконувався розрахунок розподілів ГВС для структури СЗ з отриманими в результаті синтезу параметрами за «точною» електродинамічною моделлю. Результат розрахунку проілюстровано графічно у вигляді зміни

розподілу ГВС вздовж осі ОХ та ОУ на рис. 5.15 графіки 1 - 3. Додатково для візуального порівняння там же наведено апріорі заданий розподіл ГВС (графік 5) та розподіл створений одинарним квадратним витком розміром 16 × 16 мм (графік 4).

Таблиця 5.4 - Результати сурогатного лінійного синтезу СЗ рамкових рухомих тангенціальних НВСП з різноманітними варіантами об'ємних структур

Рисунок 5.15 - Результати синтезу рухомих тангенціальних НВСП з квадратною об'ємною структурою СЗ, обчислені за "точною" електродинамічною моделлю: а) розподіл ГВС вздовж осі ОХ; б) вздовж осі ОУ відповідно

Отже, всі синтезовані структури СЗ, представлені в табл. 5.4, реалізують близький до однорідного розподіл ГВС, який перевищує заданий рівень інтенсивності $J_{reference}$ на заданій ділянці 0 < x < 5 мм та -12 < y < 12 мм, що ілюструється рис. 5.15. До того ж порівняння розподілів ГВС, які створюються

синтезованими об'ємними структурами СЗ та одинарним витком квадратної форми (рис. 5.15, графік 4), безперечно вказує на те, що всі синтезовані варіанти мають кращі результати. Про це переконливо свідчать графічні залежності 1 - 3 на рис. 5.15.

За сумарною кількістю ампер-витків, що необхідні для створення C3, структури з M = 3 та M = 4 є майже рівнозначними. Однак варіант C3 з M = 4складніше в технологічному сенсі, оскільки він має більшу кількість секцій. За умови майже однакових результатів, щодо забезпечення однорідного розподілу ГВС, перевагу слід віддати найпростішій у технічній реалізації структурі C3 із M = 2 секційних котушок. На рис. 5.16 а зображено загальний вигляд такої об'ємної структури C3, а на рис. 5.16 б показано у вигляді ліній рівня розподіл ГВС, створений нею.

Рисунок 5.16 - Синтезована об'ємна структура СЗ рамкового тангенціального НВСП із *M* = 2: а) загальний вигляд; б) розподіл ГВС, представлений у вигляді ліній рівня

Далі з'ясуємо, наскільки відрізняється розподіл ГВС створений синтезованою C3 від бажаного розподілу ГВС, тобто визначалася відносна похибка синтезу:

$$\delta_i = \frac{J_{i.cuhm.} - J_{i.ref.}}{J_{i.ref.}} \cdot 100\%,$$

де i = 1...800.

Отримані результати у вигляді лінії рівня розподілу відносної похибки синтезу для структури C3 із M = 2 секційних витків наведено на рис. 5.17 а, а на рис. 5.17 б - гістограми розподілу цієї похибки. Середнє значення похибки синтезу в зоні контролю 0 < x < 5 мм та - 12 < y < 12 мм для цієї структури C3 складає 18.04 %, що є прийнятним результатом.

Рисунок 5.17 - Відносна похибка синтезу: а) лінії рівня розподілу; б) гістограма розподілу похибки синтезу

Чисельні експерименти щодо сурогатного нелінійного синтезу здійснювалися для об'ємних структур C3 тангенціальних НВСП із різною кількістю секційних котушок M = 2-5. В результаті попереднього аналізу відібрано декілька варіантів конструкцій C3, що характеризуються найкращим наближенням розподілів ГВС до однорідного, які охоплюють ділянку в зоні контролю з орієнтовними розмірами вздовж осі OX $l_x = 5$ мм та вздовж осі OY – $l_y = 24$ мм. Чисельні результати розв'язку задач синтезу представлено в табл.5.5.

На рис. 5.19 представлено у вигляді ліній рівня синтезовані розподіли ГВС для структур СЗ із кількістю секційних котушок від двох до п'яти. Розрахунок розподілів ГВС виконувався для СЗ з отриманими в результаті синтезу параметрами за «точною» електродинамічною моделлю (залежність 1). Графіки їх поведінки вздовж осей ОХ та ОУ показано на рис.5.20. З метою порівняння на цих же рисунках наведено бажаний розподіл ГВС (залежність 2) та розподіл, що утворений одинарним квадратним витком з розмірами 16 × 16 мм (залежність 3).

		Синтезовані системи збудження											
N⁰		M=	=2		M=3			M=4			M=5		
секції	а, мм	x_0 ,	Iw,	а, мм	x_0 ,	Iw,	а, мм	x_0 ,	Iw,	а,	x_0 ,	Iw,	
		MM	А×витки		MM	А×витки		MM	А×витки	MM	MM	А×витки	
1	6.9	2.23	-32.14	7	3.13	-26.96	7.64	1.19	-27.94	5.46	4	-19.59	
2	11.77	1.88	11.23	8.74	1.29	15.38	12	2.17	2.55	8.34	1.18	-100	
3				15.92	2.6	1.537	12.56	1.15	9.5	8.34	1.05	100	
4							15.1	3.84	-0.327	9.56	1.6	20.09	
5										5.45	0	-33.57	

Таблиця 5.5 - Результати сурогатного синтезу СЗ рамкових тангенціальних НВСП з різноманітними варіантами об'ємних структур

НВСП у вигляді лінії рівня розподілів ГВС
253

Рисунок 5.20 - Результати оптимального сурогатного синтезу об'ємних структур СЗ рухомих рамкових тангенціальних НВСП, представлені у вигляді розподілу ГВС вздовж осей ОХ та ОУ

Отже, всі синтезовані структури СЗ, представлені в табл.5.4, реалізують близький до однорідного розподіл ГВС, який перевищує заданий рівень інтенсивності $J_{reference} = 2.4 \cdot 10^4 \text{ A/m}^2$ на ділянці 0 < x < 5 мм та -12 < y < 12 мм (рис.5.14). Це не є недоліком, а скоріше потрібно віднести до переваг. До того ж порівняння розподілів ГВС, які створюються синтезованими об'ємними структурами СЗ та одинарним витком квадратної форми, безперечно вказує на те, що всі синтезовані варіанти мають кращі результати. Про це переконливо свідчать графічні залежності 1, 2 і 3 на рис.5.20.

Варіант конструкції СЗ НВСП з M = 5 можна вважати не прийнятним з технічної точки зору. Секції 2 та 3 цієї СЗ фактично компенсують збуджувальні поля одна одної, які згенеровано ними. Геометричні розміри, зміщення вздовж осі ОХ секційних котушок чисельно збігаються, в той час, як МРС характеризуються однаковими та протилежними значеннями. Тобто цю структуру СЗ можна вважати надлишковою. Співставними за доцільністю застосування виглядають структури СЗ з M = 3 та M = 4. Вони є рівнозначними за сумарною кількістю ампер-витків, що необхідні для створення СЗ. Проте варіант СЗ з M = 4 складніше в технологічному сенсі. По-перше, він характеризується більшою кількістю секцій. По-друге, секції 1 та 3 цієї СЗ позиціонуються на одному й тому ж місці осі ОХ. Та хоча вони є різними за геометричними розмірами, але це викликає певні труднощі щодо виготовлення СЗ.

За умови майже однакових результатів щодо забезпечення однорідного розподілу ГВС перевагу слід віддати найпростішій у технічній реалізації структурі СЗ із M = 2 секційних котушок.

Результати модельних розрахунків щодо створення оптимальних C3 об'ємної структури для тангенціальних рухомих рамкових НВСП свідчать про ефективність запропонованого методу сурогатного параметричного синтезу, що забезпечує рівномірний розподіл ГВС в ОК та гарантує однорідну чутливість перетворювачів до дефектів. Так зона однорідності розподілу ГВС, що забезпечується одинарним витком, складає $S_{eum.} = 8 \ MM^2$, а синтезованою C3 із M=2 секційних котушок - $S_{C3} = 96 \ MM^2$.

5.5. Висновки до п'ятого розділу

1. Створено алгоритми та програмно реалізовано розрахунки розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для рамкових тангенціальних НВСП із врахуванням ефекту швидкості.

2. В рамках запропонованого єдиного методологічного підходу створено багатовимірну НМ-метамодель рамкового рухомого тангенціального НВСП з об'ємною структурою системи збудження з використанням комітетів нейромереж та концепції адитивної регресії. Відносна похибка відтворення гіперповерхні відгуку складає від 2.18 % до 4.47 % для різних областей декомпозиції. Часова обчислювальна ресурсомісткість в одній контрольній точці для такої метамоделі менше ніж 1 с на відміну від розрахунку за «точною» моделлю, що складає 12-18 с.

3. Побудовано метод оптимального сурогатного параметричного синтезу рамкових рухомих тангенціальних НВСП із однорідною чутливістю в зоні контролю з об'ємною структурою системи збудження, використання яких дозволяє забезпечити необхідні умови для ідентифікації дефектів суцільності виробів й матеріалів при застосуванні їх у складі комп'ютерних систем неруйнівного контролю. Площа зони контролю з однорідним розподілом ГВС складає для синтезованої структури – 96 мм², а для класичного аналога – 8 мм². Отже, спостерігається її збільшення в 12 разів при похибці синтезу – 18.04 %.

Список використаних джерел до розділу 5

1. Itaya T., Ishida K., Kubota Y. et al. Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab // Progress In Electromagnetics Research M. - 2016. - V. 47. - P. 1-12.

2. Itaya T., Ishida K., Tanaka A.et al. Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab // IET Science, Measurement & Technology. – 2012. V. 6. - № 2. – P. 43–51.

 Ishida T., Itaya T., Tanaka A. et al. Magnetic Field Analysis of an Arbitrary Shaped Coil Using Shape Functions // IEEE Transactions on Magnetics. – 2009. – V. 45. - № 1. – P. 104–112. 4. Itaya T., Ishida K., Tanaka A., Takehira N., Miki T. A New Analytical Method for Calculation of the Eddy Current Distribution and its Application to a System of Conductor-Stab and Rectangular Coil // PIERS Online. $-2011. - V. 7. - N_{2} 8$, P. 766-770.

5. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V. Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems // Eastern-European Journal of Enterprise Technologies. $-2018. - V.95. - N_{\odot} 5/5. - P. 39-46.$

6. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. Nonlinear surrogate synthesis of the surface circular eddy current probes // Przegląd elektrotechniczny. – 2019. - № 9. – P. 76-82.

7. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V. Optimal surrogate parametric synthesis of surface circular non-axial eddy current probes with uniform sensitivity in the testing zone // Bulletin of the Kherson National Technical University. - 2019. – V. 69. - N_{2} 2. - P. 118-125.

8. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V. Linear synthesis of non-axial surface eddy current probes // International Journal "NDT Days". - 2019.
- V. 2. - № 3. - P. 259-268.

9. Trembovetska R.V., Halchenko V.Y., Tychkov V.V. Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system // International Scientific Journal «Mathematical Modeling». -2019. - V. 36. - N = 4 - P. 113-116.

10. Trembovetska R.V., Halchenko V.Ya., Tychkov V.V., Bazilo C.V. Linear synthesis of frame eddy current probes with a planar excitation system // International Scientific Journal «Mathematical Modeling». $-2020. - V. 4. - N_{\odot} 3. - P. 86-90.$

11. Halchenko V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence // Applied Computer Systems. – 2020. – V. 25, № 1. - P. 70-76.

12. Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В. Методи створення метамоделей: стан питання // Вісник Вінницького політехнічного інституту. - 2020. – Т. 151. - № 4. - С. 74 – 88.

13. Géron A. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd Edition. O'Reilly Media, Inc. 2019. - 856 p.

14. Beyer W., Liebscher M., Beer M., et al. Neural Network Based Response Surface. Methods – a Comparative Study. LS-DYNA Anwenderforum: Ulm. 2006.

15. Бринк Х., Ричардс Дж., Феверолф М. Машинное обучение. Спб.: Питер. 2017.

16. Радченко С.Г. Методология регрессионного анализа: монография. Київ: «Корнійчук», 2011. – 375 с.

17. Гальченко В.Я., Трембовецька Р.В., Тичков В.В. Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – С. 60-72.

18. Скобцов Ю.А., Федоров Е.Е. Метаэвристики: монография. Донецк: Ноулидж, 2013. - 426 с.

19. Гальченко В.Я., Якимов А.Н. Популяционные метаэвристические алгоритмы оптимизации роем частиц: Учебное пособие. Черкассы: ФЛП Третяков А.Н., 2015. - 160 с.

20. Wong X. Hybrid nature-inspired computation method for optimization. Doctoral Dissertation. – Helsinki University of Technology, 2009. – 161 p.

21. Гальченко В.Я., Якимов А.Н., Остапущенко Д.Л. Поиск глобального оптимума функций с использованием гибрида мультиагентной роевой оптимизации с эволюционным формированием состава популяции // Информационные технологии. – 2010. - № 10. - С. 9-16.

РОЗДІЛ 6. ПРАКТИЧНА РЕАЛІЗАЦІЯ СИНТЕЗОВАНИХ СИСТЕМ ЗБУДЖЕННЯ НАКЛАДНИХ ВИХРОСТРУМОВИХ ПЕРЕТВОРЮВАЧІВ

6.1. Варіанти практичної реалізації синтезованих систем збудження накладних вихрострумових перетворювачів та оцінка точності відтворення синтезованого розподілу густини вихрових струмів в об'єкті контролю

Проілюструємо викладене вище прикладами реального виготовлення C3 кругового перетворювача з об'ємною структурою M = 4 ($Iw_1 = -0.901$, $Iw_2 = 1.457$, $Iw_3 = -11.01$, $Iw_4 = 12.31$), технічні параметри якої отримано внаслідок комп'ютерного моделювання за запропонованим методом синтезу апріорі заданого розподілу ГВС в ОК (рис.6.1).

Рисунок 6.1 – Система збудження кругового перетворювача з об'ємною структурою із *M*=4, технічні параметри якої отримано внаслідок комп'ютерного моделювання (розділ 3.3.2)

Якщо розміщення у просторі секційних котушок СЗ з визначеними їх геометричними параметрами не викликає труднощів у конструюванні, забезпечення зустрічного або узгодженого "за полем" характеру їх включення достатньо просто виконується зміною напрямку секційної намотки (знак "мінус" означає протилежний напрямок), то питання виконання умов щодо реалізації магніторушійних сил в секційних котушках не є тривіальним. Найпростішим варіантом практичної реалізації НВСП з об'ємною структурою СЗ є збудження її від одного джерела. Враховуючи дійсні значення MPC, отримані в результаті обчислень, доводиться округлити кількість витків в секціях до цілих значень (наприклад, I = 0.5 A, $w_1 = -2$, $w_2 = 3$, $w_3 = -22$, $w_4 = 25$). Такі дії призводять до певного спотворення первинно отриманого розподілу ГВС в ОК, що потребує додаткового перевірочного розрахунку, результати якого наведено на рис.6.2. Середня відносна похибка відтворення розподілу складає 3.65 %.

Рисунок 6.2 - Похибка практичної реалізації СЗ: а) розподіли ГВС синтезованої та реальної конструкцій, б) гістограма відносної похибки відтворення розподілу ГВС

Наступним способом практичної реалізації СЗ є варіант, ідея якого полягає в наступному. Джерело збудження СЗ характеризується струмом, який на порядок менший за розрахунковий. Отже, тоді кількість витків в секційних котушках, що з'єднані послідовно, збільшується відповідно на порядок та округляється до цілих значень (I = 0.05 A, $w_1 = -18$, $w_2 = 29$, $w_3 = -220$, $w_4 = 246$). Результати чисельних експериментів ілюструються графіками на рис.6.3. Середня відносна похибка відтворення розподілу складає 2 %.

Рисунок 6.3 - Похибка практичної реалізації СЗ: а) розподіли ГВС синтезованої та реальної конструкцій, б) гістограма відносної похибки відтворення розподілу

ГВС

Досконалішим слід вважати спосіб практичної реалізації СЗ НВСП, коли її збудження здійснюється від двох джерел, струм в яких відрізняється на порядок. В цьому випадку намотка секційних котушок виконується двома дротами, одним з яких реалізуються обмотки, що містять цілу частину дійсних чисел кількості витків, а другим – обмотки, що є десятковими частинами тих самих дійсних чисел ($I_1 = 0.5$ A, $w_1 = -1$, $w_2 = 2$, $w_3 = -22$, $w_4 = 24$; $I_2 = 0.05$ A, $w_1 = -8$, $w_2 = 9$, $w_3 = 0$, $w_4 = 6$). Результати чисельного моделювання представлено на рис.6.4. Середня відносна похибка відтворення розподілу складає 0.89 %.

Слід зазначити, що ускладнення електронної схеми при практичному виконанні систем збудження та обробляння сигналу НВСП, досить легко уникнути використанням одного двоканального джерела збудження.

За необхідності кількість джерел збудження СЗ можна збільшувати, але накопичений досвід свідчить щодо достатності попередніх заходів для забезпечення відтворюваності синтезованого розподілу ГВС.

Рисунок 6.4 - Похибка практичної реалізації СЗ: а) розподіли ГВС синтезованої та реальної конструкцій, б) гістограма відносної похибки відтворення розподілу

ГВС

6.2. Висновки до шостого розділу

1. Запропоновано три способи практичної реалізації систем збудження. Перший з них передбачає збудження СЗ від одного джерела. Враховуючи дійсні значення MPC, отримані в результаті обчислень, необхідно округлити кількість витків в секціях до цілих значень. Середня відносна похибка відтворення розподілу ГВС цього методу складає 3.65 %.

2. Другий спосіб практичної реалізації СЗ передбачає, що джерело збудження має струм, який на порядок менший за розрахунковий. Тоді кількість витків в секційних котушках, що з'єднані послідовно, збільшується відповідно на порядок та округлюється до цілих значень. Середня відносна похибка відтворення розподілу складає 2 %.

3. Третій спосіб найдосконаліший. Збудження СЗ здійснюється від двох джерел, струм в яких відрізняється на порядок. В цьому випадку намотка секційних котушок виконується двома дротами, одним з яких реалізуються обмотки, що містять цілу частину дійсних чисел кількості витків, а другим обмотки, що є десятковими частинами тих самих дійсних чисел. Середня відносна похибка відтворення розподілу складає 0.89 %.

ОСНОВНІ РЕЗУЛЬТАТИ ТА ВИСНОВКИ

У дисертаційній роботі вирішена актуальна науково-прикладна проблема створення теорії сурогатного оптимального параметричного синтезу всього класу рухомих накладних вихрострумових перетворювачів з однорідною чутливістю до дефектів порушень суцільності матеріалів й виробів щодо забезпечення необхідних умов їх ідентифікації комп'ютерними системами неруйнівного контролю. До виконаних дисертаційних досліджень можна зробити наступні висновки:

1. В дисертації виконано аналітичний огляд науково-технічної літератури з метою дослідження відомих методів оптимального синтезу вихрострумових перетворювачів із заданими властивостями електромагнітного поля зондування об'єктів, які застосовуються в якості компонентів комп'ютерних систем виявлення та ідентифікації дефектів суцільності, методів розв'язку нелінійних обернених задач та методів створення метамоделей для використання при оптимальному сурогатному синтезі накладних вихрострумових перетворювачів. Визначено найперспективніші тенденції їх розвитку та застосування.

Запропоновано єдину методологію сурогатного оптимального синтезу 2. всього класу рухомих вихрострумових перетворювачів із однорідною чутливістю в зоні контролю, що містить наступні методи: метод розрахунку за «точними» електродинамічними моделями розподілу густини вихрових струмів всередині об'єкту контролю; метод побудови багатовимірних однорідних комп'ютерних планів експериментів з гарантовано низькими показниками центрованої та циклічної розбіжностей на основі комбінацій квазівипадкових R_d-послідовностей та ЛП_т-послідовностей Соболя; адитивний комітетний нейромережевий метод побудови багатовимірних метамоделей вихрострумових перетворювачів; метод пошуку глобального екстремуму основі алгоритмів стохастичної на метаевристичної умовної оптимізації.

3. В рамках запропонованого єдиного методологічного підходу створено багатовимірні нейромережеві метамоделі кругових рухомих накладних вихрострумових перетворювачів з планарною та об'ємною структурами систем

збудження, що характеризуються прийнятною точністю апроксимації. Відносна похибка апроксимації для метамоделі накладного вихрострумового перетворювача з планарною структурою системи збудження не перевищує 6.76 % для всіх областей декомпозиції, а для метамоделі накладного вихрострумового перетворювача з об'ємною структурою – змінюється від 6.22 % до 21.31 % в деяких випадках. Час обчислення в одній контрольній точці за створеними нейромережевими метамоделями складає менше ніж 1 с для планарної структури системи збудження та до 4 с - для об'ємної на противагу часу в 23-54 с при розрахунку за «точною» електродинамічною моделлю.

4. З використанням комітетів нейромереж та концепції адитивної регресії побудовано багатовимірну метамодель рамкового рухомого накладного вихрострумового перетворювача з планарною структурою системи збудження. Відносна похибка відтворення гіперповерхні відгуку складає від 7.97 % до 14.27 % для різних областей декомпозиції. Часова обчислювальна продуктивність створеної метамоделі складає менше ніж 2 с, що значно менше часу розрахунку в 28-33 с, який витрачається на розрахунок за «точною» електродинамічною моделлю в одній контрольній точці

5. Створено багатовимірну нейромережеву метамодель рамкового рухомого тангенціального накладного вихрострумового перетворювача з об'ємною структурою системи збудження, яка адекватно відтворює гіперповерхню відгуку з відносною похибкою, що змінюється від 2.18 % до 4.47 % для окремих областей декомпозиції. Часова обчислювальна ресурсомісткість в одній контрольній точці для такої метамоделі менше ніж 1 с на відміну від розрахунку за «точною» моделлю, що складає 12-18 с.

6. Запропоновано методи оптимального синтезу кругових рухомих накладних вихрострумових перетворювачів із однорідною чутливістю в зоні контролю з планарною та об'ємною структурами систем збудження. Виконано їх практичну реалізацію у вигляді відповідного програмного забезпечення. На чисельних експериментах доведено їх адекватність. Похибка синтезу системи

збудження накладного вихрострумового перетворювача з планарною структурою складає 8.07 %. При цьому площі зон однорідності розподілів густини вихрових струмів синтезованої конструкції в порівнянні з класичним аналогом складають 125.66 мм² та 90.27 мм² відповідно. Для об'ємної структури системи збудження цей показник складає – 301.44 мм² та 87.96 мм².

7. На основі створеної методології розроблено метод оптимального синтезу рамкових рухомих накладних вихрострумових перетворювачів із однорідною чутливістю в зоні контролю з планарною структурою системи збудження. Метод реалізовано програмно та апробовано чисельним моделюванням на низці прикладів, що дозволило довести його ефективність. Площу зони однорідного розподілу густини вихрових струмів синтезованої системи збудження накладного вихрострумового перетворювача збільшено в 3.6 рази в порівнянні з класичним аналогом (196.25 мм² та 53.96 мм² відповідно).

8. Побудовано метод оптимального сурогатного параметричного синтезу рамкових рухомих тангенціальних накладних вихрострумових перетворювачів із однорідною чутливістю в зоні контролю з об'ємною структурою системи збудження, використання яких дозволяє забезпечити необхідні умови для ідентифікації дефектів суцільності виробів й матеріалів при застосуванні їх у складі комп'ютерних систем неруйнівного контролю. Площа зони контролю з однорідним розподілом густини вихрових струмів складає для синтезованої структури – 96 мм², а для класичного аналога – 8 мм². Отже, спостерігається її збільшення в 12 разів при похибці синтезу – 18.04 %.

9. Результати дисертаційних досліджень впроваджено в промисловості в АТ «Укрзалізниця», виробничий підрозділ служби сигналізації та зв'язку «Шевченківська дистанція сигналізації та зв'язку», філії «Науково-виробничого центру технічної діагностики «Техдіагаз» Черкаська діагностична дільниця АТ «Укртрансгаз» та в навчальний процес ЧДТУ, НТУУ «КПІ ім. Ігоря Сікорського» на кафедрах приладобудування, мехатроніки та комп'ютеризованих технологій і виробництва приладів відповідно. додатки

ДОДАТОК А

Документація про наукову значимість, практичне використання та впровадження

основних результатів роботи

Акціонерне товариство «Укртрансгаз» Філія «Науково-виробничий центр технічної діагностики «**Техдіагаз**»

Київський територіальний центр

Україна, 03151, м. Київ, вул. Волинська, 56 тел.: +38 (044) 461-24-11 e-mail: <u>t-office@utg.ua</u>

Черкаська діагностична дільниця м.Черкаси, вул.Сумгаїтська, 3, тел. (58) 22 85. e-mail: <u>teperchuk-av@utg.ua</u> Ukrtransgaz Joint Stock Company Branch Center of Technical Inspection **Techdiagaz**

> Kyiv Territorial Center

56, Volynska st., Kyiv, 03151, Ukraine tel.: +38 (044) 461-24-11 e-mail: <u>t-office@utg.ua</u>

АКТ

Про наукову значимість, практичне використання і впровадження результатів експериментальних досліджень дисертаційної роботи Трембовецької Руслани Володимирівни на тему: «Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю»

Результати наукових досліджень, що виконані Трембовецькою Р.В., мають важливе наукове та практичне значення для підприємства. Комп'ютерна система неруйнівного контролю використовувалася для комплексного обстеження стану, технічного нагляду та ремонтно-технічного обслуговування технологічного обладнання газотранспортної системи — мережі магістральних газопроводів та газопроводів-відводів, які працюють в безперервному робочому режимі.

Комісія у складі начальника лабораторії технічної діагностики Овчаренко Ю.С., та спеціалістів з неруйнівного контролю інженера І категорії Погребняка О.О., інженера Косюченко С.А. склали цей акт про проведені з метою своєчасного виявлення та усунення можливих дефектів на об'єктах газотранспортної системи, підвищення ступеня надійності транспортування газу, комплексні обстеження стану технологічного обладнання - лінійної частини магістрального газопроводу на зовнішній поверхні основного металу трубопроводів на наявність тріщин, плівок, рванин, закатів, відкритих пузирів, закатаної окалини і неметалевих включень. Вимірювання здійснювалися із використанням штатного обладнання, до складу якого входять вихрострумовий комплекс, розроблені авторкою конструкції кругових та рамкових перетворювачів та портативний комп'ютер із спеціальним програмним забезпеченням.

В цілому сукупність наукових досліджень та розробок в рамках дисертаційної роботи Трембовецької Р.В. має практичне значення для проведення комплексного дослідження об'єктів систем технічної діагностики магістральних газопроводів накладними вихрострумовими перетворювачами з високою точністю, чутливістю та відтворюваністю.

Начальник

falluntand

О.В. Теперчук

АКЦІОНЕРНЕ ТОВАРИСТВО «УКРАїНСЬКА ЗАЛІЗНИЦЯ» АТ «УКРЗАЛІЗНИЦЯ»

uz.gov.ua

Виробничий підрозділ служби сигналізації та зв'язку «Шевченківська дистанція сигналізації та зв'язку»

Пров. Якова Водяного, 12, м. Сміла, обл. Черкаська, тел. (+380 4733) 5 22 35, факс (+380 47 33) 5 36 88, shch5s@odz.gov.ua

22.01.2021

AKT

Про впровадження результатів дисертаційної роботи Трембовецької Руслани Володимирівни на тему: «Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю»

Комісія у складі начальника дільниці приладів контролю Котенка А.І., старшого електромеханіка приладів контролю Карпенка А.П., електромеханіка КВП Байделюка С.Т. склали цей акт про проведені спільні роботи з виявлення різноманітних дефектів, зокрема дефектів порушень суцільності та структури матеріалів й виробів, встановлення їх форми, прийнятності структурних відхилень матеріалів регулюючих та нерегулюючих об'єктів металевих конструкцій, небезпечних тріщин на ділянках металевих конструкцій з пошкодженнями і поверхневими підповерхневими горизонтальними розшаруваннями. Під час планових видів ремонту здійснювався вибірковий контроль та оцінювався стан різноманітних пласких деталей із застосуванням вихрострумового дефектоскопу ВД-113, в складі якого використовувався запропонований Трембовецькою P.B. оригінальний тангенціальний вихрострумовий перетворювач рамкового типу з однорідною чутливістю в зоні контролю.

Вимірювання здійснювалися із використанням штатного обладнання, до складу якого входять дефектоскоп та портативний комп'ютер із розробленим спеціальним програмним забезпеченням.

Заступник начальника Шевченківської дистанції сигналізації та зв'язкулізаці

Вик ШЧУ Котенко А.І. Тел: 98-200-25-43 Ю.П. Бражник

ЗАТВЕРДЖУЮ:

Ректор Черкаського державного технологічного уліверситету, О. О. Григор 2021 p. АКТ

впровадження в навчальний процес Черкаського державного технологічного університету результатів дисертаційної роботи **Трембовецької Руслани Володимирівни** на тему: «**Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю**»

Основні результати дисертаційного дослідження Трембовецької Р.В. впроваджені в навчальний процес при виконанні курсових робіт та проектів, при викладанні лекцій, проведенні лабораторних та практичних занять з навчальних дисциплін "Оптимізація прийняття рішень у техніці", "Математичні методи оптимізації та моделювання систем і процесів", «Випробування та контроль якості продукції», «Аналіз та контроль матеріалів», «Системи технічної діагностики та контролю якості продукції», "Планування та моделювання комп'ютерного експерименту" зокрема:

 – єдина методологія сурогатного оптимального синтезу для проектування рухомих вихрострумових перетворювачів комп'ютерних систем неруйнівного контролю;

 метод побудови багатовимірних однорідних комп'ютерних планів експериментів на основі квазівипадкових Rd- послідовностей для отримання планів експериментів з гарантовано низькими показниками центрованої та циклічної розбіжностей;

 – адитивний комітетний нейромережевий метод побудови багатовимірних метамоделей вихрострумових перетворювачів для апроксимації гіперповерхні відгуку довільної вимірності з прийнятною похибкою;

– алгоритми та програми для реалізації розрахунків розподілу густини вихрових струмів в об'єкті контролю за «точними» електродинамічними моделями для накладних вихрострумових перетворювачів кругових та рамкових різновидів із врахуванням ефекту швидкості; – комітетні нейромережеві метамоделі рухомих накладних вихрострумових перетворювачів, які мають високу часову обчислювальну продуктивність;

- методи оптимального сурогатного синтезу рухомих накладних вихрострумових перетворювачів для реалізації у вигляді відповідного програмного забезпечення, що дозволяє проектувати перетворювачі із однорідною чутливістю до дефектів.

Крім цього в навчальному процесі використовуються наступні монографії:

• Гальченко В.Я. Линейные задачи оптимизации. MathCAD - практикум: Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ФЛП Третяков А.Н., 2016. — 116 с.

• Гальченко В.Я. Нелинейные задачи оптимизации. MathCAD - практикум: Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ФЛП Третяков А.Н., 2017. — 167 с.

• Гальченко В.Я. MathCAD: математические методы и инструментальные средства оптимизации: Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ЧП Гордиенко Е.И., 2018. — 516 с.

Використання результатів дисертаційної роботи Трембовецької Р.В. дозволяє здобувачам третього освітньо-наукового рівня вищої світи на високому науковотехнічному рівні проводити наукові дослідження, а здобувачам вищої освіти першого та другого рівня виконувати кваліфікаційні роботи бакалавра та магістра.

Начальник навчальнометодичного відділу, к.е.н., доцент

С.М. Мильніченко

Декан факультету електронних технологій і робототехніки, к.т.н., доцент

А. М. Чорній

Завідувач кафедри приладобудування, мехатроніки та комп'ютеризованих технологій, д.т.н., доцент _____

М. О. Бондаренко

Затверняхую Макан припадобудівного факультету Національного технічного університету України "Київський політехнічний інститут імені Ігоря Сікорського", доктор технічних наук, професор

Г.С.Тимчик 2021 p.

Акт

практичного використання результатів дисертаційної роботи **Трембовецької Руслани Володимирівни** " **Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю** " в навчальному процесі Національного технічного університету України

"Київський політехнічний інститут імені Ігоря Сікорського"

Ми, що підписались нижче, заступник декана з методичної роботи кандидат технічних наук, доцент Філіппова Марина В'ячеславівна, виконуючий обов'язки завідувача кафедри виробництва приладів доктор технічних наук, професор Антонюк Віктор Степанович, вчений секретар кафедри Подолян Олександр Олександрович, склали цей акт про те, що результати дисертаційної роботи кандидата технічних наук, доцента кафедри приладобудування, мехатроніки та комп'ютеризованих технологій Черкаського державного технологічного університету Трембовецької Руслани Володимирівни "Теорія оптимального синтезу накладних вихрострумових перетворювачів для комп'ютерних систем неруйнівного контролю" використовуються в навчальному процесі кафедри виробництва приладів приладобудівного факультету Національного технічного університету України "Київський політехнічний інститут імені Ігоря Сікорського", а саме: при читанні лекцій, проведенні лабораторних і практичних занять, виконанні курсових проєктів з навчальних дисциплін "Діагностика та надійність автоматизованих систем", "Спектрально-кореляційний аналіз сигналів", "Аналіз вимірювальних сигналів", в яких використовуються наступні науковотехнічні результати дисертаційної роботи: комп'ютерні методи планування однорідних багатовимірних експериментів; методи створення метамоделей, в тому числі із використанням адитивної ї регресії на основі комітетів нейронних мереж; сурогатні методи синтезу перетворювачів на основі стохастичних метаевристичних алгоритмів пошуку глобального екстремуму тощо.

Також у навчальному процесі використовуються результати дисертаційної роботи викладені в посібниках:

•Гальченко В.Я. Линейные задачи оптимизации. MathCAD - практикум: Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ФЛП Третяков А.Н., 2016. — 116 с.

Гальченко В.Я. Нелинейные задачи оптимизации. MathCAD - практикум:
 Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ФЛП Третяков
 А.Н., 2017. — 167 с.

• Гальченко В.Я. MathCAD: математические методы и инструментальные средства оптимизации: Учебное пособие / В.Я. Гальченко, Р.В. Трембовецкая. — Черкассы: ЧП Гордиенко Е.И., 2018. — 516 с.

Використання здобувачами першого, другого та третього рівнів вищої освіти науково-технічних результатів дисертаційної роботи Трембовецької Р.В. дозволяє їм детально ознайомитися з сучасними методами та засобами оптимального проєктування перетворювачів, в тому числі вихрострумових з однорідною чутливістю в зоні контролю, та набути навичок проведення наукових комп'ютерних експериментів.

Заступник декана приладобудівного факультету НТУУ "КПІ імені. Ігоря Сікорського" з методичної робокандидат технічних наук, доцент

В.о. завідувача кафедри виробництва приладів НТУУ "КПІ імені. Ігоря Сікорського" доктор технічних наук, професор

Вчений секретар кафедри виробництва приладів НТУУ "КПІ імені. Ігоря Сікорського" кандидат технічних наук

М.В.Філіппова

В.С. Антонюк

О.О. Подолян

додаток б

Свідоцтво про реєстрацію авторського права на твір "Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_d-послідовностей»"

	YKPAÏHA
	CBLACIERBO
	про ресстрацію авторського права на твір
	.№ 102018
0	Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R-послідовностей»
	(вид, назва твору)
	Автор(и) Гальченко Володимир Якович, Трембовецька Руслана Володимирівна, Тичков Володимир Володимирович
	(повне ім'я, псевдонім (за наявності))
	Сенеральний Лиректор
	Державного підприємства
· · ·	«Український інститут нтелектуальної власності» Сусісь Андрій КУДІН
	UKRAIHCEKKIR HICTUTZT HICTUTZT HICTUTZT HICTUTZT BACHOCTIS BACHOCTIS HICTUTZ H
• YKPAI	HA · UKRAINE · YKPAIHA ·
	ПК «Українь». Зак. 20-202. 2020

ДОДАТОК В

Чотиривимірний однорідний комп'ютерний план експерименту на основі R_dпослідовностей для побудови метамоделі кругового накладного вихрострумового перетворювача з об'ємною структурою системи збудження у декомпозиційній підобласті II_z-V_r

		0	1	2	3
	0	-0.045	0	0.011	3·10 ⁻³
	1	-0.0129	8.1865 [.] 10 ⁻³	0.01113	3.0386·10 ⁻³
	2	-0.0258	0.03387	0.01176	3.5772·10 ⁻³
	3	-0.0387	0.02456	0.01139	3.1158·10 ⁻³
	4	0.0384	0.01525	0.01101	3.6544·10 ⁻³
	5	0.02551	5.9325·10 ⁻³	0.01164	3.193·10 ⁻³
	6	0.0126	0.03162	0.01127	3.7316·10 ⁻³
	7	-2.97 [.] 10 ⁻⁴	0.0223	0.0119	3.2702·10 ⁻³
	8	-0.01319	0.01299	0.01153	3.8088·10 ⁻³
	9	-0.02609	3.675·10 ⁻³	0.01116	3.3474·10 ⁻³
	10	-0.03899	0.02936	0.01179	3.886.10-3
	11	0.03811	0.02005	0 01 142	3 4246.10-3
	12	0.02521	0.01073	0.01104	3 96 32 · 10 - 3
	13	0.01231	1 42065.10-3	0.01167	3 50 18 • 10 - 3
	14	-5 94.10-4	0.02711	0.0113	3 04036.10-3
	15	-0.01349	0.02711	0.0113	3 570.10-3
	15	-0.01549	8 /805.10-3	0.01195	3 11 76 • 10 - 3
	10	-0.02039	0.7003 10 3	0.01130	2 65 62:10-3
	1/	-0.03929	0.03417	0.01119	3.0502°10 ³
	18	0.03781	0.02485	0.01182	3.1948.10.3
	19	0.02491	0.01554	0.01145	3.7333.10-3
	20	0.01201	6.223.10-3	0.0110/	3.2/19.10-3
	21	-8.82.10-4	0.03191	0.0117	3.8105.10-3
	22	-0.01379	0.0226	0.01133	3.3491.10-3
	23	-0.02669	0.01328	0.01196	3.8877·10 ⁻³
	24	-0.03958	3.969·10 ⁻³	0.01159	3.4263·10 ⁻³
	25	0.03752	0.02966	0.01122	3.9649·10 ⁻³
R 4 =	26	0.02462	0.02034	0.01185	3.5035·10 ⁻³
_	27	0.01172	0.01103	0.01148	3.04213·10 ⁻³
	28	-1.179·10 ⁻³	1.71395·10 ⁻³	0.0111	3.5807·10 ⁻³
	29	-0.01408	0.0274	0.01173	3.1193·10 ⁻³
	30	-0.02698	0.01809	0.01136	3.6579·10 ⁻³
	31	-0.03988	8.771·10 ⁻³	0.01199	3.1965 [.] 10 ⁻³
	32	0.03722	0.03446	0.01162	3.7351·10 ⁻³
	33	0.02433	0.02514	0.01125	3.2737·10 ⁻³
	34	0.01142	0.01583	0.01188	3.8123·10 ⁻³
	35	-1.476 [.] 10 ⁻³	6.517 [.] 10 ⁻³	0.0115	3.3509·10 ⁻³
	36	-0.01437	0.0322	0.01113	3.8895·10 ⁻³
	37	-0.02727	0.02289	0.01176	3.4281·10 ⁻³
	38	-0.04017	0.01358	0.01139	3.9667·10 ⁻³
	39	0.03693	4.263·10 ⁻³	0.01102	3.5053·10 ⁻³
	40	0.02403	0.02995	0.01165	3.04389·10 ⁻³
	41	0.01113	0.02064	0.01128	3.5825·10 ⁻³
	42	-1.773·10 ⁻³	0.01132	0.01191	3.1211·10 ⁻³
	43	-0.01467	2.00725·10 ⁻³	0.01153	3.6597·10 ⁻³
	44	-0.02757	0.02769	0.01116	3.1983·10 ⁻³
	45	-0.04047	0.01838	0.01179	3.7369.10-3

		0	1	2	2
	46	0 03663	9.065.10-3	2 0.01142	3 2755.10-3
	40	0.03003	0.03475	0.01142	3 81/11.10-3
	۲ <i>۲</i> ۸0	0.02373	0.03473	0.01103	2 25 27 10-3
	40	0.01004	0.02344	0.01108	3.3327 10 3
	49	-2.061.10-3	0.01612	0.01131	3.8913.10-3
	50	-0.01497	6.811.10-3	0.01194	3.4299.10-3
	51	-0.02/86	0.0325	0.01156	3.9685.10-3
	52	-0.04076	0.02318	0.01119	3.5071.10-3
	53	0.03634	0.01387	0.01182	3.04565·10 ⁻³
	54	0.02344	4.557·10 ⁻³	0.01145	3.5843·10 ⁻³
	55	0.01054	0.03024	0.01108	3.1228·10 ⁻³
	56	-2.358·10 ⁻³	0.02093	0.01171	3.6614·10 ⁻³
	57	-0.01525	0.01161	0.01134	3.2 [.] 10 ⁻³
	58	-0.02816	2.30055·10 ⁻³	0.01197	3.7386 [.] 10 ⁻³
	59	-0.04106	0.02799	0.01159	3.2772·10 ⁻³
	60	0.03604	0.01867	0.01122	3.8158·10 ⁻³
	61	0.02315	9.359 [.] 10 ⁻³	0.01185	3.3544·10 ⁻³
	62	0.01024	4.5325·10 ⁻⁵	0.01148	3.893·10 ⁻³
	63	-2.655 [.] 10 ⁻³	0.02573	0.01111	3.4316·10 ⁻³
	64	-0.01555	0.01642	0.01174	3.9702·10 ⁻³
	65	-0.02845	7.105 [.] 10 ⁻³	0.01137	3.5088.10-3
	66	-0.04135	0.03279	0.01199	3.04742.10-3
	67	0.03575	0.02348	0.01162	3.586.10-3
	68	0.02285	0.01416	0.01125	3 1246·10 ⁻³
	69	9 954.10-3	4 8475 10-3	0.01188	3 6632.10-3
	70	-2 952.10-3	0.03053	0.01150	3 2018 10-3
	70	-0.01585	0.03033	0.01131	3 7404.10-3
	71	-0.01385	0.02122	0.01117	3 270.10-3
$R_4 =$	72	-0.02075	2 50295,10-3	0.01177	2.9176.10-3
	73	-0.04105	2.59305 10 9	0.0114	2 2562:10-3
	74	0.03345	0.02828	0.01102	3.3302 10 3
	75	0.02255	0.0109/	0.01105	2.4224-10-3
	70	9.657.10-3	9.653.10-5	0.01128	3.4334.10-3
	//	-3.24.10-5	3.38555.10-4	0.01191	3.972.10-3
	/8	-0.01615	0.02603	0.01154	3.5106.10-3
	79	-0.02904	0.01671	0.01117	3.04918.10-3
	80	-0.04194	7.3955.10-3	0.0118	3.5878.10-3
	81	0.03516	0.03308	0.01143	3.1264.10-3
	82	0.02226	0.02377	0.01105	3.665 [.] 10 ⁻³
	83	9.36·10 ⁻³	0.01446	0.01168	3.2036·10 ⁻³
	84	-3.537·10 ⁻³	5.1415 [.] 10 ⁻³	0.01131	3.7422·10 ⁻³
	85	-0.01643	0.03083	0.01194	3.2808·10 ⁻³
	86	-0.02934	0.02151	0.01157	3.8194·10 ⁻³
	87	-0.04224	0.0122	0.0112	3.358·10 ⁻³
	88	0.03487	2.8868·10 ⁻³	0.01183	3.8966·10 ⁻³
	89	0.02197	0.02857	0.01145	3.4352·10 ⁻³
	90	9.063 [.] 10 ⁻³	0.01926	0.01108	3.9738·10 ⁻³
	91	-3.834·10 ⁻³	9.947 [.] 10 ⁻³	0.01171	3.5124·10 ⁻³
	92	-0.01673	6.3175 [.] 10 ⁻⁴	0.01134	3.05095·10 ⁻³
	93	-0.02963	0.02632	0.01197	3.5895·10 ⁻³
	94	-0.04253	0.017	0.0116	3.1281.10-3
	95	0.03457	7.6895 [.] 10 ⁻³	0.01123	3.6667·10 ⁻³
	96	0.02167	0.03338	0.01186	3.2053 10-3
	97	8.775.10-3	0.02406	0.01148	3.7439.10-3
	98	-4.131.10-3	0.01475	0.01111	3.2825.10-3
	99	-0.01703	5,4355,10-3	0.01174	3.8211.10-3
	100	-0.02993	0.03112	0.01137	
		=		= = = • •	

		0	1	2	3
	101	-0.04283	0.02181	0.012	3.8983·10 ⁻³
	102	0.03427	0.0125	0.01163	3.4369 [.] 10 ⁻³
	103	0.02138	3.1801·10 ⁻³	0.01126	3.9755 [.] 10 ⁻³
	104	8.478 [.] 10 ⁻³	0.02887	0.01189	3.5141·10 ⁻³
	105	-4.419 [.] 10 ⁻³	0.01955	0.01151	3.05271·10 ⁻³
	106	-0.01733	0.01024	0.01114	3.5913 [.] 10 ⁻³
	107	-0.03022	9.2505 [.] 10 ⁻⁴	0.01177	3.1299 [.] 10 ⁻³
	108	-0.04312	0.02661	0.0114	3.6685 [.] 10 ⁻³
	109	0.03398	0.0173	0.01103	3.2071·10 ⁻³
	110	0.02108	7.9835 [.] 10 ⁻³	0.01166	3.7457·10 ⁻³
	111	8.181·10 ⁻³	0.03367	0.01129	3.2843·10 ⁻³
	112	-4.716 [.] 10 ⁻³	0.02436	0.01192	3.8229·10 ⁻³
	113	-0.01761	0.01504	0.01154	3.3615·10 ⁻³
	114	-0.03052	5.7295·10 ⁻³	0.01117	3.9001·10 ⁻³
	115	-0.04342	0.03142	0.0118	3.4387·10 ⁻³
	116	0.03369	0.0221	0.01143	3.9773·10 ⁻³
	117	0.02079	0.01279	0.01106	3.5159 [.] 10 ⁻³
	118	7.884 [.] 10 ⁻³	3.4734·10 ⁻³	0.01169	3.05448·10 ⁻³
	119	-5.013·10 ⁻³	0.02916	0.01132	3.5931·10 ⁻³
	120	-0.01791	0.01985	0.01194	3.1317·10 ⁻³
	121	-0.03081	0.01053	0.01157	3.6703 [.] 10 ⁻³
	122	-0.04371	1.21835·10 ⁻³	0.0112	3.2089 [.] 10 ⁻³
	123	0.03339	0.0269	0.01183	3.7475 [.] 10 ⁻³
	124	0.02049	0.01759	0.01146	3.2861 [.] 10 ⁻³
$R_4 =$	125	7.596 [.] 10 ⁻³	8.2775 [.] 10 ⁻³	0.01109	3.8247·10 ⁻³
	126	-5.31·10 ⁻³	0.03396	0.01172	3.3633·10 ⁻³
	127	-0.01821	0.02465	0.01135	3.9019 [.] 10 ⁻³
	128	-0.0311	0.01534	0.01197	3.4404·10 ⁻³
	129	-0.044	6.02·10 ⁻³	0.0116	3.979·10 ⁻³
	130	0.03309	0.03171	0.01123	3.5176·10 ⁻³
	131	0.0202	0.02239	0.01186	3.05624·10 ⁻³
	132	7.299 [.] 10 ⁻³	0.01308	0.01149	3.5948·10 ⁻³
	133	-5.598·10 ⁻³	3.766 [.] 10 ⁻³	0.01112	3.1334·10 ⁻³
	134	-0.0185	0.02945	0.01175	3.672 [.] 10 ⁻³
	135	-0.0314	0.02014	0.01138	3.2106 [.] 10 ⁻³
	136	-0.0443	0.01083	0.011	3.7492 [.] 10 ⁻³
	137	0.0328	1.5113 [.] 10 ⁻³	0.01163	3.2878·10 ⁻³
	138	0.0199	0.0272	0.01126	3.8264 [.] 10 ⁻³
	139	7.002 [.] 10 ⁻³	0.01788	0.01189	3.365 [.] 10 ⁻³
	140	-5.895·10 ⁻³	8.5715 [.] 10 ⁻³	0.01152	3.9036·10 ⁻³
	141	-0.01879	0.03426	0.01115	3.4422·10 ⁻³
	142	-0.0317	0.02494	0.01178	3.9808·10 ⁻³
	143	-0.04459	0.01563	0.01141	3.5194·10 ⁻³
	144	0.03251	6.314 [.] 10 ⁻³	0.01103	3.05801·10 ⁻³
	145	0.01961	0.032	0.01166	3.5966 [.] 10 ⁻³
	146	6.705 [.] 10 ⁻³	0.02269	0.01129	3.1352 [.] 10 ⁻³
	147	-6.192·10 ⁻³	0.01337	0.01192	3.6738·10 ⁻³
	148	-0.01909	4.06·10 ⁻³	0.01155	3.2124·10 ⁻³
	149	-0.03199	0.02975	0.01118	3.751·10 ⁻³
	150	-0.04489	0.02043	0.01181	

		0	1	2	3
	151	0.03221	0.01112	0.01143	3.8282·10 ⁻³
	152	0.01931	1.8046·10 ⁻³	0.01106	3.3668·10 ⁻³
	153	6.417 [.] 10 ⁻³	0.02749	0.01169	3.9054·10 ⁻³
	154	-6.489 [.] 10 ⁻³	0.01818	0.01132	3.444·10 ⁻³
	155	-0.01939	8.862 [.] 10 ⁻³	0.01195	3.9826·10 ⁻³
	156	-0.03228	0.03455	0.01158	3.5212·10 ⁻³
	157	0.04482	0.02524	0.01121	3.05977·10 ⁻³
	158	0.03191	0.01592	0.01184	3.5984·10 ⁻³
	159	0.01902	6.608 [.] 10 ⁻³	0.01146	3.137·10 ⁻³
	160	6.12 [.] 10 ⁻³	0.03229	0.01109	3.6756·10 ⁻³
	161	-6.777 [.] 10 ⁻³	0.02298	0.01172	3.2142·10 ⁻³
	162	-0.01968	0.01367	0.01135	3.7528·10 ⁻³
	163	-0.03258	4.354·10 ⁻³	0.01198	3.2914·10 ⁻³
	164	0.04452	0.03004	0.01161	3.83·10 ⁻³
	165	0.03163	0.02073	0.01124	3.3685·10 ⁻³
	166	0.01872	0.01141	0.01187	3.9071·10 ⁻³
	167	5.823 [.] 10 ⁻³	2.0979·10 ⁻³	0.01149	3.4457·10 ⁻³
	168	-7.074 [.] 10 ⁻³	0.02778	0.01112	3.9843·10 ⁻³
	169	-0.01997	0.01847	0.01175	3.5229·10 ⁻³
	170	-0.03288	9.156 [.] 10 ⁻³	0.01138	3.06153·10 ⁻³
	171	0.04423	0.03484	0.01101	3.6001·10 ⁻³
	172	0.03133	0.02553	0.01164	3.1387·10 ⁻³
	173	0.01843	0.01622	0.01127	3.6773·10 ⁻³
	174	5.526 [.] 10 ⁻³	6.902 [.] 10 ⁻³	0.0119	3.2159·10 ⁻³
$R_4 =$	175	-7.371 [.] 10 ⁻³	0.03259	0.01152	3.7545·10 ⁻³
	176	-0.02027	0.02328	0.01115	3.2931·10 ⁻³
	177	-0.03317	0.01396	0.01178	3.8317·10 ⁻³
	178	0.04393	4.648 [.] 10 ⁻³	0.01141	3.3703·10 ⁻³
	179	0.03103	0.03033	0.01104	3.9089·10 ⁻³
	180	0.01813	0.02102	0.01167	3.4475·10 ⁻³
	181	5.238 [.] 10 ⁻³	0.0117	0.0113	3.9861·10 ⁻³
	182	-7.668 [.] 10 ⁻³	2.3912·10 ⁻³	0.01192	3.5247·10 ⁻³
	183	-0.02056	0.02808	0.01155	3.0633·10 ⁻³
	184	-0.03346	0.01876	0.01118	3.6019·10 ⁻³
	185	0.04364	9.45·10 ⁻³	0.01181	3.1405·10 ⁻³
	186	0.03074	1.35975·10 ⁻⁴	0.01144	3.6791·10 ⁻³
	187	0.01784	0.02582	0.01107	3.2177·10 ⁻³
	188	4.941 [.] 10 ⁻³	0.01651	0.0117	3.7563·10 ⁻³
	189	-7.956 [.] 10 ⁻³	7.196 [.] 10 ⁻³	0.01133	3.2949·10 ⁻³
	190	-0.02086	0.03288	0.01195	3.8335·10 ⁻³
	191	-0.03376	0.02357	0.01158	3.3721·10 ⁻³
	192	0.04334	0.01425	0.01121	3.9107·10 ⁻³
	193	0.03045	4.9385 [.] 10 ⁻³	0.01184	3.4493·10 ⁻³
	194	0.01754	0.03063	0.01147	3.9879·10 ⁻³
	195	4.644 [.] 10 ⁻³	0.02131	0.0111	3.5265·10 ⁻³
	196	-8.253 [.] 10 ⁻³	0.012	0.01173	3.06506.10-3
	197	-0.02115	2.6845·10 ⁻³	0.01136	3.6037·10 ⁻³
	198	-0.03406	0.02837	0.01198	3.1423·10 ⁻³
	199	0.04305	0.01906	0.01161	3.6809·10 ⁻³
	200	0.03015	9.744·10 ⁻³	0.01124	

		0	1	2	3
	201	0.01725	4.291·10 ⁻⁴	0.01187	3.758 [.] 10 ⁻³
	202	4.347·10 ⁻³	0.02612	0.0115	3.2966 [.] 10 ⁻³
	203	-8.55 [.] 10 ⁻³	0.0168	0.01113	3.8352·10 ⁻³
	204	-0.02145	7.4865 [.] 10 ⁻³	0.01176	3.3738·10 ⁻³
	205	-0.03434	0.03317	0.01138	3.9124·10 ⁻³
	206	0.04275	0.02386	0.01101	3.451·10 ⁻³
	207	0.02985	0.01455	0.01164	3.9896 [.] 10 ⁻³
	208	0.01696	5.2325·10 ⁻³	0.01127	3.5282·10 ⁻³
	209	4.059 [.] 10 ⁻³	0.03092	0.0119	3.06683·10 ⁻³
	210	-8.847·10 ⁻³	0.02161	0.01153	3.6054·10 ⁻³
	211	-0.02174	0.01229	0.01116	3.144 • 10-3
	212	-0.03464	2.97745·10 ⁻³	0.01179	3.6826·10 ⁻³
	213	0.04246	0.02867	0.01141	3.2212·10 ⁻³
	214	0.02956	0.01935	0.01104	3.7598 [.] 10 ⁻³
	215	0.01666	0.01003	0.01167	3.2984 [.] 10 ⁻³
	216	3.762 [.] 10 ⁻³	7.224 [.] 10 ⁻⁴	0.0113	3.837·10 ⁻³
	217	-9.144·10 ⁻³	0.02641	0.01193	3.3756·10 ⁻³
	218	-0.02204	0.01709	0.01156	3.9142·10 ⁻³
	219	-0.03494	7.7805 [.] 10 ⁻³	0.01119	3.4528·10 ⁻³
	220	0.04216	0.03347	0.01182	3.9914·10 ⁻³
	221	0.02926	0.02415	0.01144	3.53·10 ⁻³
	222	0.01636	0.01484	0.01107	3.06859·10 ⁻³
	223	3.465 [.] 10 ⁻³	5.5265 [.] 10 ⁻³	0.0117	3.6072·10 ⁻³
	224	-9.432·10 ⁻³	0.03121	0.01133	3.1458·10 ⁻³
$R_4 =$	225	-0.02234	0.0219	0.01196	3.6844 [.] 10 ⁻³
	226	-0.03524	0.01259	0.01159	3.223·10 ⁻³
	227	0.04187	3.27075·10 ⁻³	0.01122	3.7616·10 ⁻³
	228	0.02897	0.02896	0.01185	3.3002·10 ⁻³
	229	0.01606	0.01964	0.01147	3.8388·10 ⁻³
	230	3.168 [.] 10 ⁻³	0.01033	0.0111	3.3774·10 ⁻³
	231	-9.729 [.] 10 ⁻³	1.0157·10 ⁻³	0.01173	3.916 [.] 10 ⁻³
	232	-0.02263	0.0267	0.01136	3.4546·10 ⁻³
	233	-0.03553	0.01739	0.01199	3.9932·10 ⁻³
	234	0.04157	8.0745 [.] 10 ⁻³	0.01162	3.5318·10 ⁻³
	235	0.02867	0.03376	0.01125	3.07036·10 ⁻³
	236	0.01578	0.02445	0.01187	3.609 [.] 10 ⁻³
	237	2.871 [.] 10 ⁻³	0.01513	0.0115	3.1475 [.] 10 ⁻³
	238	-0.01003	5.8205·10 ⁻³	0.01113	3.6861·10 ⁻³
	239	-0.02292	0.03151	0.01176	3.2247·10 ⁻³
	240	-0.03582	0.02219	0.01139	3.7633·10 ⁻³
	241	0.04127	0.01288	0.01102	3.3019·10 ⁻³
	242	0.02838	3.563·10 ⁻³	0.01165	3.8405·10 ⁻³
	243	0.01548	0.02925	0.01128	3.3791·10 ⁻³
	244	2.583·10 ⁻³	0.01994	0.0119	3.9177·10 ⁻³
	245	-0.01032	0.01062	0.01153	3.4563·10 ⁻³
	246	-0.02322	1.309 [.] 10 ⁻³	0.01116	3.9949·10 ⁻³
	247	-0.03612	0.027	0.01179	3.5335·10 ⁻³
	248	0.04099	0.01768	0.01142	3.07212·10 ⁻³
	249	0.02808	8.3685·10 ⁻³	0.01105	3.6107.10-3
	250	0.01518	0.03405	0.01168	

		0	1	2	3
	251	2.286 [.] 10 ⁻³	0.02474	0.01131	3.6879·10 ⁻³
	252	-0.01061	0.01542	0.01193	3.2265 [.] 10 ⁻³
	253	-0.02352	6.111 [.] 10 ⁻³	0.01156	3.7651·10 ⁻³
	254	-0.03641	0.0318	0.01119	3.3037·10 ⁻³
	255	0.04069	0.02248	0.01182	3.8423·10 ⁻³
	256	0.02779	0.01317	0.01145	3.3809.10-3
	257	0.01489	3 857.10-3	0.01108	3 91 95 10-3
	258	1 989.10-3	0 02954	0.01171	3 4581.10-3
	259	-0.01091	0.0203	0.01171	3.9967.10-3
	260	-0.0238	0.01.092	0.01195	3 53 53 • 10-3
	261	-0.03671	1 60195.10-3	0.01150	3 07388.10-3
	262	0.03071	0.02729	0.01133	3 61 25 10 -3
	262	0.07055	0.02725	0.01122	3 1511.10-3
	205	0.02749	8 66 25 10 - 3	0.01103	3 6807:10-3
	204	1 602.10-3	0.0025 10 5	0.01140	2 2282 10-3
	205	-0.01121	0.03503	0.01111	3 7660:10-3
	200	-0.01121	0.02503	0.01174	2 2055:10-3
	207	-0.0241	6 405:10-3	0.01130	3.3055 10 3
	200	-0.037	0.403 10 3	0.01199	2 29 27 10-3
	209	0.0401	0.03209	0.01102	3.3827 10 3
	270	0.0272	0.02278	0.01125	3.9213.10-3
	271	0.0143	0.01346	0.01188	3.4599.10-3
	272	1.404.10-3	4.151.10-3	0.01151	3.9985.10-3
	2/3	-0.0115	0.02984	0.01114	3.53/1.10-3
D 1 _	274	-0.0244	0.02052	0.011//	3.0/565.10-3
K_4 =	275	-0.03/3	0.01121	0.01139	3.6142.10-3
	276	0.03981	1.89525.10-3	0.01102	3.1528.10-3
	277	0.0269	0.02758	0.01165	3.6914.10-3
	278	0.014	0.01827	0.01128	3.23.10-3
	279	1.107.10-3	8.953·10-3	0.01191	3.7686.10-3
	280	-0.01179	0.03464	0.01154	3.3072.10-3
	281	-0.0247	0.02533	0.01117	3.8458.10-3
	282	-0.03759	0.01601	0.0118	3.3844.10-3
	283	0.03951	6.699 [.] 10 ⁻³	0.01142	3.923.10-3
	284	0.02661	0.03239	0.01105	3.4616 [.] 10 ⁻³
	285	0.01371	0.02307	0.01168	3.00022.10-3
	286	8.1·10 ⁻⁴	0.01376	0.01131	3.5388·10 ⁻³
	287	-0.01209	4.445·10 ⁻³	0.01194	3.07741·10 ⁻³
	288	-0.02498	0.03013	0.01157	3.616 [.] 10 ⁻³
	289	-0.03789	0.02081	0.0112	3.1546·10 ⁻³
	290	0.03921	0.0115	0.01182	3.6932·10 ⁻³
	291	0.02632	2.18855 [.] 10 ⁻³	0.01145	3.2318·10 ⁻³
	292	0.01342	0.02787	0.01108	3.7704·10 ⁻³
	293	5.13·10 ⁻⁴	0.01856	0.01171	3.309 [.] 10 ⁻³
	294	-0.01238	9.247 [.] 10 ⁻³	0.01134	3.8476 [.] 10 ⁻³
	295	-0.02528	0.03493	0.01197	3.3862 [.] 10 ⁻³
	296	-0.03818	0.02562	0.0116	3.9248·10 ⁻³
	297	0.03892	0.01631	0.01123	3.4634·10 ⁻³
	298	0.02602	6.993·10 ⁻³	0.01185	3.00198·10 ⁻³
	299	0.01312	0.03268	0.01148	3.5406·10 ⁻³
	300	2.25.10-4	0.02337	0.01111	

		0	1	2	3
	300	2.25·10 ⁻⁴	0.02337	0.01111	3.07918·10 ⁻³
	301	-0.01268	0.01405	0.01174	3.6178·10 ⁻³
	302	-0.02558	4.7355·10 ⁻³	0.01137	3.1564·10 ⁻³
	303	-0.03848	0.03042	0.012	3.695 [.] 10 ⁻³
	304	0.03863	0.02111	0.01163	3.2336.10-3
	305	0.02572	0.0118	0.01126	3.7722·10 ⁻³
	306	0.01282	2.48185.10-3	0.01188	3.3108.10-3
	307	-7.2.10-5	0.02817	0.01151	3.8494.10-3
	308	-0.01297	0.01885	0.01114	3.388.10-3
	309	-0.02587	9.541.10-3	0.01177	3.9266.10-3
	310	-0.03877	2.2666.10-4	0.0114	3.4651.10-3
	311	0.03833	0.02591	0.01103	3.00375.10-3
	312	0.02543	0.0166	0.01166	3.5423.10-3
	313	0.01253	7.287.10-3	0.01129	3.08094.10-3
	314	-3 69:10-4	0.03297	0.01191	3 6195 10-3
	315	-0.01327	0.02366	0.01154	3.1581.10-3
	316	-0.02616	0.01434	0.01117	3 6967.10-3
	317	-0.03907	5 0295.10-3	0.0118	3 2353 10-3
	318	0.03803	0.03072	0.0110	3 7739.10-3
	319	0.02514	0.0214	0.01106	3 31 25 10-3
	320	0.02314	0.0219	0.01160	3 8511.10-3
	320	-6 66:10-4	2 77515.10-3	0.01103	3 3897.10-3
	321	-0.01356	0.02846	0.01101	3 9283 10-3
	322	-0.01550	0.02040	0.01157	3.9205 10 3
R 4 =	323	-0.02040	0.01913	0.01137	3.00551.10-3
<u>n_</u> i	225	-0.03930	5.033 10 5	0.0112	2 5441.10-3
	225	0.03774	0.0262	0.01105	2 09 271 10 -3
	220	0.02464	0.0202	0.01140	2 6212:10-3
	227	0.01194	7 5775:10-3	0.01109	2 1500:10-3
	220	-9.54 10 -	0.02226	0.01172	2 6095 10 3
	329	-0.01386	0.03320	0.01134	2.0965 ¹ 10 ⁻³
	221	-0.02070	0.02393	0.01197	2 7757:10-3
	222	-0.03905	0.01404 E 2225:10-3	0.0110	3.7757103
	332 222	0.03745	0.02101	0.01123	2.0520:10-3
	222 224	0.02454	0.03101	0.01160	2 2015:10-3
	22E	1 251,10-3	0.0217	0.01149	2 0201 • 10 - 3
	222	-1.251 10 5	2.06.91,10-3	0.01112	2.4697.10-3
	222	-0.01415	0.02976	0.01173	2 00 7 29 10 -3
	337 220	-0.02705	0.02876	0.01137	2 5450:10-3
	220	-0.03995	0.01944	0.011	2 09 447 10 -3
	240	0.03715	9 1205 10-4	0.01105	3.06447*10-3
	240 241	0.02425	0.1305 10 1	0.01120	3.6231 10 3
	242	0.01135	0.0205	0.01169	2 2002-10-3
	242	-1.548.10-3	0.01/19	0.01152	3.7003.10-3
	2/1	-0.01444	1.0/12.10.2	0.01170	3.2303 IU 3
	245	-0.02/34	0.03350	0.011/8	2.71/10 ⁻³
	245	-0.04025	0.02424	0.0114	2 0E 17.10-3
	240	0.03000	U.U1493	0.01103	2 2022.10-3
	2/10	0.02396	0 0 2 1 0 3	0.01120	2 02 10 · 10 - 2
	240	1.04E-10-3	0.02100	0.01129	2.3210.10.2
	549	-1'942.10 ₋₂	0.02199	0.01192	

		0	1	2	3
	350	-0.01474	0.01267	0.01155	3.00904·10 ⁻³
	351	-0.02764	3.3614 [.] 10 ⁻³	0.01118	3.5476 [.] 10 ⁻³
	352	-0.04054	0.02905	0.0118	3.08623·10 ⁻³
	353	0.03656	0.01973	0.01143	3.6248·10 ⁻³
	354	0.02366	0.01042	0.01106	3.1634 [.] 10 ⁻³
	355	0.01076	1.10635.10-3	0.01169	3.702 [.] 10 ⁻³
	356	-2.133·10 ⁻³	0.02679	0.01132	3.2406·10 ⁻³
	357	-0.01504	0.01748	0.01195	3.7792·10 ⁻³
	358	-0.02794	8.1655 [.] 10 ⁻³	0.01158	3.3178·10 ⁻³
	359	-0.04083	0.03385	0.01121	3.8564·10 ⁻³
	360	0.03627	0.02454	0.01183	3.395 [.] 10 ⁻³
	361	0.02336	0.01522	0.01146	3.9336·10 ⁻³
	362	0.01047	5.9115 [.] 10 ⁻³	0.01109	3.4722·10 ⁻³
	363	-2.43 [.] 10 ⁻³	0.03159	0.01172	3.0108·10 ⁻³
	364	-0.01533	0.02228	0.01135	3.5494·10 ⁻³
	365	-0.02823	0.01297	0.01198	3.088·10 ⁻³
	366	-0.04113	3.654·10 ⁻³	0.01161	3.6266 [.] 10 ⁻³
	367	0.03597	0.02934	0.01124	3.1652·10 ⁻³
	368	0.02308	0.02003	0.01186	3.7038·10 ⁻³
	369	0.01017	0.01071	0.01149	3.2424·10 ⁻³
	370	-2.727·10 ⁻³	1.39965·10 ⁻³	0.01112	3.781·10 ⁻³
	371	-0.01562	0.02709	0.01175	3.3196·10 ⁻³
	372	-0.02852	0.01777	0.01138	3.8582·10 ⁻³
	373	-0.04142	8.4595·10 ⁻³	0.01101	3.3968·10 ⁻³
$R_{4} =$	374	0.03568	0.03415	0.01164	3.9354·10 ⁻³
	375	0.02278	0.02483	0.01126	3.474·10 ⁻³
	376	9.882·10 ⁻³	0.01552	0.01189	3.01257·10 ⁻³
	377	-3.024·10 ⁻³	6.202·10 ⁻³	0.01152	3.5512.10-3
	378	-0.01592	0.03189	0.01115	3.08976·10 ⁻³
	379	-0.02882	0.02258	0.01178	3.6284·10 ⁻³
	380	-0.04172	0.01326	0.01141	3.167·10 ⁻³
	381	0.03538	3.948·10 ⁻³	0.01104	3.7056·10 ⁻³
	382	0.02248	0.02963	0.01167	3.2442·10 ⁻³
	383	9.585·10 ⁻³	0.02032	0.01129	3.7827·10 ⁻³
	384	-3.312·10 ⁻³	0.01101	0.01192	3.3213·10 ⁻³
	385	-0.01622	1.6926·10 ⁻³	0.01155	3.8599·10 ⁻³
	386	-0.02911	0.02738	0.01118	3.3985·10 ⁻³
	387	-0.04201	0.01806	0.01181	3.9371·10 ⁻³
	388	0.03509	8.75·10 ⁻³	0.01144	3.4757·10 ⁻³
	389	0.02219	0.03444	0.01107	3.01433·10 ⁻³
	390	9.288·10 ⁻³	0.02512	0.0117	3.5529·10 ⁻³
	391	-3.609·10 ⁻³	0.01581	0.01132	3.09153·10 ⁻³
	392	-0.01651	6.496 [.] 10 ⁻³	0.01195	3.6301·10 ⁻³
	393	-0.02941	0.03218	0.01158	3.1687·10 ⁻³
	394	-0.04231	0.02287	0.01121	3.7073·10 ⁻³
	395	0.03479	0.01356	0.01184	3.2459.10-3
	396	0.0219	4.242.10-3	0.01147	3.7845.10-3
	397	8.991.10-3	0.02993	0.0111	3.3231.10-3
	398	-3.906.10-3	0.02062	0.01173	3.8617.10-3
	399	-0.0168	0.0113	0.01135	

	0	1	2	3
400	-0.0297	1.9859 [.] 10 ⁻³	0.01198	3.9389·10 ⁻³
401	-0.0426	0.02767	0.01161	3.4775 [.] 10 ⁻³
402	0.0345	0.01836	0.01124	3.0161·10 ⁻³
403	0.0216	9.044 [.] 10 ⁻³	0.01187	3.5547·10 ⁻³
404	8.703 [.] 10 ⁻³	0.03473	0.0115	3.09329·10 ⁻³
405	-4.203 [.] 10 ⁻³	0.02542	0.01113	3.6319·10 ⁻³
406	-0.0171	0.0161	0.01175	3.1705·10 ⁻³
407	-0.03	6.79 [.] 10 ⁻³	0.01138	3.7091·10 ⁻³
408	-0.0429	0.03248	0.01101	3.2477·10 ⁻³
409	0.0342	0.02316	0.01164	3.7863·10 ⁻³
410	0.0213	0.01385	0.01127	3.3249·10 ⁻³
411	8.406 [.] 10 ⁻³	4.536 [.] 10 ⁻³	0.0119	3.8635·10 ⁻³
412	-4.491·10 ⁻³	0.03022	0.01153	3.4021·10 ⁻³
413	-0.0174	0.02091	0.01116	3.9407·10 ⁻³
414	-0.03029	0.01159	0.01178	3.4793·10 ⁻³
415	-0.04319	2.2792·10 ⁻³	0.01141	3.01786·10 ⁻³
416	0.03391	0.02797	0.01104	3.5565·10 ⁻³
417	0.02101	0.01865	0.01167	3.09506·10 ⁻³
418	8.109 [.] 10 ⁻³	9.338 [.] 10 ⁻³	0.0113	3.6337·10 ⁻³
419	-4.788·10 ⁻³	2.40765 [.] 10 ⁻⁵	0.01193	3.1723·10 ⁻³
420	-0.01768	0.02571	0.01156	3.7108·10 ⁻³
421	-0.03059	0.0164	0.01119	3.2494·10 ⁻³
422	-0.04349	7.084 [.] 10 ⁻³	0.01181	3.788·10 ⁻³
423	0.03362	0.03277	0.01144	3.3266·10 ⁻³
424	0.02072	0.02345	0.01107	3.8652·10 ⁻³
425	7.812 [.] 10 ⁻³	0.01414	0.0117	3.4038·10 ⁻³
426	-5.085 [.] 10 ⁻³	4.8265 [.] 10 ⁻³	0.01133	3.9424·10 ⁻³
427	-0.01798	0.03051	0.01196	3.481 [.] 10 ⁻³
428	-0.03088	0.0212	0.01159	3.01963·10 ⁻³
429	-0.04378	0.01189	0.01122	3.5582·10 ⁻³
430	0.03332	2.5725·10 ⁻³	0.01184	3.09682·10 ⁻³
431	0.02042	0.02826	0.01147	3.6354·10 ⁻³
432	7.515 [.] 10 ⁻³	0.01895	0.0111	3.174 [.] 10 ⁻³
433	-5.382·10 ⁻³	9.632 [.] 10 ⁻³	0.01173	3.7126 [.] 10 ⁻³
434	-0.01828	3.1731 [.] 10 ⁻⁴	0.01136	3.2512·10 ⁻³
435	-0.03118	0.02601	0.01199	3.7898·10 ⁻³
436	-0.04408	0.01669	0.01162	3.3284·10 ⁻³
437	0.03302	7.3745 [.] 10 ⁻³	0.01124	3.867·10 ⁻³
438	0.02012	0.03306	0.01187	3.4056·10 ⁻³
439	7.227·10 ⁻³	0.02375	0.0115	3.9442·10 ⁻³
440	-5.679·10 ⁻³	0.01443	0.01113	3.4828·10 ⁻³
441	-0.01858	5.1205 [.] 10 ⁻³	0.01176	3.02139·10 ⁻³
442	-0.03147	0.03081	0.01139	3.56·10 ⁻³
443	-0.04437	0.02149	0.01102	3.09858·10 ⁻³
444	0.03272	0.01218	0.01165	3.6372·10 ⁻³
445	0.01983	2.8658·10 ⁻³	0.01127	3.1758·10 ⁻³
446	6.93·10 ⁻³	0.02855	0.0119	3.7144·10 ⁻³
447	-5.967·10 ⁻³	0.01924	0.01153	3.253·10 ⁻³
448	-0.01887	9.926·10 ⁻³	0.01116	3.7916·10 ⁻³
449	-0.03177	6.104.10-4	0.01179	

R_4 =
R_4 =

		0	1	2	3
	450	-0.04467	0.0263	0.01142	3.8688·10 ⁻³
	451	0.03244	0.01698	0.01105	3.4074·10 ⁻³
	452	0.01953	7.6685 [.] 10 ⁻³	0.01168	3.946·10 ⁻³
	453	6.633 [.] 10 ⁻³	0.03336	0.0113	3.4846·10 ⁻³
	454	-6.264 [.] 10 ⁻³	0.02404	0.01193	3.02315 [.] 10 ⁻³
	455	-0.01916	0.01473	0.01156	3.5618·10 ⁻³
	456	-0.03207	5.4145 [.] 10 ⁻³	0.01119	3.1003 [.] 10 ⁻³
	457	-0.04496	0.0311	0.01182	3.6389·10 ⁻³
	458	0.03214	0.02179	0.01145	3.1775 [.] 10 ⁻³
	459	0.01924	0.01247	0.01108	3.7161 [.] 10 ⁻³
	460	6.336 [.] 10 ⁻³	3.15875 [.] 10 ⁻³	0.01171	3.2547·10 ⁻³
	461	-6.561·10 ⁻³	0.02884	0.01133	3.7933 [.] 10 ⁻³
	462	-0.01946	0.01953	0.01196	3.3319 [.] 10 ⁻³
	463	-0.03235	0.01022	0.01159	3.8705 [.] 10 ⁻³
	464	0.04474	9.037·10 ⁻⁴	0.01122	3.4091·10 ⁻³
	465	0.03184	0.02659	0.01185	3.9477·10 ⁻³
	466	0.01895	0.01728	0.01148	3.4863·10 ⁻³
	467	6.048 [.] 10 ⁻³	7.9625 [.] 10 ⁻³	0.01111	3.02492·10 ⁻³
	468	-6.858·10 ⁻³	0.03365	0.01173	3.5635 [.] 10 ⁻³
	469	-0.01975	0.02434	0.01136	3.1021·10 ⁻³
	470	-0.03265	0.01502	0.01199	3.6407·10 ⁻³
	471	0.04445	5.7085 [.] 10 ⁻³	0.01162	3.1793 [.] 10 ⁻³
	472	0.03155	0.0314	0.01125	3.7179·10 ⁻³
	473	0.01865	0.02208	0.01188	3.2565 [.] 10 ⁻³
$R_4 =$	474	5.751·10 ⁻³	0.01276	0.01151	3.7951·10 ⁻³
	475	-7.146 [.] 10 ⁻³	3.45205 [.] 10 ⁻³	0.01114	3.3337 [.] 10 ⁻³
	476	-0.02005	0.02914	0.01176	3.8723·10 ⁻³
	477	-0.03295	0.01982	0.01139	3.4109 [.] 10 ⁻³
	478	0.04415	0.01051	0.01102	3.9495·10 ⁻³
	479	0.03126	1.197·10 ⁻³	0.01165	3.4881·10 ⁻³
	480	0.01835	0.02688	0.01128	3.02668·10 ⁻³
	481	5.454 [.] 10 ⁻³	0.01757	0.01191	3.5653 [.] 10 ⁻³
	482	-7.443 [.] 10 ⁻³	8.2565 [.] 10 ⁻³	0.01154	3.1039 [.] 10 ⁻³
	483	-0.02034	0.03394	0.01117	3.6425 [.] 10 ⁻³
	484	-0.03325	0.02463	0.01179	3.1811 [.] 10 ⁻³
	485	0.04386	0.01532	0.01142	3.7197·10 ⁻³
	486	0.03096	5.999·10 ⁻³	0.01105	3.2583·10 ⁻³
	487	0.01806	0.03169	0.01168	3.7969 [.] 10 ⁻³
	488	5.157 [.] 10 ⁻³	0.02237	0.01131	3.3355·10 ⁻³
	489	-7.74 [.] 10 ⁻³	0.01306	0.01194	3.8741·10 ⁻³
	490	-0.02064	3.745·10 ⁻³	0.01157	3.4127·10 ⁻³
	491	-0.03353	0.02943	0.01119	3.9513 [.] 10 ⁻³
	492	0.04356	0.02012	0.01182	3.4899 [.] 10 ⁻³
	493	0.03066	0.0108	0.01145	3.02845·10 ⁻³
	494	0.01777	1.4903·10 ⁻³	0.01108	3.567·10 ⁻³
	495	4.869·10 ⁻³	0.02718	0.01171	3.1056·10 ⁻³
	496	-8.037·10 ⁻³	0.01786	0.01134	3.6442.10-3
	497	-0.02093	8.5505·10 ⁻³	0.01197	3.1828·10 ⁻³
	498	-0.03383	0.03423	0.0116	3.7214·10 ⁻³
	499	0.04327	0.02492	0.01122	

	0	1	2	3		
500	0.03037	0.01561	0.01185	3.7986·10 ⁻³		
501	0.01747	6.293 [.] 10 ⁻³	0.01148	3.3372·10 ⁻³		
502	4.572 [.] 10 ⁻³	0.03198	0.01111	3.8758·10 ⁻³		
503	-8.325 [.] 10 ⁻³	0.02267	0.01174	3.4144 [.] 10 ⁻³		
504	-0.02123	0.01335	0.01137	3.953 [.] 10 ⁻³		
505	-0.03413	4.039 [.] 10 ⁻³	0.012	3.4916 [.] 10 ⁻³		
506	0.04297	0.02973	0.01163	3.03021·10 ⁻³		
507	0.03008	0.02041	0.01125	3.5688 [.] 10 ⁻³		
508	0.01717	0.0111	0.01188	3.1074·10 ⁻³		
509	4.275 [.] 10 ⁻³	1.7836 [.] 10 ⁻³	0.01151	3.646 [.] 10 ⁻³		
510	-8.622·10 ⁻³	0.02747	0.01114	3.1846 [.] 10 ⁻³		
511	-0.02152	0.01815	0.01177	3.7232·10 ⁻³		
512	-0.03442	8.841·10 ⁻³	0.0114	3.2618·10 ⁻³		
513	0.04268	0.03453	0.01103	3.8004·10 ⁻³		
514	0.02978	0.02521	0.01166	3.339 [.] 10 ⁻³		
515	0.01688	0.0159	0.01128	3.8776·10 ⁻³		
516	3.978 [.] 10 ⁻³	6.587 [.] 10 ⁻³	0.01191	3.4162·10 ⁻³		
517	-8.919 [.] 10 ⁻³	0.03227	0.01154	3.9548·10 ⁻³		
518	-0.02182	0.02296	0.01117	3.4934·10 ⁻³		
519	-0.03471	0.01365	0.0118	3.03198·10 ⁻³		
520	0.04238	4.333 [.] 10 ⁻³	0.01143	3.5706·10 ⁻³		
521	0.02948	0.03002	0.01106	3.1092·10 ⁻³		
522	0.01659	0.0207	0.01168	3.6478·10 ⁻³		
523	3.69·10 ⁻³	0.01139	0.01131	3.1864 [.] 10 ⁻³		
= 524	-9.216 [.] 10 ⁻³	2.07655 [.] 10 ⁻³	0.01194	3.725 [.] 10 ⁻³		
525	-0.02211	0.02776	0.01157	3.2636 [.] 10 ⁻³		
526	-0.03501	0.01845	0.0112	3.8022·10 ⁻³		
527	0.04209	9.135 [.] 10 ⁻³	0.01183	3.3408·10 ⁻³		
528	0.02919	0.03482	0.01146	3.8794·10 ⁻³		
529	0.01629	0.02551	0.01109	3.4179·10 ⁻³		
530	3.393 [.] 10 ⁻³	0.01619	0.01171	3.9565 [.] 10 ⁻³		
531	-9.504 [.] 10 ⁻³	6.881 [.] 10 ⁻³	0.01134	3.4951·10 ⁻³		
532	-0.02241	0.03257	0.01197	3.03374·10 ⁻³		
533	-0.03531	0.02325	0.0116	3.5723·10 ⁻³		
534	0.0418	0.01394	0.01123	3.1109 [.] 10 ⁻³		
535	0.0289	4.6235 [.] 10 ⁻³	0.01186	3.6495 [.] 10 ⁻³		
536	0.01599	0.03031	0.01149	3.1881·10 ⁻³		
537	3.096 [.] 10 ⁻³	0.021	0.01112	3.7267·10 ⁻³		
538	-9.801·10 ⁻³	0.01168	0.01174	3.2653 [.] 10 ⁻³		
539	-0.0227	2.36985 [.] 10 ⁻³	0.01137	3.8039 [.] 10 ⁻³		
540	-0.0356	0.02806	0.011	3.3425 [.] 10 ⁻³		
541	0.0415	0.01874	0.01163	3.8811 [.] 10 ⁻³		
542	0.0286	9.429 [.] 10 ⁻³	0.01126	3.4197 [.] 10 ⁻³		
543	0.0157	1.1473.10-4	0.01189	3.9583 [.] 10 ⁻³		
544	2.799 [.] 10 ⁻³	0.0258	0.01152	3.4969 [.] 10 ⁻³		
545	-0.0101	0.01649	0.01115	3.03551·10 ⁻³		
546	-0.023	7.175 [.] 10 ⁻³	0.01177	3.5741·10 ⁻³		
547	-0.03589	0.03286	0.0114	3.1127·10 ⁻³		
548	0.0412	0.02354	0.01103	3.6513·10 ⁻³		
549	0.0283	0.01423	0.01166			

R_4

		0	1	2	3
	550	0.01541	4.9175 [.] 10 ⁻³	0.01129	3.7285·10 ⁻³
	551	2.511 [.] 10 ⁻³	0.0306	0.01192	3.2671·10 ⁻³
	552	-0.0104	0.02129	0.01155	3.8057·10 ⁻³
	553	-0.02329	0.01198	0.01117	3.3443 [.] 10 ⁻³
	554	-0.03619	2.66315 [.] 10 ⁻³	0.0118	3.8829·10 ⁻³
	555	0.04091	0.02835	0.01143	3.4215 [.] 10 ⁻³
	556	0.02801	0.01904	0.01106	3.9601·10 ⁻³
	557	0.01511	9.723 [.] 10 ⁻³	0.01169	3.4987·10 ⁻³
	558	2.214 [.] 10 ⁻³	4.081.10-4	0.01132	3.03727·10 ⁻³
	559	-0.01068	0.02609	0.01195	3.5759·10 ⁻³
	560	-0.02359	0.01678	0.01158	3.1145·10 ⁻³
	561	-0.03649	7.4655 [.] 10 ⁻³	0.0112	3.6531·10 ⁻³
	562	0.04062	0.03315	0.01183	3.1917 [.] 10 ⁻³
	563	0.02772	0.02384	0.01146	3.7303·10 ⁻³
	564	0.01481	0.01453	0.01109	3.2689·10 ⁻³
	565	1.917·10 ⁻³	5.2115 [.] 10 ⁻³	0.01172	3.8075·10 ⁻³
	566	-0.01098	0.0309	0.01135	3.346·10 ⁻³
	567	-0.02388	0.02158	0.01198	3.8846.10-3
	568	-0.03678	0.01227	0.01161	3.4232·10 ⁻³
	569	0.04032	2.95645·10 ⁻³	0.01123	3.9618·10 ⁻³
	570	0.02742	0.02864	0.01186	3.5004·10 ⁻³
	571	0.01453	0.01933	0.01149	3.03903.10-3
	572	1.62·10 ⁻³	0.01001	0.01112	3.5776·10 ⁻³
	573	-0.01128	7.0105.10-4	0.01175	3.1162·10 ⁻³
$R_4 =$	574	-0.02417	0.02639	0.01138	3.6548.10-3
	575	-0.03707	0.01707	0.01101	3.1934·10 ⁻³
	576	0.04002	7.7595 [.] 10 ⁻³	0.01164	3.732·10 ⁻³
	577	0.02713	0.03345	0.01126	3.2706·10 ⁻³
	578	0.01423	0.02413	0.01189	3.8092·10 ⁻³
	579	1.332·10 ⁻³	0.01482	0.01152	3.3478·10 ⁻³
	580	-0.01157	5.5055 [.] 10 ⁻³	0.01115	3.8864·10 ⁻³
	581	-0.02447	0.03119	0.01178	3.425·10 ⁻³
	582	-0.03737	0.02188	0.01141	3.9636·10 ⁻³
	583	0.03973	0.01257	0.01104	3.5022·10 ⁻³
	584	0.02683	3.2494·10 ⁻³	0.01166	3.0408·10 ⁻³
	585	0.01393	0.02893	0.01129	3.5794·10 ⁻³
	586	1.035 [.] 10 ⁻³	0.01962	0.01192	3.118 [.] 10 ⁻³
	587	-0.01186	0.01031	0.01155	3.6566 [.] 10 ⁻³
	588	-0.02477	9.9435 [.] 10 ⁻⁴	0.01118	3.1952·10 ⁻³
	589	-0.03766	0.02668	0.01181	3.7338·10 ⁻³
	590	0.03944	0.01737	0.01144	3.2724·10 ⁻³
	591	0.02654	8.0535 [.] 10 ⁻³	0.01107	3.811 [.] 10 ⁻³
	592	0.01363	0.03374	0.01169	3.3496·10 ⁻³
	593	7.38·10 ⁻⁴	0.02443	0.01132	3.8882·10 ⁻³
	594	-0.01216	0.01511	0.01195	3.4268 [.] 10 ⁻³
	595	-0.02506	5.7995 [.] 10 ⁻³	0.01158	3.9654·10 ⁻³
	596	-0.03796	0.03148	0.01121	3.504·10 ⁻³
	597	0.03914	0.02217	0.01184	3.04256 [.] 10 ⁻³
	598	0.02624	0.01286	0.01147	3.5812·10 ⁻³
	599	0.01335	3.542·10 ⁻³	0.0111	

		0	1	2	3
	599	0.01335	3.542·10 ⁻³	0.0111	3.1198·10 ⁻³
	600	4.41 · 10-4	0.02923	0.01172	3.6584·10 ⁻³
	601	-0.01246	0.01991	0.01135	3.197 [.] 10 ⁻³
	602	-0.02535	0.0106	0.01198	3.7355 [.] 10 ⁻³
	603	-0.03825	1.28765 [.] 10 ⁻³	0.01161	3.2741·10 ⁻³
	604	0.03884	0.02697	0.01124	3.8127·10 ⁻³
	605	0.02595	0.01766	0.01187	3.3513·10 ⁻³
	606	0.01305	8.3475 [.] 10 ⁻³	0.0115	3.8899 [.] 10 ⁻³
	607	1.53.10-4	0.03403	0.01112	3.4285 [.] 10 ⁻³
	608	-0.01275	0.02472	0.01175	3.9671·10 ⁻³
	609	-0.02565	0.0154	0.01138	3.5057·10 ⁻³
	610	-0.03855	6.09·10 ⁻³	0.01101	3.04433 [.] 10 ⁻³
	611	0.03856	0.03178	0.01164	3.5829·10 ⁻³
	612	0.02565	0.02246	0.01127	3.1215 [.] 10 ⁻³
	613	0.01275	0.01315	0.0119	3.6601·10 ⁻³
	614	-1.44 [.] 10 ⁻⁴	3.836·10 ⁻³	0.01153	3.1987·10 ⁻³
	615	-0.01304	0.02952	0.01115	3.7373·10 ⁻³
	616	-0.02595	0.02021	0.01178	3.2759·10 ⁻³
	617	-0.03884	0.0109	0.01141	3.8145·10 ⁻³
	618	0.03826	1.58095·10 ⁻³	0.01104	3.3531·10 ⁻³
	619	0.02536	0.02727	0.01167	3.8917·10 ⁻³
	620	0.01246	0.01796	0.0113	3.4303 [.] 10 ⁻³
	621	-4.41·10 ⁻⁴	8.638 [.] 10 ⁻³	0.01193	3.9689·10 ⁻³
	622	-0.01334	0.03432	0.01156	3.5075·10 ⁻³
$R_4 =$	623	-0.02624	0.02501	0.01118	3.04609 [.] 10 ⁻³
	624	-0.03914	0.0157	0.01181	3.5847·10 ⁻³
	625	0.03796	6.384·10 ⁻³	0.01144	3.1233 [.] 10 ⁻³
	626	0.02506	0.03207	0.01107	3.6619 [.] 10 ⁻³
	627	0.01217	0.02276	0.0117	3.2005 [.] 10 ⁻³
	628	-7.38·10 ⁻⁴	0.01344	0.01133	3.7391·10 ⁻³
	629	-0.01364	4.13·10 ⁻³	0.01196	3.2777 [.] 10 ⁻³
	630	-0.02653	0.02982	0.01159	3.8163·10 ⁻³
	631	-0.03943	0.0205	0.01121	3.3549 [.] 10 ⁻³
	632	0.03766	0.01119	0.01184	3.8935 [.] 10 ⁻³
	633	0.02477	1.87425 [.] 10 ⁻³	0.01147	3.4321·10 ⁻³
	634	0.01187	0.02756	0.0111	3.9707 [.] 10 ⁻³
	635	-1.026·10 ⁻³	0.01825	0.01173	3.5093·10 ⁻³
	636	-0.01393	8.932 [.] 10 ⁻³	0.01136	3.04786·10 ⁻³
	637	-0.02683	0.03462	0.01199	3.5865·10 ⁻³
	638	-0.03973	0.0253	0.01161	3.1251·10 ⁻³
	639	0.03738	0.01599	0.01124	3.6636·10 ⁻³
	640	0.02447	6.678·10 ⁻³	0.01187	3.2022 [.] 10 ⁻³
	641	0.01157	0.03236	0.0115	3.7408·10 ⁻³
	642	-1.323·10 ⁻³	0.02305	0.01113	3.2794·10 ⁻³
	643	-0.01422	0.01374	0.01176	3.818·10 ⁻³
	644	-0.02713	4.424·10 ⁻³	0.01139	3.3566·10 ⁻³
	645	-0.04002	0.03011	0.01102	3.8952·10 ⁻³
	646	0.03708	0.02079	0.01164	3.4338 [.] 10 ⁻³
	647	0.02417	0.01148	0.01127	3.9724·10 ⁻³
	648	0.01128	2.1672 [.] 10 ⁻³	0.0119	

	649	-1.62 [.] 10 ⁻³	0.02785	0.01153	3.04962·10 ⁻³
	650	-0.01452	0.01854	0.01116	3.5882·10 ⁻³
	651	-0.02742	9.226 [.] 10 ⁻³	0.01179	3.1268·10 ⁻³
	652	-0.04032	0.03491	0.01142	3.6654·10 ⁻³
	653	0.03678	0.0256	0.01105	3.204·10 ⁻³
	654	0.02389	0.01629	0.01167	3.7426·10 ⁻³
	655	0.01098	6.972 [.] 10 ⁻³	0.0113	3.2812·10 ⁻³
	656	-1.917·10 ⁻³	0.03266	0.01193	3.8198·10 ⁻³
	657	-0.01481	0.02334	0.01156	3.3584·10 ⁻³
	658	-0.02771	0.01403	0.01119	3.897·10 ⁻³
	659	-0.04061	4.7145 [.] 10 ⁻³	0.01182	3.4356·10 ⁻³
	660	0.03649	0.0304	0.01145	3.9742·10 ⁻³
$R_4 =$	661	0.02359	0.02109	0.01108	3.5128·10 ⁻³
	662	0.01069	0.01177	0.0117	3.05138·10 ⁻³
	663	-2.214·10 ⁻³	2.4605·10 ⁻³	0.01133	3.59·10 ⁻³
	664	-0.01511	0.02815	0.01196	3.1286·10 ⁻³
	665	-0.02801	0.01883	0.01159	3.6672·10 ⁻³
	666	-0.04091	9.52·10 ⁻³	0.01122	3.2058·10 ⁻³
	667	0.03619	2.0538.10-4	0.01185	3.7444·10 ⁻³
	668	0.02329	0.02589	0.01148	3.283·10 ⁻³
	669	0.0104	0.01658	0.0111	3.8216·10 ⁻³
	670	-2.502·10 ⁻³	7.2625 [.] 10 ⁻³	0.01173	3.3602·10 ⁻³
	671	-0.01541	0.03295	0.01136	3.8988·10 ⁻³
	672	-0.02831	0.02364	0.01199	3.4374·10 ⁻³
	673	-0.0412	0.01432	0.01162	3.976·10 ⁻³
	674	0.0359	5.0085·10 ⁻³	0.01125	3.5146·10 ⁻³
	675	0.02299	0.0307	0.01188	3.05315·10 ⁻³
	676	0.0101	0.02138	0.01151	3.5917·10 ⁻³
	677	-2.799 [.] 10 ⁻³	0.01207	0.01113	3.1303·10 ⁻³
	678	-0.0157	2.7538·10 ⁻³	0.01176	3.6689·10 ⁻³
	679	-0.0286	0.02844	0.01139	3.2075 [.] 10 ⁻³
	680	-0.0415	0.01913	0.01102	3.7461·10 ⁻³
	681	0.0356	9.814·10 ⁻³	0.01165	3.2847·10 ⁻³
	682	0.02271	4.9875 [.] 10 ⁻⁴	0.01128	3.8233·10 ⁻³
	683	9.801 [.] 10 ⁻³	0.02618	0.01191	3.3619·10 ⁻³
	684	-3.096·10 ⁻³	0.01687	0.01154	3.9005·10 ⁻³
	685	-0.01599	7.5565·10 ⁻³	0.01116	3.4391·10 ⁻³
	686	-0.02889	0.03324	0.01179	

i.

ДОДАТОК Г

Тривимірний однорідний комп'ютерний план експерименту на основі ЛП_тпослідовностей для побудови метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження у декомпозиційній підобласті III_a

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
x y s j<			1	2	3	4	5	6	- ^
1 0.0025 0.008 10.002 10.002 10.0033 10.0033 10		:	x	v	a	b	J	J norm	
2 0.0136 0.0045 0.0065 0.0085 1833,46 0.4138 4 0.00475 0.008875 0.008763 0.00788 0.00788 0.00788 0.00788 0.00788 0.00788 0.0078		0	,0025	0,0085	0,008	0,008	31009,94	0,6906	-
3 -0.0075 0.00755 0.00755 0.00755 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.007875 0.00783 0.00183 0.00183 0.00183 0.00183 0.00183 0.00173 0.00783		2 0	,0138	0,00425	0,0085	0,0085	18835,46	0,4138	
4 -0.0144 0.00875 0.00875 0.00875 0.0075 00775 00230 0.0971 6 0.0194 0.00725 0.00725 0.00725 0.00725 0.00725 0.00725 0.00725 0.00725 0.00725 0.00725 0.00735 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00871 0.00710 0.00710 0.00785 0.00785 0.00765 0.00761 0.00110 0.00765 0.00785 0.00781 <		3 -0,0	00875	0,0128	0,0075	0,0075	8085,441	0,1694	
5 0.008125 0.01775 0.00775 4902.302 0.0977 6 0.0194 0.00225 0.00725 627.288 0.1367 7 0.00313 0.0166 0.00825 0.00835 5302.092 0.1125 8 -0.0172 0.003735 0.008375 500.008375 500.008375 500.008375 500.003375 500.008375 500.008375 500.007355 500.007355 500.3130 0.01125 0.007755 0.007765 0.007855 0.007765 0.007855 0.007765 0.00339 0.01725 0.007765 0.007855 0.007765 0.007855 0.007765 0.007855 0.007765 0.00785 0.007765 0.00785 0.007765 0.00785 0.007786 0.00786 0.00815 552.975 0.1113 17 0.0152 0.007761 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813 0.007813		4 -0	,0144	0,006375	0,00875	0,00875	13674,45	0,2965	
6 0.01212 0.00725 0.00725 6647.288 0.1367 7 -0.0013 0.0106 0.00827 0.008375 0.5820.94 0.5015 8 -0.0172 0.007318 0.008375 0.008375 0.5820.92 0.1125 10 0.0166 0.008388 0.00875 0.00875 0.5830.66 0.2244 11 -0.0169 0.007855 0.007875 0.5630.163 0.3855 12 -0.0116 0.001603 0.00852 0.007625 1.4283.95 0.3103 14 0.0222 0.00313 0.00172 0.00781 0.00733 1.0776 0.2121 16 -0.0031 0.0183 0.00813 0.00813 0.00313 0.0183 21 0.0128 0.000771 0.007631 0.007631 1.00788 0.0013 22 0.00176 0.001781 0.00688 0.007631 1.00788 0.0116 22 0.00178 0.00184 0.00186 0.007631 1.00788 0.01		5 0,00	08125	0,0149	0,00775	0,00775	4902,302	0,097	
T -0.0017 0.007488 0.00825 2.680.94 0.6115 B -0.0172 0.007488 0.008375 0.008375 5582.092 0.1125 10 0.0166 0.00318 0.008375 0.008375 5582.092 0.1125 11 0.00554 0.0117 0.007875 0.008875 1383.06 0.2344 12 -0.0116 0.006631 0.007625 0.00825 3604.13 0.3103 14 0.0222 0.006313 0.007125 0.00713 957.927 0.713 15 -0.00734 0.0165 0.00813 0.007313 0.0778.6 0.236 16 0.00399 0.0122 0.007513 0.007631 3403.48 0.0313 21 0.0180 0.008531 0.008633 0.007631 3403.95 0.236 22 0.0183 0.007543 0.007631 3130.316 0.0778 22 0.0183 0.007543 0.007681 900.133 0.007881 900.137		6 O	,0194	0,002125	0,00725	0,00725	6647,288	0,1367	
8 -0.0172 0.007376 0.00375 0.338.01 0.0614 9 0.005313 0.0189 0.00375 0.008875 13583.06 0.2944 11 -0.0166 0.003188 0.008875 0.008875 13583.06 0.2944 11 -0.0176 0.010785 0.007825 0.00725 1423.35 0.3103 12 -0.0176 0.010783 0.00725 0.00785 0.01785 0.01785 15 -0.0031 0.0186 0.00813 0.00813 0.00873 0.07731 0.07781 16 -0.00734 0.0165 0.008813 0.00813 0.008731 0.007783 17 0.0168 0.007071 0.007131 0.007313 10776 0.2306 18 0.009934 0.0112 0.00803 0.00803 0.007683 1370.32 0.4107 21 0.020934 0.00131 0.00768 0.007681 1243.03 0.013 22 0.00131 0.0007641 0.007681 0.0		7 -0,0	00313	0,0106	0,00825	0,00825	22690,94	0,5015	
9 0.00513 0.008376 5582.092 0.1125 10 0.0166 0.008875 0.008875 15630.97 0.3409 11 -0.00594 0.0117 0.007875 0.007875 15630.97 0.3409 13 0.0109 0.008625 0.007825 15630.97 0.3409 14 0.0222 0.005313 0.007125 0.008125 9960.78 0.212 15 -0.00031 0.01815 0.00813 5529.705 0.1113 17 0.0152 0.007131 0.007813 0.007813 0.007813 0.007813 20 -0.0172 0.0113 0.00863 0.007663 10771.24 0.4107 21 0.00284 0.007683 0.007683 13403.05 0.2903 22 0.00524 0.00688 0.007688 9021.813.05 0.9203 22 0.00624 0.00688 0.007688 9021.82 1340.50 1340.50 23 0.00172 0.006880 0.008683 1340.		3 -0	,0172	0,007438	0,007375	0,007375	3338,01	0,0614	
10 0.0168 0.00875 0.00875 1563.97 0.3499 11 0.00594 0.01765 0.007875 0.007825 1283.95 0.3409 12 0.0116 0.007625 0.007625 1283.95 0.3103 14 0.0222 0.00731 0.00782 0.00783 0.07785 15 0.00031 0.0138 0.00813 0.00813 0.00783 0.07781 16 -0.00734 0.0165 0.008813 0.007313 0.07731 0.07731 0.07731 17 0.0162 0.00797 0.007631 0.00763 18701.24 0.4107 18 0.009930 0.0122 0.00763 0.007631 18701.24 0.4107 20 -0.0172 0.0111 0.00763 0.007631 18701.24 0.4107 21 0.00934 0.001868 0.008688 0.008688 1310.31 0.6974 22 0.006531 0.007681 0.007681 1442.0 0.1452 22		9 0,00	05313	0,0159	0,008375	0,008375	5582,092	0,1125	
11 -0.00543 0.001767 0.007875 16530.97 0.3409 12 -0.0116 0.009663 0.007625 0.007625 14283.95 0.3103 14 0.0222 0.005313 0.007125 0.007125 1969.77 0.0758 15 -0.00031 0.01180 0.008125 0.00813 529.705 0.1113 17 0.0152 0.00713 0.00713 0.00783 0.07786 0.2366 19 -0.0186 0.00372 0.00813 0.00783 10778.6 0.2366 20 -0.0172 0.0113 0.00863 0.007663 10771.24 0.4107 21 0.0028 0.001544 0.008663 0.007681 31430.56 2993 22 0.00521 0.007681 0.007681 31430.56 2993 24 -0.00453 0.007684 0.007681 9062.122 1347 23 0.0113 0.007848 0.00784 9062.12 1347 24 -0.006271) 1	0 0	,0166	0,003188	0,008875	0,008875	13583,06	0,2944	
12 -0.0116 0.006620 0.006226 0.007625 0.007625 1283.95 0.0178 13 0.0109 0.009331 0.007125 0.007125 0.007135 0.0778 15 -0.00031 0.0186 0.008125 0.906125 9960.78 0.212 16 -0.00734 0.0166 0.008713 0.007313 10776.6 0.2306 19 -0.0168 0.000721 0.007631 0.007631 18701.24 0.4107 21 0.00260 0.01654 0.000763 0.007663 18701.24 0.4107 22 0.00163 0.007631 0.007663 13403.05 0.2903 24 -0.040453 0.007684 0.00788 0.06684 3131.0.31 0.6741 25 0.0164 0.007184 0.00788 0.02788 6062.424 0.1347 26 0.006721 0.01780 0.00738 0.00788 0.02853 0.08938 13449.01725 27 0.0152 0.0169071 0.007340) 1	1 -0,0	00594	0,0117	0,007875	0,007875	15630,97	0,3409	
13 0.0109 0.005563 0.007225 0.007251 369.277 0.0758 14 0.0222 0.005131 0.007125 0.007125 396.777 0.0758 15 0.00031 0.0188 0.00813 0.00813 5529.705 0.212 16 0.00730 0.00713 0.007313 0.07783 957.927 0.212 18 0.00399 0.0122 0.00313 0.00831 4209.480 0.0813 20 0.00172 0.0111 0.00763 0.00763 107124 0.4107 21 0.0208 0.001541 0.00863 0.00863 7021,857 0.1452 23 -0.013 0.05845 0.007663 0.00788 6660,221 0.1916 24 -0.0463 0.04033 0.008680 0.008681 31310.31 0.6974 25 0.018 0.001780 0.007188 6660,424 0.1347 26 0.00160 0.01440 0.008381 0.008641 0.03865 0.01754) 1:	2 -0	,0116	0,001063	0,008625	0,008625	36041,37	0,805	
14 0.0222 0.00313 0.007125 0.907125 3969.277 0.0788 15 -0.00031 0.0185 0.008125 0.008135 5529.705 0.1113 17 0.0152 0.00731 0.007313 957.927 0.212 18 0.003909 0.0122 0.007313 0.007313 957.927 0.212 18 0.003909 0.0122 0.007313 0.007831 420.94.88 0.0813 20 -0.0172 0.01011 0.00763 0.007631 18701.24 0.4107 21 0.02028 0.007541 0.008663 0.02645 0.1366 22 0.004531 0.00788 0.00788 0.06281 0.06941 25 0.0161 0.007180 0.007188 6062,182 0.9163 24 0.004721 0.01788 0.007188 6062,182 0.91767 26 0.00721 0.01780 0.00738 0.00738 4064,69 0.9655 27 0.0150 0.007849) 1	3 0	,0109	0,009563	0,007625	0,007625	14283,95	0,3103	
15 0.00031 0.0132 0.008125 0.008125 956.78 0.212 16 -0.00734 0.0165 0.008813 0.00813 957.927 0.212 18 0.00399 0.0122 0.007313 0.00731 957.927 0.212 18 0.00399 0.0122 0.007313 0.00731 957.927 0.212 19 -0.0186 0.00172 0.00803 0.00803 18701,24 0.4107 21 0.0054 0.001563 0.00863 0.00163 1230,50 0.2903 22 0.00531 0.007663 0.00168 9062182 0.1442 25 0.0163 0.001688 0.00188 8062182 0.1961 24 -0.0164 0.00143 0.001438 0.00188 8042142 0.1347 26 0.006721 0.014782 0.00188 0.00188 8049 0.2245 27 -0.0154 0.007548 0.00754 1495.98 0.07781 28 0.02657<) 1.	4 0	,0222	0,005313	0,007125	0,007125	3969,277	0,0758	
16 0.00734 0.0165 0.007813 0.007813 9957.927 0.212 17 0.0152 0.00797 0.007813 0.007813 9957.927 0.212 18 0.003309 0.0122 0.007313 0.007313 10778.6 0.2306 19 -0.0186 0.00194 0.008063 0.00833 4209.488 0.0813 20 -0.0172 0.01019 0.007663 0.007563 13403.05 0.2903 21 -0.0130 0.00763 0.007668 9062.182 0.1164 22 0.00453 0.007688 0.00768 9065.182 0.1164 226 0.0118 0.007188 0.00738 0.00738 1.007438 1.007438 228 0.01090 0.0154 0.00738 0.00738 1.00543 0.09738 229 0.0236 0.00657 0.00734 0.00734 1.0524 230 0.0120 0.00254 0.00794 1.0524 0.0376 230 0.0120) 1	5 -0,0	00031	0,0138	0,008125	0,008125	9960,78	0,212	
17 0.0122 0.007813 0.07813 0.97813 0.97813 0.97813 0.97313 0.07333 0.07333 0.02763 0.1452 0.0143 0.007563 0.007563 0.007683 0.007683 0.007683 0.007683 0.00733 0.02743 0.1433 0.0168 0.0313 4.0933 0.0733 <th< td=""><td>) 1</td><td>6 -0,0</td><td>00734</td><td>0,0165</td><td>0,008813</td><td>0,008813</td><td>5529,705</td><td>0,1113</td><td></td></th<>) 1	6 -0,0	00734	0,0165	0,008813	0,008813	5529,705	0,1113	
18 0.00390 0.0122 0.007313 0.007313 10778.6 0.2366 19 -0.0186 0.00372 0.008033 0.008033 4209.488 0.0813 20 0.00172 0.0101 0.00763 0.07063 0.07163 0.0413 21 0.00934 0.0143 0.00863 0.00863 664.573 0.1452 23 -0.013 0.005845 0.007563 0.00768 0.0262 0.2903 24 -0.00431 0.00688 0.00688 0.001788 0.06788 0.00748 0.01748 25 0.018 0.006718 0.007438 0.007438 405.48 0.0125 28 0.00196 0.0154 0.00738 0.00738 40064.69 0.8965 30 0.0122 0.00257 0.00794 0.00794 1755.097 0.622 33 -0.0110 0.00385 0.00394 0.00844 290.437 0.0624 34 -0.0123 0.01670 0.00744 0.00744) 1	70	,0152	0,00797	0,007813	0,007813	9957,927	0,212	
19 -0.0160 0.00372 0.00813 2.008313 4209.488 0.0813 20 -0.00172 0.010194 0.00863 0.00853 6645.573 0.1366 22 0.00534 0.00863 0.00853 7021.857 0.1452 23 -0.013 0.00543 0.00753 13403.05 0.2903 24 -0.0472 0.00188 0.007688 9052.182 0.1416 25 0.0161 0.007482 0.007188 6050.424 0.1437 27 -0.0158 0.007488 0.00748 6157.704 0.1625 28 0.001096 0.0172 0.00738 0.00738 4095.98 0.0787 30 0.0123 0.01754 0.007938 1.00794 2330.087 0.0522 33 0.0101 0.00385 0.00794 0.00794 2304.041 0.0594 34 -0.0123 0.0167 0.00794 0.00744 2304.041 0.0694 35 0.0102 0.00844 <) 1	3 0,00	03909	0,0122	0,007313	0,007313	10778,6	0,2306	
20 -0.0172 0.0171 0.00763 0.00763 18701,24 0.4107 21 0.00534 0.008636 0.00863 0.00863 0.00863 0.00863 22 0.0043 0.008645 0.00868 0.00868 0.00868 0.00868 23 -0.013 0.00684 0.00688 0.00763 0.00753 0.04782 24 -0.0063 0.007688 0.007688 0.00788 0.0688 0.0183 0.007188 25 0.0168 0.00684 0.007188 0.007188 0.007188 0.0188 0.00833 28 0.00196 0.0154 0.007348 0.00938 1.4504 0.125 29 0.0236 0.00257 0.007394 0.00754 2.1419.95 0.4726 31 -0.0120 0.002567 0.007394 0.007344 2.904.41 0.5094 33 -0.0121 0.002444 0.007344 2.904.41 0.5094 34 -0.0124 0.002670 0.007444 2.904.) 1	9 -0	,0186	0,00372	0,008313	0,008313	4209,488	0,0813	
21 0.0208 0.01594 0.008663 0.008663 6645.573 0.1366 22 0.009534 0.0143 0.008663 0.00668 13403.05 0.2903 24 -0.0433 0.00932 0.008688 0.007688 9062.182 0.134 25 0.0158 0.007688 0.007688 6560.424 0.1347 26 0.00571 0.0138 0.007188 0.00748 5145.704 0.125 28 0.0196 0.0154 0.00738 0.00738 4095.98 0.0787 30 0.0123 0.0125 0.008938 0.08938 13588.94 0.2845 31 -0.0120 0.00257 0.00794 0.00794 121419.95 0.4726 33 0.01010 0.00386 0.00794 0.00794 2304.041 0.0394 34 -0.0123 0.0161 0.00794 0.00744 2304.241 0.0397 35 0.0120 0.008244 0.00844 2304.255.9 0.66611	2	0,0-	00172	0,0101	0,007063	0,007063	18701,24	0,4107	
22 0.009534 0.0143 0.008563 0.007663 1721,857 0.1452 23 -0.013 0.005845 0.007663 1703,0,0 2903 24 -0.0453 0.00932 0.006868 0.00688 9062,182 0.1916 25 0.018 0.00188 0.00188 0.00188 0.00188 0.00188 0.00188 26 0.000721 0.00188 0.00188 0.00188 0.00188 0.00188 0.00183 27 -0.0160 0.0112 0.000938 0.00938 1.0588 94 0.2245 33 0.0112 0.000938 0.00938 1.0588 94 0.2245 33 -0.0112 0.002557 0.00794 1.05597 0.0522 33 -0.0110 0.00385 0.00794 1.05597 0.0254 35 0.0112 0.008245 0.00794 1.05597 0.0254 36 0.0159 0.0146 0.00744 2.000244 2.040,228 0.0137	2	1 0	,0208	0,001594	0,008063	0,008063	6645,573	0,1366	
23 -0.013 0.005845 0.007563 0.00763 13403.05 0.2903 24 -0.0453 0.000581 0.007688 9062.182 0.1916 25 0.0188 0.00788 0.00788 9062.182 0.1347 27 -0.0158 0.00788 0.007488 5145,704 0.1025 28 0.00196 0.0154 0.00738 0.007438 5145,704 0.1025 30 0.0123 0.0112 0.00838 0.00838 1588,94 0.2945 31 -0.0102 0.002657 0.007938 0.00794 230,087 0.6522 33 -0.0101 0.00385 0.00794 230,087 0.0524 34 -0.0123 0.00167 0.00794 0.00794 230,028 0.0394 35 0.0120 0.002385 0.00894 0.00844 3700,771 0.0697 36 0.0159 0.0146 0.00744 300,628 0.339 0.516 37 -0.006641 0.0	2	2 0,00	09534	0,0143	0,008563	0,008563	7021,857	0,1452	
24 -0.00453 0.009032 0.006688 0.006888 0.007688 0.002748 0.007788 0.007688 0.002748 0.007188 0.00738 0.00738 0.00738 0.00738 0.00738 0.00738 0.00738 0.00794 0.0524 33 -0.0112 0.00255 0.00794 0.00794 1755.097 0.0224 34 -0.0123 0.0167 0.007344 0.007944 23040.41 0.5994 35 0.0114 0.007344 0.007944 23040.41 0.5994 35 0.0126 0.00754 0.007944 23040.41 0.0317 36	2	3 -	0,013	0,005845	0,007563	0,007563	13403,05	0,2903	
25 0.018 0.0007611 0.007688 0.007688 9062,182 0.1916 26 0.000721 0.0133 0.007188 0.007188 6060,424 0.1347 27 -0.0158 0.004782 0.008188 0.00188 8036,07 0.1683 28 0.00196 0.0154 0.007438 0.007438 5145,704 0.1025 29 0.0236 0.006907 0.00838 0.08838 13588,94 0.2945 30 0.0125 0.00738 0.00738 40064,69 0.8865 32 0.0215 0.00257 0.00794 0.00794 10.75097 0.0224 33 -0.0101 0.00385 0.00794 0.00794 10.75097 0.0224 34 -0.0123 0.01614 0.007344 200628 0.0379 36 0.0179 0.00144 0.00844 200628 0.0379 37 -0.00646 0.00749 0.00769 2029,414 0.0317 40 0.0243 <t< td=""><td>2</td><td>4 -0,0</td><td>00453</td><td>0,009032</td><td>0,008688</td><td>0,008688</td><td>31310,31</td><td>0,6974</td><td></td></t<>	2	4 -0,0	00453	0,009032	0,008688	0,008688	31310,31	0,6974	
26 0.006721 0.0133 0.007188 0.007188 6560,424 0.1347 27 -0.0158 0.004782 0.008188 0.008188 5036,07 0.1683 28 0.001096 0.0154 0.00738 5045,704 0.1025 29 0.0236 0.008970 0.00838 10584,84 4095,98 0.0787 30 0.0123 0.0112 0.008938 1.008438 4095,98 0.0787 31 -0.0102 0.002657 0.007941 0.007544 21419,95 0.4726 33 -0.00101 0.003955 0.00894 0.00844 2300,628 0.0379 34 -0.0123 0.0174 0.007344 2300,628 0.0379 35 0.0179 0.0144 0.008344 0.00844 70.0715 0.06641 38 -0.0179 0.0144 0.00844 0.00849 1.008744 31490,17 0.7015 40 0.0243 0.0135 0.008969 0.008219 23280,50 0.51	2	5	0,018	0,000531	0,007688	0,007688	9062,182	0,1916	
27 -0.0158 0.004782 0.008188 0.008188 8036.07 0.1683 28 0.001996 0.01434 0.007438 5145.704 0.1025 29 0.0236 0.006907 0.008438 0.008381 13588,94 0.2945 30 0.0123 0.0125 0.007594 0.008594 2930.087 0.0522 33 -0.0101 0.003985 0.007594 21419.95 0.4726 34 -0.0123 0.0167 0.007544 0.007544 2300.628 0.0379 35 0.0102 0.008344 0.008344 2304.628 0.0379 36 0.0159 0.0164 0.007344 0.007444 31490.17 0.06641 38 -0.0179 0.01040 0.008444 0.00769 2229.144 0.0317 40 0.0243 0.007279 0.007469 19189.82 0.4218 41 0.0130 0.007219 0.007491 2111.09 0.0472 42 0.00333 0.002222 </td <td>2</td> <td>6 0,00</td> <td>06721</td> <td>0,0133</td> <td>0,007188</td> <td>0,007188</td> <td>6560,424</td> <td>0,1347</td> <td></td>	2	6 0,00	06721	0,0133	0,007188	0,007188	6560,424	0,1347	
28 0.001096 0.0154 0.007438 0.07438 5145,704 0.1025 29 0.0236 0.006907 0.008438 0.008438 4095,98 0.0787 30 0.0123 0.0112 0.008938 0.00838 13588,94 0.2945 31 -0.0101 0.003985 0.007594 1008594 2930,087 0.0522 33 -0.0101 0.003985 0.007094 107597 0.0254 34 -0.0123 0.0167 0.007094 107597 0.0254 35 0.0102 0.008255 0.008044 0.007344 2300,628 0.0379 36 0.0159 0.0146 0.007344 0.007344 2300,628 0.0379 37 -0.00664 0.008440 0.008441 31490,17 0.7015 38 0.004611 0.008380 0.00849 21487,92 0.4741 40 0.0243 0.007190 0.007469 12487,92 0.4741 43 0.0137 0.008719	2	7 -0	,0158	0,004782	0,008188	0,008188	8036,07	0,1683	
29 0.0236 0.006907 0.008438 0.008438 4095,98 0.0787 30 0.0123 0.0112 0.008938 0.008938 13588,94 0.2945 31 -0.0102 0.002657 0.007938 0.008934 200807 0.0522 33 -0.0011 0.003985 0.007594 0.00794 21419,95 0.4726 34 -0.0123 0.0167 0.00794 0.00794 23040,41 0.5094 35 0.0102 0.008235 0.008044 0.00844 2306,28 0.0379 37 -0.00664 0.00611 0.00344 0.00844 2306,28 0.0379 39 0.004611 0.007844 0.00844 370,771 0.0664 40 0.0243 0.0135 0.00869 2029,414 0.0317 41 0.01797 0.007849 0.007469 19189,82 0.4218 41 0.0177 0.007469 0.007479 2289,94 0.515 42 -0.00445	2	8 0,00	01096	0,0154	0,007438	0,007438	5145,704	0,1025	
30 0.0123 0.0112 0.008938 0.08938 13588.94 0.2945 31 -0.0102 0.02657 0.007938 0.007938 40064.69 0.8865 32 0.0215 0.0125 0.008594 0.007594 21419.95 0.4726 33 -0.0101 0.003985 0.007594 0.007594 21419.95 0.4726 34 -0.0123 0.0167 0.007344 2008094 23040.41 0.5094 35 0.0179 0.0146 0.007344 0.00844 29845.59 0.6641 38 -0.0179 0.0146 0.007844 0.00844 3700.771 0.0697 39 0.004611 0.007844 0.00859 0.00769 2289.54 0.5046 42 -0.00945 0.00297 0.00749 0.00749 19189.82 0.4218 43 0.013 0.00297 0.008219 0.008219 22888.09 0.515 441 0.0137 0.008219 0.008219 22888.09 0.515	2	9 0	.0236	0.006907	0.008438	0,008438	4095,98	0.0787	
31 -0.0102 0.002657 0.007938 0.007938 200646 0.08594 2930.087 0.0522 33 -0.00101 0.003985 0.007594 0.007594 21419.95 0.4726 34 -0.0123 0.0167 0.007094 1.07594 21419.95 0.4726 35 0.0102 0.008235 0.008094 0.007941 1755.097 0.0224 36 0.0159 0.0146 0.007344 0.007344 2304.041 0.5094 37 -0.00664 0.00611 0.008344 0.008444 29845.59 0.6641 38 -0.0179 0.0168 0.007869 0.007495 1918.92 0.4218 40 0.0243 0.01350 0.008969 0.008469 21487.92 0.4741 41 0.0178 0.001770 0.008469 21487.92 0.4741 43 0.013 0.002719 0.007219 3101.137 0.0561 42 -0.00343 0.002922 0.008219 23288.09) 3	0 0	,0123	0,0112	0,008938	0,008938	13588,94	0,2945	
32 0.0215 0.0125 0.008594 0.008594 2930.087 0.0522 33 -0.0101 0.03985 0.007594 0.07594 21419.95 0.4726 34 -0.0123 0.0167 0.007094 0.007944 1755.097 0.0254 35 0.0102 0.008235 0.008044 0.008344 2300.628 0.0379 36 0.0159 0.0146 0.007344 0.008344 29845.59 0.6641 38 -0.0179 0.0146 0.007844 0.008434 3700.771 0.0697 39 0.004611 0.008840 0.007469 1919.82 0.4741 40 0.0243 0.0135 0.00869 0.007469 1487.92 0.4741 41 0.0117 0.0146 0.007479 0.007479 10.0171 0.0561 \squttable 2 42 -0.00383 0.002922 0.008219 0.23288.09 0.515 443 0.0157 0.008719 0.00719 2.07719 0.07719 <t< td=""><td>) 3</td><td>1 -0</td><td>,0102</td><td>0,002657</td><td>0,007938</td><td>0,007938</td><td>40064,69</td><td>0,8965</td><td></td></t<>) 3	1 -0	,0102	0,002657	0,007938	0,007938	40064,69	0,8965	
33 -0,00101 0,003985 0,007594 0,007594 21419,95 0,4726 34 -0,0123 0,0167 0,007094 0,007094 1755,097 0,0254 35 0,0102 0,008235 0,008094 0,008344 2040,411 0,5094 36 0,0159 0,0146 0,007344 0,008344 20845,59 0,6641 38 -0,0179 0,0146 0,008444 0,008444 3700,771 0,0697 39 0,004611 0,008969 0,008595 2029,144 0,0317 41 0,001798 0,005047 0,007699 0,007469 19189,82 0,4218 43 0,013 0,000797 0,008469 0,008219 23288,09 0,515 44 0,0137 0,00719 0,008219 23288,09 0,515 44 0,0157 0,008719 0,008219 23288,09 0,515 44 0,0157 0,008719 0,008219 23288,09 0,515 46 -0,0151 </td <td>3.</td> <td>2 0</td> <td>,0215</td> <td>0,0125</td> <td>0,008594</td> <td>0,008594</td> <td>2930,087</td> <td>0,0522</td> <td></td>	3.	2 0	,0215	0,0125	0,008594	0,008594	2930,087	0,0522	
34 -0.0123 0.0167 0.007094 0.07094 1755.097 0.0254 35 0.0102 0.08235 0.08094 0.08094 23040.41 0.5094 36 0.0159 0.0161 0.007344 0.008344 23040.41 0.5094 37 -0.00664 0.00611 0.008344 0.008344 23045.59 0.6641 38 -0.0179 0.0104 0.008444 0.007844 31490.17 0.7015 40 0.0243 0.0135 0.008969 0.008469 2029.414 0.0317 41 0.01798 0.005047 0.007469 0.00769 22829.54 0.5046 42 -0.0045 0.00297 0.007469 0.008469 21487.92 0.4741 44 0.0187 0.0114 0.007219 0.007219 3101.137 0.0561 Data: Ta6nuua_a_7_9_Hasu_nic kor* (21v by 2076c) I 2 3 4 5 6 1 2 3 4 5 6<	3	3 -0,0	00101	0,003985	0,007594	0,007594	21419,95	0,4726	
35 0.0102 0.008235 0.008094 0.008094 23040.41 0.5094 36 0.0159 0.0146 0.007344 0.007344 2300.628 0.0379 37 -0.00664 0.00611 0.008344 0.008344 29845.59 0.6641 38 -0.0179 0.0114 0.008844 0.008844 3190.771 0.0697 39 0.004611 0.00186 0.007969 2029.414 0.0317 40 0.0243 0.01350 0.009699 0.00849 2029.414 0.0317 41 0.00179 0.001469 0.007499 19189.32 0.4218 43 0.013 0.00077 0.008469 21487.92 0.4741 444 0.0187 0.0114 0.007219 3001137 0.0561 0.0157 0.008719 0.008219 23288.09 0.516 45 -0.00383 0.002922 0.008219 23288.09 0.516 46 -0.0157 0.008719 0.007819 2799.3) 3	4 -0	,0123	0,0167	0,007094	0,007094	1755,097	0,0254	
36 0.0159 0.0146 0.007344 0.007344 2300.628 0.0379 37 -0.00664 0.00611 0.008344 0.008344 29845.59 0.6641 38 -0.0179 0.0104 0.008844 0.008844 3700.771 0.0697 39 0.004611 0.007844 0.007844 3104.771 0.0697 40 0.0243 0.0135 0.008969 0.007844 3104.177 0.7015 41 0.001781 0.00769 0.2282.954 0.5046 42 -0.00451 0.007279 0.007469 9.188,82 0.4218 43 0.0137 0.0144 0.007219 3.001271 3.007469 1.187.22 0.4741 44 0.0187 0.008149 2.1487.92 0.4741 54 -0.00383 0.002292 0.008219 2.3288.09 0.515 45 -0.00383 0.002212 0.008719 2.259.34 0.4994 49 -0.0157 0.008719 0.007281	3	5 0	.0102	0.008235	0.008094	0.008094	23040,41	0.5094	
37 -0,00664 0,00811 0,008344 0,003377 0,003369 0,008369 0,002344 0,0137 441 0,0130 0,000797 0,008469 0,01489 0,0137 0,007219 1,0137 0,0561 443 0,0137 0,01714 0,007219 1,007219 1,007219 0,005219 23288,09 0,515 444 0,008321 0,008219 0,008219 23288,09 0,515 45 -0,00333 0,002922 0,008219 0,2289,97 0,0472 47 0,007423 0,007171 0,0072) 3	6 0	,0159	0,0146	0,007344	0,007344	2300,628	0,0379	
38 -0.0179 0.0104 0.008844 0.008844 3700.771 0.0697 39 0.004611 0.00186 0.007844 0.007844 31490.17 0.7015 40 0.0223 0.0135 0.008969 0.007969 2029.414 0.0317 41 0.01798 0.00597 0.007969 2029.414 0.0317 41 0.0138 0.000797 0.007469 0.007469 19189.82 0.4218 43 0.0137 0.00144 0.007219 0.007219 3101.137 0.0561 Data: Ta6/nuta.a.7.9.reau.nit kor* (21v by 2076c) I I I I J J norm 45 -0.00383 0.002922 0.008219 0.23288.09 0.515 46 -0.0151 0.0157 0.008719 0.007719 32798.97 0.7313 48 0.008227 0.004515 0.007281 0.00781 1.733.031 0.3796 50 -0.0137 0.0137 0.00731 0.00781	3	7 -0,0	00664	0,00611	0,008344	0,008344	29845,59	0,6641	
39 0,004611 0,00186 0,007844 0,007844 31490,17 0,7015 40 0,0243 0,0135 0,008969 0,008969 2029,414 0,0317 41 0,001798 0,005047 0,007969 0,007469 19189,82 0,4218 42 0,00347 0,007469 0,007469 19189,82 0,4218 43 0,013 0,00077 0,008469 0,007469 19189,82 0,4218 44 0,0187 0,0114 0,007219 0,007219 3101,137 0,0561 0 0,0151 0,0157 0,008219 0,008219 23288,09 0,516 46 -0,0151 0,0157 0,008719 0,00719 2798,97 0,7313 48 0,008827 0,007215 0,007281 2799,34 0,4994 49 -0,0137 0,013 0,008281 0,008781 1730,31 0,3796 51 0,0221 0,00266 0,007781 0,00781 12599,34 0,4949 <tr< td=""><td>3</td><td>8 -0</td><td>.0179</td><td>0.0104</td><td>0.008844</td><td>0.008844</td><td>3700,771</td><td>0.0697</td><td></td></tr<>	3	8 -0	.0179	0.0104	0.008844	0.008844	3700,771	0.0697	
40 0.0243 0.0135 0.008969 0.008969 2029,414 0.0317 41 0.001788 0.005947 0.007969 22829,54 0.5046 42 -0.00945 0.000797 0.007469 19189,82 0.4218 43 0.013 0.007479 0.008469 21487,92 0.4741 44 0.0187 0.00141 0.007219 0.007219 3101.137 0.0561 0 0.0138 0.008469 21487,92 0.4741 0.0137 0.0114 0.007219 0.007219 3101.137 0.0561 Data: Ta6/nuua_a_7_9_Haeu_nig kor* (21v by 2076c) Imorm J morm J morm 45 -0.00333 0.002922 0.008219 0.008219 2288,09 0.515 46 -0.0137 0.0137 0.007281 0.007281 2259,34 0.4994 49 -0.0137 0.0137 0.007281 0.008281 4783,512 0.09433 50 -0.00242) 3	9 0,00	04611	0,00186	0,007844	0,007844	31490,17	0,7015	
41 0,001798 0,005047 0,007969 0,007969 22829,54 0,5046 42 -0,00945 0,00297 0,007469 0,007469 19189,82 0,4218 43 0,013 0,000797 0,008469 0,008469 21487,92 0,4741 44 0,0187 0,0144 0.007219 3101,137 0,0561 ✓ Data: Ta6nutua_a_7_9_Hasu_nig kor* (21v by 2076) Image: Control 10,0157 0,008219 23288,09 0,515 46 -0,00151 0,0157 0,008719 0,00719 22789,97 0,7313 48 0,008227 0,008719 0,00719 32789,97 0,7313 48 0,008287 0,004515 0,007281 0,007281 2259,34 0,4994 49 -0,0137 0,013 0,008281 0,008281 4783,512 0,00833 50 -0,00242 0,00256 0,00781 0,00731 18275,37 0,4011 53 -0,0193 0,0109 0,007531 0,00731<	4	0 0	,0243	0,0135	0,008969	0,008969	2029,414	0,0317	
42 -0.00945 0.009297 0.007469 0.007469 19189,82 0.4218 43 0.013 0.000797 0.008469 21487,92 0.4741 44 0.0187 0.0114 0.007219 0.007219 3101.137 0.0561 Data: Ta6 <i>nwua_a_7_9_masu_nik cor*</i> (21v by 207c) - </td <td>4</td> <td>1 0,00</td> <td>01798</td> <td>0,005047</td> <td>0,007969</td> <td>0,007969</td> <td>22829,54</td> <td>0,5046</td> <td></td>	4	1 0,00	01798	0,005047	0,007969	0,007969	22829,54	0,5046	
43 0.013 0.000797 0.008469 0.018469 0.21487,92 0.4741 44 0.0187 0.0114 0.007219 0.007219 3101.137 0.0561 Data: Ta6/mua_a_7_9_Haeu_nig Kor* (21V by 2076c) Image: Constraint of the co	4	2 -0,0	00945	0,009297	0 007469	0.007469	10100 00		
44 0.0187 0.0114 0.007219 0.07219 3101.137 0.0561 × Data: Таблица, а, 7,9, навч_під кот* (21v by 2076c)	4	3	0.013		0,001.100	0,001403	19109,02	0,4218	t
Data: Таблица_а_7_9_навч_під кот* (21v by 207сс) 1 2 3 4 5 6 x y a b J J norm 45 -0.00383 0.002922 0.008219 0.008219 23288.09 0.515 46 -0.0151 0.0157 0.008719 0.007119 2711.09 0.0472 47 0.007423 0.007172 0.007719 0.007719 32798.97 0.7313 48 0.008827 0.04515 0.007281 0.2599.34 0.4994 49 -0.0137 0.013 0.008281 0.008281 4783.512 0.09433 50 -0.00242 0.000266 0.007781 0.007781 457.904 0.0892 52 0.003202 0.00239 0.008531 0.008531 18275.37 0.4011 53 -0.0193 0.0109 0.007531 0.007531 1626.892 0.0225 54 -0.00805 0.00664 0.00731 0.007831 3023.317 0.0643	4	-	0,015	0,000797	0,008469	0,008469	21487,92	0,4218 0,4741	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4 0	.0187	0,000797 0,0114	0,008469 0,007219	0,008469 0,007219	21487,92 3101,137	0,4218 0,4741 0,0561	~
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Data: Ta	4 0 5лица	.0187 _a_7_9_	0,000797 0.0114 навч_під к	0,008469 0,007219 сот* (21v by	0,007403 0,008469 0,007219 (2076c)	21487,92 3101,137	0,4218 0,4741 0,0561	
x y a b J J norm 45 -0,00383 0,002922 0,008219 0,008219 23288,09 0,515 46 -0,0151 0,0157 0,008719 0,008219 23288,09 0,515 47 0,007423 0,007172 0,007719 0,007719 32798,97 0,7313 48 0,008287 0,004515 0,007281 0,007281 0,007281 0,00781 0,494 49 -0,0137 0,013 0,008281 0,008281 4783,512 0,0943 50 -0,00242 0,00266 0,008781 0,00781 1,303,31 0,3796 51 0,0210 0,008755 0,007781 0,00781 1626,892 0,0225 52 0,00320 0,007031 0,007031 34106,3 0,761 53 -0,0145 0,0151 0,00851 0,007031 34106,3 0,761 55 0,0145 0,00154 0,00816 0,007031 34106,3 0,761 <tr< td=""><td>Data: Ta</td><td>4 0 5лица<u></u></td><td>.0187 _a_7_9_</td><td>0,000797 0.0114 навч_під к</td><td>0,008469 0,007219 сот* (21v by</td><td>0,008469 0,007219 / 2076c)</td><td>21487,92 3101,137</td><td>0,4218 0,4741 0,0561</td><td></td></tr<>	Data: Ta	4 0 5лица <u></u>	.0187 _a_7_9_	0,000797 0.0114 навч_під к	0,008469 0,007219 сот* (21v by	0,008469 0,007219 / 2076c)	21487,92 3101,137	0,4218 0,4741 0,0561	
45 -0.00383 0.002922 0.008219 0.008219 23288.09 0.515 46 -0.0151 0.0157 0.008719 0.008719 2711.09 0.0472 47 0.007423 0.007172 0.007719 0.007719 32788.97 0.7313 48 0.008827 0.004515 0.007281 0.007281 22599.34 0.4994 49 -0.0137 0.013 0.008281 0.008281 4783.512 0.0943 50 -0.00242 0.00266 0.008781 0.008781 17330.31 0.3796 51 0.0201 0.008765 0.007781 0.007831 18275.37 0.4011 53 -0.0193 0.0190 0.00731 0.007031 34106.3 0.761 54 -0.00805 0.00644 0.007031 0.007031 322.317 0.0543 55 0.0145 0.0151 0.008031 0.007031 323.317 0.0543 56 0.0145 0.00713 0.008056 0.03752 <t< td=""><td>Data: Tai</td><td>4 0 блица<u></u></td><td>.0187 _a_7_9_</td><td>0,000797 0,0114 навч_під к</td><td>0,008469 0.007219 αστ* (21v by</td><td>0,008469 0,007219 / 2076c)</td><td>21487,92 3101,137</td><td>0,4218 0,4741 0,0561</td><td></td></t<>	Data: Tai	4 0 блица <u></u>	.0187 _a_7_9_	0,000797 0,0114 навч_під к	0,008469 0.007219 αστ* (21v by	0,008469 0,007219 / 2076c)	21487,92 3101,137	0,4218 0,4741 0,0561	
46 -0,0151 0,0157 0,008719 0,008719 2711,09 0,0472 47 0,007423 0,007172 0,007719 0,007719 32798,97 0,7313 48 0,008827 0,004515 0,007281 0,007281 22599,34 0,4944 49 -0,0137 0,013 0,008281 0,008781 12599,34 0,4944 50 -0,00242 0,000266 0,008781 0,008781 17330,31 0,3796 51 0,0201 0,008765 0,007781 0,007531 1626,892 0,0225 52 0,003202 0,00239 0,008531 0,007531 1626,892 0,0225 54 -0,00805 0,00151 0,008031 0,007313 34106,3 0,761 55 0,0145 0,0151 0,008156 0,007151 1933,89 0,4388 57 -0,0109 0,012 0,008566 0,007559 942,1317 0,0543 58 0,00039 0,007703 0,008656 0,007656	Data: Tal	4 0 5лица <u>.</u>	,0187 _a_7_9_ 1 _x	0,000797 0.0114 навч_під к 2 V	0,008469 0.007219 αστ* (21v by 3 a	0,008469 0,007219 / 2076c) 4 b	21487,92 3101.137	0,4218 0,4741 0.0561	
47 0.007423 0.007171 0.007713 0.07731 0.07131 0.07131 0.07131 0.07131 0.07131 0.07131 0.07131 0.07131 0.07131 0.07131 0.0133 0.02331 0.00731 0.01331 0.02331 0.00333 0.02331 0.007131 0.0145 0.01151 0.001755 0.01150 0.0133 0	Data: Ta	4 0 блица_ .5 -0	0,0187 .0187 _a_7_9_ 1 _x .00383	0,000797 0,0114 навч_під к 2 у 0,00292	0,008469 0,007219 сот* (21v by 3 а 2 0,0082	0,008469 0,007219 / 2076c) 4 b 19 0.0082	13 103,02 21487,92 3101,137 5 J 19 23288	0,4218 0,4741 0,0561 0 0 0 0 0 0 0	•rm ,515
418 0.008827 0.004515 0.007281 0.007281 0.07381 0.07781 0.07781 0.07781 0.07781 0.07781 0.07781 0.07781 0.07781 0.07781 0.0275 0.0225 0.0021 0.008551 0.007531 0.007531 1626,892 0.0225 0.0225 0.0225 0.0116 0.008131 0.007031 34106,3 0.7611 53 -0.01805 0.00664 0.007031 0.007031 34106,3 0.761 55 0.0114 0.003453 0.007156 0.007166 19933,89 0.4388 57 -0.0109 0.012 0.008156 0.008156 9047189 0.2117 58 0.00299 0.0162 0.007656 0.007659 62,5135 0.007428	Data: Tal	4 0 блица <u></u> .5 -0,	0,0187 .0187 _a_7_9_ 1 _x .00383 0.0151	0,000797 0,0114 навч_під н 2 у 0,00292 0,015	0,008469 0,007219 cot* (21v by 3 a 2 0,0082 7 0,0087	0,008469 0.007219 72076c) 4 19 0,0082 19 0,0082	13163,62 21487,92 3101,137 5 J 19 23288 19 2711	0,4218 0,4741 0.0561 6 J_no ,09 0,	orm ,515
49 -0.0137 0.0130 0.00210 0.00370 0.0133 0.008281 0.008281 0.038281 0.0383 0.0343 50 -0.00242 0.00266 0.008781 0.008281 17330,31 0.3796 51 0.0201 0.008765 0.008781 0.008781 17330,31 0.3796 52 0.00202 0.00239 0.008531 0.008731 18275,37 0.4011 53 -0.0193 0.0105 0.007531 0.007531 1626,892 0.0225 54 -0.00805 0.0064 0.007031 0.007031 34106,3 0.761 55 0.0145 0.0151 0.008031 0.008031 3023,317 0.0543 56 0.0145 0.0151 0.008031 0.007136 1993,89 0.438 57 -0.0109 0.012 0.008166 0.007656 962,5135 0.007428 58 0.00290 0.0122 0.007656 0.007669 962,5135 0.0027428 60 0.] Data: Tal	4 0 5лица_ 5 -0, 6 -1, 7 0 0	.0187 _a_7_9_ 1 _x ,00383 0,0151	0,000797 0.0114 навч_під к 2 у 0,00292 0,015	0,008469 0,007219 cot* (21v by 3 a 2 0,0082 7 0,0087 2 0.0077	0,008469 0.007219 / 2076c) 4 19 0,0082 19 0,0087 19 0,0087	13163,62 21487,92 3101,137 5 J 19 23288 19 2711 19 32798	0,4218 0,4741 0.0561 6 J_no 0,09 0, 0,09 0,0 97 0 7	rm ,515)472 7313
10 0,0011 0,00261 0,008781 0,008531 0,008531 0,008531 0,008531 0,007531 0,007531 0,007531 0,007531 0,007531 0,007531 0,007531 0,007531 0,007531 0,007531 0,0153 0,0153 0,007531 0,008031 0,007531 0,008031 0,007533 0,008031 0,007533 0,008031 0,007533 0,008156 0,007156 0,0033,399 0,04383 57 -0,0109 0,012 0,008156 0,008156 0,007656 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 0,007456 <t< td=""><td>Data: Tal</td><td>4 0 5лица 5 -0, 6 -1 7 0,0</td><td>0,013 .0187 _a_7_9_ 1 _x ,00383 0,0151 007423 008827</td><td>0,000797 0.0114 навч_під к 2 у 0,00292 0,015 0,00717 0,00451</td><td>0,008469 0.007219 cot* (21v by 3 2 0,0082 7 0,0087 2 0,0077 5 0 0072</td><td>0,007469 0,008469 0,007219 7 2076c) 4 b 19 0,0082 19 0,0087 19 0,0087 19 0,0077</td><td>13163,62 21487,92 3101,137 5 J 19 23288 19 2711 19 32798 81 22599</td><td>0,4218 0,4741 0,0561 6 J_no 0,09 0,0 ,09 0,0 ,97 0,7 ,34 0 4</td><td>orm ,515)472 7313</td></t<>	Data: Tal	4 0 5лица 5 -0, 6 -1 7 0,0	0,013 .0187 _a_7_9_ 1 _x ,00383 0,0151 007423 008827	0,000797 0.0114 навч_під к 2 у 0,00292 0,015 0,00717 0,00451	0,008469 0.007219 cot* (21v by 3 2 0,0082 7 0,0087 2 0,0077 5 0 0072	0,007469 0,008469 0,007219 7 2076c) 4 b 19 0,0082 19 0,0087 19 0,0087 19 0,0077	13163,62 21487,92 3101,137 5 J 19 23288 19 2711 19 32798 81 22599	0,4218 0,4741 0,0561 6 J_no 0,09 0,0 ,09 0,0 ,97 0,7 ,34 0 4	orm ,515)472 7313
50 0.0274 0.0200 0.0007161 0.0007161 17330,31 0.3790 51 0.02210 0.008765 0.007781 0.007781 4557,904 0.0892 52 0.003202 0.00239 0.008531 0.007531 18275,37 0.4011 53 -0.0193 0.0109 0.00731 0.007031 34106,3 0.7613 54 -0.00805 0.00644 0.007031 0.007031 34106,3 0.7643 55 0.0145 0.01516 0.008156 0.008156 9933,89 0.4388 57 -0.0109 0.012 0.008156 0.008156 9947,189 0.2117 58 0.00039 0.007703 0.008656 0.008656 30375,22 0.6762 59 0.0229 0.0152 0.007656 0.007656 962,5135 0.007428 60 0.00578 0.008906 0.008906 34358,44 0.7667 61 -0.0152 0.0141 0.007734 0.007734 0.03456	Data: Tai	4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0	0,013 ,0187 _a_7_9_ 1 x ,00383 0,0151 007423 008827 0,0137	0,000797 0,0114 навч_під к 2 у 0,00292 0,015 0,00717 0,00451	0,008469 0.007219 cot* (21v by 2 0,0082 7 0,0087 2 0,0072 5 0,0072 3 0,0082	0,008469 0.007219 72076c) 4 b 19 0,0082 19 0,0082 19 0,0087 19 0,0087 19 0,0077 31 0,0072	13163,62 21487,92 3101,137 5 J 19 23288 19 2711 19 32798 81 22599 81 4783	0,4218 0,4741 0,0561 6 J_no ,09 0,0 ,09 0,0 ,97 0,7 ,34 0,4	rm ,515)472 7313 1994
51 0,0201 0,00100 0,00101 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,001111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,0011111 0,00111111 0,00111111 0,00111111	Data: Tai	4 0 5лица_ 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0	1 x 0,0137 1 x 0,00383 0,0151 007423 008827 0,0137 0,0242	0,000797 0,0114 навч_під н 2 у 0,00292 0,00292 0,015 0,00717 0,00451 0,001	0,008469 0,007219 cot* (21v by 3 a 2 0,0082 7 0,0087 5 0,0077 5 0,0072 3 0,0082	0,007405 0,008469 0,007219 7 2076c) 4 19 0,0082 19 0,0087 19 0,0077 31 0,0072 31 0,0082	5 3101.137 5 19 23288 19 2711 19 32798 81 22599 81 4783.1 81 17320	0,4218 0,4741 0,0561 J_no ,09 0, ,09 0, ,97 0,7 ,34 0,4 512 0,4	orm ,515)472 7313 1994)943 8796
52 0,00202 0,00233 0,000531 0,000531 162/5,37 0,4011 53 -0,0193 0,0199 0,007531 0,007531 162/6,892 0,0225 54 -0,00805 0,00664 0,007031 0,007531 162/6,892 0,0225 54 -0,00805 0,00664 0,007031 0,007031 34106,3 0,761 55 0,0145 0,0151 0,008031 0,008031 3023,317 0,0543 56 0,0116 0,003453 0,007156 0,007156 19933,89 0,4388 57 -0,0109 0,012 0,008156 0,008156 947,189 0,2117 58 0,00039 0,007703 0,008656 0,00375,22 0,6762 59 0,0229 0,0162 0,007656 0,007656 962,5135 0,007428 60 0,006014 0,005776 0,008406 0,008406 34358,44 0,7667 61 -0,0165 0,01328 0,007734 0,007734 0,4142,54	Data: Tal	4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0,	1 x 00383 0,0151 007423 008827 0,0137 ,00242	0,000797 0,0114 навч_під н 2 уу 0,00292 0,015 0,00717 0,00451 0,001 0,0025	0,008469 0,007219 cot* (21v by 3 a 2 0,0082 7 0,0087 2 0,0077 5 0,0072 3 0,0082 6 0,0087	0,008469 0,007219 72076c) 19 0,0082 19 0,0087 19 0,0087 19 0,0077 81 0,0072 81 0,0082 81 0,0087	21487,92 21487,92 3101,137 19 23288 19 2711 19 32798 81 22599 81 4783,8 81 17330	0,4218 0,4741 0.0561 0.09 0,09 0,09 0,09 0,09 0,09 0,09 0,09	rm ,515)472 7313 1994)943 3796
53 -0,0135 0,0103 0,00133 0,00051 1020,032 0,0022 54 -0,00805 0,00664 0,007031 0,007031 34106,3 0,761 55 0,0145 0,00813 0,008031 0,008031 0,008031 3023,317 0,0643 56 0,0116 0,003453 0,007156 0,008156 9947,189 0,2117 58 0,00039 0,007703 0,008656 0,008565 30375,22 0,6762 59 0,0229 0,0162 0,007656 0,007665 962,5135 0,007428 60 0,006014 0,00578 0,008906 34358,44 0,7667 61 -0,0165 0,0114 0,007406 0,007406 24919,09 0,5521 62 -0,00524 0,01328 0,007406 0,007406 24919,09 0,5521 63 0,0173 0,008774 0,008744 24684,5 0,5468 64 -0,0112 0,0145 0,007734 0,008744 24684,5 <	Data: Tat	4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 1	0,0187 .0187 .00383 0,0151 007423 008827 0,0137 ,00242 0,0201	0,000797 0,0114 навч_під н 2 у 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0026 0,0085	0,008469 0,007219 cor* (21v by 3 2 0,0082 7 0,0087 2 0,0087 5 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077	0,008409 0,008409 0,007219 7 2076c) 4 b 19 0,0082 19 0,0082 19 0,0087 19 0,0087 81 0,0072 81 0,0088 81 0,0087 81 0,0087	21487,92 21487,92 3101,137 19 23288 19 2711 19 32798 81 22599 81 4783, 81 17330 81 4557, 31 1927	0,4218 0,4741 0,0561 6 J no 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,37 0,7 3,34 0,4 512 0,0 3,10 3,30 0,4 0,0 512	rm ,515)472 7313 1994)943 3796)892 011
544 -0,00005 0,00004 0,001031 0,001031 0,001031 3410b,3 0,0543 55 0,0145 0,01510 0,008031 0,008031 3023,317 0,0543 56 0,0116 0,003453 0,007156 0,007156 0,007156 0,933,89 0,4388 57 -0,0109 0,012 0,008156 0,008156 9947,189 0,2117 58 0,00039 0,007703 0,008656 0,008565 30375,22 0,6762 59 0,0229 0,0162 0,007656 0,008906 34358,44 0,7667 61 -0,0165 0,0141 0,007006 0,007406 24919,09 0,5521 62 -0,00524 0,001328 0,007406 0,007406 24919,09 0,5521 63 0,0173 0,008240 0,008406 6916,046 0,1428 64 -0,0112 0,0145 0,007734 0,008734 24684,5 0,5688 66 0,0225 0,01027 0,007344	Data: Tai	4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 (2 0,0	0,0187 .0187 1 x .00383 0,0151 007423 008827 0,0137 .00242 0,0201 0,0202 0,0202	0,000797 0,0114 Haby_nia H 2 y 0,00292 0,015 0,00717 0,00451 0,001 0,0026 0,00876 0,0023	0,008469 0,007219 cor* (21v by 22,0,0082 7,0,0087 2,0,0077 3,0,0087 3,0,0087 5,0,0072 3,0,0082 6,0,0087 5,0,0077 9,0,0085	4 9 0,008469 0,007219 2076c) 4 19 0,0082 19 0,0082 19 0,0077 31 0,0085 0,0085 0,008	19 163,62 21487,92 3101,137 19 23288 19 2711 19 32798 81 22599 81 4783, 81 17330 81 4557, 31 18275 31 4557	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 5515 4472 7313 1994 9943 3796 0892 1011
55 0,0145 0,003151 0,008131 0,003131 3023,371 0,05431 56 0,0116 0,003453 0,007156 0,007156 19933,89 0,4388 57 -0,0109 0,012 0,008156 0,008156 9947,189 0,2117 58 0,00039 0,007703 0,008656 0,008565 0,00755 962,5135 0,007428 59 0,0229 0,0162 0,007656 0,007906 2066,737 0,0325 60 0,005414 0,005780 0,007406 0,007906 2066,737 0,0325 62 -0,00524 0,001328 0,007406 0,007406 204919,09 0,5521 63 0,0173 0,008288 0,008406 0,008406 6916,046 0,1428 64 -0,0112 0,0145 0,007734 0,008734 24684,5 0,5689 66 0,0225 0,01022 0,008234 0,008234 3281,45 0,4035 68 -0,0168 0,0124 0,008484	Data: Tai	4 0 5лица 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 0 2 0,0 3 -1	0,0187 .0187 .0187 .00383 0,0151 007423 008827 0,0137 0,0242 0,0201 003202 0,0193	0,000797 0.0114 HaB4_nig H 0,00292 0,015 0,00717 0,00451 0,0016 0,0026 0,00876 0,0023 0,010	0,008469 0,007219 cor* (21v by 2 0,0082 2 0,0082 2 0,0087 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075	4 b 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0087 19 0,0077 10 0,0087 10 0,0077 10 0,0087 11 0,0085 11 0,0075 11 0,0085 11 0,0075 12 0,	19 169,02 21487,92 3101,137 19 23288 19 2711 19 32798 81 22599 81 4783, 81 4757, 31 18275 31 1626,1 21 244	0,4218 0,4741 0.0561 0 0 0,09 0,0 0,09 0,0 0,00 0,00	rm ,515)472 7313 1994 9943 3796)892 1011)225 2764
56 0,0116 0,003453 0,007156 0,007156 0,007156 0,007156 0,007156 0,007156 0,007156 0,007156 0,007156 0,008156 9947,189 0,2117 58 0,00039 0,007030 0,008656 0,008656 9047,189 0,2117 58 0,00039 0,007030 0,008656 0,008656 0,007550 0,06762 59 0,0229 0,0162 0,007656 0,007656 962,5135 0,007428 60 0,006014 0,005578 0,008906 0,007906 2066,737 0,0325 61 -0,0155 0,01328 0,007406 0,0070406 24919,09 0,5521 63 0,01712 0,01328 0,008406 0,008406 6916,046 0,1428 64 -0,0112 0,0145 0,007734 0,007734 24684,5 0,5689 65 0,0112 0,008244 0,008244 208445 0,5689 67 0,000390 0,01727 0,007234 1381,45 <t< td=""><td>Data: Tai</td><td>4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 1 2 0,0 3 -1 3 -1 4 -0, 5</td><td>0,0187 .0187 .0187 .00383 0,0151 007423 008827 0,0137 ,00242 0,0201 003202 0,0193 ,00805 0,0193</td><td>0,000797 0,0114 HaB4_nia H 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0023 0,00066 0,0023 0,010</td><td>0,008469 0,007219 cor* (21v by 2 0,0087 2 0,0087 5 0,0072 5 0,0072 5 0,0077 9 0,0085 9 0,0075 4 0,00705</td><td>0,008469 0,007219 2076c) 4 19 0,0082 19 0,0082 19 0,0082 19 0,0082 81 0,0077 81 0,0077 81 0,0077 81 0,0073 81 0,0075 31 0,0075 31 0,0075</td><td>19189,02 21487,92 3101,137 1923288 192711 1932798 812599 814783, 814557, 3118275 311626, 313410</td><td>0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0</td><td>rm ,515)472 7313 1994 3796)892 4011)225 ,761)</td></t<>	Data: Tai	4 0 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 1 2 0,0 3 -1 3 -1 4 -0, 5	0,0187 .0187 .0187 .00383 0,0151 007423 008827 0,0137 ,00242 0,0201 003202 0,0193 ,00805 0,0193	0,000797 0,0114 HaB4_nia H 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0023 0,00066 0,0023 0,010	0,008469 0,007219 cor* (21v by 2 0,0087 2 0,0087 5 0,0072 5 0,0072 5 0,0077 9 0,0085 9 0,0075 4 0,00705	0,008469 0,007219 2076c) 4 19 0,0082 19 0,0082 19 0,0082 19 0,0082 81 0,0077 81 0,0077 81 0,0077 81 0,0073 81 0,0075 31 0,0075 31 0,0075	19189,02 21487,92 3101,137 1923288 192711 1932798 812599 814783, 814557, 3118275 311626, 313410	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm ,515)472 7313 1994 3796)892 4011)225 ,761)
57 -0,0109 0,012 0,008156 0,008156 9,007120 0,007120 0,008165 9,007120 0,007120 9,007120 0,007120 9,007120 0,007120 9,007120 0,007120 9,007120 0,007120 0,008106 9,007120 0,007230 0,007106 2,007120 0,00730 0,007140 0,00706 2,008100 0,00730 0,007406 2,4919,09 0,5521 63 0,0173 0,009828 0,008406 0,008146 6016,046 0,1428 64 -0,0112 0,0145 0,007734 0,007734 1414,354 0,0798 65 0,0113 0,005977 0,008234 0,008234 3228,156 0,5468 66 0,0225 0,01127 0,007234 <td< td=""><td>Data: Tai</td><td>41 0 5лица 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 1 2 0,0 3 -1 4 -0, 5 0</td><td>1 x ,00383 0,0151 0,0151 0,01423 0,08827 0,0137 ,00242 0,0201 0,0201 0,0202 0,0193 ,00805 0,0145 0,0145</td><td>0,000797 0,0114 HaB4_nia H 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00717 0,00451 0,0023 0,010 0,0086 0,0023</td><td>0,008469 0,007219 cor* (21v by 2 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0085 9 0,0075 4 0,0070</td><td>0,008465 0,008465 0,007219 2076c) 4 b 19 0,0082 19 0,0082 19 0,0087 81 0,0082 81 0,0087 81 0,0087 81 0,0087 81 0,0077 31 0,0086 31 0,0070 31 0,0080 9 0,0077 9 0,0080 9 0,0080 9 0,0077 9 0,0082 9 0,0087 9 0,0077 9 0,0077</td><td>19 103,02 21487,92 3101,137 19 23288 19 27118 19 32798 81 22599 81 4783, 81 1557, 31 18275 31 18275 31 18275 31 1826, 31 3410 31 3023, 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7</td><td>0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0</td><td>rm ,515 0472 7313 1994 9943 3796 0892 0011 0225 ,761 0543</td></td<>	Data: Tai	41 0 5лица 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 1 2 0,0 3 -1 4 -0, 5 0	1 x ,00383 0,0151 0,0151 0,01423 0,08827 0,0137 ,00242 0,0201 0,0201 0,0202 0,0193 ,00805 0,0145 0,0145	0,000797 0,0114 HaB4_nia H 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00717 0,00451 0,0023 0,010 0,0086 0,0023	0,008469 0,007219 cor* (21v by 2 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0085 9 0,0075 4 0,0070	0,008465 0,008465 0,007219 2076c) 4 b 19 0,0082 19 0,0082 19 0,0087 81 0,0082 81 0,0087 81 0,0087 81 0,0087 81 0,0077 31 0,0086 31 0,0070 31 0,0080 9 0,0077 9 0,0080 9 0,0080 9 0,0077 9 0,0082 9 0,0087 9 0,0077 9 0,0077	19 103,02 21487,92 3101,137 19 23288 19 27118 19 32798 81 22599 81 4783, 81 1557, 31 18275 31 18275 31 18275 31 1826, 31 3410 31 3023, 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm ,515 0472 7313 1994 9943 3796 0892 0011 0225 ,761 0543
58 0.00039 0.00713 0.008566 0.008565 30375,22 0.6762 59 0.0229 0.0162 0.007656 0.007656 962,5135 0.007428 60 0.006014 0.005578 0.008906 0.008906 34358,44 0.7667 61 -0.0165 0.0114 0.007906 2066,737 0.0325 62 -0.00524 0.001328 0.007406 0.007406 24919,09 0.5521 63 0.0173 0.008288 0.008406 6016,046 0.1428 64 -0.0112 0.0145 0.007734 0.007734 4144,354 0.07898 65 0.0133 0.005977 0.008234 0.008234 3228,156 0.5468 66 0.0225 0.01027 0.007234 0.007234 18381,45 0.4035 67 0.00039 0.01727 0.007234 0.007244 39684,64 0.8878 68 -0.0168 0.0124 0.007484 0.007484 39684,64 0.8878	Data: Tai	41 0 5лица 5лица 5 -0, 6 -1 7 0,0 8 0,0 9 -1 0 -0, 1 0 2 0,0 3 -1 4 -0, 5 0 6 0	1 x ,00383 0,0151 0,07423 0,08827 0,0137 ,00242 0,0201 0,0201 0,0201 0,0202 0,0193 ,00805 0,01456 0,01456	0,000797 0,0114 HBB4_niA 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0026 0,00876 0,0023 0,010 0,0066 0,0055	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0087 2 0,0087 5 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0082 9 0,0071 2 0,0081	0,008469 0,007219 2076c) 4 b 19 0,0082 19 0,0087 19 0,0087 19 0,0087 19 0,0087 19 0,0087 19 0,0087 19 0,0087 31 0,0087 31 0,0087 31 0,0073 31 0,0075 31 0,0070 31 0,0080 31 0,00	5 3101,137 21487,92 3101,137 19 23288 19 2711 19 32798 81 22599 81 4783, 81 4783, 81 17330 81 4557, 31 18275 31 18275 31 3023, 56 19933 56 19933 56 2025	0,4218 0,4741 0,0561 6 J no 0,09 0, 0,9 0, 0,3 10, 0,3 10, 0,3 0, 0,4 512 0, 0,6 0, 0,9 0, 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	vrm 515 0472 7313 1994 1943 3796 0892 1011 0225 761 0543 1388 1388
59 0,0229 0,0162 0,007656 0,007656 962,5135 0,007428 60 0,006014 0,005578 0,008906 0,008906 34358,44 0,7667 61 -0,0165 0,0141 0,007406 0,007406 24919,09 0,5521 62 -0,00524 0,001328 0,007406 0,007406 24919,09 0,5521 63 0,0173 0,009828 0,008406 0,008406 6916,046 0,1428 64 -0,0112 0,0145 0,007734 0,008734 24684,5 0,5648 66 0,0225 0,01027 0,008234 0,008234 3228,156 0,0589 67 0,000039 0,01727 0,007344 0,007344 3281,45 0,4035 68 -0,0168 0,0124 0,008484 0,008484 3115,724 0,0564 9 0,005664 0,03852 0,007484 0,007484 39684,64 0,8878	Data: Tai	41 0 блица. 5 -0,0,6 -1,6 -1,7 0,0,0 -0,-	0,0187 .0187 .0187 .0187 .00383 0,0151 .007423 00743 007423 00745 00745 00745 00745 00745 00745 00745 00745 00750000000000	0,000797 0,0114 HaB4_miA 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00745 0,0023 0,00876 0,0023 0,010 0,0066 0,015 0,00345 0,015	0,008469 0,007219 cot* (21v by 2 0,0082 7 0,0087 2 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0071 2 0,0081	0,008469 0,007219 2076c) 19 0,0087 19 0,0087 19 0,0077 19 0,0077 31 0,0072 31 0,0073 31 0,0075 31 0,0075 31 0,0075 31 0,0075 31 0,0075 31 0,0076 31 0,0077 31 0,0076 31 0,0077 31 0,0076 31 0,0077 31 0,0076 31 0,0077 31 0,0076 31 0,0077 31 0,0077 3	19:03,02 21487,92 3101.137 19:2328 19:2328 19:2328 19:23298 81:2559 81:17330 81:4557,31 18:275 31:3410	0,4218 0,4741 0.0561 6 J no 09 0, 09 0, 0, 97 0, 7, 34 0, 44 10, 512 0, 0, 09 0, 0, 99 0, 0, 99 0, 0, 99 0, 0, 99 0, 0, 99 0, 0, 90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	vrm 515 0472 7313 1994 1943 3796 0892 1011 0225 761 0543 1388 2117 7702
600 0.006014 0.005578 0.008306 0.008306 34358.44 0.7667 61 -0.0165 0.0141 0.007906 0.007906 2066,737 0.0326 62 -0.00524 0.001328 0.007406 0.007406 24919.09 0.5521 63 0.0173 0.009828 0.008406 0.004406 6916,046 0.1428 64 -0.0112 0.0145 0.007734 0.007734 4144,354 0.0798 65 0.0113 0.005977 0.008234 0.008244 228,156 0.0589 66 0.0225 0.0122 0.00724 0.007234 1381,45 0.4035 67 0.00039 0.01727 0.007234 0.007234 1381,45 0.4035 68 -0.0168 0.0124 0.008484 0.008484 3115,724 0.05644 69 0.005664 0.003852 0.007484 0.007484 39684,64 0.8878	Data: Tal	41 0 55лица 15 -0, 15 -0, 16 -1 17 0,0 18 0,0 19 -1 0 -0, 11 0 2 0,0 3 -1 1 0 2 0,0 3 -1 1 0 1 0 2 0,0 3 -1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0,0187 a_7_9_ 1 x x 0,003833 0,01511 1007423 0,0151 1007423 0,0152 0,0052 0,0152 0,0052 0,0052 0,0052 0,0152 0,0052	0,000797 0,0114 HaB4_nia H 2 y 0,00292 0,015 0,00717 0,00451 0,0015 0,0025 0,00876 0,0023 0,010 0,00876 0,0015 0,0034 0,015 0,0034 0,015	0,008469 0,007219 cot* (21v by 2 0,0082 7 0,0087 2 0,0087 5 0,0077 5 0,0072 3 0,0087 6 0,0087 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0071 2 0,0080 3 0,0071 2 0,0080	0,008469 0,007219 2076c) 4 b 19 0,0082 19 0,0082 19 0,0087 19 0,0082 19 0,0077 31 0,0077 31 0,0077 31 0,0085 31 0,0077 31 0,0085 31 0,0076 31 0,0076 31 0,0076 31 0,0085 31 0,0076 31 0,0085 31 0,0076 31 0,0085 31 0,0085 31 0,0076 31 0,0085 31 0,00	19 19 10 10 10 10 10 10 10 10 11 12 12 11 11 12 12 13 11 11 11 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 13<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 515 5472 7313 994 9943 8796 0892 0011 0225 761 0225 761 0543 1388 2117 762 2
61 -0.0165 0.0141 0.007906 0.007906 2066,737 0.0325 62 -0.00524 0.001328 0.007406 0.007406 24919,09 0.5521 63 0.0173 0.009828 0.008406 0.008406 6916,046 0.1428 64 -0.0112 0.0145 0.007734 0.008734 24684,5 0.5468 65 0.0113 0.005977 0.008734 0.008234 3228,156 0.0589 66 0.0225 0.0102 0.007234 0.00234 3228,156 0.0589 67 0.00039 0.01727 0.007234 0.00234 315,724 0.0564 68 -0.0168 0.0124 0.008484 3008443 3115,724 0.0564 69 0.005664 0.003852 0.007484 0.007484 39684,64 0.8878	Data: Tai	41 0 55лица 15 -0, 15 -0, 16 -1 17 0,0 18 0,0 19 -1 10 -0, 18 0,0 19 -1 10 -0, 11 0 12 0,0 13 -1 1 0 10 -0, 13 -1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0,0137 a,7,9_ 1 x 0,00383 0,0151 007423 008827 0,0151 007423 008827 0,0137 0,0242 0,0201 0,0137 0,0137 0,0137 0,0137 0,0137 0,0137 0,0137 0,0137 0,0151 0,00242 0,0151 0,0151 0,0151 0,00242 0,0151 0,0151 0,0151 0,00242 0,0151 0,0151 0,0151 0,00242 0,0151 0,0151 0,0151 0,00242 0,0151 0,0151 0,00242 0,0000 0,0151 0,0005 0	0,000797 0,0114 HBB4_niA H 2 y 0,00292 0,015 0,00717 0,0045 0,00717 0,0045 0,00717 0,0045 0,00717 0,0045 0,0015 0,0010 0,00770 0,0016	0,008469 0,007219 cor* (21v by 7 0,0087 2 0,0082 7 0,0087 5 0,0072 3 0,0082 6 0,0087 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0085 9 0,0075 4 0,0070 1 0,0080 2 0,0081 3 0,0086 2 0,0076 4 0,0075 4 0,0075 4 0,0075 4 0,0075 5 0,0075 4 0,0075 5 0,0075	0,008469 0,007219 2076c) 4 b 19 0,0082 19 0,0082 19 0,0087 19 0,0087 19 0,0087 10 0,0087 10 0,0087 10 0,0077 11 0,0077 11 0,0082 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0077 1	19 19 19 10<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 515 1472 7313 1994 9943 8796 2011 10275 761 1543 1388 2117 762 2428
62 -0,00524 0,001328 0,007406 0,007406 24919,09 0,5521 63 0,0173 0,009828 0,008406 0,008406 6916,046 0,1428 64 -0,0112 0,0145 0,007734 0,007734 4144,354 0,0798 65 0,0113 0,005977 0,008734 0,008734 24684,5 0,5468 66 0,0225 0,0102 0,008234 0,008234 3228,156 0,05899 67 0,000039 0,01727 0,007234 10381,45 0,4035 68 -0,0168 0,0124 0,008484 0,008484 3115,724 0,0564 69 0,005664 0,03852 0,007484 0,007484 39684,64 0,8878	Data: Tal	41 0 55 -0, 55 -0, 66 -1 77 0, 99 -1 10 -0, 12 0, 00 -0, 13 -0, 14 -0, 15 (16 (17 -1 14 -0, 15 (16 (17 -1 18 0, 19 -1 19 -1 19 (19 -1) 19 -1 19 (19 -1) 19 (19 -1) 19 (19 -1) 19 (19 -1) 19 (19 -1) 19 (19	0.0187 1 x 0.00383 0.0151 1.007423 0.00151 0.00242 0.0021 0.00242 0.0021 0.00242 0.0021 0.00242 0.0021 0.00242 0.0021 0.00193 0.0015 0.0157 0.0127 0.00242 0.0024 0.0024 0.0024 0.0024 0.0039 0.0015 0.0157 0.00242 0.0017 0.00242 0.0017 0.00242 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0019 0.00039 0.0005 0.0019 0.0005 0.0019 0.0019 0.0005 0.0019 0.0005 0.0019 0.0005 0.0019 0.0005 0.0019 0.0005 0.0019 0.0005 0.0019 0.0019 0.0005 0.0019 0.0005 0.0019 0.	0,000797 0,0114 HBB4_niA 2 y 0,00292 0,015 0,00292 0,015 0,00451 0,00717 0,00451 0,0026 0,00876 0,0023 0,010 0,00557	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0082 7 0,0087 2 0,0077 5 0,0087 9 0,0085 9 0,0085 1 0,0081 3 0,0086 2 0,0086 8 0,0089	0,008469 0,007219 2076c) 4 4 4 9 9 0,0072 19 0,0082 19 0,0087 19 0,0077 19 0,0077 19 0,0077 19 0,0077 19 0,0077 19 0,0077 19 0,0077 19 0,0077 19 0,0082 10 0,0077 19 0,0082 10 0,0077 19 0,0082 10 0,0077 19 0,0082 10 0,0082 10 0,0077 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0085 10 0,0085 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0082 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0082 10 0,0070 10 0,0070 10 0,0082 10 0,0070 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0085 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0085 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,0070 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 10 0,000 00000000	19 19 19 10<	0,4218 0,4741 0,0561 6 J no 0,09 0, 0,09 0, 0,97 0,7 34 0,4 512 0,C 31 0,3 904 0,C 31 0,3 904 0,C 31 0,3 904 0,C 31 0,3 904 0,C 6,3 0,0 899 0,4 189 0,2 2,2 0,6 135 0,007 44 0,7	rm ,515 4472 7313 1994 19943 3796 0892 1011 0225 ,761 0543 1388 2117 6762 7428 7667
63 0.0173 0.009828 0.008406 0.008406 6916.046 0.1428 64 -0.0112 0.0145 0.007734 0.007734 4144.354 0.0798 65 0.0113 0.005977 0.008234 0.008234 24684.5 0.5468 66 0.0225 0.0102 0.008234 0.008234 3228.156 0.0589 67 0.000039 0.01727 0.007234 0.007234 18381.45 0.4035 68 -0.0168 0.0124 0.008484 0.008484 3115.724 0.0564 69 0.003664 0.003852 0.007484 0.007484 39684.64 0.8878	Data: Tai	41 0 5 -0, 5 -0, 5 -0, 6 -1 7 0, 0 -0, 1 (1 2 0, 0 -0, 1 -0, 1 (2 2 0, 0 -0, 1 -0, 1 (-1, 2 0, 0 -0, 1	0.0137 .a.7.9_ 1 x .00383 0,0151 107423 0,0201 0,0201 0,0201 0,0201 0,0201 0,0201 0,0201 0,0202 0,00193 0,0039 0,0039 0,0039 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0039 0,0029 0,0039 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0039 0,0039 0,0029 0,0039 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0029 0,0039 0,0000 0,0009 0,0000 0,0009 0,0009 0,0009 0,0009 0,0009 0,000	0,000797 0,0114 HBB4_miA 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0026 0,00876 0,0023 0,010 0,0066 0,015 0,00345 0,016 0,00770 0,016	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0071 2 0,0081 3 0,0086 2 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086 3 0,0086 2 0,0086 3 0,0086 3 0,0086 3 0,0086 3 0,0086 3 0,0086 3 0,0086 3 0,0075 3 0,0075 3 0,0075 3 0,0075 3 0,0075 3 0,0086 3 0,0086 3 0,0075 3 0,0086 3 0,0085 3 0,0075 3 0,0075	0,008469 0,007219 2076c) 19 0,0087 19 0,0087 19 0,0087 19 0,0077 31 0,0087 31 0,0077 31 0,0085 31 0,0077 31 0,0085 31 0,0075 31 0,0076 31 0,0076 31 0,0085 56 0,0071 56 0,0081 56 0,0076 56 0,0076 56 0,0076 56 0,0076	19 19 103	0,4218 0,4741 0.0561 6 J no 09 0, 09 0, 09 0, 09 0, 09 0, 09 0, 0, 97 0, 7, 34 0,4 512 0,C 31 0,3 904 0,0 317 0,C 89 0,4 892 0,2 6,3 0,0 817 0,0 89 0,4 892 0,2 7,22 0,6 135 0,007 135 0,007 737 0,0	rm ,515 ,515 ,515 ,472 ,7313 ,994 ,9943 ,9943 ,9943 ,9943 ,9943 ,9943 ,9943 ,9943 ,9943 ,9944 ,9943 ,9944 ,9943 ,9944 ,9943 ,9944 ,9943 ,9944 ,9943 ,9944 ,9956 ,7661 ,9756 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,9766 ,97566 ,9756 ,9756 ,97566 ,97566 ,9756 ,9756 ,9756 ,97566 ,97566 ,97
64 -0.0112 0.0145 0.007734 0.007734 4144.354 0.0798 65 0.0113 0.005977 0.008734 0.008734 24684.5 0.5468 66 0.0225 0.0102 0.008234 0.008234 3228,156 0.0589 67 0.000039 0.007234 0.007234 1381.45 0.4035 68 -0.0168 0.0124 0.008484 0.008484 3115.724 0.0564 9 0.005664 0.003852 0.007484 0.007484 39684,64 0.8878	Data: Tai	41 0 55лица 155 -0, 166 -1 177 0,0,0 89 0,-0, 89 0,-0, 10 -0, 11 (1 2 0,0,0 3 -1 1 (1 2 0,0,0 3 -1 1 (1 2 0,0,0 3 -1 1 (1 3 -1) 1 (1 3 -1) 1 (1 3 -1) 1 (1 3 -1) 1 (1) 1 (1)	0.0187 1 x 0.038333 0.0151 1 x 0.03833 0.0151 0.07423 0.00242 0.0201 0.00201 0.00202 0.00203 0.00155 0.0155 0	0,000797 0,0114 HaB4_nia 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00717 0,00451 0,0075 0,00451 0,0075 0,0045 0,00557 0,014 0,00770 0,014 0,00132	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0087 2 0,0087 5 0,0072 5 0,0077 5 0,0072 3 0,0087 6 0,0087 9 0,0085 9 0,0075 4 0,0075 3 0,0076 3 0,0076 3 0,0076 3 0,0076 8 0,0089 1 0,0079 8 0,0074	0,008469 0,007219 2076c) 4 b 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0082 19 0,0087 19 0,0082 19 0,0087 19 0,0082 19 0,0087 19 0,0087 19 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0087 10 0,0077 10 0,0087 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0077 10 0,0087 10 0,0077 0,007 0,0077 0,0077 0,0077 0,007 0,007 0,0077 0,00	19 19 10<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 0472 7313 8796 0892 0011 0225 761 0543 8388 2117 7762 7428 7667 0325 5521
65 0,0113 0,005977 0,008734 0,008734 24684,5 0,5468 66 0,0225 0,0102 0,008234 0,008234 3228,156 0,0589 67 0,000039 0,001727 0,007234 18381,45 0,4035 68 -0,0168 0,0124 0,008484 3115,724 0,0564 69 0,005664 0,003852 0,007484 0,007484 39684,64 0,8878	Data: Tai	41 0 5лица 15 -0, 16 -1 7 0,00 8 0,0 -0, 10 -0, 11 (12 0,0 3 -1 1 (12 0,0 3 -1 1 (12 0,0 3 -1 1 (12 0,0 9 (1 0 0,0 9 (1 0 0,0 9 (1 0 0,0 9 (1 -1) 1	1 x x 0,0383 0,0151 1 0,0151 0,0151 0,0151 0,0152 0,0212 0,0201 0,003202 0,00193 0,003202 0,0193 0,003202 0,00193 0,00320 0,0151 0,003202 0,00320 0,0152 0,00320 0,0055	0,000797 0,0114 HBB4_ni4 H 2 2 0,00292 0,015 0,0045 0,00717 0,0045 0,00717 0,0045 0,00717 0,0045 0,0010 0,0066 0,015 0,0014 0,00700 0,016 0,00157 0,014 0,001557 0,014	0,008469 0,007219 cor* (21v by r* (21v by 7 0,0087 2 0,0087 5 0,0072 5 0,0077 5 0,0072 3 0,0082 6 0,0087 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0081 3 0,0086 2 0,0086 3 0,0089 1 0,0089 2 0,0081 3 0,0086 8 0,0074 8 0,0074 8 0,0074 8 0,0084 4 0,0079 8 0,0074 1 0,0089 1 0,0089 2 0,0081 3 0,0089 1 0,0089 2 0,0089 1 0,0089 2 0,00	0 0	19 19 10<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 4472 7313 4994 9943 7796 8892 4011 12225 761 9543 8388 2117 7562 7428 7667 7325 5521 428
66 0,0225 0,0102 0,008234 0,008234 3228,156 0,0589 67 0,00039 0,001727 0,007234 0,007234 18381,45 0,4035 68 -0,0168 0,0124 0,008484 0,008484 3115,724 0,0564 69 0,005664 0,003852 0,007484 0,007484 39684,64 0,8878	Data: Tal	41 0 55лица 15 -0,0 15 -0,0 15 -0,0 15 -0,0 15 -0,0 16 -0,0 17 -0,0 18 0,0 19 -1 10 -0,0 11 -0 12 0,0 13 -1 14 -0,0 15 -0 14 -0,0 15 -0,0 10 -0,0 11 -0 12 -0,0 13 -0 13 -0 12 -0,0 13 -0 13 -0 14 -0,0 15 -0 15 -0,0 15 -0,0 16 -0 16 -0 17 0,0 10 -0,0 10 -0,	0.0187 0.0187 1 x x 0.003833 0,0151 10074232 0,0201 0,0152 0,0137 0,00242 0,0201 0,0137 0,0039 0,0145 0,0145 0,0145 0,0145 0,0145 0,0039 0,0038 0,0038 0,0038 0,0052 0,0038 0,0038 0,0038 0,0038 0,0052 0,0038 0,0038 0,0038 0,0038 0,0038 0,0038 0,0038 0,0038 0,0052 0,0038 0,00528 0,0017 0,00528 0,0017 0,000 0,000 0,0017 0,0017 0,0017	0,000797 0,0114 HBB4_niA 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00717 0,00451 0,00717 0,0045 0,00345 0,011 0,0070 0,0076 0,0074 0,00757 0,014 0,00732 0,00132 0,00132 0,00132	0,008469 0,007219 cot* (21v by 7 0,0082 7 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0075 4 0,0075 4 0,0070 1 0,0086 3 0,0086 2 0,0076 8 0,0084 8 0,0084 1 0,0079 8 0,0074 8 0,0074 8 0,0074	0,008469 0,007219 2076c) 4 4 19 0,0082 19 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0077 10 0,0087 10 0,0077 10 0,0087 10 0,0077 10 0,0077 10 0,0087 10 0,0077 10000000000	19 19 103	0,4218 0,4741 0,0561 6 J no 0,09 0, 0,9 0, 0,3 10, 3,4 0,4 5,12 0,0,6 6,3 0,0,0 8,9 0,4 6,3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	rm ,515 ,515 ,515 ,515 ,515 ,515 ,515 ,472 ,313 ,994 ,994 ,994 ,994 ,994 ,994 ,994 ,99
67 0,00039 0,001727 0,007234 0,007234 18381,45 0,4035 68 -0,0168 0,0124 0,008484 0,008484 3115,724 0,0564 69 0,005664 0,003852 0,007484 0,007484 39684,64 0,8878	Data: Tai	41 0 5 -0,- 5 -0,- 6 -1 -7 0,0 6 -1 -7 0,0 8 0,0 9 -1 -1 -7 0,0 1 0,0 -1 -1 -7 0,0 -1 -1 -7 0,0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.0187 a.7.9 1 x 0.00383 0.0151 007423 00805 0.0145 0.0242 0.0201 003202 0.0133 00805 0.0212 0.0109 0.0201 0.0202 0.0109 0.0202 0.0105 0.0167 0.0167 0.0229 0.0165 0.0167 0.0165 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0229 0.0167 0.0167 0.0167 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0242 0.0167 0.0167 0.0167 0.0052 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.	0,000797 0,0114 HBB4_miA 2 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,00717 0,00451 0,00717 0,0045 0,0016 0,0066 0,015 0,0014 0,001557 0,014 0,00132 0,0014 0,00132 0,0014 0,001597	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 9 0,0085 9 0,0075 4 0,0087 3 0,0086 2 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086 2 0,0086 3 0,0086	4 b 9 0.007219 2 076c) 4 b 19 0.0062 19 0.0077 19 0.0077 10 0.0077 10 0.0077 11 0.0072 11 0.0077 11 0.0075 11 0.0075 11 0.0076 11 0.0076 11 0.0076 11 0.0085 11 0.0085 1	19 19 103	0,4218 0,4741 0.0561 6 J no 0,09 0, 0,09 0, 0,97 0,7 ,37 0,4 4512 0,C ,31 0,3 904 0,C ,31 0,3 904 0,C ,31 0,3 904 0,C ,31 0,3 904 0,C ,31 0,3 909 0,2 ,22 0,6 89 0,4 189 0,2 2,22 0,6 135 0,007 ,444 0,7 737 0,C 0,09 0,5 0,09 0,5 0,09 0,5 0,09 0,5 0,09 0,5 0,09 0,0 1,00 0,00 1,00 0,0000000000	rm .515 .472 .313 .994 .9943 .7761 .2225 .761 .2255 .761 .2255 .761 .2255 .761 .2255 .761 .2255 .761 .2255 .235 .5521 .428 .2355 .5521 .428 .2355 .5521 .428 .2355 .5521 .428 .2355 .5521 .428 .428 .428 .428 .428 .428 .428 .428
68 -0.0168 0.0124 0.008484 0.008484 3115,724 0.0564 69 0.005664 0.003852 0.007484 39684,64 0.8878	Data: Tai Data: Tai A B	41 0 5 -0,0 5 -0,0 5 -0,0 5 -0,0 5 -0,0 6 -1 -1 7 0,0 8 0,0 9 -1 -1 -1 7 0,0 1 -0 -0 -1 -1 -0 -0 -0 -0 -1 -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	0.0187 a.7.9_ 1 x x 0.00383 0.0161 0.07423 0.08327 0.0032 0.0201 0.0201 0.0201 0.0202 0.0193 0.0202 0.0193 0.0202 0.0193 0.0201 0.0103 0.0201 0.0105 0.0155 0.0157 0.0173 0.0173 0.0173 0.0173 0.0117 0.	0,000797 0,0114 HaB4_nia 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0026 0,00876 0,0023 0,010 0,0066 0,015 0,00345 0,011 0,00132 0,0057 0,014 0,00132 0,00982 0,014	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0087 2 0,0087 2 0,0087 3 0,0087 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0077 3 0,0085 9 0,0075 3 0,0076 3 0,0076 3 0,0076 3 0,0086 2 0,0077 3 0,0086 8 0,0089 8 0,0089 8 0,0084 5 0,0077 7 0,0087 2 0,0082	0.008469 0.008469 0.007219 2076c) 19 19 19 19 19 19 19 19 10 11 12 131 0.0077 31 0.0077 31 0.0077 31 0.0077 31 0.0077 31 0.0077 31 0.0077 31 0.0075 31 0.0076 0.0077 31 0.0085 0.0076 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077	19 19 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 5515 5472 7313 7994 9943 3796 0892 4011 12225 761 0543 8387 762 7428 7667 7521 4428 7667 73325 5521 4428 7667 73325 5521 4428 7667 798 8468 9589
69 0,005664 0,003852 0,007484 0,007484 39684,64 0,8878	Data: Tai	41 0 50,0 -50,0 -61 -7. 0,0 -8. 0,0 -90,0 -0,0	1 x x 0,0137 1 x 0,0137 0,0151 0,0151 0,0151 0,0151 0,0152 0,0137 0,0201 0,0201 0,0201 0,0201 0,0202 0,0193 0,0029 0,0152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,00152 0,0025 0,005	0,000797 0,0114 HBB4_ni4 H 2 2 0,00292 0,015 0,00717 0,0045 0,00717 0,0045 0,00717 0,0045 0,00717 0,0045 0,0015 0,0016 0,00770 0,014 0,000557 0,014 0,00152 0,0014 0,00152 0,0016	0,008469 0,007219 cor* (21v by 7 0,0087 2 0,0087 5 0,0072 5 0,0072 5 0,0072 5 0,0077 5 0,0072 6 0,0087 9 0,0085 9 0,0075 4 0,0080 3 0,0074 3 0,0086 2 0,0076 8 0,0076 8 0,0076 8 0,0074 8 0,0074 8 0,0074 8 0,0074 8 0,0074 8 0,0074 7 0,0072 2 0,0082 7 0,0072 7 0,0072	0.008469 0.008469 0.007219 2076c) 19 19 19 0.0087 19 19 0.0087 19 19 10 11 0.0077 11 0.0073 11 0.0077 11 0.0075 11 0.0075 11 0.0075 11 0.0075 11 0.0075 12 0.0076 13 0.0075 13 0.0071 156 0.0074 0.0077 0.0077 0.0074 0.0077 0.0074 0.0077 134 0.0072 14 0.0072 14	19 19 10<	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 515 7313 994 994 994 994 994 994 994 994 994 99
	Data: Tal	41 0 5 -0,1 5 -0,1 6 -1 -1,7 0,0 -0	0.0187 1 x 0.003803 0.0151 1.007423 0.00242 0.00201 0.00242 0.0021 0.003202 0.0137 0.003202 0.0137 0.00320 0.0137 0.00320 0.0145 0.00142 0.0039 0.00229 0.0014 0.0152 0.00524 0.0171 0.00524 0.0151 0.00524 0.0151 0.0152 0.00524 0.0151 0.0152 0.00524 0.0151 0.0152 0.00524 0.0151 0.0152 0.0151 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0152 0.0151 0.0151 0.00320 0.0151 0.0151 0.0151 0.0151 0.00320 0.0151 0.0151 0.0151 0.0151 0.00320 0.0151 0.0052 0.0151 0.0151 0.00320 0.0151 0.0052 0.0151 0.0151 0.00320 0.0151 0.0052 0.0151 0.0052 0.0151 0.00524 0.0151 0.00524 0.0151 0.00524 0.0151 0.00524 0.0151 0.0152 0.00524 0.0113 0.0152 0.0113 0.0152 0.00112 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00524 0.00113 0.00039 0.000039 0.00039 0	0,000797 0,0114 HBB4_niA 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,0045 0,00876 0,00876 0,00876 0,00876 0,00876 0,0015 0,0010 0,0016 0,00132 0,0014 0,00132 0,0014 0,00132 0,0014 0,00597 0,014 0,00597 0,0172 0,00172	0,008469 0,007219 cot* (21v by 7 0,0082 7 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 1 0,0080 3 0,0086 2 0,0076 8 0,0084 2 0,0076 8 0,0084 5 0,0077 7 0,0087 2 0,0082 7 0,0082 7 0,0082 7 0,0082	0,008469 0,007219 (2076c) 4 4 b 19 0,0082 19 0,0087 19 0,0087 19 0,0087 19 0,0087 19 0,0087 10 0,0077 10 0,0077 11 0,0085 11 0,0085 11 0,0085 11 0,0085 11 0,0087 11 0,0085 11 0,0087 11 0,008	19 103 104 103	0,4218 0,4741 0,0561 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rm 515 313 3796 3892 4011 543 3796 8892 4011 5543 4388 2117 7762 761 5521 428 7762 7667 7325 5521 428 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 798 8468 70564
0 0,0169 0,0166 0,007984 0,007984 1734 276 0,025	Data: Tal	41 0 5.7.44 5.7.44 5.7.46 1.5.70,0,0 6.6 1.770,0,0 7.70,0,0 8.00,0 1.1 1.1 1.20,0 1.1 1.1 1.20,0 1.1 1.1 1.1 1.20,0 1.1 1.1 1.1 1.20,0 1.1 1.1 1.1 1.20,0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	0.0187 a.7.9 1 x 0.00383 0.0151 007423 00805 0.0142 0.0122 0.0137 0.0242 0.0132 0.0242 0.0123 0.0242 0.0123 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0124 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0242 0.0154 0.0154 0.0154 0.0155 0.0055 0.0155 0.0055 0	0,000797 0,0114 HBB4_miA 2 y 0,00292 0,015 0,00717 0,00451 0,00717 0,00451 0,0006 0,00876 0,0023 0,010 0,0066 0,0035 0,0014 0,00132 0,00770 0,0014 0,00132 0,00982 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,014 0,001557 0,015 0,001557 0,015 0,001557 0,015 0,001557 0,015 0,001557 0,001557 0,015 0,001557 0,00172 0,001557 0,00172 0,001557 0,00172 0,001557 0,00172 0,001557 0,001720 0,00172000000000000000000000000000000000	0,008469 0,007219 cot* (21v by 7 0,0087 2 0,0082 7 0,0087 2 0,0077 5 0,0077 5 0,0077 9 0,0085 9 0,0075 4 0,0070 9 0,0085 9 0,0075 4 0,0070 3 0,0085 9 0,0075 4 0,0070 3 0,0085 2 0,0076 8 0,0089 1 0,0089 1 0,0089 1 0,0089 1 0,0089 1 0,0089 2 0,0074 8 0,0084 2 0,0074 8 0,0084 5 0,0077 7 0,0087 2 0,0082 2 0,0074	0.008469 0.008469 0.007219 2076c) 19 19 19 19 19 19 10.0072 11 12 13 14 0.0077 15 16 17 10.0087 11 10.0087 11 11 10.0087 11 12 13 0.0073 10.0086 0.0071 11 12 13 13 13 14 0.0077 15 16 17 10.0077 10.0077 10.0077 10.0077 10.0077 10.0077 10.0077 10.0077 10.0077 </td <td>19 19 103</td> <td>0,4218 0,4741 0,0561 6 J no 0,09 0, 0,09 0,0, 0,09 0,0,0,00,0,0</td> <td> mm 5515 1472 7313 1994 19943 3796 8092 1011 10225 7761 1543 1388 1388 1387 762 1428 7667 3225 1543 1377 762 1428 7667 3255 1543 1543 1543 1543 1543 1544 1544 1544 1543 1544 15478 </td>	19 19 103	0,4218 0,4741 0,0561 6 J no 0,09 0, 0,09 0,0, 0,09 0,0,0,00,0,0	 mm 5515 1472 7313 1994 19943 3796 8092 1011 10225 7761 1543 1388 1388 1387 762 1428 7667 3225 1543 1377 762 1428 7667 3255 1543 1543 1543 1543 1543 1544 1544 1544 1543 1544 15478

	Data: Табл	ица_а_7_9_⊦	навч_під ко	r* (21v by 20	076c)		
		1	2	3	4	5	6
	-	х	у	а	b	J	J_norm
•	71	-0,00559	0,008102	0,008984	0,008984	32564,36	0,7259
•	/2	-0,014	0,0113	0,007859	0,007859	5145,801	0,1025
	13	0,008476	0,00279	0,008859	0,008859	34730,53	0,7752
-	74	0,0197	0,0155	0,008359	0,008359	1882,058	0,0283
	75	-0,00277	0,00704	0,007359	0,007359	31030,49	0,6911
-	/6	-0,0196	0,0134	0,008109	0,008109	1431,555	0,0181
-	70	0,002851	0,004915	0,007109	0,007109	26410,01	0,6315
-	70	0,0141	0,009105	0,007609	0,007609	20256 04	0,1904
-	7.9	-0,0004	0,000664	0,000009	0,000009	29330,04 14740 E	0,000
-	00	0,001447	0,002250	0,000422	0,000422	2049 926	0,3203
-	92	0,0233	0,0100	0,007422	0,007422	17650.0	0,0321
-	02	0,0127	0,000500	0,007322	0,007322	7023 811	0,3003
-	84	-0.00418	0.004383	0.007672	0.007672	27287 29	0,606
-	85	0.0183	0.0129	0.008672	0.008672	4024 792	0.0771
-	86	0.007072	0.000133	0.008172	0.008172	40867 91	0.9147
-	87	-0.0154	0.008633	0,000172	0,000172	40007,51	0,0791
-	88	-0.00137	0.005445	0.008047	0.008047	2/333 76	0.5388
-	89	0.0211	0.0139	0.007047	0.007047	1417 085	0,0178
	90	0.009885	0 001195	0 007547	0.007547	23424 55	0.5181
	91	-0 0126	0.009695	0.008547	0.008547	13698.09	0.297
	92	-0.00699	0.00332	0.007797	0.007797	24080 68	0.533
	93	0.0155	0.0118	0.008797	0.008797	7227 991	0.1499
	94	0.00426	0.00757	0.008297	0.008297	32735 66	0,7298
ě	95	-0 0182	0 0161	0.007297	0 007297	964 3027	0 007469
	96	0.019	0.006773	0.008141	0.008141	6902,856	0,1425
	97	-0.00348	0.0153	0.007141	0.007141	4809 798	0.0949
ŏ	98	-0.0147	0.002523	0.007641	0.007641	9758,102	0.2074
ě	99	0.007774	0.011	0.008641	0.008641	21100.9	0.4653
ě	100	0 0246	0 000398	0 007891	0 007891	4044.2	0 0775
ě	101	0.002149	0.008898	0.008891	0.008891	32460.64	0.7236
ŏ	102	-0.0091	0.004648	0.008391	0.008391	38750.71	0.8666
٠	103	0.0134	0.0131	0.007391	0.007391	4151.573	0.0799
٠	104	0.0162	0.001461	0.008266	0.008266	13056.99	0.2824
۲	105	-0.00629	0.00996	0.007266	0.007266	20621.7	0.4544
٠	106	-0.0175	0.00571	0.007766	0.007766	4072.257	0.0781
•	107	0.004962	0.0142	0.008766	0,008766	10327,45	0,2204
۲	108	0,0218	0,007835	0,007516	0,007516	3765,613	0,0712
۲	109	-0,00066	0,0163	0,008516	0,008516	5966,037	0,1212
٠	110	-0,0119	0,003585	0,008016	0,008016	25841,64	0,5731
۲	111	0,0106	0,0121	0,007016	0,007016	6192,707	0,1263
٠	112	0,006366	0,0105	0,007953	0,007953	20489,21	0,4514
۲	113	-0,0161	0,001992	0,008953	0,008953	10517,93	0,2247
•	114	-0 00488	0 0147	0 008453	0 008453	8371 119	0 1759
	Data: Ta6/	пицаа79	навч під к	от* (21v by	2076c)	ſ	
—		1		· · · ·			
		1	2	3	4	6	6
		v	2	3	h	1	J norm
	116	0.0176	y 5 0 00624	2 0 00745	3 0 00746	3 73/7	3 0 1526
	116	0.013	0.016	9 0 00820	3 0 00820	3 2694 9	37 0.0468
	117	-0.0104	0 00836	7 0 00720	3 0 00720	16282 9	37 0 3558
1	118	0 000741	0 012	6 0 00770	3 0 00770	3 11821	12 0 2543
	110	0 0233	0 00411	7 0 00870	3 0 00870	3 5198 24	5 0 1037
Ť	120	0.003553	3 0.015	8 0 00757	8 0 00757	8 4597 47	76 0.0901
1	121	-0 0180	0 00730	5 0 00857	8 0 00857	78 3503 10)4 0.0652
5	120	-0.0077	7 0.011	6 0.00807	0,008578 0,00857		0 356
	122	0.0149	3 0 00305	5 0 00707	8 0 00707	78 12073 (12 0.00
F	124	0.000179	3 0,00000	3 0 00822	8 0.00833	24266 9	36 0.5371
F	124	-0.0123	3 0,0034	3 0,00032	8 0 00722	8 13730 3	7 0.0077
F	125	-0,0133	7 0.012	7 0.00792	8 0.00792	0 13730,3	0,23/1
F	120	0.00207	0,013	0,00702	0 0,00762	0 3333,23	0,1979
F	12/	0,0204	0,0001	6 0,00002	8 0 00774	0 1200,00	1 0 3526
F	120	0.010435		0,00775	8 0 00976	8 10507 4	1 0,3520
F	125	0,018	0.045	5 0,000/5 7 0,0000/5	0 0,00075	0 10597,0	0,2205
F	130	0.000091	0,015	0,00025	8 0.00700	Q 1705,20	0,1035
F	131	-0,0150	0,00723	0,00725	0 0,00725	0 4/05,44	+0 U,U943
P	132	0,001272	0,013		0,00800	0 10013,1	0,2132
	133	0,0238	0,00511	4 0,00700	0 0,00700	0 3235,11	IZ 0,0591
P	134	0,0125	0,00936	4 0,00750	0 0,00750	0 11130,1	0,2386
-	135	-0,00998	0,00086	3 0,00850	8 0,00850	18 44250,5	0,9916
	136	-0,00/1/	0,014	1 0,00763	3 0,00763	5/89,58	02 0,11/2
-	137	0,0153	0,00617	0,00863	3 0,00863	3 139/4,4	FT 0,3033
-	138	0,004084	0,010	4 0,00813	3 0,00813	3 23229,3	59 U,5137
	139	-0,0184	0,00192	ы 0,00713 C 0,00713	3 0,00713	3058,72	0,0551
1 🗣	140	y -0,00154	i∣ 0,012	ь⊨0,00838	3 0,00838	3 14929,6	0,325

)ata: Табл	ица_а_7_9_н	навч_під кот	* (21v by 20)76c)			я: таблиц	1q_q__a_Ho	вч_під кот	(21V by 207	0C)		
		1	2	3	4	6	6	· [1	2	3	4	5	6
			2	5	4	5	L norm		х	v	а	b	J	J norm
-		X	y	d	0.007000	J	J_norm	214	0.0143	0.0116	0.00893	0.00893	9312.647	0.1973
•	141	0,021	0,004051	0,007383	0,007383	5243,778	0,1048	215	-0.00822	0.003121	0.00793	0.00793	34594 72	0 7721
•	142	0,009709	0,0168	0,007883	0,007883	2880,556	0,051	215	-0.011	0.0169	0.008805	0.008805	3684 339	0,0603
٠	143	-0,0128	0,008301	0,008883	0,008883	19286,65	0,4241	210	-0,011	0,0109	0,000005	0,000005	47422.00	0,0093
٠	144	-0,017	0.005644	0,00807	0,00807	5232,332	0,1045	217	0,0115	0,008434	0,007805	0,007805	1/133,26	0,3751
٠	145	0.005488	0.0141	0.00707	0 00707	5304 608	0 1062	218	0,0227	0,0127	0,007305	0,007305	1664,575	0,0234
	146	0.0167	0.001395	0.00757	0.00757	10465.08	0.2235	219	0,000214	0,004184	0,008305	0,008305	18401,2	0,4039
-	140	0,0107	0,001333	0,00757	0,00151	200651.60	0,2233	220	-0.0167	0.0106	0.007055	0.007055	2341,484	0.0388
-	147	-0,00576	0,009694	0,00657	0,00057	20051,50	0,637	221	0.005839	0.002059	0 008055	0 008055	39017 78	0 8727
•	148	-0,0114	0,003519	0,00782	0,00782	28256,37	0,628	222	0.0171	0.0148	0.008555	0,008555	3031 36	0.0546
•	149	0,0111	0,012	0,00882	0,00882	12497,35	0,2697	222	0,0171	0,0140	0,000555	0,0005555	3031,30	0,0040
•	150	0,0224	0,007769	0,00832	0,00832	4336,667	0,0841	223	-0,00541	0,006309	0,007555	0,007555	32411,74	0,7225
•	151	-0.00014	0.0163	0.00732	0.00732	4053,762	0.0777	224	0,003729	0,0135	0,008898	0,008898	13616,24	0,2951
	152	-0.0198	0.002457	0.008445	0.008445	3/09 537	0.0631	225	-0,0188	0,004981	0,007898	0,007898	3310,71	0,0608
-	152	0.002676	0.011	0.007445	0.007445	16601.05	0.262	226	-0.00752	0.009231	0.007398	0.007398	24787.67	0,5491
-	100	0,002070	0,011	0,007445	0,007445	10001,95	0,303	227	0.015	0.00073	0 008398	0 008398	16174 87	0 3533
•	154	0,0139	0,006707	0,007945	0,007945	14263,91	0,3099	228	0.000354	0.0114	0.007148	0.007148	9077 347	0,0000
	155	-0,00857	0,0152	0,008945	0,008945	7467,617	0,1553	220	0,003334	0,0114	0,007140	0,007140	10001.00	0,1313
•	156	-0,0142	0,004582	0,007695	0,007695	10649,43	0,2277	229	-0,0131	0,002856	0,008148	0,008148	18981,06	0,4171
•	157	0.008301	0.0131	0.008695	0.008695	11564.78	0.2485	230	-0,0019	0,0156	0,008648	0,008648	7423,568	0,1543
	158	0.0196	0.000332	0.008195	0.008195	8106 377	0 1699	231	0,0206	0,007106	0,007648	0,007648	4839,441	0,0956
-	150	0,0100	0,0000002	0.007105	0.007105	25712.76	0,1000	232	0.006541	0.0124	0.008523	0.008523	14546.97	0.3163
-	159	-0,00295	0,000032	0,007 195	0,007 195	20112,10	0,5702	233	-0.016	0.003919	0 007523	0 007523	6209 371	0 1267
	160	0,0118	0,001129	0,008352	0,008352	23911,55	0,5307	233	-0.00474	0.0167	0.007022	0.007022	3164 76	0.0573
•	161	-0,0107	0,009629	0,007352	0,007352	12568,04	0,2713	2.34	0.0470	0.000400	0.000023	0.0000020	7022.050	0,0073
•	162	0,000565	0,005379	0,007852	0,007852	24101,32	0,5335	235	0,01/8	0,008169	0,008023	0,008023	1023,059	0,1452
•	163	0,0231	0,0139	0,008852	0,008852	2120,192	0,0337	236	0,0122	0,0145	0,007273	0,007273	3184,622	0,058
•	164	0.00619	0.007504	0.007602	0.007602	34972 82	0.7807	237	-0,0103	0,006044	0,008273	0,008273	36679,77	0,8195
-	165	-0.0162	0.016	0.008602	0.008602	2039 267	0.0310	238	0,000916	0,0103	0,008773	0,008773	27986.32	0,6218
-	100	-0,0103	0,010	0.000402	0.000402	2003,207	0,0313	239	0.0234	0.001794	0.007773	0.007773	4503 341	0.0879
	166	-0,00506	0,003254	0,008102	0,008102	20081,96	0,5786	240	0.0164	0.003386	0.007211	0.007211	9679 677	0 2066
•	167	0,0174	0,0118	0,007102	0,007102	3221,343	0,0588	240	0.00044	0.0440	0.000044	0.000044	16422.44	0.2000
	168	0,009003	0,006441	0,008227	0,008227	25531,31	0,566	241	-0,00611	0,0119	0,000211	0,008211	10433,41	0,3592
•	169	-0,0135	0,0149	0,007227	0,007227	2198,219	0,0355	242	-0,01/4	0,007636	0,008711	0,008711	5234,778	0,1046
•	170	-0.00225	0.002191	0.007727	0.007727	20588.71	0.4537	243	0,005137	0,0161	0,007711	0,007711	4171,411	0,0804
ě.	171	0.0203	0.0107	0.008727	0 008727	4572 108	0.0895	244	0,022	0,005511	0,008961	0,008961	6010,783	0,1222
-	172	0.003378	0,0000	0.007977	0.007077	21898 4	0.4834	245	-0.00049	0.014	0.007961	0.007961	8962.295	0.1893
-	172	0,003378	0,000000	0,007977	0,001311	21050,4	0,4034	246	-0.0117	0.001262	0.007461	0.007461	23618 31	0 5225
•	173	-0,0191	0,008566	0,008977	0,008977	3512,039	0,0654	240	0,0110	0,001202	0,007401	0.009461	10107.76	0,3223
•	174	-0,00787	0,004316	0,008477	0,008477	25810,63	0,5724	247	0,0100	0,009761	0,000401	0,000461	19197,70	0,422
•	175	0,0146	0,0128	0,007477	0,007477	4067,019	0,078	248	0,0192	0,004449	0,007336	0,007336	6405,812	0,1312
•	176	0,0245	0,0155	0,007539	0,007539	911,8655	0,006276	249	-0,0033	0,0129	0,008336	0,008336	13167,11	0,2849
•	177	0.001974	0.006973	0.008539	0.008539	28403.79	0.6313	250	-0,0146	0,000199	0,008836	0,008836	16316,64	0,3565
-	178	-0.00928	0.0112	0.008039	0.008039	15061.92	0.328	251	0,00795	0.008699	0.007836	0.007836	27348,31	0,6073
-	170	0.0120	0,0112	0,000033	0,0000000	15510 40	0,320	252	0 0248	0 002324	0 008586	0 008586	4415 854	0 0859
-	1/9	0,0132	0,002723	0,007039	0,007039	10012,49	0,3302	253	0.002326	0.0108	0.007586	0.007586	18103 71	0 3072
•	180	0,0188	0,009098	0,008289	0,008289	5908,518	0,1199	200	0,002325	0,0100	0,007500	0,007500	24502.05	0,3312
•	181	-0,00365	0,000598	0,007289	0,007289	24485,93	0,5423	254	-0,00893	0,006574	0,007086	0,007086	31522,65	0,7023
•	182	-0,0149	0,0133	0,007789	0,007789	2915,491	0,0518	255	0,0136	0,0151	0,008086	0,008086	3398,923	0,0628
•	183	0.007599	0.004848	0.008789	0.008789	40461.8	0.9055	256	0,008215	0,00601	0,00791	0,00791	27465,69	0,61
•	184	0 0217	0 0102	0 007914	0 007914	3300 788	0 0606	257	-0.0143	0.0145	0.00891	0.00891	4132.282	0.0795
(T	101	0,0211	0,0102	0,001014	0,001014	0000,100	0,0000		1					
		1	2	3	4	5	6		1	2	3	4	5	6
			2			l i	Lnorm			<u> </u>	2	h	l i	Lnorm
	40	0.0000	y 0.001C	a 100001	4 0.00004	4 14001 5	0.2000	250	0.0020/	0.00176	0.00941	0.00941	20170.65	0.444
	18		4 0,0016	0,000914	4 0,00091	4 14221,5	0,0009	200	-0,00304	0,001/0	0,00041	0,00041	20170,05	0,444
•	18	-0,012	0,014	4 U,UU8414	4 0,00841	4 4923,47	0,0975	259	0,0195	0,0103	0,00741	0,00741	3630,966	0,068
	18	0,010	4 0,00591	1 0,00741	4 0,00741	4 22635,64	0,5002	260	0,00259	0,003885	0,00816	0,00816	19955,71	0,439
٠	18	8 0,01	6 0,016	5 0,00816	4 0,00816	4 2026,97	0,0316	261	-0,0199	0,0124	0,00716	0,00716	1095,916	0,010
٠	18	9 -0.0064	6 0,00803	6 0,00716	4 0,00716	4 31029,78	0,691	262	-0,00866	0,008135	0,00766	0,00766	30850,97	0,68
•	19	0 -0.017	7 0.012	3 0.00766	4 0.00766	4 1948.68	0.0298	263	0.0138	0.0166	0.00866	0.00866	2877.379	0.05
é	10	1 0 00479	6 0 00378	aa800 0 a	4 0 00866	4 26786 5	0.5946	264	0.011	0.002822	0 007535	0 007535	23020 92	0.50
	10	2 _0 0011	9 0 00700	2 0 00740	2 0 00740	2 30047	7,933,0	264	_0.0114	0.0112	0.008525	0.008525	12/0/ 77	0,00
L.	13	2 -0,0011	2 0,00130	1 0.00049	2 0,00149	2 30047,	0,0007	205	-0,0115	0,0113	0,0000000	0,000000	20705.00	0,203
-	19	0,021	J 0,016	+ 0,008492	2 0,00849	z 1427,742	0,018	266	-0,00022	0,007072	0,008035	0,008035	29/95,29	0,66
	19	4 0,010	1 0,00365	2 0,00899	2 0,00899	2 22158,14	0,4893	267	0,0223	0,0156	0,007035	0,007035	923,8361	0,006549
٠	19	-0,012	4 0,012	2 0,00799	2 0,00799	2 6438,712	2 0,1319	268	0,005403	0,004947	0,008285	0,008285	34176,9	0,762
٠	19	6 -0.0068	2 0,00152	7 0,008742	2 0,00874	2 24533,08	0,5433	269	-0.0171	0.0134	0,007285	0,007285	1612,313	0,022
	19	0 015	7 0.0	1 0.00774	2 0 00774	2 6781 3	0 1397	270	-0.00584	0 000697	0 007785	0 007785	24317 97	0.538
i i	10	8 0 00443	5 0 00677	7 0 00724	2 0 00724	2 3/666 2	0 7727	074	0.0103	0.000107	0.009705	0.009705	0100 104	0,000
L.	13	0 0,00443	1 0.044	2 0.00024	2 0,00124	2 1750 00.3	0,1131	2/1	0,010/	0,003137	0,000705	0,000705	2622 442	0,152
	19	0,018	0,014	5 0,008242	2 0,00824	2 1/50,06	0,0253	272	0,0209	0,0108	0,008223	0,008223	3633,142	0,068
	20	0,00162	3 0,00046	5 0,00711	1 0,00711	/ 19769,2	s 0,435	273	-0,00163	0,002292	0,007223	0,007223	21035,38	0,463
٠	20	0,024	1 0,00896	4 0,00811	7 0,00811	7 3007,15	0,0539	274	-0,0129	0,015	0,007723	0,007723	2877,769	0,05
٠	20	0,012	9 0,00471	4 0,00861	7 0,00861	7 21562,7	0,4758	275	0,009619	0,006542	0,008723	0,008723	24803,56	0,549
•	20	3 -0.0096	3 0.013	2 0.00761	7 0.00761	7 6706 8	0.138	276	0.0153	0.0129	0 007973	0 007973	4473 711	0.087
1	20	4 _0.00	4 0 00683	0 00886	7 0 00886	7 28328 5	0 6206	270	-0.00726	0 004447	0.002072	0 002072	25404 66	0.562
	20	-0,00	- 0,00000	3 0.00000	7 0.00000	7 1964 64	7 0,0230	211	-0,00726	0,004417	0,000913	0,000973	20404,00	0,003
	20		0,015	0,00700	7 0,00700	7 00501,04	0,0279	278	-0,0185	0,008667	0,008473	0,008473	3339,272	0,061
•	20	0,00724	o 0,00258	9 0,00736	1 0,00736	1 29504,50	0,6564	279	0,003994	0,000166	0,007473	0,007473	29778,92	0,662
	20	-0,015	3 0,011	1 0,00836	/ 0,00836	/ 5034,39	i 0,1	280	0,0237	0,014	0,008348	0,008348	1678,642	0,023
٠	20	-0,013	8 0,00949	6 0,0086	8 0,0086	8 10712	0,2291	281	0,001182	0,005479	0,007348	0,007348	26635.24	0,591
•	20	9 0.00865	2 0.00099	6 0.0076	8 0.0076	8 20099.0	0.4425	282	-0.0101	0 009729	0 007848	0.007848	18172 25	0.398
	21	0 0.019	9 0.013	7 0.0071	8 0.0071	8 1744 66	0 0252	202	0.012/	0.001220	0.008840	0.008840	24102.64	0,500
-	21	1 _0.000	6 0.00524	S 0.0024	8 0.0024	8 24671 0	0 5440	203	0,0124	0.001229	0,000040	0,000040	24103,04	0,000
	21	0,002	0 0,00524		0 0,0001	0 240/1,0	0.005402	284	0,0181	0,0119	0,007598	0,007598	3505,759	0,065
•	21	2 -0,019	5 0,015	9 0,0074	3 0,0074	3 8/4,392	0,005424	285	-0,00444	0,003354	0,008598	0,008598	23916,17	0,529
	21	3 0,00302	0,00737	1 0,0084	3 0,0084	3 30756,59	0,6848	286	-0,0157	0,0161	0,008098	0,008098	1828,463	0,027
🔢 Data	а: Табли	ца_а_7_9_на	авч_під кот	* (21v by 207	76с)			Габли	ицаа79 на	авч під кот*	(21v by 207	76c)		
----------	----------	-------------	-------------	---------------	----------	----------	--------	-------	--------------	--------------	---------------	---------------	---------------	---------
		1	2	3	1	5	6		.40_0_, _0_,		(211 5) 201	,		
		x	y	a	b	J	J_norm		1	2	3	4	5	6
•	287	0,006807	0,007604	0,007098	0,007098	29663,99	0,66	360	X -0.00058	y 0.00508	a 0.008676	D 0.008676	J 20135-12	J_norn
•	288	-0,00655	0,0153	0,008441	0,008441	6811,765	0,1404	361	0.0219	0.0136	0.007676	0.007676	1741.884	0.02
•	289	0,0159	0,006807	0,007441	0,007441	8919,938	0,1884	362	0.0107	0.00083	0.007176	0.007176	22818.3	0.50
-	290	0,004696	0,0111	0,007941	0,007941	18429,88	0,4046	363	-0,0118	0,00933	0,008176	0,008176	15217,13	0,33
-	291	-0,0170	0,002557	0,000941	0,000941	27718 07	0,1340	364	-0,0062	0,002955	0,007426	0,007426	23550,19	0,5
-	292	0,00033	0,000332	0,007031	0.008691	6839 248	0,0157	365	0,0163	0,0115	0,008426	0,008426	6149,655	0,12
-	294	0.0103	0.0132	0.008191	0.008191	7729 396	0.1613	366	0,005047	0,007205	0,008926	0,008926	31714,17	0,70
ě	295	-0,0122	0,004682	0,007191	0,007191	16148,97	0,3527	367	-0,01/5	0,0157	0,007926	0,007926	1415,566	0,01
•	296	-0,00374	0,009994	0,008066	0,008066	24853,64	0,5506	368	-0,0104	0,013	0,00/113	0,007113	4984,007	0,09
•	297	0,0188	0,001494	0,007066	0,007066	7002,169	0,1447	303	0,0121	0,004549	0,000113	0,000113	21945,75	0,40
•	298	0,007509	0,0142	0,007566	0,007566	5604,915	0,113	371	0.000831	0.000299	0.007613	0.007613	16398 61	0.35
•	299	-0,015	0,005744	0,008566	0,008566	11025,08	0,2362	372	-0.016	0.0109	0.008863	0.008863	5288.475	0,10
•	300	0,001884	0,0164	0,007816	0,007816	4565,179	0,0893	373	0,006456	0,002424	0,007863	0,007863	41111,23	0,920
•	301	0,0244	0,007869	0,008816	0,008816	3774,541	0,0714	374	0,0177	0,0152	0,007363	0,007363	1729,323	0,024
•	302	0,0131	0,0121	0,008316	0,008316	7782,122	0,1625	375	-0,00479	0,006674	0,008363	0,008363	30731,67	0,684
	303	-0,00937	0,003619	0,007620	0,007620	300/1,/0	0,8693	376	-0,0132	0,012	0,007488	0,007488	4519,797	0,088
	304	-0,0192	0,002025	0,007629	0,007629	26100.05	0,0542	377	0,009268	0,003487	0,008488	0,008488	22077,83	0,487
-	305	0.01/6	0.006275	0.008129	0.008129	13957 34	0,5752	378	0,0205	0,0162	0,008988	0,008988	1871,045	0,028
-	307	-0 00796	0 0148	0.007129	0.007129	4345 557	0.0843	379	-0,00198	0,007737	0,00732	0,007988	30933,78	0,688
•	308	-0.0136	0.0084	0.008379	0.008379	11878 2	0.2556	380	-0,0189	0,0141	0,008738	0,008/38	20317.05	0,02
•	309	0.008917	0.0169	0.007379	0.007379	2449.47	0.0412	301	0.003643	0,005612	0,007730	0,007739	6539 421	0,052
•	310	0,0202	0,00415	0,007879	0,007879	6469.04	0,1326	302	-0.00761	0.001361	0.008238	0.008238	24729 421	0,134
•	311	-0,00233	0,0126	0,008879	0,008879	16751,61	0,3664	384	0.0239	0.0164	0.007168	0.007168	708.261	0.00164
•	312	-0,0164	0,007337	0,007754	0,007754	4740,68	0,0933	385	0.001357	0.007936	0.008168	0.008168	31521.07	0.702
•	313	0,006105	0,0158	0,008754	0,008754	6356,846	0,1301	386	-0,00989	0,0122	0,008668	0,008668	13868,97	0,300
•	314	0,0174	0,003087	0,008254	0,008254	10706,19	0,229	387	0,0126	0,003686	0,007668	0,007668	19150,7	0,42
•	315	-0,00515	0,0116	0,007254	0,007254	13238,87	0,2865	388	0,0182	0,0101	0,008918	0,008918	6802,149	0,140
•	316	-0,0108	0,000963	0,008004	0,008004	36826,93	0,8229	389	-0,00427	0,001561	0,007918	0,007918	24456,41	0,541
•	317	0,0117	0,009462	0,007004	0,007004	10156,26	0,2165	390	-0,0155	0,0143	0,007418	0,007418	1936,411	0,029
•	318	0,023	0,005212	0,007504	0,007504	3974,533	0,0759	391	0,006982	0,005811	0,008418	0,008418	39877,73	0,892
<u>.</u>	319	0,00048	0,0137	0,008504	0,008504	11556,53	0,2483	392	0,021	0,008998	0,007293	0,007293	3437,389	0,063
	320	0,005754	0,008534	0,007332	0,007332	28088,49	0,6242	393	-0,00146	0,000498	0,008293	0,008293	16592,48	0,362
	321	-0,0167	0,000033	0,008332	0,008332	1200,214	0,1513	394	-0,0127	0,0132	0,008793	0,008793	0852,301	0,141
	322	-0,0055	0,0120	0,000032	0,000032	0875 /15	0,3421	306	0.0154	0,004740	0,007795	0,007793	23113,00	0,520
	323	0.0114	0.0149	0.007032	0.008582	5218 45	0 1042	397	-0 00708	0.006873	0.007543	0.007543	33666 13	0,031
è	325	-0.0111	0.006409	0.007582	0.007582	22696.04	0.5016	398	-0.0183	0.0111	0.007043	0.007043	1580.266	0.021
è	326	0.000129	0.0107	0.007082	0.007082	16224,77	0,3544	399	0,00417	0,002623	0,008043	0,008043	26706,49	0,592
•	327	0,0226	0,002159	0,008082	0,008082	5240,705	0,1047	400	0,0112	0,001029	0,00898	0,00898	24612,1	0,545
•	328	0,002941	0,016	0,007207	0,007207	3918,19	0,0746	401	-0,0113	0,009529	0,00798	0,00798	15227,52	0,331
•	329	-0,0196	0,007472	0,008207	0,008207	2654,199	0,0459	402	-0,00005	0,005279	0,00748	0,00748	25250,66	0,559
•	330	-0.00831	0.0117	0.008707	0.008707	18939.24	0.4162	403	0,0225	0,0138	0,00848	0,00848	2056,948	0,032
		1	2	3	4	5	6	-	1	2	3	1	5	6
		x	v	a	b	J	J norm		×	v	a	b	J J	.I no
•	331	0,0142	0,003222	0,007707	0,007707	15309,14	0,3336	404	0.005578	0.007404	0.00723	0.00723	33591.59	0.7
•	332	0,008566	0,009597	0,008957	0,008957	30492,97	0,6788	405	-0.0169	0.0159	0.00823	0.00823	1655.802	0.0
•	333	-0,0139	0,001096	0,007957	0,007957	14335,78	0,3115	406	-0,00567	0,003154	0,00873	0,00873	25693.71	0.5
•	334	-0,00268	0,0138	0,007457	0,007457	7875,208	0,1646	407	0,0168	0,0117	0,00773	0,00773	4392.408	0.0
•	335	0,0198	0,005347	0,008457	0,008457	7274,12	0,1509	408	0,008391	0,008466	0,008605	0,008605	32342,27	0,7
•	336	0,0184	0,008002	0,00852	0,00852	7460,354	0,1552	409	-0,0141	0,017	0,007605	0,007605	1634,273	0,0
•	337	-0,00409	0,0165	0,00752	0,00752	3991,843	0,0763	410	-0,00286	0,004216	0,007105	0,007105	26556,72	0,5
	338	-0,0153	0,003752	0,00702	0,00702	6095,616	0,1241	411	0,0196	0,0127	0,008105	0,008105	2976,623	0,0
	339	0,007158	0,0123	0,00802	0,00802	12120,31	0,2611	412	0,002766	0,002091	0,007355	0,007355	23050,93	0,5
	340	0,024	0,001627	0,00727	0,00727	3770,196	0,0/13	413	-0,0197	0,0106	0,008355	0,008355	2069,494	0,0
-	341	0,001533	0,0101	0,00827	0,00827	25895,3	0,5743	414	-0,00848	0,006341	0,008855	0,008855	29952,22	0,6
	342	-0,00972	0.0444	0,008//	0,008//	39134,64	0,889	415	0,014	0,0148	0,007855	0,007855	3154,534	0,0
-	343	0,0128	0,0144	0,00777	0,00777	16122.04	0.2525	416	-0,0162	0,005013	0,008699	0,008699	8492,444	0,1
-	344	10,0100	0,000504	0,000095	0,000095	30022.07	1823 0	417	0,00628	0,0135	0,007699	0,007699	7815,072	0,1
	3/16	-0,00091	0.00/81/	0.007305	0,007095	3219 7/1	0.0601	418	0,0175	0,000764	0,007199	0,007199	8642,407	0
	340	0.004345	0.0133	0.008395	0.008395	11764 19	0.253	419	-0,00497	0,009263	0,008199	0,008199	29369,56	i 0,6
	348	0 0212	0.006939	0.007145	0.007145	3989 329	0.0762	420	-0,0106	0,002888	0,007449	0,007449	31762,2	. 0,7
	349	-0.00128	0.0154	0.008145	0.008145	6606 235	0 1357	421	0,0119	0,0114	0,008449	0,008449	11391,31	0,2
ě.	350	-0.0125	0.002689	0.008645	0.008645	27392.24	0,6083	422	0,0232	0,007138	0,008949	0,008949	4741,142	. 0,0
•	351	0,00997	0,0112	0,007645	0,007645	11006.06	0,2358	423	0,000655	0,0156	0,007949	0,007949	5841,128	0,1
•	352	0,002235	0,004017	0,008801	0,008801	16756,94	0,3665	424	-0,019	0,003951	0,008824	0,008824	4454,482	0,0
•	353	0,0247	0,0125	0,007801	0,007801	1623,819	0,0225	425	0,003468	0,0125	0,007824	0,007824	12421,31	0,

426

427 428

-0,00778

 0.0147
 0.008201
 0.007324
 0.007324
 8910.929

 -0.00778
 0.0167
 0.008324
 0.008324
 4292,371

 427
 -0,00776
 0,0167
 0,000524
 0,000524
 4252,371

 428
 -0,0134
 0,006076
 0,007074
 0,007074
 9193,289

 429
 0,009093
 0,0146
 0,008074
 0,008074
 5628,335

 430
 0,0203
 0,001826
 0,008574
 0,008574
 7746,297

 431
 -0,00216
 0,0103
 0,007574
 0,007574
 20434,58

	1	2	3	4	5	6
a 007	X 0.000007	y 0.007604	a 0.007009	0.007009	J 20662.00	J_nonn
287	0,006807	0,007604	0,007098	0,007098	29663,99	0,66
200	-0,00055	0,0153	0,000441	0,000441	0011,705	0,1404
289	0,0159	0,006807	0,007441	0,007441	8919,938	0,1884
290	0,004696	0,0111	0,007941	0,007941	18429,88	0,4046
291	-0,0178	0,002557	0,008941	0,008941	6565,155	0,1348
292	-0,00093	0,008932	0,007691	0,007691	2//18,0/	0,6157
293	0,0216	0,000432	0,008691	0,008691	6839,248	0,141
294	0,0103	0,0132	0,008191	0,008191	7729,396	0,1613
295	-0,0122	0,004682	0,00/191	0,00/191	16148,97	0,3527
296	-0,00374	0,009994	0,008066	0,008066	24853,64	0,5506
297	0,0188	0,001494	0,007066	0,007066	7002,169	0,1447
298	0,007509	0,0142	0,007566	0,007566	5604,915	0,113
299	-0,015	0,005744	0,008566	0,008566	11025,08	0,2362
300	0,001884	0,0164	0,007816	0,007816	4565,179	0,0893
301	0,0244	0,007869	0,008816	0,008816	3774,541	0,0714
302	0,0131	0,0121	0,008316	0,008316	1102,122	0,1625
303	-0,00937	0,003619	0,007316	0,007316	388/1,/8	0,8693
304	-0,0192	0,002025	0,007629	0,007629	3020,527	0,0542
305	0,003292	0,0105	0,008629	0,008629	26109,95	0,5792
306	0,0145	0,006275	0,008129	0,008129	13957,34	0,3029
307 307	-0,00796	0,0146	0,007129	0,007129	4345,557	0,0643
308	-0,0136	0,0084	0,008379	0,008379	110/0,2	0,2556
309	0,008917	0,0169	0,007070	0,007070	2449,47	0,0412
310	0,0202	0,00415	0,007879	0,007879	0409,04	0,1326
311	-0,00233	0,0126	0,0000/9	0,0000/9	10/51,61	0,3664
312	-0,0164	0.0450	0,00754	0,00754	4140,00	0,0933
214	0,000105	0,0100	0,000754	0,000754	10706 10	0,1301
314	0.00516	0,003007	0,000254	0,000254	13238.87	0.225
315	-0,00313	0,0110	0.007234	0,007234	36826.93	0,2003
310	0.0117	0,000303	0,000004	0,000004	10156.26	0,0223
318	0.023	0.005212	0 007504	0 007504	3974 533	0 0759
• 319	0.00048	0.0137	0.008504	0.008504	11556.53	0.2483
• 320	0.005754	0.008534	0.007332	0.007332	28088,49	0,6242
• 321	-0,0167	0,000033	0,008332	0,008332	7288,214	0,1513
• 322	-0,0055	0,0128	0,008832	0,008832	15680,75	0,3421
• 323	0,017	0,004284	0,007832	0,007832	9875,415	0,2101
• 324	0,0114	0,0149	0,008582	0,008582	5218,45	0,1042
• 325	-0,0111	0,006409	0,007582	0,007582	22696,04	0,5016
• 326	0,000129	0,0107	0,007082	0,007082	16224,77	0,3544
327	0,0226	0,002159	0,008082	0,008082	5240,705	0,1047
328	0,002941	0,016	0,007207	0,007207	3918,19	0,0746
329	-0,0196	0,007472	0,000207	0,000207	18030 24	0,0455
	-0.00031	0.0117	0.000707	0.000707	10333.24	0.4102
	1	2	3	4	5	6
	X	у	a	b	J	J_norm
331	0,0142	0,003222	0,007707	0,007707	15309,14	0,3336
332	0,008566	0,009597	0,008957	0,008957	30492,97	0,0780
224	0,00269	0,001030	0,007357	0,007357	7075 200	0,3115
232	0,00200	0.0130	0.008467	0.002457	727/ 12	0,1040
336	0.0184	0.008002	0.00852	0.00852	7460 354	0,1503
337	-0 00409	0.0165	0 00752	0 00752	3991 843	0.0763
338	-0 0153	0 003752	0.00702	0.00702	6095 616	0 1241
339	0.007158	0.0123	0.00802	0.00802	12120.31	0.2611
• 340	0.024	0.001627	0.00727	0.00727	3770,196	0.0713
• 341	0,001533	0,0101	0,00827	0,00827	25895,3	0,5743
• 342	-0,00972	0,005877	0,00877	0,00877	39734,64	0,889
• 343	0,0128	0,0144	0,00777	0,00777	3817,748	0,0723
• 344	0,0156	0,000564	0,008895	0,008895	16182,01	0,3535
• 345	-0,00691	0,009064	0,007895	0,007895	30022,02	0,6681
• 346	-0,0182	0,004814	0,007395	0,007395	3219,741	0,0587
• 347	0,004345	0,0133	0,008395	0,008395	11764,19	0,253
• 348	0,0212	0,006939	0,007145	0,007145	3989,329	0,0762
• 349	-0,00128	0,0154	0,008145	0,008145	6606,235	0,1357
3 50	-0,0125	0,002689	0,008645	0,008645	27392,24	0,6083
351	0,00997	0,0112	0,007645	0,007645	11006,06	0,2358
352	0,002235	0,004017	0,008801	0,008801	16756,94	0,3665
353	0,0247	0,0125	0,007204	0,007204	1023,819	0,0225
354	0,0135	0.0160	0,007301	0,007301	3822.940	0,2271
305	-0,00902	0,0166	0,000301	0,000301	31315 47	0,0727
350	0,00339	0.0142	0.002051	0.002051	21/10 729	0,0975
358	0.00786	0.001892	0.008551	0.008551	38004 08	0.8496
359	-0 0146	0 0104	0.007551	0.007551	4552 071	0.080
200	0.00050	0.00000	0.000070	0.000070	00405 40	0 4400

0,1881

0,0831

0,1946 0,1135 0,1617

0,4502

	290
6	
l norm	

🔢 Data: Taɓ	іли	ца_а_7_9_на	вч_під кот*	(21v by 207	76с)		
		4	0	2	4	r	
		1 x	2 V	3	4 b	5 .J	6 J norm
• 4	32	-0,00357	0,0119	0,007387	0,007387	12845,14	0,2776
• 4	33	0,0189	0,00342	0,008387	0,008387	8719,4	0,1838
• 4	34	0,007684	0,0162	0,008887	0,008887	5627,502	0,1135
	35	-0,0148	0,00767	0,007887	0,007887	10977 64	0,1528
4	37	0.0246	0.005545	0.007637	0.007637	3342.755	0.0615
• 4	38	0,0133	0,009795	0,007137	0,007137	7954,912	0,1664
• 4	39	-0,00919	0,001295	0,008137	0,008137	42646,06	0,9552
• 4	40	-0,00638	0,013	0,007012	0,007012	7618,761	0,1588
	41 42	0.004872	0,004465	0,000012	0,006012	32864 55	0,2503
• 4	43	-0,0176	0,000232	0,007512	0,007512	4345,009	0,0843
• 4	44	-0,00075	0,0109	0,008762	0,008762	24820,86	0,5499
• 4	45	0,0217	0,002358	0,007762	0,007762	5450,519	0,1095
• 4	46	0,0105	0,0151	0,007262	0,007262	3174,255	0,0577
	47 48	-0,012	0,006606	0,000262	0,000262	11746 95	0,5042
• 4	49	-0,00673	0.0115	0,00859	0,00859	20232,46	0,4456
• 4	50	-0,018	0,007271	0,00809	0,00809	3687,869	0,0694
• 4	51	0,004521	0,0158	0,00709	0,00709	3693,608	0,0695
• 4	52	0,0214	0,005146	0,00834	0,00834	5828,772	0,1181
4	53 54	-0,0011	0,0136	0,00734	0.00784	22/150 01	0,16/6
• 4	55	0.0101	0,009396	0,00884	0,00884	24901.3	0.5517
• 4	56	0,0186	0,006208	0,007965	0,007965	7315,402	0,1519
• 4	57	-0,00392	0,0147	0,008965	0,008965	10065,65	0,2144
• 4	58	-0,0152	0,001958	0,008465	0,008465	11738,72	0,2524
• 4	59 60	0,007333	0,0105	0,007465	0,007465	16242,39	0,3548
4	60 61	0.001708	0,004085	0,000215	0,006215	9918 772	0,0013
• 4	62	-0.00954	0.008333	0.007715	0.007715	26484.51	0.5877
• 4	63	0,013	0,0168	0,008715	0,008715	3027,319	0,0544
• 4	64	0,003117	0,0142	0,008277	0,008277	9201,21	0,1947
• 4	65	-0,0194	0,005678	0,007277	0,007277	2222,653	0,0361
	67	-0,00813	0,009928	0,007777	0,007777	18878 12	0,4974
• 4	68	0.008742	0.0121	0.007527	0.007527	9276.891	0,1965
• 4	69	-0,0138	0,003553	0,008527	0,008527	17680,11	0,3875
• 4	70	-0,00251	0,0163	0,008027	0,008027	5101,068	0,1015
• 4	71	0,02	0,007803	0,007027	0,007027	4139,17	0,0797
	12 73	0,005929	0,011	0,008152	0,008152	19459,78	0,428
4	74	-0.00532	0.0152	0.007652	0.007652	5524.918	0,0333
• 4	75	0.0172	0.006741	0.008652	0.008652	10178.48	0.217
		1	2	3	4	5	6
		×	ÿ	a	b	J	J_norm
• 4	476	0,0116	0,0131	0,007902	0,007902	6198,091	0,1265
	+// 178	-0,0109	0,004615	0,008902	0,008902	40752,83	0,9121
• 4	179	0.0228	0.000365	0.007402	0.007402	4548.668	0.089
• 4	180	-0,0131	0,009663	0,008059	0,008059	9637,75	0,2047
• 4	181	0,009444	0,001162	0,007059	0,007059	22895,56	0,5061
	182	0,0207	0,0139	0,007559	0,007559	1/82,769	0,0261
• 4	184	-0,0187	0.016	0.007809	0.007809	1090.267	0.0103
• 4	185	0,003819	0,007538	0,008809	0,008809	30811,8	0,6861
• 4	186	0,0151	0,0118	0,008309	0,008309	6508,696	0,1335
	187 189	-0,00/43	0,003288	0,007309	0.002434	31/10,/1	0,7065
	+00 189	0.0123	0.006475	0.007434	0.007434	16688.67	0.365
• 4	190	0,0235	0,0107	0,007934	0,007934	2500,282	0,0424
• 4	191	0,001006	0,002225	0,008934	0,008934	12948,01	0,2799
• 4	192	-0,0159	0,0086	0,007684	0,007684	4599,644	0,0901
	193 194	0.0179	0,0001	0.008184	0.008184	40524,8	0,9069
• 4	195	-0,00462	0,00435	0,007184	0,007184	28667,47	0,6373
• 4	196	-0,0004	0,007006	0,007871	0,007871	29930,49	0,6661
• 4	197	0,0221	0,0155	0,008871	0,008871	1767,806	0,0257
	190	0,0108	0,002756	0,008371	0.007371	24462,75	0,541/
• 4	-39 500	-0,00603	0,000631	0,008121	0.008121	24689.1	0,1429
• !	501	0,0165	0,009131	0,007121	0,007121	5699,096	0,1151
• {	502	0,005223	0,004881	0,007621	0,007621	36828,6	0,8229
• •	503	-0,0173	0,0134	0,008621	0,008621	2605,668	0,0448
	504 505	0.00241	0.001693	0.008746	0.008746	2815 119	0.0495
• !	506	0,0137	0,005943	0,008246	0,008246	16935,25	0,3706
• !	507	-0,00884	0,0144	0,007246	0,007246	4557,563	0,0892
6 5	508	I -0 00322	0.008068	0.008496	0 008496	31292 52	0 697

📗 Data: Ta	🛄 Data: Таблица_а_7_9_навч_під кот* (21v by 2076с) 📃 💼 📄									
		1	2	3	4	5	6			
		x	ý	a	b	J	J_norm			
• !	509	0,0193	0,0166	0,007496	0,007496	1184,385	0,0125			
	510 511	-0 0145	0,003818	0,007996	0,007996	28146,84	0,6255			
•	512	0,0143	0,0158	0,007076	0,007076	1507,42	0,0198			
• !	513	-0,00581	0,007256	0,008076	0,008076	33326,79	0,7433			
• !	514	-0,0171	0,0115	0,008576	0,008576	3471,255	0,0645			
	515	0,005443	0,003006	0,007576	0,007576	38917,95	0,8704			
•	517	-0.00018	0.00088	0.007826	0.007826	16108.63	0,0013			
• {	518	-0,0114	0,0136	0,007326	0,007326	4087,943	0,0785			
• !	519	0,0111	0,005131	0,008326	0,008326	24369,44	0,5396			
• •	520	0,0139	0,0104	0,007451	0,007451	1284,278	0,1512			
•	522	-0.0199	0,001343	0.008951	0.008951	1585,527	0,0216			
• !	523	0,002631	0,006193	0,007951	0,007951	28054,08	0,6234			
• !	524	0,0195	0,0168	0,008701	0,008701	1675,716	0,0236			
	525	-0,00299	0,008318	0,007701	0,007701	29908,35	0,6655			
•	527	0.008256	0.004068	0.008201	0.008201	28192.46	0.6265			
•	528	0,006852	0,001411	0,008764	0,008764	41156,02	0,9213			
• {	529	-0,0156	0,009911	0,007764	0,007764	4240,367	0,082			
• !	530	-0,0044	0,005661	0,007264	0,007264	31217,32	0,6953			
	532	0,0101	0.007786	0,008284	0,006264	12154 91	0,0496			
•	533	-0,01	0,0163	0,008014	0,008014	3514,697	0,0655			
• !	534	0,001227	0,003536	0,008514	0,008514	16085,81	0,3513			
• !	535	0,0237	0,012	0,007514	0,007514	1782,926	0,0261			
	535	-0.0185	0,006724	0,008639	0,008639	29141,21	0,6481			
•	538	-0,00721	0,002474	0,007139	0,007139	30895,82	0,688			
• {	539	0,0153	0,011	0,008139	0,008139	6954,103	0,1437			
• !	540	0,009664	0,000349	0,007389	0,007389	23088,12	0,5105			
• •	541	-0,0128	0,008849	0,008389	0,008389	138/4,/3	0,301			
•	543	0.0209	0.0131	0.007889	0.007889	2260.006	0.0369			
•	544	-0,00932	0,005396	0,008545	0,008545	38887,18	0,8697			
• {	545	0,0132	0,0139	0,007545	0,007545	3777,381	0,0714			
• •	546	0,0244	0,001146	0,007045	0,007045	3442,66	0,0638			
	547 548	-0 0149	0,009646	0,008045	0,008045	7793 892	0,5974			
•	549	0,007554	0,0118	0,008295	0,008295	15179,46	0,3307			
• !	550	0,0188	0,007521	0,008795	0,008795	7861,35	0,1643			
• •	551	-0,0037	0,016	0,007795	0,007795	4979,806	0,0988			
×	552	-0,0121	0,002200	0,00032	0,00032	53531,40	6			
		x	v	a	b b	J	Jnorm			
• 5	553	0,0104	0,0107	0,00792	0,00792	13339,57	0,2888			
• 5	54	0,0216	0,006458	0,00742	0,00742	4239,456	0,0819			
5	660	-0,00088	0,015	0,00842	0,00842	8157,642	0,1/1			
5	557	0,004741	0,004333	0,00817	0,00817	12222,32	0,2634			
• 5	58	0,016	0,000083	0,00867	0,00867	14673,18	0,3192			
5	559	-0,00651	0,008583	0,00767	0,00767	31136,8	0,6935			
5	61 61	0,000525	0.002730	0.00/35/	0.007357	15225,98	0,3317			
• 5	62	0,0118	0,0155	0,008857	0,008857	4846,516	0,0957			
• 5	63	-0,0107	0,006989	0,007857	0,007857	26632,7	0,5911			
6 5	64	-0,0051	0,0134	0,008607	0,008607	12622,72	0,2725			
- 5 - F	666	0.00615	0.004864	0.007607	0.007607	22379 22	0,1812			
• 5	67	-0,0164	0,000614	0,008107	0,008107	7497.909	0,156			
• 5	68	-0,00229	0,0144	0,007232	0,007232	6275,248	0,1282			
• 5	69	0,0202	0,005926	0,008232	0,008232	6362,7	0,1302			
5	070 71	0.0136	0,0102	0,008/32	0,008/32	24545,95	0,5436			
- S	572	-0,00791	0,0123	0.008982	0.008982	17991.46	0,322			
. 5	73	0,0146	0,003801	0,007982	0,007982	15040,86	0,3275			
• 5	574	0,003337	0,0166	0,007482	0,007482	3720,621	0,0701			
5	75	-0,0192	0,008051	0,008482	0,008482	3047,499	0,0548			
- 5	577	-0.00264	0.0122	0.008686	0.008686	17809 19	0.3905			
• E	578	-0,0139	0,007919	0,008186	0,008186	10587,82	0,2263			
• 5	579	0,008607	0,0164	0,007186	0,007186	2587,385	0,0444			
6 6	680	0.0142	0.005704	0.008436	0.008436	16271	0,3555			
	0.4	0,0142	0.0442	0.007420	0.007430	E400 245	0 1000			
5 5 6 7	81 82	-0,00827	0,005754	0,007436	0,007436	5423,345 3147 464	0,1089			
	581 582 583	-0,00827 -0,0195 0,002982	0,005734 0,0143 0,001544 0,01	0,007436 0,007936 0,008936	0,007436 0,007936 0,008936	5423,345 3147,464 30156,43	0,1089 0,0571 0,6712			
	581 582 583 584	-0,00827 -0,0195 0,002982 0,0227	0,003734 0,0143 0,001544 0,01 0,004731	0,007436 0,007936 0,008936 0,007811	0,007436 0,007936 0,008936 0,007811	5423,345 3147,464 30156,43 4531,641	0,1089 0,0571 0,6712 0,0886			

📗 Data: Табли	ца_а_7_9_на	вч_під кот*	* (21v by 207	76c)		
	1	2	3	4	5	6
	х	у	а	b	J	J_norm
585	0,000169	0,0132	0,008811	0,008811	14420,74	0,3134
586	-0,0111	0,000481	0,008311	0,008311	37226,34	0,8319
587	0,0114	0,008981	0,007311	0,007311	13204,63	0,2858
588	0,017	0,002606	0,008061	0,008061	10879,8	0,2329
589	-0,00546	0,0111	0,007061	0,007061	14096,72	0,3061
590	-0,0167	0,006856	0,007561	0,007561	4248,235	0,0821
 591 591 	0,005794	0,0154	0,008561	0,008561	6806,09	0,1403
592	0,01	0,0138	0,008498	0,008498	1685,335	0,1603
593	-0,0125	0,005263	0,007490	0,007490	10907,33	0,3400
- 594 - 595	0.0213	0,003515	0,007330	0,007330	7486 535	0,5545
- 535 - 596	0.00/139	0.0116	0.007748	0.007748	14775 51	0,1330
530	-0.0181	0.003138	0,007740	0.008748	5608 345	0,3213
598	-0.00686	0 0159	0 008248	0.008248	5394 136	0 1082
599	0.0156	0.007388	0.007248	0.007248	8337.982	0.1751
• 600	0,0128	0,0127	0,008123	0,008123	6537,602	0,1342
601	-0,00967	0,004201	0,007123	0,007123	34090,07	0,7606
602	0,001578	0,017	0,007623	0,007623	3731,748	0,0704
603	0,0241	0,008451	0,008623	0,008623	3575,377	0,0668
604	0,007203	0,0148	0,007873	0,007873	5548,382	0,1117
• 605	-0,0153	0,006326	0,008873	0,008873	10912,2	0,2336
• 606	-0,00405	0,0106	0,008373	0,008373	23648,06	0,5232
607	0,0185	0,002076	0,007373	0,007373	7758,732	0,1619
608	-0,0174	0,009246	0,008217	0,008217	3676,542	0,0691
609	0,005092	0,000747	0,007217	0,007217	39458,84	0,8827
610	0,0163	0,0135	0,007717	0,007717	3200,175	0,0583
 611 612 	-0,00616	0,004996	0,008717	0,008717	2/622,25	0,6136
 612 642 	-0,0118	0,0156	0,007967	0,007967	32/1,056	0,0599
 613 614 	0,0107	0,00/121	0,008967	0,008967	251/9,7	0,558
014	0,022	0,0114	0,000407	0,000467	10220.07	0,0574
610	-0,00055	0,002071	0,007407	0,007467	2111 6	0,4220
617	0,0140	0.008184	0,000342	0,000342	25711.54	0,0330
618	0.0192	0 0124	0.007842	0.007842	3029 502	0.0544
619	-0 00335	0 003934	0.008842	0 008842	21112 88	0 4656
620	-0 00897	0 0103	0.007592	0 007592	16737 07	0.3661
621	0.0135	0.001809	0.008592	0.008592	20493.86	0.4515
622	0.0248	0.0146	0.008092	0.008092	1253,176	0.014
623	0,00228	0,006059	0,007092	0,007092	30094,37	0,6698
624	-0,00756	0,007653	0,007904	0,007904	34348,5	0,7665
625	0,0149	0,0162	0,008904	0,008904	3165,038	0,0575
• 626	0,003688	0,003403	0,008404	0,008404	21873,04	0,4829
627	-0,0188	0,0119	0,007404	0,007404	1520,673	0,0201
628	-0 00194	0 001278	0 008154	0 008154	18155 57	0.3983
	1	2	3	4	5	6
620	X 0.0206	y 0.000779	a 0.007154	D 0.007154	J 3157 027	J_norm
630	0,0200	0,005778	0.007154	0.007654	23959 78	0,0575
631	-0.0132	0.014	0.008654	0.008654	4963 037	0.0984
632	-0.00475	0 000216	0.007529	0.007529	25298.93	0 5607
633	0.0178	0,008716	0,008529	0,008529	7647.399	0.1594
634	0,006501	0,004466	0,008029	0,008029	40315,2	0,9022
635	-0,016	0,013	0,007029	0,007029	1882,424	0,0283
636	0,000876	0,006591	0,008279	0,008279	27470,36	0,6101
637	0,0234	0,0151	0,007279	0,007279	995,9926	0,008189
638	0,0121	0,002341	0,007779	0,007779	21352,43	0,471
639	-0,0104	0,0108	0,008779	0,008779	19902,96	0,4381
640	0,004214	0,004267	0,007818	0,007818	29373,46	0,6534
641	-0,0183	0,0128	0,008818	0,008818	2523,647	0,0429
642	-0,00704	0,000017	0.007340	0,000318	23035,42	0,5093
643	0,0155	0,000517	0,007318	0,007318	22612 69	0,159
644	-0 0127	0.0106	0.007068	0.007068	5485 801	0 1103
645	-0.00141	0.006392	0.007568	0.007568	29144 2	0.6482
647	0.0211	0.0149	0.008568	0.008568	1992 894	0.0309
648	0.007027	0.003205	0.007693	0.007693	36441.76	0.8141
649	-0,0155	0,0117	0,008693	0,008693	4979.877	0,0988
650	-0,00422	0,007455	0,008193	0,008193	31778,19	0,7081
651	0,0183	0,016	0,007193	0,007193	1312,892	0,0154
652	0,0127	0,00533	0,008443	0,008443	21168,67	0,4668
653	-0,00985	0,0138	0,007443	0,007443	5145,127	0,1025
654	0,001402	0,001079	0,007943	0,007943	15756,32	0,3438
655	0,0239	0,00958	0,008943	0,008943	3535,693	0,0659
656	0,0141	0,0122	0,008006	0,008006	6024,415	0,1225
657	-0,00844	0,003735	0,007006	0,007006	39877,37	0,8922
658	-0,0197	0,0165	0,007506	0,007506	811,0974	0,003985
659	0,002806	0,007985	0,008506	0,008506	31907,11	0,0000
660	0,0197	0,0144	0,00750	0,00750	1930,231	0,0296
100	-0,00202	0,00506	0,000756	0,000756	7495 664	0,0402
663	0.008431	0.00161	0.007256	0.007256	19584 17	0,150

	Табли	ца_а_7_9_на	вч_під кот*	(21v by 207	бс)	-	
		1	2	3	4	5	6
_	004	X 0.0100	y	a	D 000201	J 2002.072	J_norm
	664	0,0169	0,0133	0,008381	0,008381	3982,973	0,0761
	200	0,00503	0,004797	0.007301	0.007001	20400,11	0.0701
	667	0,0103	0,005047	0.007001	0.007001	31384 77	0,0701
	822	0,005015	0,000340	0,000001	0.007631	2405 226	0.0402
	000	6.50E-6	0.002672	0.008631	0.008631	14758 63	0,0402
	670	-0,502-0	0,002072	0.008131	0.008131	3902 648	0.0743
-	671	0,0112	0.006922	0.007131	0.007131	17351 37	0.0743
-	672	-0.00211	0.0168	0.008287	0.008287	4993 392	0.0991
-	673	0 0204	0.008252	0.007287	0.007287	4046 089	0.0775
-	674	0.009138	0.0125	0.007787	0.007787	8795 981	0 1855
	675	-0 0134	0.004002	0.008787	0.008787	21630.87	0 4773
-	676	-0 00774	0 0104	0.007537	0.007537	18616.02	0.4088
	677	0 0148	0.001877	0.008537	0.008537	16998 72	0.372
	678	0.003513	0 0146	0.008037	0.008037	7405 662	0 1539
	679	-0 019	0 006127	0.007037	0 007037	2157 788	0.0346
	680	0 0007	0.009314	0.008162	0.008162	28852 82	0.6415
	681	0.0232	0.000813	0.007162	0.007162	4100.228	0.0788
	682	0 0119	0.0136	0 007662	0 007662	4831 147	0.0954
	683	-0 0106	0 005064	0.008662	0.008662	40476 89	0.9058
	684	-0.00493	0.0157	0.007912	0.007912	5463.906	0,1098
•	685	0.0176	0,007189	0.008912	0.008912	9889.797	0,2104
•	686	0.006325	0.0114	0.008412	0.008412	18569.39	0,4077
•	687	-0.0162	0,002939	0,007412	0,007412	5840,401	0,1183
•	688	-0,012	0,000282	0.0076	0.0076	23361,65	0,5167
•	689	0,0105	0,008782	0,0086	0,0086	23739,08	0,5253
•	690	0,0218	0,004532	0,0081	0,0081	5420,965	0,1088
•	691	-0,00071	0,013	0,0071	0,0071	8663,183	0,1825
•	692	-0,0176	0,006657	0,00835	0,00835	4683,182	0,092
•	693	0,004916	0,0152	0,00735	0,00735	4689,128	0,0922
•	694	0,0162	0,002407	0,00785	0,00785	11890,05	0,2559
•	695	-0,00633	0,0109	0,00885	0,00885	25091,42	0,556
•	696	-0,00915	0,00772	0,007975	0,007975	33874,43	0,7557
•	697	0,0134	0,0162	0,008975	0,008975	3695,536	0,0696
•	698	0,0246	0,00347	0,008475	0,008475	4316,766	0,0837
•	699	0,002104	0,012	0,007475	0,007475	12830,84	0,2773
•	700	-0,0148	0,001345	0,008225	0,008225	12229,21	0,2636
•	701	0,007729	0,009845	0,007225	0,007225	17028,05	0,3727
•	702	0,019	0,005595	0,007725	0,007725	6804,371	0,1402
•	703	-0,00352	0,0141	0,008725	0,008725	10999,6	0,2356
•	704	0,013	0,0102	0,007428	0,007428	8484,324	0,1784
•	705	-0,0095	0,001743	0,008428	0,008428	42954,92	0,9622
	706	0,001753	0,0145	0,008928	0,008928	10776,25	0,2306
P	707	0,0243	0,005993	0,007928	0,007928	3597,331	0,0673 *
🗌 Data	: Табли	іца_а_7_9_н	авч_під кот	* (21v by 20	176c)		
		1	2	3	4	5	6
		x	v	a	b	Ĵ	J norm
•	708	0.007378	0.0166	0.008678	0.008678	3 4738.939	0.0933
è	709	-0.0151	0.008117	0.007678	0.007678	5877.2	0.1192
•	710	-0.00387	0.0124	0.007178	0.007178	10565.52	0.2258
•	711	0.0186	0,003868	0,008178	0,008178	8585.494	0.1807
è	712	0.0102	0.0156	0.007053	0.007053	3 2680.387	0.0465
•	713	-0.0123	0,007055	0,008053	0,008053	18006.59	0.3949
•	714	-0.00106	0,0113	0,008553	0,008553	3 21321.91	0,4703
•	715	0,0214	0,002805	0,007553	0,007553	5355.486	0,1073
•	716	0,004566	0,00918	0,008803	0,008803	32485.34	0.7241
•	717	-0.0179	0,000681	0,007803	0,007803	3 4441.999	0.0865
•	718	-0.00668	0.0134	0.007303	0.007303	3 7391,886	0.1536
•	719	0.0158	0.00493	0.008303	0.008303	12790.64	0.2764
•	720	0.0228	0.006525	0.00874	0.00874	4903 119	0 097
•	721	0.000345	0.015	0.00774	0.00774	6371 308	0,1304
	722	-0.0109	0.002275	0.00724	0.00724	27569.61	0.6124
-		-,	-,-,-,-	-,	-,	10020.00	0.0707
•	723	0.0116	0.0108	0.00824	0.00824	12030 94	0.2121
	723 724	0,0116	0,0108	0,00824	0,00824	9672 658	0,2121
	723 724 725	0,0116 0,0172 -0.00528	0,0108 0,000149 0.00865	0,00824 0,00749 0.00849	0,00824	9672,658	0,2727 0,2055 0,2055
<u>.</u>	723 724 725 726	0,0116 0,0172 -0,00528 -0,0165	0,0108 0,000149 0,00865 0,0044	0,00824 0,00749 0,00849 0.00899	0,00824 0,00749 0,00849 0,00899	9672,658 32305,13 8903,292	0,2121 0,2055 0,72 0,188
• • •	723 724 725 726 727	0,0116 0,0172 -0,00528 -0,0165 0,00597	0,0108 0,000149 0,00865 0,0044 0.0129	0,00824 0,00749 0,00849 0,00899 0,00799	0,00824 0,00749 0,00849 0,00899 0,00899	9672,658 32305,13 8903,292 10625,65	0,2121 0,2055 0,2055 0,72 0,188 0,2271
• • • • •	723 724 725 726 726 727 728	0,0116 0,0172 -0,00528 -0,0165 0,00597 0.02	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212	0,00824 0,00749 0,00849 0,00899 0,00799	0,00824 0,00749 0,00849 0,00899 0,00899 0,00799	9672,658 32305,13 8903,292 10625,65 8577 874	0,2727 0,2055 0,72 0,188 0,2271
• • • • •	723 724 725 726 727 728 728 729	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,02 -0.00247	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865	0,00824 0,00749 0,00849 0,00899 0,00799 0,00799 0,008865 0,007865	9672,658 9672,658 932305,13 98903,292 10625,65 8577,875 25031.06	0,2727 0,2055 0,72 0,188 0,2271 0,1806 0,5547
• • • • • •	723 724 725 726 727 728 729 729 730	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,02 -0,00247 -0,0137	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865 0,007365	0,00824 0,00749 0,00849 0,00899 0,00799 0,00799 0,007865 0,007865	9672,658 9672,658 32305,13 8903,292 10625,65 8577,875 25031,06 10080 3	0,2727 0,2055 0,2055 0,72 0,188 0,2271 0,1806 0,5547 0,2147
• • • • • • •	723 724 725 726 727 728 729 730 731	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,02 -0,00247 -0,0137 0,008782	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,009712 0,005462	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865 0,007865 0,007365	0,00824 0,00745 0,00845 0,00895 0,00795 0,008865 0,007865 0,007865 0,007865 0,007365	 12630,32 9672,658 32305,13 8903,292 10625,65 8577,875 85031,00 10080,31 7639,675 	0,2727 0,2055 0,2055 0,72 0,188 0,2271 0,1806 0,5547 0,2147 0,1592
• • • • • • • • • • • • •	723 724 725 726 727 728 729 730 730 731 732	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,02 -0,00247 -0,0137 0,008782 0,0144	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865 0,007865 0,007365 0,007365 0,008365	0,00824 0,00745 0,00845 0,00895 0,00795 0,007865 0,007865 0,007365 0,007365 0,007365 0,007365 0,008365 0,007114	 9672,658 9672,658 32305,13 8903,292 10625,65 8577,875 25031,06 10080,33 7639,67 9450,735 	0,2727 0,2055 0,2055 0,2271 0,188 0,2271 0,188 0,5547 0,2147 0,1592 0,2004
• • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,0247 -0,0137 0,008782 0,0144 -0,00809	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587 0,0161	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865 0,007865 0,007365 0,007365 0,007365 0,008365 0,007115	0,00824 0,00745 0,00845 0,00895 0,00795 0,00795 0,007865 0,007865 0,007365 0,007365 0,007365 0,007365 0,007365 0,008365 0,007115	 9672,658 9672,658 32305,13 8903,292 10625,65 8577,875 25031,06 10080,31 7639,671 9450,735 4528,052 	0,2727 0,2055 0,2055 0,188 0,2271 0,1886 0,2271 0,1806 0,5547 0,2147 0,1592 0,2004 0,0885
• • • • • • • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733 734	0,0116 0,0172 -0,00528 -0,0165 0,00597 -0,00247 -0,0137 0,008782 0,0144 -0,00809 -0,0193	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587 0,0161 0,003337	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007365 0,007365 0,007365 0,008365 0,007115 0,00815	0,00824 0,00745 0,00845 0,00895 0,00795 0,007865 0,007865 0,007365 0,007365 0,007365 0,007365 0,007365 0,008365 0,007115 0,008115	12830,32 9672,658 32305,11 8903,292 10625,66 8577,876 25031,00 1080,33 7639,67 9450,733 4528,052 3939,736	0,2121 0,2055 0,722 0,188 0,2271 0,1806 0,5547 1,0,2147 0,1592 0,2004 0,2004 0,0885 0,0751
• • • • • • • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733 734 734	0,0116 0,0172 -0,00528 -0,0165 0,00597 0,002 -0,00247 -0,0137 0,008782 0,0144 -0,00809 -0,0193 0,003157	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587 0,0161 0,003337 0,0118	0,00824 0,00749 0,00849 0,00899 0,007865 0,007865 0,007365 0,008365 0,007115 0,008115 0,008615 0,007615	0,00824 0,00745 0,00845 0,00895 0,00795 0,007865 0,007865 0,007865 0,007865 0,008865 0,007115 0,008815 0,008816 0,008816	12630,32 9672,658 32305,11 8903,292 10625,65 8577,876 25031,06 10625,64 32305,11,06 500,33 10625,65 303,292 10625,65 5031,06 5030,073 50450,733 50450,733 5039,736 13739	0,2721 8 0,2055 8 0,722 0,188 0,2271 5 0,2271 6 0,5547 1 0,2147 0 1,592 0 0,2004 2 0,0885 5 0,0751 0 2979
• • • • • • • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733 734 735 736	0,0116 0,0172 -0,00528 -0,0165 0,00597 -0,0247 -0,0137 0,008782 0,0144 -0,00809 -0,0193 0,003157 -0,00457	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587 0,0161 0,003337 0,0118 0,00254	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007365 0,007365 0,007365 0,007365 0,007365 0,007365 0,007365 0,00815 0,008615	0,00824 0,00749 0,00849 0,00899 0,00799 0,008865 0,007865 0,007865 0,007365 0,008365 0,007115 0,008115 0,008115 0,00815	12830,32 9672,658 932305,11 8903,220 10625,66 8577,875 25031,06 10080,31 7639,67 9450,735 4528,052 3939,736 13739,7 22777,87	0,2721 8 0,2055 8 0,722 2 0,188 5 0,2271 6 0,5547 1 0,2147 0 0,1592 0 0,2004 0 0,2004 0 0,2004 0 0,2004 0 0,00845 5 0,0751 1 0,2979 3 0,5034
• • • • • • • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733 734 735 736 736 737	0,0116 0,0172 -0,00528 -0,0165 0,00597 -0,00247 -0,0137 0,008782 0,0144 -0,00809 -0,0193 0,003157 -0,00457 0,017	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,005462 0,014 0,007587 0,0161 0,003337 0,0118 0,00254 0,0014	0,00824 0,00749 0,00849 0,00899 0,007865 0,007865 0,007865 0,007365 0,008115 0,008115 0,00815 0,00815 0,008615 0,00855 0,007955	0,00824 0,00745 0,00845 0,00895 0,007865 0,007865 0,007865 0,007865 0,007865 0,007865 0,007115 0,008115 0,008115 0,008615 0,008615 0,008615 0,008615	9 9672,658 9 9672,658 9 32305,13 9 8903,292 9 10625,65 8 8577,875 5 25031,06 5 10080,3° 5 7639,67' 5 9450,733 6 4528,052 5 3939,736 5 13739,1 9 22777,83 9 4512,002	0,2127 0,2055 0,2271 0,188 0,2271 0,1806 0,5547 0,1004 0,1004 0,2147 0,1592 0,2004 0,2004 0,00855 0,0751 0,2979 0,5034 0,0904
• • • • • • • • • • • • • • • • • • •	723 724 725 726 727 728 729 730 731 732 733 734 735 736 736 737	0,0116 0,0172 0,00528 -0,0155 0,00597 0,0247 -0,0137 0,008782 0,0144 -0,00809 -0,0193 0,003157 -0,00457 0,0179 0,00657	0,0108 0,000149 0,00862 0,0044 0,0129 0,001212 0,009712 0,009712 0,007540 0,0161 0,007537 0,0118 0,00254 0,0111 0,00254	0,00824 0,00749 0,00849 0,00899 0,00799 0,007865 0,007865 0,007865 0,007865 0,007865 0,007615 0,008615 0,007615 0,007959 0,007959	0,00824 0,00743 0,00845 0,00895 0,00895 0,00896 0,007865 0,007865 0,007865 0,008155 0,007865 0,007865 0,007865 0,007865 0,007865 0,007615 0,008553 0,007455	1263,52 9 9672,658 9 32305,12 9 10625,658 9 8577,876 2 5031,06 5 10080,33 5 10080,53 5 10080,55 5 1	0,2127 0,2055 0,722 0,188 0,2271 0,1806 0,5547 0,2147 0,1592 0,2004 0,2004 0,2004 0,2004 0,2075 0,0751 0,2979 0,5034 0,0904 0,786
	723 724 725 726 727 728 729 730 731 732 733 734 735 736 736 737 738 739	0,0116 0,0172 -0,00528 -0,0155 0,00597 0,0247 -0,0137 0,008782 0,0144 -0,00809 -0,0193 0,003157 -0,00457 0,0179 0,006676 -0,0168	0,0108 0,000149 0,00865 0,0044 0,0129 0,001212 0,009712 0,009742 0,007587 0,0161 0,007587 0,0118 0,00254 0,00158 0,00159 0,00161 0,00254	0,00824 0,00749 0,00849 0,00899 0,00799 0,007865 0,007865 0,007865 0,007365 0,007815 0,008155 0,007615 0,008959 0,007459 0,008455	0,00824 0,00749 0,00849 0,00849 0,00899 0,00799 0,00865 0,007866 0,007866 0,00849 0,00865 0,007866 0,008455 0,008455 0,008115 0,008955 0,007615 0,00759 0,00759 0,007459 0,008455	1263,52 9672,658 9672,658 932305,11 8903,292 10625,65 5857,875 25031,06 10080,33 7639,67 59450,733 4528,052 5339,736 5339,736 5339,736 5339,736 5339,737 54528,052 5339,736 5339,736 5339,737 54528,052 5339,736 5355555555555555555	0,2727 8 0,2055 8 0,2055 8 0,2155 9 0,188 5 0,2271 6 0,5647 1 0,1592 9 0,2004 2 0,0885 5 0,0751 1 0,2979 3 0,5034 4 0,0904 9 0,786 8 0,0387

Dat	ta: Таблиц	ца_а_7_9_на	вч_під кот*	(21v by 207	бс)			11	Data: Табли	ца_а_7_9_на	авч_під кот'	* (21)
	-	1 x	2 V	3 a	4 b	5 J	6 J norm			1 x	2 V	
	740	0,001051	0,004665	0,007209	0,007209	24271,58	0,5374		815	0,0215	0,0146	0,
<u> </u>	741	0,0236	0,0132	0,008209	0,008209	1871,363	0,0281		816	0,0173	0,0162	0,0
-	742	-0.0123	0.000415	0.007709	0.007709	20122.98	0,5516		818	-0,00519	0.007666	0,0
<u> </u>	744	-0,00739	0,005727	0,008584	0,008584	27276	0,6057		819	0,00606	0,003436	0,0
	745	0,0151	0,0142	0,007584	0,007584	2944,666	0,0525		820	0,0229	0,009811	0,0
<u> </u>	746	0,003864	0,001478	0,007084	0,007084	31840,36	0,7095		821	0,000435	0,001312	0,0
-	747	-0.00176	0.003602	0.007334	0.007334	22626 48	0,042		823	-0,0106	0.005561	0,0
	749	0,0207	0,0121	0,008334	0,008334	3134,308	0,0568		824	0,0145	0,008748	0,0
	750	0,009489	0,007852	0,008834	0,008834	28024,74	0,6227		825	-0,008	0,000249	0,0
<u> </u>	751	-0,013	0,0164	0,007834	0,007834	2286,578	0,0375		826	-0,0193	0,013	0,0
-	753	0.00808	0.006259	0.008146	0.008146	30835.74	0.6866		828	0.0201	0.0151	0,0
	754	0,0193	0,0105	0,008646	0,008646	5142,97	0,1025		829	-0,00238	0,006623	0,0
	755	-0,00317	0,002009	0,007646	0,007646	22893,66	0,5061		830	-0,0136	0,0109	0,0
<u>.</u>	750	-0,0088	0.00126	0,008896	0,008896	16775 19	0,3274		831	0,008872	0,002373	0,0
5	758	0,025	0,0169	0,007396	0,007396	635,8182	0,0000		833	0,00033	0,007200	0,0
	759	0,002455	0,008384	0,008396	0,008396	32047,63	0,7142		834	0,002896	0,003038	0,0
	760	-0,0172	0,0116	0,007271	0,007271	2007,356	0,0312		835	-0,0196	0,0115	0,0
-	761	0.005268	0.0158	0.008271	0.008271	2794 266	0,7407		836	-0,00273	0,000913	0,0
	763	-0,00598	0,007322	0,007771	0,007771	33673,09	0,7511		838	0,008521	0,005163	0.0
	764	-0,0116	0,0137	0,008521	0,008521	6595,976	0,1355		839	-0,014	0,0137	0,0
	765	0,0109	0,005197	0,007521	0,007521	22411,5	0,4951		840	-0,00554	0,001975	0,
-	765	-0.00036	0.0009447	0.008021	0.008021	2044,522	0.3428		841	0,017	0,0105	0,
	768	-0,00027	0,0122	0,007979	0,007979	14481,22	0,3148		843	-0,0168	0,0147	0.
	769	0,0222	0,003703	0,008979	0,008979	6282,996	0,1284		844	0,000084	0,00835	(
	770	0,011	0,0165	0,008479	0,008479	3559,121	0,0665		845	0,0226	0,0169	(
-	772	-0,00589	0.0143	0,008229	0,008229	8437.163	0,3323		846	0,0113	0,0041	
	773	0,0166	0,005828	0,007229	0,007229	8258,12	0,1733		848	-0,0182	0,009945	0,0
	774	0,005358	0,0101	0,007729	0,007729	21893,65	0,4833		849	0,0043	0,001444	0,0
<u> </u>	775	-0,0171	0,001577	0,008729	0,008729	7405,909	0,1539		850	0,0155	0,0142	0,0
-	777	0,0194	0,0133	0.008604	0.008604	8129.591	0,2044		851	-0,00695	0,005695	0,0
	778	0,00817	0,009015	0,008104	0,008104	27416,43	0,6089		853	0,009925	0,00782	0,0
	779	-0,0143	0,000515	0,007104	0,007104	9288,065	0,1967		854	0,0212	0,0121	0,0
-	780	-0,008/1	0,0111	0,008354	0,008354	18987,54	0,41/2		855	-0,00133	0,00357	0,0
5	782	0,002545	0,0154	0,007854	0,007854	5823,001	0,1179		857	-0,0154	0.006758	0,0
	783	-0,02	0,00689	0,008854	0,008854	3153,928	0,0573		858	0,0184	0,00010	0,0
		1	2	3	4	5	6			1	2	
-	79/	X	y	a	b	J 29653.6	J_norm	-	950	X	y	0.0
-	785	0,0124	0,005295	3 0,007166	0,007166	3583,898	0,0644		860	-0,00414	0,002508	0.0
•	786	0,0236	6 0,001046	6 0,007666	0,007666	4332,247	0,084		861	0,0127	0,000382	0,0
•	787	0,001137	0,009546	0,008666	0,008666	30467,84	0,6783		862	0,024	0,0131	0,0
-	/88	0.006763	0,003171	0 008916	0,007916	20406 9	0,1652		863	0,001488	0,004633	0,0
ě	790	0,018	3 0,007421	1 0,008416	0,008416	8084,824	0,1694		865	-0,0119	0,005428	0,0
•	791	-0,00449	0,0159	0,007416	6 0,007416	4393,87	0,0854		866	-0,00062	0,009678	0,0
•	792	-0,0129	0,004233	3 0,008291	0,008291	20414,94	0,4497		867	0,0219	0,001179	0,0
-	793	0 0208	0,0127	0,007291	0.007291	4293 798	0,1318		869	-0,005007	0,003303	0.0
é	795	-0,00168	3 0,017	0,008791	0,008791	5549,988	0,1117		870	-0,00624	0,0161	0,0
•	796	-0,018	0,006358	3 0,007541	0,007541	2823,223	0,0497		871	0,0163	0,007553	0,0
•	797	0,003949	0,0149	0,008541	0,008541	8259,198	0,1733		872	0,0134	0,0107	0,0
-	798	-0.0073	0.002108 0.010F	5 0,008041 5 0,007041	0.007041	14400,93	0.3182		874	0,002194	0,002241	0.0
ě.	800	0,007468	3 0,00078	0,008385	0,008385	39921,44	0,8932		875	0,0247	0,006491	0,0
•	801	-0,01	0,00928	0,007385	0,007385	4556,657	0,0891		876	0,007819	0,0129	0,0
-	802	0.012	0,00503	0,007885	0,007885	27122,4	0,6022		878	-0.00343	0.008616	0,0
-	803	0,0131	1 0,007155	5 0,007635	0,000635	14428.84	0,3136		879	0,0191	0,000116	0,0
•	805	-0,00941	1 0,0157	0,008635	0,008635	5512,442	0,1109		880	0,0205	0,002773	0,0
•	806	0,001843	3 0,002905	0,008135	0,008135	17004,7	0,3722		881	-0,00203	0,0113	0,0
-	807	0,0243	5 0,0114	0,007135	0,007135	1639,827	0,0228		883	0,009223	0,007023	0.0
ě	809	-0,0178	0,0167	0,00701	0,00701	843,5834	0,004724		884	0,0148	0,004898	0,0
•	810	-0,00659	0,003968	0,00751	0,00751	24823,17	0,5499		885	-0,00765	0,0134	0,0
•	811	0,0159	0,0125	0,00851	0,00851	5496,553	0,1105		886	-0,0189 0.003598	0,000648	0,0
-	812	-0.0103	0.001843	0,00776 0,00876	0.00776	23916,68	0,5293		888	0,0233	0,00596	0,0
ē	814	-0,00097	0,006093	0,00826	0,00826	25667,96	0,5691		889	0,000786	0,0145	0,0

ŝ

Data: Табли	ца_а_7_9_на	вч_під кот*	(21v by 207	76c)		
	1	2	3	4	5	6
	x	у	а	b	J	J_norm
815	0,0215	0,0146	0,00726	0,00726	1299,339	0,0151
817	-0,00519	0,007686	0,008697	0,008697	32179.88	0,0229
818	-0,0164	0,0119	0,008197	0,008197	3199,974	0,0583
819	0,00606	0,003436	0,007197	0,007197	39258,87	0,8781
820	0,0229	0.001312	0.008447	0.008447	3423,169	0.3775
822	-0,0108	0,0141	0,007947	0,007947	5292,559	0,1059
823	0,0117	0,005561	0,008947	0,008947	24740,37	0,548
824	0,0145	0,008748	0,007822	0,007822	2/10/ 96	0,2139
826	-0,0193	0,000243	0,008322	0,008322	1728,219	0,0330
827	0,003247	0,004498	0,007322	0,007322	27855,92	0,6189
828	0,0201	0,0151	0,008072	0,008072	1782,399	0,0261
830	-0,00230	0,000023	0,007572	0,007572	5332,174	0,1068
831	0,008872	0,002373	0,008572	0,008572	25764,27	0,5713
832	-0,00835	0,007288	0,007275	0,007275	32575,04	0,7262
834	0.002896	0.003038	0.008275	0.008275	16597.14	0,0524
835	-0,0196	0,0115	0,007775	0,007775	1571,585	0,0213
836	-0,00273	0,000913	0,008525	0,008525	18850,74	0,4141
837	0.008521	0.009413	0.007525	0.007525	23530.91	0,0781
839	-0,014	0,0137	0,008025	0,008025	3575,699	0,0668
840	-0,00554	0,001975	0,00715	0,00715	23736,51	0,5252
841	0,017	0,0105	0,00815	0,00815	6068,007 34409.48	0,1235
843	-0,0168	0,000223	0,00765	0,00765	1625,047	0,0225
844	0,000084	0,00835	0,0089	0,0089	31512,25	0,702
845	0,0226	0,0169	0,0079	0,0079	952,7331	0,007206
847	-0,0112	0,0041	0,0074	0,0074	8900.272	0,473
848	-0,0182	0,009945	0,008588	0,008588	3290,493	0,0604
849	0,0043	0,001444	0,007588	0,007588	31149,21	0,6938
851	-0.00695	0.005695	0.008088	0.008088	2351,395	0.6293
852	-0,0126	0,0163	0,007338	0,007338	2009,526	0,0312
853	0,009925	0,00782	0,008338	0,008338	25558,33	0,5666
855	-0.00133	0.00357	0,008838	0,008838	20102 41	0,0646
856	-0,0154	0,0153	0,008963	0,008963	3048,424	0,0549
857	0,007113	0,006758	0,007963	0,007963	36610,57	0,8179
050	0,0184	0,011	0,007463	0,007463	3744,513	0,0707
	1 x	2 V	3 a	4 b	5 J	6 J norm
859	-0,00414	0,002508	0,008463	0,008463	23091,99	0,5106
860	-0,00976	0,008883	0,007213	0,007213	17537,37	0,3843
862	0,0127	0.0131	0.008713	0.008713	2082.779	0,4737
863	0,001488	0,004633	0,007713	0,007713	22286,49	0,4923
864	0,0106	0,0139	0,008869	0,008869	8057,06	0,1687
866	-0,00062	0,005428	0,007369	0,007369	22404,62	0,4949
867	0,0219	0,001179	0,008369	0,008369	6164,854	0,1257
868	0,005007	0,0118	0,007119	0,007119	10762,44	0,2302
870	-0,00624	0,003303	0,008619	0,008619	6046,475	0,1053
871	0,0163	0,007553	0,007619	0,007619	8332,921	0,175
872	0,0134	0,0107	0,008744	0,008744	11679,94	0,2511
874	0,002194	0,002241	0,007244	0,007244	5203,984	0,9545
875	0,0247	0,006491	0,008244	0,008244	3549,214	0,0662
876	0,007819	0,0129	0,007494	0,007494	7797,492	0,1628
878	-0,0147	0,004366	0,008994	0,008994	31464.51	0,2749
879	0,0191	0,000116	0,007994	0,007994	8312,77	0,1745
880	0,0205	0,002773	0,007057	0,007057	5409,979	0,1085
882	-0,00203	0.007023	0.008057	0.008057	16719.03	0,4092
883	0,009223	0,0155	0,007557	0,007557	3559,267	0,0665
884	0,0148	0,004898	0,008807	0,008807	16612,64	0,3633
886	-0.0189	0,0134	0.007307	0.007307	2952.075	0,1791
887	0,003598	0,009148	0,008307	0,008307	30514,21	0,6793
888	0,0233	0,00596	0,007432	0,007432	3601,819	0,0674
889	0,000786	0,0145	0,008432	0,008432	9218,521	0,1965

Dat	а: Таблиц	,а_а_7_9_нав Т	и_під кот* ((21v by 2076	ic)		
		1	2	3	4	5	6
		x	у	а	b	J	J_norn
•	1882	0,0114	0,0106	0,008562	0,008562	15493,77	0,33
•	1883	-0,0111	0,002067	0,007562	0,007562	28864,77	0,64
	1884	-0,00552	0,0127	0,008812	0,008812	15967,64	0,34
•	1885	0,017	0,004192	0,007812	0,007812	9898,893	0,21
•	1886	0,005731	0,0169	0,007312	0,007312	2865,166	0,05
	1887	-0.0168	0.008442	0.008312	0.008312	4828,692	0.09
	1888	0 0149	0 0156	0 007155	0 007155	1879 462	0.02
	1889	-0.00763	0.007115	0.008155	0.008155	33205 75	0 74
-	1800	0.0180	0.0114	0.008655	0,008655	2509 116	0.04
_	1030	0,0103	0,0114	0,000055	0,0000000	2505,110	0,04
_	1091	0,003621	0,002005	0,007000	0,007655	20020,59	0,57
-	1892	0,0205	0,00924	0,008905	0,008905	5507,785	0,11
	1893	-0,002	0,000739	0,007905	0,007905	18914,25	0,41
	1894	-0,0133	0,0135	0,007405	0,007405	3234,047	0,05
	1895	0,009246	0,00499	0,008405	0,008405	22724,52	0,50
	1896	0,0177	0,0103	0,00728	0,00728	4293,71	0,08
•	1897	-0.00482	0.001802	0.00828	0.00828	24771.83	0.54
-	1898	-0.0161	0.0146	0.00878	0.00878	2864 373	0.05
<u> </u>	1800	0.006433	0.006052	0.00778	0.00778	38645 79	0,86
<u> </u>	1000	0,000433	0,000032	0,00770	0,00770	1121 104	0,00
_	1900	0,0233	0,0107	0,00055	0,00653	1131,104	0,01
-	1901	0,000808	0,0081//	0,00753	0,00753	29821,6	0,66
	1902	-0,0104	0,0124	0,00703	0,00703	5573,298	0,11
	1903	0,0121	0,003927	0,00803	0,00803	21974,48	0,48
	1904	0,005029	0,00127	0,008968	0,008968	25876,85	0,57
	1905	-0,0175	0,00977	0,007968	0,007968	3107,909	0,05
	1906	-0,00622	0,00552	0,007468	0,007468	29533.65	0.6
	1907	0.0163	0.014	0.008468	0.008468	3774.463	0.07
	1908	0 0107	0 007645	0.007218	0.007218	18021 04	0.39
<u> </u>	1000	-0.0118	0.0161	0.008218	0.008218	3100 273	0.05
-	1010	-0,0110	0,0101	0,000210	0,000210	10004 47	0,05
<u> </u>	1910	-0,0006	0,003395	0,000710	0,000710	10004,47	0,35
-	1911	0,0219	0,0119	0,007718	0,007718	2358,151	0,03
	1912	0,007842	0,006582	0,008593	0,008593	36982,65	0,82
	1913	-0,0147	0,0151	0,007593	0,007593	2084,839	0,03
	1914	-0,00341	0,002332	0,007093	0,007093	25161,69	0,55
	1915	0,0191	0,0108	0,008093	0,008093	4303,715	0,08
•	1916	0.0135	0.000208	0.007343	0.007343	16463.72	0.35
•	1917	-0.00903	0.008707	0.008343	0.008343	32616.65	0.72
	1918	0 002217	0 004457	0 008843	0 008843	17616 39	0 38
-	1919	0.0247	0.013	0.007843	0.007843	1534 764	0.02
-	1020	0.00861	0.002134	0.008757	0.008767	28876 71	0,64
	1020	-0,00031	0,002134	0,000757	0,000737	20070,71	0,04
_	1021	0,014	0,0100	0,007757	0,007757	20000 40	0,10
_	1922	0,002743	0,006364	0,007257	0,007257	30000,19	0,60
-	1923	-0,0198	0,0149	0,008257	0,008257	1249,517	0,0
-	1924	-0,00288	0,004259	0,007007	0,007007	27022,35	0,59
	1475	1 nnius	1 1178	n noson7		7868 108	11.115
	Ī	1 x	2	3	4 b	5	6
	1025	0.0196	0.0129	0.008007	0.008007	2868 009	0.05
-	1020	0.00000	9 2015 0	0.000007	0.000007	21420.00	0,00
_	1926	0,000368	0,301E-0	0,000007	0,000507	01429,98	0,70
	1927	-0,0141	0,008509	0,007507	0,007507	0/31,146	0,13
	1928	-0,00569	0,005321	0,008632	0,008632	28165,37	0,62
	1929	0,0168	0,0138	0,007632	0,007632	2762,873	0,04
	1930	0,005555	0,001071	0,007132	0,007132	41041,24	0,91
	1931	-0,0169	0,009571	0,008132	0,008132	3811,759	0,07
	1932	-0,00007	0,003196	0,007382	0,007382	19697,87	0,43
	1933	0.0224	0.0117	0.008382	0.008382	2793.688	0.04
	1934	0 0112	0 007446	0.008882	0.008882	24764 97	0.54
	1025	-0.0112	0.0160	0.007002	0.007002	3124 020	0.04
_	1000	0.0404	0.0444	0.007002	0.0070002	1004 000	0,05
_	1930	-0,0104	0,0144	0,007009	0,007009	1004,030	0,01
	1937	0,004147	0,005851	0,008069	0,008069	29010,15	0,66
	1938	0,0154	0,0101	0,008569	0,008569	9136,67	0,19
	1939	-0,0071	0,001602	0,007569	0,007569	25373,01	0,56
	1940	-0,0127	0,0122	0,008819	0,008819	8765,371	0,18
	1941	0,009772	0,003726	0,007819	0,007819	23253,81	0,51
	1942	0.021	0.0165	0.007319	0.007319	965.7571	0,0075
	19/13	-0.00148	0.007976	0.008310	0.008310	31064 96	0.69
	1043	0.0466	0.0440	0.007444	0.007444	3177 70	0,05
	1944	-0,0155	0,0112	0,001444	0,001444	3111,15	0,05
_	1945	0,00696	0,002664	0,008444	0,008444	41566,95	0,93
_	1946	0,0182	0,0154	0,008944	0,008944	2729,114	0,04
	1947	-0,00429	0,006914	0,007944	0,007944	31662,76	0,70
	1948	-0,00992	0,0133	0,008694	0,008694	10153,94	0,21
	1949	0,0126	0,004789	0,007694	0,007694	18666.24	0,40
	1050	0.0000	0.000020	0.007194	0 007194	2417 881	0.04
	19301	0,0230	0,003033	0,007134			
	1950	0.001335	0.00054	0.008194	0.008194	14601 49	0.31
	1950	0,0236	0,00054	0,008194	0,008194	14601,49	0,31

🛄 Data: Таблица_а_7_9_навч_під кот* (21v by 2076с)							
		1	2	3	4	5	6
	1809	X 0.0166	y 0.0163	a 0.008827	0.008827	J 2659 316	J_norm 0.043
	1810	0.00538	0.003528	0.008327	0.008327	33627.2	0,045
•	1811	-0,0171	0,012	0,007327	0,007327	1974,16	0,030
•	1812	-0,00025	0,001403	0,008077	0,008077	15600,97	0,340
•	1813	0,0223	0,009903	0,007077	0,007077	2500,985	0,042
-	1814	0,011	0,005653	0,007577	0,007577	22005,14	0,485
-	1816	-0.00868	0.00034	0,008577	0,000577	41809 27	0,125
i	1817	0.0138	0.00884	0.008702	0.008702	14570.92	0,316
•	1818	0,002568	0,00459	0,008202	0,008202	21338,4	0,470
•	1819	-0,0199	0,0131	0,007202	0,007202	1029,654	0,00895
•	1820	-0,00306	0,006715	0,008452	0,008452	28448,26	0,632
!	1821	0,0194	0,0152	0,007452	0,007452	1504,108	0,019
-	1823	0,000193	0,002465	0,007952	0,007952	20003,00	0,567
-	1824	0.023	0.003262	0.007608	0.007608	4437 831	0.086
i i	1825	0,000457	0,0118	0,008608	0,008608	19653,64	0,432
•	1826	-0,0108	0,007512	0,008108	0,008108	27046,42	0,600
•	1827	0,0117	0,016	0,007108	0,007108	2193,486	0,035
•	1828	0,0173	0,005387	0,008358	0,008358	10071,74	0,214
-	1829	-0,00517	0,0139	0,007358	0,007358	/165,28	0,148
-	1831	0.006082	0.009637	0.008858	0.008858	31681 47	0,138
•	1832	0.0201	0.004325	0.007983	0.007983	6590.213	0.135
•	1833	-0,00236	0,0128	0,008983	0,008983	16526,95	0,361
•	1834	-0,0136	0,000075	0,008483	0,008483	19240,94	0,42
•	1835	0,008895	0,008575	0,007483	0,007483	22203,46	0,490
<u>•</u>	1836	0,0145	0,0022	0,008233	0,008233	16561,51	0,362
H	1838	-0,00798	0,0107	0,007233	0,007233	14426,81	0,313
-	1839	0.00327	0 0149	0.008733	0.008733	8770 703	0,044
i i	1840	0,0131	0,0134	0,008296	0,008296	5788,902	0,117
•	1841	-0,00939	0,004855	0,007296	0,007296	36349,03	0,81
•	1842	0,001861	0,009105	0,007796	0,007796	27933,97	0,620
•	1843	0,0244	0,000606	0,008796	0,008796	4941,222	0,097
	1844	0,007486	0,0112	0,007546	0,007546	13197,84	0,285
-	1845	-0.00376	0,00273	0,006546	0,006546	6193 952	0,260
•	1847	0.0187	0.00698	0.007046	0.007046	5301,761	0,106
•	1848	0,0103	0,0123	0,008171	0,008171	9785,055	0,20
•	1849	-0,0122	0,003793	0,007171	0,007171	16835,73	0,368
•	1850	-0,00095	0,0165	0,007671	0,007671	4300,358	0,083
!	1851	0,0215	0,008043	0,008671	0,008671	5087,987	0,101
- •	1052	0,004674	0,0144	0,007921	0,007921	/199,04/	0,149
		1	2	3	4	5	6
	1853	X 0.0178	y 0.005918	a 0.008921	D 0.008921	J 6683 776	J_norm 0 114
-	1854	-0.00658	0 0102	0.008421	0.008421	26886 73	0,596
ě	1855	0,0159	0,001668	0,007421	0,007421	11371	0,244
•	1856	-0,0126	0,005785	0,008749	0,008749	25104,42	0,556
•	1857	0,009948	0,0143	0,007749	0,007749	4976,149	0,098
•	1858	0,0212	0,001536	0,007249	0,007249	5303,349	0,106
-	1859	-0,0013	0,00366	0,008249	0,008249	25744,56	0,570
•	1861	0.004323	0 0122	0.008499	0.008499	16734 51	0.36
•	1862	0,0156	0,00791	0,008999	0,008999	13032,18	0,281
•	1863	-0,00693	0,0164	0,007999	0,007999	4317,774	0,083
•	1864	-0,00974	0,002598	0,008874	0,008874	41883,93	0,937
•	1865	0,0128	0,0111	0,007874	0,007874	8677,464	0,182
-	1866	0,024	0,006848	0,00/3/4	0,00/3/4	3065,687	0,055
-	1868	0,00151	0,0155	0,000374	0,000374	F070 088	0,149
•	1869	0,007135	0.0132	0,008124	0,008124	9572.045	0.203
•	1870	0,0184	0,000473	0,008624	0,008624	10309,78	0,219
•	1871	-0,00412	0,008973	0,007624	0,007624	27640,69	0,61
•	1872	-0,00271	0,0116	0,007437	0,007437	14137,82	0,30
-	1873	0,0198	0,00313	0,008437	0,008437	7900,403	0,165
-	1875	-0.014	0,0159	0,008937	0,008937	9933 109	0,118
•	1876	-0,00833	0.0138	0.008687	0,008687	10326-03	0,220
•	1877	0,0142	0,005255	0,007687	0,007687	14118,77	0,306
•	1878	0,002919	0,009505	0,007187	0,007187	22080,09	0,487
•	1879	-0,0196	0,001004	0,008187	0,008187	3389,072	0,062
•	1880	0,000106	0,0148	0,007062	0,007062	5298,343	0,10
•	1881	0,0226	0,006317	0,008062	0,008062	4417,661	0,08

🛄 Data: Таблица_а_7_9_навч_під кот* (21v by 2076с) 🛛 🗖 💌									
		1	2	3	4	5	6		
• 1	953	-0 012	y 0.001868	a 0.008351	0.008351	J 29166 55	0 648		
1	954	-0.00078	0.0146	0.008851	0.008851	10194.77	0.217		
1	955	0.0217	0.006118	0.007851	0.007851	4750,998	0.093		
1	956	0 004849	0 0167	0 008601	0 008601	5042 241	0 100		
1	957	-0.0176	0.008243	0.007601	0.007601	30/0 337	0.054		
- 1	1050	-0,0170	0,000243	0,007001	0,007001	0000 620	0,004		
	950	-0,0004	0,0125	0,007101	0,007101	9000,030	0,192		
	959	0,0161	0,003993	0,008101	0,008101	12143,78	0,261		
) 1	960	0,0133	0,0157	0,007226	0,007226	2179,114	0,035		
) 1	961	-0,00921	0,007181	0,008226	0,008226	36781,96	0,821		
• 1	962	0,002037	0,0114	0,008726	0,008726	22077,9	0,487		
• 1	963	0.0245	0.002931	0.007726	0.007726	3811.646	0.072		
1	964	0 007662	0.009306	0 008976	0 008976	33944 38	0 757		
1	1965	-0.0148	0.000805	0.007976	0.007976	11022.98	0.236		
	1000	0.00250	0.0126	0.007476	0.007476	0402.00	0,230		
	900	-0,00359	0,0136	0,007476	0,007476	0403,92	0,170		
	907	0,0169	0,005056	0,000476	0,000476	03/9,050	0,176		
) 1	968	0,0203	0,006649	0,008538	0,008538	6419,294	0,131		
) 1	969	-0,00218	0,0151	0,007538	0,007538	5792,083	0,117		
) 1	970	-0,0134	0,002399	0,007038	0,007038	11477,69	0,246		
1	971	0,00907	0.0109	0,008038	0,008038	15509.82	0,338		
) 1	972	0.0147	0.000274	0.007288	0.007288	13468 32	0.291		
1	973	-0.00781	0.008774	0.008288	0.008288	33216 / 9	0 740		
4	1074	-0.0101	0.004504	0.000200	0.000200	4284 200	0.00		
	314	-0,0191	0,004524	0,000/00	0,000/00	4204,200	0,08		
1	9/5	0,003445	0,013	0,007788	0,007788	10456,75	0,223		
• 1	1976	0,0231	0,001336	0,008913	0,008913	5818,074	0,117		
1	977	0,000633	0,009836	0,007913	0,007913	25070,24	0,555		
1	978	-0,0106	0,005586	0,007413	0,007413	26742,03	0,593		
1	979	0.0119	0.0141	0.008413	0.008413	5738,726	0.11		
1	980	0 0175	0.007711	0.007163	0.007163	6009 262	0 122		
1	981	-0 00/100	0.0162	0.008162	0.008163	5206 642	0,122		
4	1022	0.0455	0.002464	0.000000	0.000000	0200,04Z	0,103		
	100Z	-0,0102	0,003461	0,000003	0,000003	40045.00	0,107		
1	983	0,006258	0,012	0,007663	0,007663	12045,39	0,259		
) 1	984	0,000282	0,0166	0,008491	0,008491	5517,887	0,11		
) 1	985	0,0228	0,008111	0,007491	0,007491	3259	0,059		
) 1	986	0,0115	0,0124	0,007991	0,007991	7813,914	0,163		
) 1	987	-0,011	0.003861	0.008991	0.008991	42007,9	0,940		
1	988	-0 00534	0 0102	0 007741	0 007741	22223 68	0 4 9 0		
1	080	0.0172	0.001736	0.008741	0.008741	12427.58	0.268		
1	1000	0.005007	0.0146	0,000741	0,000741	7664 426	0,200		
	990	0,005907	0,0145	0,006241	0,006241	1504,435	0,157		
) 1	991	-0,0166	0,005986	0,00/241	0,007241	4133,154	0,079		
<u>)</u> 1	1992	-0,00253	0,009173	0,008116	0,008116	28611,47	0,636		
• 1	993	0,02	0,000672	0,007116	0,007116	6082,384	0,123		
• 1	994	0,008719	0,0134	0,007616	0,007616	6553,37	0,134		
• 1	995	-0.0138	0.004923	0.008616	0.008616	17131.58	0.375		
1	1996	-0.00816	0.0155	0.007866	0.007866	4696 182	0.092		
	Ĩ		-,						
	l	1	2	3	4	5	6		
		x	у	а	b	J	J_norm		
) 1	997	0.0143	0,007048	0,008866	0,008866	16447.65	0.359		
1	998	0.003094	0 0113	0.008366	0.008366	20414 74	0 449		
1	900	-0.0104	0.002798	0.007366	0.007366	2582 009	0.044		
	0000	0.00050	0.000444	0.007070	0.007070	42407.000	0,044		
2	000	-0,00950	0,000141	0,001019	0,001019	42407,09	0,949		
2	001	0,0129	0,008641	0,008679	0,008679	1/158,81	0,375		
2	:002	0,0242	0,004391	0,008179	0,008179	4144,139	0,079		
2	003	0,001686	0,0129	0,007179	0,007179	8996,138	0,190		
2	004	-0,0152	0,006516	0,008429	0,008429	9293,153	0,196		
2	005	0,007311	0.015	0,007429	0,007429	4382,506	0,085		
2	2006	0.0186	0.002266	0.007929	0.007929	8595 877	0.18		
2	007	-0.00204	0 0100	0.008020	0.008020	25646 77	0 560		
2	000	0.0404	0.007570	0.007004	0.007004	14652 7	0,000		
2	0000	-0,0124	0,001519	0,007804	0,007804	14003,7	0,318		
2	009	0,0101	0,0161	0,008804	0,008804	4708,501	0,092		
2	010	0,0214	0,003329	0,008304	0,008304	6225,93	0,127		
2	011	-0,00113	0,0118	0,007304	0,007304	12854,97	0,277		
2	012	-0.018	0.001204	0.008054	0.008054	4740.63	0.093		
2	013	0 004498	0.009704	0 007054	0 007054	19641 56	0 / 32		
2	014	0.0467	0.005/04	0.007664	0.007664	10400.05	0.004		
2	014	0,0157	0,000404	0,001004	0,007554	10433,35	0,224		
2	015	-0,00675	0,014	0,008554	0,008554	10136,6	0,21		
2	016	0,008017	0,004656	0,007897	0,007897	27420,09	0,60		
2	017	-0,0145	0,0132	0,008897	0,008897	5169,365	0,103		
2	018	-0,00323	0,000407	0,008397	0,008397	20456,11	0,450		
2	019	0.0193	0.008906	0.007397	0.007397	4450.391	0.086		
2	020	0.0126	0.002524	0.008147	0.008147	18/197 00	0,405		
2	024	0,0100	0.044	0.007447	0.007447	11100 07	0,405		
2	021	-0,00886	0,011	0,007147	0,00/14/	11128,27	0,238		
2	:022	0,002392	0,006781	0,007647	0,007647	30575,7	0,680		
2	023	0,0249	0,0153	0,008647	0,008647	1294,657	0,01		
2	024	0,005204	0,003594	0,007522	0,007522	37640.64	0,841		
2	025	-0.0173	0.0121	0.008522	0.008522	2989 85	0.053		
2	026	-0.00605	0.007844	0.008022	0.008022	33671 30	0.761		
2	020	-0,0000	0,001044	0,000022	0,000022	4007 1,09	0,751		
2	027	0,0165	0,0163	0,007022	0,007022	1334,28	0,015		
2	028	0,0108	0,005719	0,008272	0,008272	24402,89	0,540		
2	029	-0,0117	0,0142	0,007272	0,007272	3384,321	0,062		
			0.004400	0.007770	0.007772	16766 5	0 366		
2	030	-0 00042	0.001469	0.00////2	0.001112	10100.1			

Π	Data: Таблиц	а_а_7_9_нав	ч_під кот* (21v by 2076	c)		• ×
		1	2	3	4	5	6
		x	у	а	b	J	J_norm
٠	2031	0,0221	0,009969	0,008772	0,008772	4042,29	0,077
٠	2032	0,0179	0,0126	0,00821	0,00821	3825,502	0,072
٠	2033	-0,00464	0,004126	0,00721	0,00721	28194,88	0,626
٠	2034	-0,0159	0,0169	0,00771	0,00771	1370,388	0,016
٠	2035	0,006609	0,008376	0,00871	0,00871	36230,3	0,809
٠	2036	0,0235	0,0148	0,00796	0,00796	1320,769	0,015
٠	2037	0,000984	0,006251	0,00896	0,00896	23200,64	0,51
•	2038	-0,0103	0,0105	0,00846	0,00846	19164,35	0,421
•	2039	0,0122	0,002001	0,00746	0,00746	19955,58	0,439
•	2040	0,015	0,0137	0,008335	0,008335	4413,221	0,085
•	2041	-0,00745	0,005188	0,007335	0,007335	32781,2	0,730
•	2042	-0,0187	0,009438	0,007835	0,007835	2358,493	0,039
•	2043	0,003796	0,000938	0,008835	0,008835	18836,26	0,413
•	2044	0,0207	0,0116	0,007585	0,007585	2730,629	0,047
•	2045	-0,00183	0,003063	0,008585	0,008585	17838,96	0,391
•	2046	-0,0131	0,0158	0,008085	0,008085	2770,748	0,048
•	2047	0,009421	0,007313	0,007085	0,007085	21750,25	0,480
•	2048	0,0243	0,0104	0,00842	0,00842	2700,979	0,04
•	2049	0,001807	0,001938	0,00742	0,00742	19220,95	0,422
•	2050	-0,00944	0,0147	0,00792	0,00792	5300,522	0,106
•	2051	0,0131	0,006188	0,00892	0,00892	21267,04	0,469
•	2052	0,0187	0,0168	0,00767	0,00767	1268,491	0,014
•	2053	-0,00382	0,008313	0,00867	0,00867	31588,1	0,703
•	2054	-0,0151	0,0126	0,00817	0,00817	3777,626	0,071
•	2055	0,007432	0,004063	0,00717	0,00717	25153,73	0,557
•	2056	0,0215	0,0158	0,008045	0,008045	1368,895	0,016
•	2057	-0,00101	0,007251	0,007045	0,007045	30014,06	0,66
•	2058	-0,0123	0,0115	0,007545	0,007545	6272,414	0,128
•	2059	0,0102	0,003001	0,008545	0,008545	22979,83	0,50
•	2060	0,0159	0,009376	0,007795	0,007795	7430,037	0,154
•	2061	-0,00663	0,000876	0,008795	0,008795	24894,34	0,551
	2062	-0,0179	0,0136	0,008295	0,008295	2007,416	0,031
	2063	0,00462	0,005126	0,007295	0,007295	35230,65	0,786
	2064	0,0117	0,00672	0,007733	0,007733	19576,66	0,430
	2065	-0,0108	0,0152	0,008733	0,008733	5487,864	0,110
	2066	0,000403	0,00247	0,008233	0,008233	15469,04	0,337
	2067	0,0229	0,011	0,007233	0,007233	2100,502	0,033
	2068	0,006028	0,000344	0,008483	0,008483	37839,82	0,845
	2069	-0,0165	0,008845	0,007483	0,007483	3567,16	0,066
	2070	-0,00522	0,004595	0,007983	0,007983	27935,37	0,620
•	2071	-0,0103	0,000676	0,008834	0,008834	44618,38	0.0400
+	2072	0,006996	0,000444	0,0089/1	0,0089/1	41098,5	0,9199
+	2073	-0,00931	0,000029	0,008094	0,008094	43451,69	0,9734
+	2074	0.005344	0.000253	0.007105	0.007105	40868.56	0.9147
+	2074	0,005344	0,000253	0,007105	0,00710	5 40868,56	0,914
+	2075	-0,00806	0,000104	0,007404	0,007404	4 38674,99	0,8648
+	2076	-0,0106	0,000336	0,007978	0,007978	8 38006,36	0,849

додаток д

Вагові коефіцієнти RBF-нейронної мережі останнього рівня адитивної регресії гіперповерхні відгуку у декомпозиційній підобласті ІІІ_а для метамоделі рамкового накладного вихрострумового перетворювача з планарною структурою системи збудження

	1						
🗁 Рабочая_а_7_9_е<		Network weights (Табли	ця_а_7_9_відтв.)				
🎰 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🛓 🔤 SANN (Таблі	1	x> hidden neuron 1	0,363300	x> hidden neuron 1	0,308600	x> hidden neuron 1	0,440900
🖶 🔁 0_1	2	y> hidden neuron 1	0,034689	y> hidden neuron 1	0,699560	y> hidden neuron 1	0,687702
in - 🔁 0_2	3	a> hidden neuron 1	0,144153	a> hidden neuron 1	0,604947	a> hidden neuron 1	0,615127
ф. <mark>р</mark> . О 3	4	x> hidden neuron 2	0,671111	x> hidden neuron 2	0,539100	x> hidden neuron 2	0,975556
in □ 0 4	5	y> hidden neuron 2	0,184702	y> hidden neuron 2	0,444486	y> hidden neuron 2	0,634670
П. 🕞 2М Лиаграм	6	a> hidden neuron 2	0,121230	a> hidden neuron 2	0,648017	a> hidden neuron 2	0,210724
Пиаграм	7	x> hidden neuron 3	0,344200	x> hidden neuron 3	0,088889	x> hidden neuron 3	0,893333
Диаграми	8	y> hidden neuron 3	0,167093	y> hidden neuron 3	0,229371	y> hidden neuron 3	0,242806
Пистрами	9	a> hidden neuron 3	0,173982	a> hidden neuron 3	0,259791	a> hidden neuron 3	0,439665
диаграмі	10	x> hidden neuron 4	0,962222	x> hidden neuron 4	0,715556	x> hidden neuron 4	0,171111
диаграмі	11	y> hidden neuron 4	0,611575	y> hidden neuron 4	0,475331	y> hidden neuron 4	0,413999
Польша_20_	12	a> hidden neuron 4	0,181790	a> hidden neuron 4	0.842682	a> hidden neuron 4	0,526695
— 🔐 Польша_20_	13	x> hidden neuron 5	0,460900	x> hidden neuron 5	0,467300	x> hidden neuron 5	0,022222
⊞-∰ дис_а_7_8	14	v> hidden neuron 5	0,741050	y> hidden neuron 5	0,512486	v> hidden neuron 5	0,231086
😑 🎒 3D Wafer Plo	15	a> hidden neuron 5	0,351458	a> hidden neuron 5	0,009317	a> hidden neuron 5	0,912970
😑 擳 Scatterplc	16	x> hidden neuron 6	0,365200	x> hidden neuron 6	0,906667	x> hidden neuron 6	0,168889
🚰 Histor	17	v> hidden neuron 6	0,699853	y> hidden neuron 6	0,092423	v> hidden neuron 6	0,717164
Network weig	18	a> hidden neuron 6	0,193101	a> hidden neuron 6	0,530455	a> hidden neuron 6	0,496350
	19	x> hidden neuron 7	0.470200	x> hidden neuron 7	0,706667	x> hidden neuron 7	0,948889
	20	v> hidden neuron 7	0.175898	v> hidden neuron 7	0.911635	v> hidden neuron 7	0,893936
	21	a> hidden neuron 7	0.131941	a> hidden neuron 7	0.929423	a> hidden neuron 7	0.576068
	22	x> hidden neuron 8	0 866667	x> hidden neuron 8	0 975556	x> hidden neuron 8	0 837778
	23	v> hidden neuron 8	0.328772	v> hidden neuron 8	0 196623	v> hidden neuron 8	0 224274
	24	a> hidden neuron 8	0.362169	a> hidden neuron 8	0.045589	a> hidden neuron 8	0 841564
	25	x> hidden neuron 9	0.873333	x> hidden neuron 9	0 751111	x> hidden neuron 9	0 064444
	26	v> hidden neuron 9	0.976459	v> hidden neuron 9	0 888071	v> hidden neuron 9	0.091217
	27	a> hidden neuron 9	0 247755	a> hidden neuron 9	0 203470	a> hidden neuron 9	0.865099
	28	x> hidden neuron 10	0.888889	x> hidden neuron 10	0,555700	x> hidden neuron 10	0 126667
	29	v> hidden neuron 10	0.841099	v> hidden neuron 10	0,693669	v> bidden neuron 10	0.852689
	30	a> hidden neuron 10	0,965766	a> hidden neuron 10	0.056863	a> bidden neuron 10	0.956034
	31	x> hidden neuron 11	0,303700	x> hidden neuron 11	0,030005	x -> hidden neuron 11	0,320800
	32	v -> hidden neuron 11	0,700003	v -> hidden neuron 11	0,964654	v -> hidden neuron 11	0,320000
	32	y -> hidden neuron 11	0,070427	y -> hidden neuron 11	0,004034	a -> hidden neuron 11	0,040737
	34	x -> hidden neuron 12	0,724020	x -> hidden neuron 12	0,001370	x -> hidden neuron 12	0,041071
	35	v > hidden neuron 12	0,100000	x -> hidden neuron 12	0,140003	v > hidden neuron 12	0,331300
	36	y> hidden neuron 12	0,000003	y> hidden neuron 12	0,412233	y> hidden neuron 12	0,111104
	27	x > hidden neuron 12	0,047043	a> hidden neuron 12	0,110425	a> hidden neuron 12	0,150045
	20	x> hidden neuron 13	0,544444	x> hidden neuron 13	0,031110	x> hidden neuron 12	0,031111
	20	y> hidden neuron 13	0,000007	y> hidden neuron 13	0,752575	y> hidden neuron 12	0,007702
	39	a> hidden neuron 15	0,315222	a> hidden neuron 15	0,909040	a> hidden neuron 13	0,102003
	40	x> nidden neuron 14	0,020889	x> nidden neuron 14	0,142222	x> nidden neuron 14	0,372100
	41	y> nidden neuron 14	0,941148	y> nidden neuron 14	0,050010	y> nidden neuron 14	0,040562
	42	a> nidden neuron 14	0,404210	a> nidden neuron 14	0,264208	a> nidden neuron 14	0,274319
	43	x> nidden neuron 15	0,820000	x> nidden neuron 15	0,377900	x> nidden neuron 15	0,284200
	∎44	i v> nidden neuron 151	U .146881	v> nidden neuron 15	0.488551	v> nidden neuron 15	u 1440.37
🗁 Рабочая_а_/_9_в¶		Network weights (Tafinu	ияа79 вілте)				
🗄 🛅 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values

		Hothon Hoighto (Huohin					
🌐 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 📴 SANN (Таблі	45	a> hidden neuron 15	0,541546	a> hidden neuron 15	0,349042	a> hidden neuron 15	0,068953
🖶 📴 O_1	46	x> hidden neuron 16	0,602100	x> hidden neuron 16	0,371100	x> hidden neuron 16	0,877778
🗈 📴 O_2	47	y> hidden neuron 16	0,629231	y> hidden neuron 16	0,758470	y> hidden neuron 16	0,605208
⊕ 0_3	48	a> hidden neuron 16	0,385191	a> hidden neuron 16	0,667694	a> hidden neuron 16	0,204915
÷ 🔁 0 4	49	x> hidden neuron 17	0,361800	x> hidden neuron 17	0,517600	x> hidden neuron 17	0,304200
— 2М Диаграм	50	y> hidden neuron 17	0,204211	y> hidden neuron 17	0,617086	y> hidden neuron 17	0,024212
Пиаграми	51	a> hidden neuron 17	0,484890	a> hidden neuron 17	0,814772	a> hidden neuron 17	0,094861
Пиаграми	52	x> hidden neuron 18	0,068889	x> hidden neuron 18	0,519000	x> hidden neuron 18	0,786667
Диаграми	53	y> hidden neuron 18	0,935263	y> hidden neuron 18	0,356958	y> hidden neuron 18	0,593423
Диаграми	54	a> hidden neuron 18	0,615319	a> hidden neuron 18	0,786762	a> hidden neuron 18	0,785380
Партина 20	55	x> hidden neuron 19	0,728889	x> hidden neuron 19	0,220000	x> hidden neuron 19	0,637700
	56	y> hidden neuron 19	0,846984	y> hidden neuron 19	0,310490	y> hidden neuron 19	0,408189
польша_20_	57	a> hidden neuron 19	0,384691	a> hidden neuron 19	0,582359	a> hidden neuron 19	0,728095
⊕ ∰ дис_а_/_8	58	x> hidden neuron 20	0,793333	x> hidden neuron 20	0,632800	x> hidden neuron 20	0,928889
B 3D Water Plo	59	y> hidden neuron 20	0,320468	y> hidden neuron 20	0,162874	y> hidden neuron 20	0,265344
Scatterplc	60	a> hidden neuron 20	0,276684	a> hidden neuron 20	0,930427	a> hidden neuron 20	0,550130
Histor	61	x> hidden neuron 21	0,276400	x> hidden neuron 21	0,249000	x> hidden neuron 21	0,430700
Network weig	62	y> hidden neuron 21	0,449931	y> hidden neuron 21	0,740797	y> hidden neuron 21	0,568563
	63	a> hidden neuron 21	0,452058	a> hidden neuron 21	0,949000	a> hidden neuron 21	0,184385
	64	x> hidden neuron 22	0,984444	x> hidden neuron 22	0,394000	x> hidden neuron 22	0,228000
	65	y> hidden neuron 22	0,794017	y> hidden neuron 22	0,482141	y> hidden neuron 22	0,151350
	66	a> hidden neuron 22	0,984885	a> hidden neuron 22	0,912255	a> hidden neuron 22	0,937907
	67	x> hidden neuron 23	0 222700	x> hidden neuron 23	0 495600	x> hidden neuron 23	0 084444

	Connections	Weight values	Connections	Weight values	Connections	Weight va
Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-2
67	x> hidden neuron 23	0.222700	x> hidden neuron 23	0.495600	x> hidden neuron 23	0.08
68	v> hidden neuron 23	0.050316	v> hidden neuron 23	0.976436	v> hidden neuron 23	0.29
69	a> hidden neuron 23	0.754157	a> hidden neuron 23	0.998594	a> hidden neuron 23	0.85
70	x> hidden neuron 24	0 115556	x> hidden neuron 24	0 406700	x> hidden neuron 24	0.88
71	v> hidden neuron 24	0.046895	v> hidden neuron 24	0 228870	v> hidden neuron 24	0,0
72	a> hidden neuron 24	0 487793	a> hidden neuron 24	0.987752	a> hidden neuron 24	0,3
73	x> hidden neuron 25	0,308600	x> hidden neuron 25	0.802222	x> hidden neuron 25	0,0
74	v> hidden neuron 25	0,699853	v> hidden neuron 25	0.882180	v> hidden neuron 25	0.3
75	a -> hidden neuron 25	0,605610	a -> hidden neuron 25	0,002100	a -> bidden neuron 25	0,0
76	x -> hidden neuron 26	0.857778	x> hidden neuron 26	0,430304	x -> hidden neuron 26	0,0
77	x> hidden neuron 26	0,051110	x> hidden neuron 26	0,545500	x> hidden neuron 26	0,0
79	y> hidden neuron 26	0,304030	y> hidden neuron 26	0.053430	y> hidden neuron 26	0,0
70	a> moden neuron 20	0,402300	a> mouen neuron 20	0,053430	a> niquen neuron 20	0,5
19	x> moden neuron 27	0,555700	x> moden neuron 27	0,240100	x> niquen neuron 27	0,7
01	y> nidden neuron 27	0,629231	y> nidden neuron 27	0,365600	y> nidden neuron 27	0,8
00	a> hidden neuron 27	0,781984	a> hidden neuron 2/	0,040198	a> hidden neuron 27	0,5
82	x> hidden neuron 28	0,122222	x> hidden neuron 28	0,686667	x> hidden neuron 28	0,0
83	y> hidden neuron 28	0,629231	y> hidden neuron 28	0,304681	y> hidden neuron 28	0,0
84	a> hidden neuron 28	0,123132	a> hidden neuron 28	0,258787	a> hidden neuron 28	0,6
85	x> hidden neuron 29	0,307600	x> hidden neuron 29	0,396500	x> hidden neuron 29	0,5
86	y> hidden neuron 29	0,293555	y> hidden neuron 29	0,605304	y> hidden neuron 29	0,2
87	a> hidden neuron 29	0,858760	a> hidden neuron 29	0,285291	a> hidden neuron 29	0,7
88	x> hidden neuron 30	0,693333	x> hidden neuron 30	0,193333	x> hidden neuron 30	0,1
89	y> hidden neuron 30	0,437725	y> hidden neuron 30	0,322207	y> hidden neuron 30	0,7
90	a> hidden neuron 30	0,941342	a> hidden neuron 30	0,515697	a> hidden neuron 30	0,3
91	x> hidden neuron 31	0,180000	x> hidden neuron 31	0,986667	x> hidden neuron 31	0,9
92	y> hidden neuron 31	0,210514	y> hidden neuron 31	0,829161	y> hidden neuron 31	0,6
93	a> hidden neuron 31	0,507813	a> hidden neuron 31	0,107392	a> hidden neuron 31	0,7
94	x> hidden neuron 32	0,576200	x> hidden neuron 32	0,900000	x> hidden neuron 32	0,6
95	y> hidden neuron 32	0,646886	y> hidden neuron 32	0,952872	y> hidden neuron 32	0,2
96	a> hidden neuron 32	0,576281	a> hidden neuron 32	0,995081	a> hidden neuron 32	0,8
97	x> hidden neuron 33	0,133333	x> hidden neuron 33	0,587900	x> hidden neuron 33	0,6
98	y> hidden neuron 33	0,805788	y> hidden neuron 33	0,141342	y> hidden neuron 33	0.9
99	a> hidden neuron 33	0,512718	a> hidden neuron 33	0,430361	a> hidden neuron 33	0.0
100	x> hidden neuron 34	0,046667	x> hidden neuron 34	0,314900	x> hidden neuron 34	0.7
101	v> hidden neuron 34	0.658657	v> hidden neuron 34	0,658323	v> hidden neuron 34	0 (
102	a> hidden neuron 34	0.571876	a> hidden neuron 34	0,562280	a> hidden neuron 34	0 1
103	x> hidden neuron 35	0.033333	x> hidden neuron 35	0.627000	x> hidden neuron 35	0.3
104	v> hidden neuron 35	0 894066	v> hidden neuron 35	0.352551	v> hidden neuron 35	0,0
105	a> hidden neuron 35	0.319126	a> hidden neuron 35	0.453954	a> hidden neuron 35	0.7
106	x> hidden neuron 36	0 171111	x> hidden neuron 36	0.314500	x> hidden neuron 36	0.7
107	v> hidden neuron 36	0 414714	v> hidden neuron 36	0.039613	v> hidden neuron 36	0,7
108	a -> hidden neuron 36	0.526/31	a> hidden neuron 36	0.391207	a -> hidden neuron 36	0,0
100	v -> hidden neuron 37	0,320431	v -> hidden neuron 37	0,331207	v> hidden neuron 37	0,0
110	$x \rightarrow $ hidden neuron 37	0.245722	v -> hidden neuron 37	0.003/22	$x \rightarrow $ hidden neuron 37	0,1
110	y -> Induen neuron 37	0,243732	y -> muden neuron 37	0,003423	y -> muder neuron 57	0,5

		Network weights (Табли	ця_а_7_9_відтв.)				
🛓 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🖓 SANN (Таблı	111	a> hidden neuron 37	0,652456	a> hidden neuron 37	0,835353	a> hidden neuron 37	0,304664
🕀 📴 O_1	112	x> hidden neuron 38	0,376000	x> hidden neuron 38	0,442400	x> hidden neuron 38	0,441900
🖶 📴 O_2	113	y> hidden neuron 38	0,782247	y> hidden neuron 38	0,572574	y> hidden neuron 38	0,342176
🕀 🔁 O_3	114	a> hidden neuron 38	0,301609	a> hidden neuron 38	0,766683	a> hidden neuron 38	0,866501
⊕ <u></u> 0_4	115	x> hidden neuron 39	0,484400	x> hidden neuron 39	0,520000	x> hidden neuron 39	0,415000
🖃 📠 2М Диаграм	116	y> hidden neuron 39	0,296557	y> hidden neuron 39	0,640650	y> hidden neuron 39	0,208648
Парадиаграми	117	a> hidden neuron 39	0,484390	a> hidden neuron 39	0,536780	a> hidden neuron 39	0,419034
Пиаграми	118	x> hidden neuron 40	0,166667	x> hidden neuron 40	0,140000	x> hidden neuron 40	0,011111
Диаграми	119	y> hidden neuron 40	0,309263	y> hidden neuron 40	0,593522	y> hidden neuron 40	0,303009
Диаграми	120	a> hidden neuron 40	0,248756	a> hidden neuron 40	0,213208	a> hidden neuron 40	0,764850
	121	x> hidden neuron 41	0,423800	x> hidden neuron 41	0,120000	x> hidden neuron 41	0,737778
	122	y> hidden neuron 41	0,525168	y> hidden neuron 41	0,611195	y> hidden neuron 41	0,545623
польша_20_	123	a> hidden neuron 41	0,345552	a> hidden neuron 41	0,273545	a> hidden neuron 41	0,944718
⊕ ∰ дис_а_/_8	124	x> hidden neuron 42	0,288100	x> hidden neuron 42	0,673333	x> hidden neuron 42	0,473100
B 3D Water Plo	125	y> hidden neuron 42	0,000489	y> hidden neuron 42	0,391208	y> hidden neuron 42	0,436036
Scatterplc	126	a> hidden neuron 42	0,659363	a> hidden neuron 42	0,421125	a> hidden neuron 42	0,459695
	127	x> hidden neuron 43	0,439000	x> hidden neuron 43	0,208889	x> hidden neuron 43	0,693333
Network weig	128	y> hidden neuron 43	0,082069	y> hidden neuron 43	0,018342	y> hidden neuron 43	0,823227
	129	a> hidden neuron 43	0,538643	a> hidden neuron 43	0,487988	a> hidden neuron 43	0,016134
	130	x> hidden neuron 44	0,297400	x> hidden neuron 44	0,713333	x> hidden neuron 44	0,973333
	131	y> hidden neuron 44	0,994115	y> hidden neuron 44	0,136435	y> hidden neuron 44	0,935183
	132	a> hidden neuron 44	0,346053	a> hidden neuron 44	0,388196	a> hidden neuron 44	0,960441
	133	x> hidden neuron 45	0,004444	x> hidden neuron 45	0,340800	x> hidden neuron 45	0,456100
	134	y> hidden neuron 45	0,144082	y> hidden neuron 45	0,611195	y> hidden neuron 45	0,658239
	135	a> hidden neuron 45	0,722926	a> hidden neuron 45	0,931431	a> hidden neuron 45	0,178476
	136	x> hidden neuron 46	0,228000	x> hidden neuron 46	0,505400	x> hidden neuron 46	0,802222
	137	y> hidden neuron 46	0,152386	y> hidden neuron 46	0,374584	y> hidden neuron 46	0,357802
	138	a> hidden neuron 46	0,937438	a> hidden neuron 46	0,125965	a> hidden neuron 46	0,381378
	139	x> hidden neuron 47	0,786667	x> hidden neuron 47	0,871111	x> hidden neuron 47	0,920000
	140	y> hidden neuron 47	0,270644	y> hidden neuron 47	0,729015	y> hidden neuron 47	0,935183
	141	a> hidden neuron 47	0,191600	a> hidden neuron 47	0,419619	a> hidden neuron 47	0,371664
	142	x> hidden neuron 48	0,891111	x> hidden neuron 48	0,115556	x> hidden neuron 48	0,708889

🗁 Рабочая_а_7_9_е<		Network weights (Табли	ця а 7 9 відтв.)				
🎚 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 📴 SANN (Таблі	143	y> hidden neuron 48	0,254036	y> hidden neuron 48	0,077749	y> hidden neuron 48	0,462982
⊕ 📴 O_1	144	a> hidden neuron 48	0,491697	a> hidden neuron 48	0,611774	a> hidden neuron 48	0,250884
i∎ <mark>≣</mark> . 0_2	145	x> hidden neuron 49	0,693333	x> hidden neuron 49	0,097778	x> hidden neuron 49	0,197778
🕀 🔁 O_3	146	y> hidden neuron 49	0,676313	y> hidden neuron 49	0,424958	y> hidden neuron 49	0,646455
🖶 📴 0_4	147	a> hidden neuron 49	0,035185	a> hidden neuron 49	0,126467	a> hidden neuron 49	0,325695
🚊 📴 2М Диаграм	148	x> hidden neuron 50	0,504400	x> hidden neuron 50	0,824444	x> hidden neuron 50	0,873333
🖓 Диаграмі	149	y> hidden neuron 50	0,030286	y> hidden neuron 50	0,870398	y> hidden neuron 50	0,976430
🖓 Диаграмі	150	a> hidden neuron 50	0,803505	a> hidden neuron 50	0,777425	a> hidden neuron 50	0,247879
- 🌆 Диаграмі	151	x> hidden neuron 51	0,722222	x> hidden neuron 51	0,731111	x> hidden neuron 51	0,146667
🖓 Диаграмі	152	y> hidden neuron 51	0,688083	y> hidden neuron 51	0,126620	y> hidden neuron 51	0,356300
- 💯 Польша_20_	153	a> hidden neuron 51	0,093843	a> hidden neuron 51	0,131386	a> hidden neuron 51	0,036675
	154	x> hidden neuron 52	0,295400	x> hidden neuron 52	0,629900	x> hidden neuron 52	0,420700
⊕ дис_а_7_8	100	y> hidden neuron 52	0,059600	y> hidden neuron 52	0,034759	y> hidden neuron 52	0,764303
B 3D Wafer Plo	150	a> hidden neuron 52	0,240354	a> hidden neuron 52	0,201904	a> hidden neuron 52	0,049304
Scatterplc	157	v> hidden neuron 53	0,000003	v> hidden neuron 53	0,374500	v> hidden neuron 53	0,722222
- Histor	159	a> hidden neuron 53	0,966767	a> hidden neuron 53	0,734500	a> hidden neuron 53	0,253788
Network weid	160	x> hidden neuron 54	0 385700	x> hidden neuron 54	0,768889	x> hidden neuron 54	0 977778
	161	$v \rightarrow hidden neuron 54$	0 717509	v> hidden neuron 54	0 605304	v> hidden neuron 54	0 401778
	162	a> hidden neuron 54	0.843145	a> hidden neuron 54	0.535776	a> hidden neuron 54	0,186788
	163	x> hidden neuron 55	0.891111	x> hidden neuron 55	0.358400	x> hidden neuron 55	0.313000
	164	v> hidden neuron 55	0,515363	v> hidden neuron 55	0,729015	v> hidden neuron 55	0.072144
	165	a> hidden neuron 55	0,390497	a> hidden neuron 55	0,086279	a> hidden neuron 55	0,518382
	166	x> hidden neuron 56	0,599100	x> hidden neuron 56	0,399900	x> hidden neuron 56	0,258800
	167	y> hidden neuron 56	0,156288	y> hidden neuron 56	0,042057	y> hidden neuron 56	0,427722
	168	a> hidden neuron 56	0,722425	a> hidden neuron 56	0,451444	a> hidden neuron 56	0,137415
	169	x> hidden neuron 57	0,697778	x> hidden neuron 57	0,095556	x> hidden neuron 57	0,554200
	170	y> hidden neuron 57	0,528070	y> hidden neuron 57	0,185306	y> hidden neuron 57	0,274660
	171	a> hidden neuron 57	0,154963	a> hidden neuron 57	0,456865	a> hidden neuron 57	0,845970
	172	x> hidden neuron 58	0,064444	x> hidden neuron 58	0,755556	x> hidden neuron 58	0,857778
	1/3	y> hidden neuron 58	0,676313	y> hidden neuron 58	0,009289	y> hidden neuron 58	0,131816
	1/4	a> hidden neuron 58	0,788391	a> hidden neuron 58	0,578443	a> hidden neuron 58	0,464602
	1/5	x> hidden neuron 59	0,383800	x> hidden neuron 59	0,361800	x> hidden neuron 59	0,920000
	1/6	y> hidden neuron 59	0,053248	y> hidden neuron 59	0,203433	y> hidden neuron 59	0,194423
	1//	a> hidden neuron 59	0,762965	a> hidden neuron 59	0,483872	a> hidden neuron 59	0,652382
	1/0	x> hidden neuron 60	0,230500	x> hidden neuron 60	0,071111	x> hidden neuron 60	0,601100
	1/9	y> hidden neuron 60	0,770301	y> hidden neuron 60	0,403044	y> hidden neuron 60	0,572009
	181	x> hidden neuron 61	0,300415	x> hidden neuron 61	0,040110	x -> hidden neuron 61	0,073014
	182	v> hidden neuron 61	0.2799/8	v> hidden neuron 61	0,7761/13	v> hidden neuron 61	0.864/17/
	183	a> hidden neuron 61	0 802104	a> hidden neuron 61	0.949502	a> hidden neuron 61	0 231755
	184	x> hidden neuron 62	0.028889	x> hidden neuron 62	0.269000	x> hidden neuron 62	0.503900
	185	v> hidden neuron 62	0.554983	v> hidden neuron 62	0.106591	v> hidden neuron 62	0.646455
	186	a> hidden neuron 62	0.417423	a> hidden neuron 62	0.033823	a> hidden neuron 62	0.222542
			-,		-,		-,

🧁 Рабочая_а_7_9_е<		Network weights (Табли	ця а 7 9 відтв.)				
🌐 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 👍 SANN (Таблі	187	x> hidden neuron 63	0,607400	x> hidden neuron 63	0,853333	x> hidden neuron 63	0,977778
🕀 📴 O_1	188	y> hidden neuron 63	0,617460	y> hidden neuron 63	0,469923	y> hidden neuron 63	0,094152
🕀 📴 O_2	189	a> hidden neuron 63	0,232140	a> hidden neuron 63	0,759856	a> hidden neuron 63	0,134510
⊕ <mark>©</mark> 0_3	190	x> hidden neuron 64	0,733333	x> hidden neuron 64	0,726667	x> hidden neuron 64	0,773333
⊕ <u></u> 0_4	191	y> hidden neuron 64	0,046414	y> hidden neuron 64	0,381894	y> hidden neuron 64	0,178296
— 2М Диаграм	192	a> hidden neuron 64	0,734637	a> hidden neuron 64	0,459777	a> hidden neuron 64	0,038628
Парадиаграми	193	x> hidden neuron 65	0,277800	x> hidden neuron 65	0,202222	x> hidden neuron 65	0,217778
Пиаграми	194	y> hidden neuron 65	0,163191	y> hidden neuron 65	0,905744	y> hidden neuron 65	0,141633
Диаграми	195	a> hidden neuron 65	0,780082	a> hidden neuron 65	0,024998	a> hidden neuron 65	0,681726
Диаграми	196	x> hidden neuron 66	0,057778	x> hidden neuron 66	0,250000	x> hidden neuron 66	0,665500
Полица 20	197	y> hidden neuron 66	0,543677	y> hidden neuron 66	0,752579	y> hidden neuron 66	0,840905
Польша_20_	198	a> hidden neuron 66	0,608512	a> hidden neuron 66	0,248045	a> hidden neuron 66	0,374568
тольша_20_	199	x> hidden neuron 67	0,401400	x> hidden neuron 67	0,915556	x> hidden neuron 67	0,195556
	200	y> hidden neuron 67	0,074748	y> hidden neuron 67	0,407332	y> hidden neuron 67	0,290287
B 3D Water Plo	201	a> hidden neuron 67	0,577181	a> hidden neuron 67	0,069614	a> hidden neuron 67	0,392194
🖻 🏧 Scatterplc	202	x> hidden neuron 68	0,461400	x> hidden neuron 68	0,793333	x> hidden neuron 68	0,223100
🚰 Histor	203	y> hidden neuron 68	0,112367	y> hidden neuron 68	0,805598	y> hidden neuron 68	0,687702
Network weig	204	a> hidden neuron 68	0,682285	a> hidden neuron 68	0,920086	a> hidden neuron 68	0,209322
	205	x> hidden neuron 69	0,024444	x> hidden neuron 69	0,238800	x> hidden neuron 69	0,175556
	206	y> hidden neuron 69	0,670427	y> hidden neuron 69	0,044991	y> hidden neuron 69	0,128410
	207	a> hidden neuron 69	0,827930	a> hidden neuron 69	0,442609	a> hidden neuron 69	0,960942
	208	x> hidden neuron 70	0,995556	x> hidden neuron 70	0,331500	x> hidden neuron 70	0,877778
	209	y> hidden neuron 70	0,118269	y> hidden neuron 70	0,419550	y> hidden neuron 70	0,988215
	210	a> hidden neuron 70	0,570875	a> hidden neuron 70	0,222043	a> hidden neuron 70	0,851379
	211	x> hidden neuron 71	0,606000	x> hidden neuron 71	0,513700	x> hidden neuron 71	0,735556
	212	y> hidden neuron 71	0,522667	y> hidden neuron 71	0,835052	y> hidden neuron 71	0,362911
	213	a> hidden neuron 71	0,858260	a> hidden neuron 71	0,638278	a> hidden neuron 71	0,961142
	214	x> hidden neuron 72	0,257300	x> hidden neuron 72	0,055556	x> hidden neuron 72	0,579600
	215	y> hidden neuron 72	0,605690	y> hidden neuron 72	0,958763	y> hidden neuron 72	0,566159
	216	a> hidden neuron 72	0,955056	a> hidden neuron 72	0,587780	a> hidden neuron 72	0,930096

📂 Рабочая_а_/_9_е<		Network weights (Табли	ця а 7 9 відтв.)				
🖶 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 📴 SANN (Таблі	217	x> hidden neuron 73	0,135556	x> hidden neuron 73	0,303700	x> hidden neuron 73	0,804444
🖶 📴 O_1	218	y> hidden neuron 73	0,835214	y> hidden neuron 73	0,640650	y> hidden neuron 73	0,140130
🕀 📴 O_2	219	a> hidden neuron 73	0,388094	a> hidden neuron 73	0,925507	a> hidden neuron 73	0,424943
🕀 📴 O_3	220	x> hidden neuron 74	0,682222	x> hidden neuron 74	0,813333	x> hidden neuron 74	0,489300
⊕ 📴 0_4	221	y> hidden neuron 74	0,048365	y> hidden neuron 74	0,958763	y> hidden neuron 74	0,056007
🚊 🔤 2М Диаграм	222	a> hidden neuron 74	0,087487	a> hidden neuron 74	0,914263	a> hidden neuron 74	0,156944
🔤 🌆 Диаграмі	223	x> hidden neuron 75	0,991111	x> hidden neuron 75	0,180000	x> hidden neuron 75	0,545400
- 🛺 Диаграмі	224	y> hidden neuron 75	0,022963	y> hidden neuron 75	0,209742	y> hidden neuron 75	0,308919
🖓 Диаграмі	225	a> hidden neuron 75	0,445251	a> hidden neuron 75	0,506862	a> hidden neuron 75	0,997596
💯 Диаграмі	226	x> hidden neuron 76	0,648900	x> hidden neuron 76	0,488300	x> hidden neuron 76	0,717778
🚯 Польша 20	227	y> hidden neuron 76	0,1/489/	y> hidden neuron /6	0,409335	y> hidden neuron /6	0,764303
- 🖓 Польша 20	228	a> hidden neuron /6	0,369476	a> hidden neuron 76	0,769595	a> hidden neuron /6	0,762847
п Пара 78	229	x> hidden neuron //	0,631800	x> hidden neuron //	0,226600	x> hidden neuron //	0,334000
a Ane_d_r_c	230	y> hidden neuron //	0,094287	y> hidden neuron //	0,882180	y> hidden neuron //	0,544121
	231	a> hidden neuron 77	0,127536	a> hidden neuron 77	0,961750	a> hidden neuron 77	0,600004
	232	x> hidden neuron 78	0,693333	x> hidden neuron 78	0,511200	x> hidden neuron 78	0,782222
	233	y> hidden neuron 78	0,823443	y> hidden neuron 78	0,208340	y> hidden neuron 78	0,758411
inetwork weig	234	a> hidden neuron 78	0,016126	a> hidden neuron 78	0,010290	a> hidden neuron 78	0,486535
	235	x> hidden neuron 79	0,693333	x> hidden neuron 79	0,028889	x> hidden neuron 79	0,410200
	236	y> hidden neuron 79	0,060088	y> hidden neuron 79	0,324711	y> hidden neuron 79	0,740733
	237	a> hidden neuron 79	0,990691	a> hidden neuron 79	0,574026	a> hidden neuron 79	0,691941
	238	x> hidden neuron 80	0,536100	x> hidden neuron 80	0,477100	x> hidden neuron 80	0,988889
	239	y> hidden neuron 80	0,982344	y> hidden neuron 80	0,502671	y> hidden neuron 80	0,170983
	240	a> hidden neuron 80	0,485391	a> hidden neuron 80	0,258385	a> hidden neuron 80	0,362851
	241	x> hidden neuron 81	0,455100	x> hidden neuron 81	0,944444	x> hidden neuron 81	0,128889
	242	y> hidden neuron 81	0,805788	y> hidden neuron 81	0,599413	y> hidden neuron 81	0,121999
	243	a> hidden neuron 81	0,752255	a> hidden neuron 81	0,616694	a> hidden neuron 81	0,928093
	244	x> hidden neuron 82	0,833333	x> hidden neuron 82	0,720000	x> hidden neuron 82	0,162222
	245	y> hidden neuron 82	0,077191	y> hidden neuron 82	0,425458	y> hidden neuron 82	0,622885
	246	a> hidden neuron 82	0,975576	a> hidden neuron 82	0,882840	a> hidden neuron 82	0,033740
	247	x> hidden neuron 83	0,775556	x> hidden neuron 83	0,608400	x> hidden neuron 83	0,057778
	248	y> hidden neuron 83	0,212015	y> hidden neuron 83	0,976436	y> hidden neuron 83	0,305012
	249	a> hidden neuron 83	0,915016	a> hidden neuron 83	0,839268	a> hidden neuron 83	0,508568
	250	x> hidden neuron 84	0,113333	x> hidden neuron 84	0,051111	x> hidden neuron 84	0,571300
	251	y> hidden neuron 84	0,782247	y> hidden neuron 84	0,107593	y> hidden neuron 84	0,365115
	252	a> hidden neuron 84	0,394400	a> hidden neuron 84	0,630849	a> hidden neuron 84	0,825941
	253	x> hidden neuron 85	0,630900	x> hidden neuron 85	0,465300	x> hidden neuron 85	0,526400
	254	y> hidden neuron 85	0,497755	y> hidden neuron 85	0,224965	y> hidden neuron 85	0,198831
	255	a> hidden neuron 85	0,803005	a> hidden neuron 85	0,089713	a> hidden neuron 85	0,702657
	256	x> hidden neuron 86	0,391600	x> hidden neuron 86	0,095556	x> hidden neuron 86	0,704444
	257	y> hidden neuron 86	0,389302	y> hidden neuron 86	0,312994	y> hidden neuron 86	0,394265
	258	a> hidden neuron 86	0,035675	a> hidden neuron 86	0,468110	a> hidden neuron 86	0,366556
	259	x> hidden neuron 87	0,550800	x> hidden neuron 87	0,383800	x> hidden neuron 87	0,570800
	260	y> hidden neuron 87	0,222320	y> hidden neuron 87	0,052322	y> hidden neuron 87	0,599315

🗁 Рабочая_а_/_9_в<		Network weights (Табли	ця_а_7_9_відтв.)				
🎚 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🔤 SANN (Таблі	261	a> hidden neuron 87	0,832334	a> hidden neuron 87	0,762768	a> hidden neuron 87	0,792190
i∎-📴 0_1	262	x> hidden neuron 88	0,822222	x> hidden neuron 88	0,688889	x> hidden neuron 88	0,465300
🖶 🔁 O_2	263	y> hidden neuron 88	0,617460	y> hidden neuron 88	0,197524	y> hidden neuron 88	0,224775
	264	a> hidden neuron 88	0,575280	a> hidden neuron 88	0,642696	a> hidden neuron 88	0,091937
⊕ - □ 0_4	265	x> hidden neuron 89	0,008889	x> hidden neuron 89	0,236300	x> hidden neuron 89	0,333000
🖶 📴 2М Диаграм	266	y> hidden neuron 89	0,788132	y> hidden neuron 89	0,211745	y> hidden neuron 89	0,337768
Парадиаграми	267	a> hidden neuron 89	0,554759	a> hidden neuron 89	0,155883	a> hidden neuron 89	0,376070
Пиаграми	268	x> hidden neuron 90	0,279800	x> hidden neuron 90	0,968889	x> hidden neuron 90	0,402300
Пиаграми	269	y> hidden neuron 90	0,575493	y> hidden neuron 90	0,793816	y> hidden neuron 90	0,917506
Диаграми	270	a> hidden neuron 90	0,825027	a> hidden neuron 90	0,297539	a> hidden neuron 90	0,824939
	271	x> hidden neuron 91	0,540000	x> hidden neuron 91	0,160000	x> hidden neuron 91	0,431600
	272	y> hidden neuron 91	0,084512	y> hidden neuron 91	0,876289	y> hidden neuron 91	0,297600
	273	a> hidden neuron 91	0,293701	a> hidden neuron 91	0,019115	a> hidden neuron 91	0,838660
	274	x> hidden neuron 92	0,153333	x> hidden neuron 92	0,570300	x> hidden neuron 92	0,564900
B 3D Water Plo	275	y> hidden neuron 92	0,929377	y> hidden neuron 92	0,225465	y> hidden neuron 92	0,905721
Scatterplc	276	a> hidden neuron 92	0,542547	a> hidden neuron 92	0,240214	a> hidden neuron 92	0,312976
🚰 Histor	277	x> hidden neuron 93	0,151111	x> hidden neuron 93	0,467800	x> hidden neuron 93	0,024444
Network weig	278	y> hidden neuron 93	0,443528	y> hidden neuron 93	0,273335	y> hidden neuron 93	0,799658
	279	a> hidden neuron 93	0,153462	a> hidden neuron 93	0,101971	a> hidden neuron 93	0,244474
	280	x> hidden neuron 94	0,554200	x> hidden neuron 94	0,142222	x> hidden neuron 94	0,247100
	281	y> hidden neuron 94	0,275546	y> hidden neuron 94	0,493358	y> hidden neuron 94	0,016870
	282	a> hidden neuron 94	0,845547	a> hidden neuron 94	0,689279	a> hidden neuron 94	0,900251
	283	x> hidden neuron 95	0,755556	x> hidden neuron 95	0,285200	x> hidden neuron 95	0,505900
	284	y> hidden neuron 95	0,489451	y> hidden neuron 95	0,864507	y> hidden neuron 95	0,121499
	285	a> hidden neuron 95	0,598202	a> hidden neuron 95	0,314707	a> hidden neuron 95	0,177474
	286	x> hidden neuron 96	0,355000	x> hidden neuron 96	0,350600	x> hidden neuron 96	0,316400
	287	y> hidden neuron 96	0,240329	y> hidden neuron 96	0,437676	y> hidden neuron 96	0,581284
	288	a> hidden neuron 96	0,356763	a> hidden neuron 96	0,596113	a> hidden neuron 96	0,785881
	289	x> hidden neuron 97	0,682222	x> hidden neuron 97	0,367200	x> hidden neuron 97	0,884444
	290	y> hidden neuron 97	0,788132	y> hidden neuron 97	0,899853	y> hidden neuron 97	0,182703
	291	a> hidden neuron 97	0,059629	a> hidden neuron 97	0,067646	a> hidden neuron 97	0,718881
	292	x> hidden neuron 98	0,507800	x> hidden neuron 98	0,299800	x> hidden neuron 98	0,537100
	293	y> hidden neuron 98	0.288753	y> hidden neuron 98	0,504174	v> hidden neuron 98	0,152852

📁 Рабочая_а_/_9_в<		Network weights (Таблиця	га7 9 відтв.)				
🎚 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🔤 SANN (Таблі	294	a> hidden neuron 98	0,054254	a> hidden neuron 98	0,333380	a> hidden neuron 98	0,521787
<u>⊕</u> <mark>⊡</mark> , 0_1	295	x> hidden neuron 99	0,080000	x> hidden neuron 99	0,512200	x> hidden neuron 99	0,917778
🕀 📴 O_2	296	y> hidden neuron 99	0,699853	y> hidden neuron 99	0,805598	y> hidden neuron 99	0,964645
🖶 🔁 O_3	297	a> hidden neuron 99	0,598703	a> hidden neuron 99	0,262301	a> hidden neuron 99	0,746723
i∎- 📴 0_4	298	x> hidden neuron 100	0,755556	x> hidden neuron 100	0,988889	x> hidden neuron 100	0,971111
🖃 📴 2М Диаграм	299	y> hidden neuron 100	0,010257	y> hidden neuron 100	0,699560	y> hidden neuron 100	0,438040
🖓 Диаграмі	300	a> hidden neuron 100	0,579183	a> hidden neuron 100	0,943679	a> hidden neuron 100	0,344223
🖓 Диаграмі	301	x> hidden neuron 101	0,640100	x> hidden neuron 101	0,093333	x> hidden neuron 101	0,261700
🖓 Диаграмі	302	y> hidden neuron 101	0,439626	y> hidden neuron 101	0,899853	y> hidden neuron 101	0,182202
🛺 Диаграмі	303	a> hidden neuron 101	0,352859	a> hidden neuron 101	0,729437	a> hidden neuron 101	0,465003
🖓 Польша_20_	304	x> hidden neuron 102	0,356000	x> hidden neuron 102	0,955556	x> hidden neuron 102	0,654800
🛺 Польша 20 ,	305	y> hidden neuron 102	0,770476	y> hidden neuron 102	0,544733	y> hidden neuron 102	0,699486
⊞ — 🌆 дис_а_7_8	306	a> hidden neuron 102	0,107516	a> hidden neuron 102	0,347536	a> hidden neuron 102	0,950626
B- AD Wafer Plo	307	x> hidden neuron 103	0,940000	x> nidden neuron 103	0,695556	x> hidden neuron 103	0,042222
- A Scatterplc	200	y> hidden neuron 103	0,917607	y> hidden neuron 103	0,350649	y> hidden neuron 103	0,103204
	309	a> hidden neuron 103	0,017107	a> hidden neuron 103	0,007000	a> hidden neuron 103	0,074013
Network weig	311	x> hidden neuron 104	0,493000	x> hidden neuron 104	0,100003	x> hidden neuron 104	0,142222
	312	y> hidden neuron 104	0,452552	y> hidden neuron 104	0,740757	y> hidden neuron 104	0,050502
	313	x> hidden neuron 105	0,030401	x> hidden neuron 105	0,086667	x> hidden neuron 105	0.033333
	314	v> hidden neuron 105	0 947033	v> hidden neuron 105	0 734906	v> hidden neuron 105	0 508961
	315	a> hidden neuron 105	0 893495	a> hidden neuron 105	0 054414	a> hidden neuron 105	0 736908
	316	x> hidden neuron 106	0.975556	x> hidden neuron 106	0.485400	x> hidden neuron 106	0.684444
	317	v> hidden neuron 106	0.964689	v> hidden neuron 106	0.169684	v> hidden neuron 106	0.958753
	318	a> hidden neuron 106	0,083573	a> hidden neuron 106	0,566697	a> hidden neuron 106	0,336912
	319	x> hidden neuron 107	0,122222	x> hidden neuron 107	0,265100	x> hidden neuron 107	0,146667
	320	y> hidden neuron 107	0,723394	y> hidden neuron 107	0,313895	y> hidden neuron 107	0,139630
	321	a> hidden neuron 107	0,998499	a> hidden neuron 107	0,476944	a> hidden neuron 107	0,018578
	322	x> hidden neuron 108	0,980000	x> hidden neuron 108	0,315400	x> hidden neuron 108	0,895556
	323	y> hidden neuron 108	0,147484	y> hidden neuron 108	0,425959	y> hidden neuron 108	0,013454
	324	a> hidden neuron 108	0,482888	a> hidden neuron 108	0,537282	a> hidden neuron 108	0,162352
	325	x> hidden neuron 109	0,310100	x> hidden neuron 109	0,552200	x> hidden neuron 109	0,068889
	326	y> hidden neuron 109	0,461137	y> hidden neuron 109	0,982327	y> hidden neuron 109	0,935183
	327	a> hidden neuron 109	0,511216	a> hidden neuron 109	0,800516	a> hidden neuron 109	0,615627
	328	x> hidden neuron 110	0,235800	x> hidden neuron 110	0,337400	x> hidden neuron 110	0,460900
	329	y> hidden neuron 110	0,285251	y> hidden neuron 110	0,104688	y> hidden neuron 110	0,740733
	330	a> hidden neuron 110	0,147556	a> hidden neuron 110	0,639684	a> hidden neuron 110	0,351634
	331	x> hidden neuron 111	0,451700	x> hidden neuron 111	0,017778	x> hidden neuron 111	0,673333
	332	y> hidden neuron 111	0,153387	y> hidden neuron 111	0,378489	y> hidden neuron 111	0,106874
	333	a> hidden neuron 111	0,277585	a> hidden neuron 111	0,365205	a> hidden neuron 111	0,379976
	334	x> hidden neuron 112	0,851111	x> hidden neuron 112	0,040000	x> hidden neuron 112	0,735556
	335	y> hidden neuron 112	0,378096	y> hidden neuron 112	0,214149	y> hidden neuron 112	0,419909
	336	a> hidden neuron 112	0,134944	a> hidden neuron 112	0,247543	a> hidden neuron 112	0,31/383
	337	x> hidden neuron 113	0,475100	x> hidden neuron 113	0,926667	x> hidden neuron 113	0,148889

🗁 Рабочая_а_/_9_в<		Network weights (Таблиця	а 7_9_відтв.)				
🗄 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🔤 SANN (Таблі	338	y> hidden neuron 113	0,835214	y> hidden neuron 113	0,137436	y> hidden neuron 113	0,412095
🛓 📴 0_1	339	a> hidden neuron 113	0,379285	a> hidden neuron 113	0,379461	a> hidden neuron 113	0,778971
🗈 📴 O_2	340	x> hidden neuron 114	0,797778	x> hidden neuron 114	0,406300	x> hidden neuron 114	0,587900
	341	y> hidden neuron 114	0,495354	y> hidden neuron 114	0,593522	y> hidden neuron 114	0,141132
	342	a> hidden neuron 114	0,846548	a> hidden neuron 114	0,028432	a> hidden neuron 114	0,431753
🖃 📴 2М Диаграм	343	x> hidden neuron 115	0,438500	x> hidden neuron 115	0,153333	x> hidden neuron 115	0,055556
Парадиаграми	344	y> hidden neuron 115	0,717509	y> hidden neuron 115	0,567767	y> hidden neuron 115	0,923398
Пиаграми	345	a> hidden neuron 115	0,489294	a> hidden neuron 115	0,528447	a> hidden neuron 115	0,463100
Диаграми	346	x> hidden neuron 116	0,064444	x> hidden neuron 116	0,162222	x> hidden neuron 116	0,726667
Диаграми	347	y> hidden neuron 116	0,788132	y> hidden neuron 116	0,395114	y> hidden neuron 116	0,020787
Полица 20	348	a> hidden neuron 116	0,142251	a> hidden neuron 116	0,064212	a> hidden neuron 116	0,606814
	349	x> hidden neuron 117	0,691111	x> hidden neuron 117	0,277300	x> hidden neuron 117	0,495100
польша_20_	350	y> hidden neuron 117	0,301459	y> hidden neuron 117	0,542330	y> hidden neuron 117	0,355298
	351	a> hidden neuron 117	0,663267	a> hidden neuron 117	0,197044	a> hidden neuron 117	0,045478
B 3D Water Plo	352	x> hidden neuron 118	0,917778	x> hidden neuron 118	0,797778	x> hidden neuron 118	0,494600
Scatterplc	353	y> hidden neuron 118	0,676313	y> hidden neuron 118	0,494860	y> hidden neuron 118	0,616992
🚰 Histor	354	a> hidden neuron 118	0,043984	a> hidden neuron 118	0,846597	a> hidden neuron 118	0,070415
Network weig	355	x> hidden neuron 119	0,900000	x> hidden neuron 119	0,900000	x> hidden neuron 119	0,722222
	356	y> hidden neuron 119	0,923492	y> hidden neuron 119	0,542830	y> hidden neuron 119	0,185608
	357	a> hidden neuron 119	0,119228	a> hidden neuron 119	0,953417	a> hidden neuron 119	0,710068
	358	x> hidden neuron 120	0,228500	x> hidden neuron 120	0,980000	x> hidden neuron 120	0,926667
	359	y> hidden neuron 120	0,345380	y> hidden neuron 120	0,729015	y> hidden neuron 120	0,137226
	360	a> hidden neuron 120	0,885186	a> hidden neuron 120	0,836758	a> hidden neuron 120	0,380978
	361	x> hidden neuron 121	0,180000	x> hidden neuron 121	0,514200	x> hidden neuron 121	0,276900
	362	y> hidden neuron 121	0,318967	y> hidden neuron 121	0,465517	y> hidden neuron 121	0,817335
	363	a> hidden neuron 121	0,434540	a> hidden neuron 121	0,338701	a> hidden neuron 121	0,529098
	364	x> hidden neuron 122	0,598100	x> hidden neuron 122	0,293000	x> hidden neuron 122	0,273900
	365	y> hidden neuron 122	0,311664	y> hidden neuron 122	0,088506	y> hidden neuron 122	0,048664
	366	a> hidden neuron 122	0,334341	a> hidden neuron 122	0,871595	a> hidden neuron 122	0,494847
	367	x> hidden neuron 123	0,895556	x> hidden neuron 123	0,648900	x> hidden neuron 123	0,436000
	368	y> hidden neuron 123	0,014659	y> hidden neuron 123	0,174090	y> hidden neuron 123	0,793765
	369	a> hidden neuron 123	0,162271	a> hidden neuron 123	0,368117	a> hidden neuron 123	0,606414
	370	x> hidden neuron 124	0,913333	x> hidden neuron 124	0,349100	x> hidden neuron 124	0,966667

Bit Marpan Connections Weight values REF 3-297-1 2.8EF 3-273-1 3.8EF 3-297-1 3.8EF 3-297-1 <t< th=""></t<>
SANN (Ta6m Weight 1.RBF 3.195.1 1.REF 3.915.1 2.RBF 3.273.1 2.RBF 3.273.1 3.RBF 3.273.1 3.275.1
SANN (Ta6m 371 y -> hidden neuron 124 0.876410 y -> hidden neuron 124 0.405803 y -> hidden neuron 124 0.4771122 a -> hidden neuron 124 0.471122 a -> hidden neuron 124 0.480226 0.1 372 a -> hidden neuron 125 0.086809 x -> hidden neuron 125 0.06687 a -> hidden neuron 125 0.106667 0.4 376 a -> hidden neuron 125 0.48927 y -> hidden neuron 125 0.13865 20.4 376 a -> hidden neuron 126 0.444617 a -> hidden neuron 126 0.733002 20.4 376 a -> hidden neuron 126 0.861111 x -> hidden neuron 126 0.773502 21.4 Ausrpan 377 y -> hidden neuron 127 0.444617 a -> hidden neuron 126 0.23227 32.4 Ausrpan 379 x -> hidden neuron 127 0.414100 x -> hidden neuron 127 0.52689 33.0 y -> hidden neuron 127 0.53428 a -> hidden neuron 127 0.52689 34.4 a -> hidden neuron 128 0.71342 y -> hidden neuron 128 0.233900 36.2
$ \begin{array}{c} 372 & a - b \ bidden \ neuron 124 & 0.784487 \ a - b \ bidden \ neuron 125 & 0.480226 \ a - b \ bidden \ neuron 125 & 0.480286 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 125 & 0.480889 \ x - b \ bidden \ neuron 126 & 0.735300 \ 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294410 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294410 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294410 \ x - b \ bidden \ neuron 126 & 0.294400 \ 0.294410 \ x - b \ bidden \ neuron 126 & 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ x - b \ bidden \ neuron 126 & 0.294400 \ x - b \ bidden \ neuron 127 & 0.503300 \ y - b \ bidden \ neuron 127 & 0.503300 \ x - b \ bidden \ neuron 127 & 0.503300 \ x - b \ bidden \ neuron 127 & 0.503300 \ x - b \ bidden \ neuron 127 & 0.503300 \ x - b \ bidden \ neuron 128 & 0.239900 \ x - b \ bidden \ neuron 128 & 0.239900 \ x - b \ bidden \ neuron 128 & 0.25916 \ x - b \ bidden \ neuron 128 & 0.25916 \ x - b \ bidden \ neuron 128 & 0.468089 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0.56809 \ x - b \ bidden \ neuron 128 & 0$
$ \begin{array}{c} 373 \\ n = 0.2 \\ 374 \\ y \rightarrow hidden neuron 125 \\ 0.20889 \\ x \rightarrow hidden neuron 125 \\ 0.42957 \\ y \rightarrow hidden neuron 125 \\ 0.42957 \\ y \rightarrow hidden neuron 125 \\ 0.44957 \\ y \rightarrow hidden neuron 125 \\ 0.73500 \\ y \rightarrow hidden neuron 126 \\ 0.775556 \\ x \rightarrow hidden neuron 126 \\ 0.294400 \\ 0.77759 \\ z \rightarrow hidden neuron 126 \\ 0.94148 \\ y \rightarrow hidden neuron 126 \\ 0.116628 \\ z \rightarrow hidden neuron 126 \\ 0.77759 \\ z \rightarrow hidden neuron 127 \\ 0.94148 \\ y \rightarrow hidden neuron 126 \\ 0.94148 \\ y \rightarrow hidden neuron 127 \\ 0.78766 \\ z \rightarrow hidden neuron 127 \\ 0.787766 \\ z \rightarrow hidden neuron 127 \\ 0.94445 \\ z \rightarrow hidden neuron 128 \\ 0.94148 \\ z \rightarrow hidden neuron 127 \\ 0.94445 \\ z \rightarrow hidden neuron 127 \\ 0.94445 \\ z \rightarrow hidden neuron 128 \\ 0.94148 \\ z \rightarrow hidden neuron 128 \\ 0.94148 \\ z \rightarrow hidden neuron 128 \\ 0.94148 \\ z \rightarrow hidden neuron 127 \\ 0.94458 \\ z \rightarrow hidden neuron 127 \\ 0.94458 \\ z \rightarrow hidden neuron 128 \\ 0.94148 \\ z \rightarrow hidden neuron 129 \\ 0.94889 \\ z \rightarrow hidden neuron 129 \\ 0.94889 \\ z \rightarrow hidden neuron 129 \\ 0.94889 \\ z \rightarrow hidden neuron 130 \\ 0.9484$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
375 a -> hidden neuron 125 0.488994 a -> hidden neuron 125 0.733002 376 x -> hidden neuron 126 0.76556 x -> hidden neuron 126 0.733002 377 y -> hidden neuron 126 0.851111 x -> hidden neuron 126 0.775566 x -> hidden neuron 126 0.294400 378 a -> hidden neuron 126 0.996285 a -> hidden neuron 126 0.716628 a -> hidden neuron 126 0.775566 378 a -> hidden neuron 127 0.414100 x -> hidden neuron 127 0.507300 380 y -> hidden neuron 127 0.523428 a -> hidden neuron 127 0.787766 381 a -> hidden neuron 128 0.991366 y -> hidden neuron 128 0.723900 383 y -> hidden neuron 128 0.991366 y -> hidden neuron 128 0.723900 384 a -> hidden neuron 129 0.468046 a -> hidden neuron 128 0.723902 384 a -> hidden neuron 128 0.711342 y -> hidden neuron 128 0.723900 384 a -> hidden neuron 129 0.458646 a -> hidden neuron 129 0.538600 384 a -> hidden neuron 129 0.458555 y -> hidden neuron 130
22M Диаграм 376 x -> hidden neuron 126 0,851111 x -> hidden neuron 126 0,775556 x -> hidden neuron 126 0,823227 2M диаграм 377 x -> hidden neuron 126 0,941148 y -> hidden neuron 126 0,823227 2M диаграм 378 a -> hidden neuron 127 0,414100 x -> hidden neuron 126 0,176586 a -> hidden neuron 127 0,507300 300 y -> hidden neuron 127 0,519468 y -> hidden neuron 127 0,526269 301 a -> hidden neuron 127 0,523428 a -> hidden neuron 127 0,244410 320 y -> hidden neuron 128 0,349600 x -> hidden neuron 128 0,761262 a -> hidden neuron 128 0,233900 320 y -> hidden neuron 129 0,458964 a -> hidden neuron 128 0,761262 a -> hidden neuron 128 0,751262 a -> hidden neuron 129 0,53333 x -> hidden neuron 129 0,53333 x -> hidden neuron 130 0,98224 386 y -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,948263 y -> hidden neuron 130 0,98224 y -> hidden neuron 130 0,92286 389 y -> hidden neuron 130 0,922865 399 y ->
377 y → hidden neuron 126 0,941148 y → hidden neuron 126 0,579444 y → hidden neuron 126 0,777569 Aparpam 378 a → hidden neuron 127 0,14100 x → hidden neuron 127 0,777569 Aparpam 379 x → hidden neuron 127 0,319968 y → hidden neuron 127 0,38205 y → hidden neuron 127 0,562869 Aparpam 380 y → hidden neuron 127 0,523428 a → hidden neuron 127 0,38205 y → hidden neuron 127 0,204415 381 a → hidden neuron 128 0,434600 x → hidden neuron 128 0,60000 x → hidden neuron 128 0,204415 382 x → hidden neuron 128 0,091356 y → hidden neuron 128 0,71142 y → hidden neuron 128 0,723056 383 y → hidden neuron 129 0,458964 a → hidden neuron 128 0,761262 a → hidden neuron 129 0,53333 x → hidden neuron 129 0,53333 y → hidden neuron 129 0,53333 y → hidden neuron 129 0,52834 a → hidden neuron 129 0,52834 a → hidden neuron 130 0,982227 y → hidden neuron 130 0,982327 y → hidden neuron 130 0,982327 y → hidden neuron 130 0,224885
378 a → hidden neuron 126 0,096285 a → hidden neuron 126 0,116628 a → hidden neuron 127 0,777569 2 Juarpani 379 x → hidden neuron 127 0,414100 x → hidden neuron 127 0,58989 x → hidden neuron 127 0,852689 381 a → hidden neuron 127 0,523428 a → hidden neuron 127 0,82020 y → hidden neuron 127 0,822689 381 a → hidden neuron 128 0,44100 x → hidden neuron 128 0,71369 a → hidden neuron 127 0,822689 382 x → hidden neuron 128 0,439600 x → hidden neuron 128 0,71342 y → hidden neuron 128 0,723056 383 y → hidden neuron 128 0,459956 y → hidden neuron 128 0,71342 y → hidden neuron 128 0,723056 384 a → hidden neuron 129 0,458255 y → hidden neuron 129 0,538333 x → hidden neuron 129 0,538604 385 x → hidden neuron 129 0,754657 a → hidden neuron 130 0,94889 x → hidden neuron 130 0,948237 386 x → hidden neuron 130 0,216417 y → hidden neuron 130 0,948237 y → hidden neuron 130 0,942227 387
379 x -> hidden neuron 127 0,414100 x -> hidden neuron 127 0,507300 300 y -> hidden neuron 127 0,319968 y -> hidden neuron 127 0,38205 y -> hidden neuron 127 0,82689 310 y -> hidden neuron 127 0,523428 a -> hidden neuron 127 0,787766 a -> hidden neuron 128 0,233900 320 y -> hidden neuron 128 0,41900 x -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,233900 330 y -> hidden neuron 128 0,458964 a -> hidden neuron 128 0,761262 a -> hidden neuron 128 0,259196 345 x -> hidden neuron 129 0,100000 x -> hidden neuron 129 0,538600 x -> hidden neuron 129 0,538600 350 X r x -> hidden neuron 129 0,754657 a -> hidden neuron 129 0,88044 381 x -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,048885 x -> hidden neuron 130 0,88044 389 y -> hidden neuron 130 0,216417 y -> hidden neuron 130 0,982227 y -> hidden neuron 130 0,43257 390 a -> hidden neuron 131 0,271444 x -> hidden neuron 131
380 y -> hidden neuron 12/ 0,319966 y -> hidden neuron 12/ 0,389205 y -> hidden neuron 12/ 0,82089 381 a -> hidden neuron 127 0,523428 a -> hidden neuron 128 0,204415 382 x -> hidden neuron 128 0,349600 x -> hidden neuron 128 0,00000 x -> hidden neuron 128 0,233900 a a -> hidden neuron 128 0,091356 y -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,723056 a a -> hidden neuron 128 0,091356 y -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,723056 a a -> hidden neuron 129 0,100000 x -> hidden neuron 129 0,538600 x -> hidden neuron 129 0,538600 a So Wafer Plo 386 x -> hidden neuron 129 0,458235 y -> hidden neuron 129 0,626934 a -> hidden neuron 129 0,611221 387 a -> hidden neuron 130 0,214417 y -> hidden neuron 130 0,982222 y -> hidden neuron 130 0,982225 399 y -> hidden neuron 130 0,216417 y -> hidden neuron 130 0,982222 y -> hidden neuron 130 0,982222 399 y -> hidden neuron 131 0,216417 y -
381 a -> hidden neuron 127 0,523428 a -> hidden neuron 127 0,723424 a -> hidden neuron 128 0,233400 P Dnsuua, 20, at a -> hidden neuron 128 0,091356 y -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,723056 P D a Mr.e, 73 384 a -> hidden neuron 128 0,091356 y -> hidden neuron 128 0,723056 P D a Mr.e, 73 384 a -> hidden neuron 128 0,723056 a -> hidden neuron 128 0,723056 P D a Mr.e, 73 384 a -> hidden neuron 129 0,458964 a -> hidden neuron 128 0,259196 B S x -> hidden neuron 129 0,458954 a -> hidden neuron 129 0,53800 y -> hidden neuron 129 0,63800 B S x -> hidden neuron 129 0,754657 a -> hidden neuron 129 0,626934 a -> hidden neuron 130 0,982222 B B y -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,048889 x -> hidden neuron 130 0,626934 B B y -> hidden neuron 131 0,372100 x -> hidden neuron 130 0,982227 y -> hidden neuron 131 0,43257 B B y -> hidden neuron 131 0,274181 a -> hidden neuron 131 0,287631 y -> hidden neuron 131
Польша_20_ ис_алса 362 х -> hidden neuron 128 0,349600 x -> hidden neuron 128 0,733900 383 у -> hidden neuron 128 0,091365 y -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,723056 384 a -> hidden neuron 128 0,458964 a -> hidden neuron 128 0,711342 y -> hidden neuron 128 0,259196 385 x -> hidden neuron 129 0,458255 y -> hidden neuron 129 0,538600 x -> hidden neuron 129 0,538600 Werkerkeit 386 x -> hidden neuron 129 0,458255 y -> hidden neuron 129 0,626934 a -> hidden neuron 129 0,611221 386 x -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982222 y -> hidden neuron 130 0,982222 390 a -> hidden neuron 130 0,216417 y -> hidden neuron 130 0,982227 y -> hidden neuron 130 0,434257 391 x -> hidden neuron 131 0,274141 x -> hidden neuron 131 0,287631 y -> hidden neuron 131 0,287631 392 y -> hidden neuron 132 0,086667 x -> hidden neuron 132
363 y> hidden neuron 126 0,031356 y> hidden neuron 126 0,71342 y> hidden neuron 126 0,72305 30 Wafer Plot 384 a> hidden neuron 129 0,458964 a> hidden neuron 129 0,53833 x> hidden neuron 129 0,538600 30 Wafer Plot 386 y> hidden neuron 129 0,458235 y> hidden neuron 129 0,626934 a> hidden neuron 129 0,611221 386 y> hidden neuron 130 0,724444 x> hidden neuron 130 0,048898 x> hidden neuron 130 0,982222 389 y> hidden neuron 130 0,216417 y> hidden neuron 130 0,434257 390 a> hidden neuron 131 0,372100 x> hidden neuron 130 0,434257 391 x> hidden neuron 131 0,372100 x> hidden neuron 131 0,287631 y> hidden neuron 131 0,76551 393 a> hidden neuron 132 0,086667 x> hidden neuron 132 0,264523 y> hidden neuron 132 0,244309 394 x> hidden neuron 132 0,75155 y> hidden neuron 133 0,740797 y> hidden neuron 133 0,7244309 396
30 Wafer Plo 364 a -> hidden neuron 129 0,430304 a -> hidden neuron 129 0,611232 a -> hidden neuron 129 0,633803 385 x -> hidden neuron 129 0,458235 y -> hidden neuron 129 0,626934 a -> hidden neuron 129 0,611221 386 y -> hidden neuron 129 0,754657 a -> hidden neuron 130 0,048898 x -> hidden neuron 130 0,982222 388 x -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,048898 x -> hidden neuron 130 0,622885 390 a -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982327 y -> hidden neuron 130 0,622885 391 x -> hidden neuron 131 0,72100 x -> hidden neuron 131 0,901963 a -> hidden neuron 131 0,622885 392 y -> hidden neuron 131 0,72100 x -> hidden neuron 131 0,901963 a -> hidden neuron 131 0,22885 393 a -> hidden neuron 131 0,72100 x -> hidden neuron 131 0,901911 x -> hidden neuron 131 0,22885 394 x -> hidden neuron 131 0,7372100 x -> hidden neuron 131 0,264667 y -> hidden neuron 131 0,2646523
Scatterpt 365 $X \rightarrow hidden neuron 129$ 0,100000 $X \rightarrow hidden neuron 129$ 0,338331 $Y \rightarrow hidden neuron 129$ 0,88044 With Histor 36 $y \rightarrow hidden neuron 129$ 0,458235 $y \rightarrow hidden neuron 129$ 0,338431 $y \rightarrow hidden neuron 129$ 0,626934 Wetwork weig 387 $a \rightarrow hidden neuron 120$ 0,724444 $x \rightarrow hidden neuron 130$ 0,048889 $x \rightarrow hidden neuron 130$ 0,982222 390 $a \rightarrow hidden neuron 130$ 0,216417 $y \rightarrow hidden neuron 130$ 0,048889 $x \rightarrow hidden neuron 130$ 0,622885 390 $a \rightarrow hidden neuron 130$ 0,216417 $y \rightarrow hidden neuron 130$ 0,04889 $x \rightarrow hidden neuron 130$ 0,622885 391 $x \rightarrow hidden neuron 130$ 0,216417 $y \rightarrow hidden neuron 130$ 0,001963 $a \rightarrow hidden neuron 130$ 0,622885 391 $x \rightarrow hidden neuron 131$ 0,372100 $x \rightarrow hidden neuron 131$ 0,28100 392 $y \rightarrow hidden neuron 131$ 0,372100 $x \rightarrow hidden neuron 131$ 0,280874 $a \rightarrow hidden neuron 131$ 0,202912 394 $x \rightarrow hidden neuron 132$ 0,086667 $x \rightarrow hidden neuron 132$ 0,640600 $x \rightarrow hidden neuron 132$ 0
Webwork weis 300 y => indden neuron 129 0,754657 a => hidden neuron 129 0,626934 a -> hidden neuron 130 0,982222 387 a -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982327 y => hidden neuron 130 0,982222 389 y -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982327 y -> hidden neuron 130 0,626885 390 a -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982327 y -> hidden neuron 130 0,622885 390 a -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,982327 y -> hidden neuron 130 0,622885 390 a -> hidden neuron 130 0,724444 x -> hidden neuron 130 0,622885 391 x -> hidden neuron 131 0,372100 x -> hidden neuron 131 0,991111 x -> hidden neuron 131 0,22012 394 x -> hidden neuron 131 0,274181 a -> hidden neuron 132 0,046667 395 y -> hidden neuron 132 0,086667 x -> hidden neuron 132 0,264523 y -> hidden neuron 132 0,095643 <
Network weit307a -> hidden neuron 1300,724444x -> hidden neuron 1300,048889x -> hidden neuron 1300,982327388y -> hidden neuron 1300,216417y -> hidden neuron 1300,982327y -> hidden neuron 1300,622885390a -> hidden neuron 1300,233841a -> hidden neuron 1300,901963a -> hidden neuron 1300,622885391x -> hidden neuron 1310,372100x -> hidden neuron 1310,901111x -> hidden neuron 1310,328100392y -> hidden neuron 1310,641001y -> hidden neuron 1310,587631y -> hidden neuron 1310,76551393a -> hidden neuron 1310,274181a -> hidden neuron 1310,280874a -> hidden neuron 1310,202912394x -> hidden neuron 1320,086667x -> hidden neuron 1320,640600x -> hidden neuron 1320,246667395y -> hidden neuron 1320,735166y -> hidden neuron 1320,246233y -> hidden neuron 1320,244303396a -> hidden neuron 1330,00000x -> hidden neuron 1330,740797y -> hidden neuron 1330,247213399a -> hidden neuron 1330,927228a -> hidden neuron 1340,95556x -> hidden neuron 1340,659200400x -> hidden neuron 1340,717509y -> hidden neuron 1340,570111a -> hidden neuron 1340,1833402a -> hidden neuron 1340,269294a -> hidden neuron 1340,764444x -> hidden neuron 1340,670818402a -> hidden neuron 13
389 $y \rightarrow hidden neuron 1300,216417y \rightarrow hidden neuron 1300,982327y \rightarrow hidden neuron 1300,622885390a \rightarrow hidden neuron 1300,333841a \rightarrow hidden neuron 1300,001963a \rightarrow hidden neuron 1300,622885391x \rightarrow hidden neuron 1310,372100x \rightarrow hidden neuron 1310,001963a \rightarrow hidden neuron 1310,434257392y \rightarrow hidden neuron 1310,641001y \rightarrow hidden neuron 1310,587631y \rightarrow hidden neuron 1310,76551393a \rightarrow hidden neuron 1310,274181a \rightarrow hidden neuron 1310,280874a \rightarrow hidden neuron 1310,202912394x \rightarrow hidden neuron 1320,086667x \rightarrow hidden neuron 1320,640600x \rightarrow hidden neuron 1320,046667395y \rightarrow hidden neuron 1320,735165y \rightarrow hidden neuron 1320,264523y \rightarrow hidden neuron 1320,244309396a \rightarrow hidden neuron 1330,000000x \rightarrow hidden neuron 1330,410200x \rightarrow hidden neuron 1330,75333397x \rightarrow hidden neuron 1330,405009y \rightarrow hidden neuron 1330,740797y \rightarrow hidden neuron 1330,247213399a \rightarrow hidden neuron 1340,764444x \rightarrow hidden neuron 1340,95556x \rightarrow hidden neuron 1340,659200400x \rightarrow hidden neuron 1340,717509y \rightarrow hidden neuron 1340,70111a \rightarrow hidden neuron 1340,18833402a \rightarrow hidden neuron 1340,266810x \rightarrow hidden neuron 1340,7678180,767818403x \rightarrow hidden neuron 1340,767819x \rightarrow hidde$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
350a> hidden neuron 1310,372100xx> hidden neuron 1310,991111x> hidden neuron 1310,328100391x>> hidden neuron 1310,372100xx>> hidden neuron 1310,991111x>> hidden neuron 1310,278100392yy>> hidden neuron 1310,641001yy>> hidden neuron 1310,587631y>> hidden neuron 1310,076551393a-> hidden neuron 1310,274181a-> hidden neuron 1310,280874a-> hidden neuron 1310,202912394x-> hidden neuron 1320,086667x-> hidden neuron 1320,640600x-> hidden neuron 1320,046667395y-> hidden neuron 1320,735165y-> hidden neuron 1320,264523y-> hidden neuron 1320,244309396a-> hidden neuron 1320,056696a-> hidden neuron 1330,410200x-> hidden neuron 1330,753333398y-> hidden neuron 1330,405009y-> hidden neuron 1330,410200x-> hidden neuron 1330,247213399a-> hidden neuron 1330,927228a-> hidden neuron 1340,691186a-> hidden neuron 1340,659200400x-> hidden neuron 1340,717509y-> hidden neuron 1340,117407y-> hidden neuron 1340,18833402a-> hidden neuron 1350,260634x-> hidden neuron 134
392y -> hidden neuron 1310,641001y -> hidden neuron 1310,687631y -> hidden neuron 1310,076551393a -> hidden neuron 1310,274181a -> hidden neuron 1310,280874a -> hidden neuron 1310,202912394x -> hidden neuron 1320,086667x -> hidden neuron 1320,640600x -> hidden neuron 1320,046667395y -> hidden neuron 1320,735165y -> hidden neuron 1320,264523y -> hidden neuron 1320,244309396a -> hidden neuron 1320,056696a -> hidden neuron 1320,138213a -> hidden neuron 1320,264533397x -> hidden neuron 1330,00000x -> hidden neuron 1330,410200x -> hidden neuron 1330,753333398y -> hidden neuron 1330,405009y -> hidden neuron 1330,740797y -> hidden neuron 1330,247213399a -> hidden neuron 1340,764444x -> hidden neuron 1330,691186a -> hidden neuron 1340,659200401y -> hidden neuron 1340,717509y -> hidden neuron 1340,570111a -> hidden neuron 1340,18833402a -> hidden neuron 1340,089292a -> hidden neuron 1340,570111a -> hidden neuron 1340,174079403x -> hidden neuron 1340,260540x -> hidden neuron 1340,570111a -> hidden neuron 1340,768281402a -> hidden neuron 1340,260549a -> hidden neuron 1350,487800x -> hidden neuron 1360,768818404x > hidden neuron 1350,260540<
393a -> hidden neuron 1310,274181a -> hidden neuron 1310,280874a -> hidden neuron 1310,202912394x -> hidden neuron 1320,086667x -> hidden neuron 1310,280874a -> hidden neuron 1320,046667395y -> hidden neuron 1320,735165y -> hidden neuron 1320,264523y -> hidden neuron 1320,244309396a -> hidden neuron 1320,056696a -> hidden neuron 1320,138213a -> hidden neuron 1320,095843397x -> hidden neuron 1330,00000x -> hidden neuron 1330,410200x -> hidden neuron 1330,753333398y -> hidden neuron 1330,405099y -> hidden neuron 1330,740797y -> hidden neuron 1330,247213399a -> hidden neuron 1330,927228a -> hidden neuron 1340,761186a -> hidden neuron 1340,82906400x -> hidden neuron 1340,764444x -> hidden neuron 1340,995556x -> hidden neuron 1340,659200401y -> hidden neuron 1340,717509y -> hidden neuron 1340,570111a -> hidden neuron 1340,118433402a -> hidden neuron 1340,089299a -> hidden neuron 1340,570111a -> hidden neuron 1340,768889403x -> hidden neuron 1350,260530x -> hidden neuron 1360,487800x -> hidden neuron 1360,768889403x -> hidden neuron 1360,260534x -> hidden neuron 1360,7678180,767818404x >> hidden neuron 1360,260534x >> hidden neuron 136
394x -> hidden neuron 1320,086667x -> hidden neuron 1320,640600x -> hidden neuron 1320,046667395y -> hidden neuron 1320,735165y -> hidden neuron 1320,264523y -> hidden neuron 1320,24309396a -> hidden neuron 1320,056696a -> hidden neuron 1320,138213a -> hidden neuron 1320,096843397x -> hidden neuron 1330,000000x -> hidden neuron 1330,410200x -> hidden neuron 1330,753333398y -> hidden neuron 1330,400000x -> hidden neuron 1330,740797y -> hidden neuron 1330,247213399a -> hidden neuron 1330,927228a -> hidden neuron 1340,691186a -> hidden neuron 1330,802906400x -> hidden neuron 1340,717509y -> hidden neuron 1340,117407y -> hidden neuron 1340,018833402a -> hidden neuron 1340,089299a -> hidden neuron 1340,570111a -> hidden neuron 1340,194099403x -> hidden neuron 1350,260634x -> hidden neuron 1360,487800x -> hidden neuron 1360,76888404w -> hidden neuron 1350,260634x -> hidden neuron 1360,767811a -> hidden neuron 1360,76888404w -> hidden neuron 1360,260634x -> hidden neuron 1360,7678180,767818404w -> hidden neuron 1360,260634x -> hidden neuron 1360,767818404x -> hidden neuron 1360,260634x -> hidden neuron 1360,260634
395y -> hidden neuron 132 $0,735165$ y -> hidden neuron 132 $0,264523$ y -> hidden neuron 132 $0,244309$ 396a -> hidden neuron 132 $0,056696$ a -> hidden neuron 132 $0,138213$ a -> hidden neuron 132 $0,095843$ 397x -> hidden neuron 133 $0,00000$ x -> hidden neuron 133 $0,410200$ x -> hidden neuron 133 $0,753333$ 398y -> hidden neuron 133 $0,405009$ y -> hidden neuron 133 $0,740797$ y -> hidden neuron 133 $0,247213$ 399a -> hidden neuron 133 $0,927228$ a -> hidden neuron 133 $0,691186$ a -> hidden neuron 133 $0,802906$ 400x -> hidden neuron 134 $0,764444$ x -> hidden neuron 134 $0,995556$ x -> hidden neuron 134 $0,659200$ 401y -> hidden neuron 134 $0,717509$ y -> hidden neuron 134 $0,117407$ y -> hidden neuron 134 $0,018833$ 402a -> hidden neuron 134 $0,08929$ a -> hidden neuron 134 $0,570111$ a -> hidden neuron 134 $0,194099$ 403x -> hidden neuron 135 $0,269634$ x -> hidden neuron 136 $0,487800$ x -> hidden neuron 136 $0,7682818$
396a> hidden neuron 1320,056696a> hidden neuron 1320,138213a> hidden neuron 1320,095843397x> hidden neuron 1330,00000x> hidden neuron 1330,410200x> hidden neuron 1330,753333398y> hidden neuron 1330,405009y> hidden neuron 1330,740797y> hidden neuron 1330,247213399a> hidden neuron 1330,927228a> hidden neuron 1330,691186a> hidden neuron 1330,802906400x> hidden neuron 1340,764444x> hidden neuron 1340,995556x> hidden neuron 1340,659200401y> hidden neuron 1340,717509y> hidden neuron 1340,117407y> hidden neuron 1340,018833402a> hidden neuron 1340,08929a> hidden neuron 1340,570111a> hidden neuron 1340,194099403x> hidden neuron 1350,260634x ->> hidden neuron 1360,487800x> hidden neuron 1360,768889404w -> bidden neuron 1360,260634x ->> hidden neuron 1360,200520x ->> hidden neuron 1360,768889
397x> hidden neuron 1330,00000x> hidden neuron 1330,410200x> hidden neuron 1330,753333398y> hidden neuron 1330,405009y> hidden neuron 1330,740797y> hidden neuron 1330,247213399a> hidden neuron 1330,927228a> hidden neuron 1330,691186a> hidden neuron 1330,802906400x> hidden neuron 1340,764444x> hidden neuron 1340,995556x> hidden neuron 1340,659200401y> hidden neuron 1340,717509y> hidden neuron 1340,117407y> hidden neuron 1340,018833402a> hidden neuron 1340,08929a> hidden neuron 1340,570111a> hidden neuron 1340,194099403x> hidden neuron 1350,260634x ->> hidden neuron 1360,487800x> hidden neuron 1360,768889404w -> bidden neuron 1360,260634x ->> hidden neuron 1360,200529x ->> hidden neuron 1360,7678180404w -> bidden neuron 1360,260634x ->> hidden neuron 1360,200529x ->> hidden neuron 1360,7678189
398y -> hidden neuron 1330,405009y -> hidden neuron 1330,740797y -> hidden neuron 1330,247213399a> hidden neuron 1330,927228a> hidden neuron 1330,691186a> hidden neuron 1330,802906400x> hidden neuron 1340,764444x> hidden neuron 1340,995556x> hidden neuron 1340,659200401y> hidden neuron 1340,717509y> hidden neuron 1340,117407y> hidden neuron 1340,018833402a> hidden neuron 1340,08929a> hidden neuron 1340,570111a> hidden neuron 1340,194099403x> hidden neuron 1350,508108x> hidden neuron 1360,487800x> hidden neuron 1360,76888404w -> bidden neuron 1360,260634w -> bidden neuron 1360,200529w -> hidden neuron 1370,767818
399 a> hidden neuron 133 0,927228 a> hidden neuron 133 0,691186 a> hidden neuron 133 0,802906 400 x> hidden neuron 134 0,764444 x> hidden neuron 134 0,995556 x> hidden neuron 134 0,659200 401 y> hidden neuron 134 0,717509 y> hidden neuron 134 0,117407 y> hidden neuron 134 0,018833 402 a> hidden neuron 134 0,089299 a> hidden neuron 134 0,570111 a> hidden neuron 134 0,194099 403 x> hidden neuron 135 0,58010 x> hidden neuron 135 0,487800 x> hidden neuron 136 0,768889 404 w -> hidden neuron 135 0,206524 w -> hidden neuron 136 0,767818
400 x> hidden neuron 134 0,764444 x> hidden neuron 134 0,995556 x> hidden neuron 134 0,659200 401 y> hidden neuron 134 0,717509 y> hidden neuron 134 0,117407 y> hidden neuron 134 0,018833 402 a> hidden neuron 134 0,08929 a> hidden neuron 134 0,570111 a> hidden neuron 134 0,194099 403 x> hidden neuron 135 0,58100 x> hidden neuron 135 0,487800 x> hidden neuron 136 0,768889 404 y -> bidden neuron 136 0,200520 y -> bidden neuron 136 0,768889
401 y> hidden neuron 134 0,717509 y> hidden neuron 134 0,117407 y> hidden neuron 134 0,018833 402 a> hidden neuron 134 0,089929 a> hidden neuron 134 0,570111 a> hidden neuron 134 0,194999 403 x> hidden neuron 135 0,58100 x> hidden neuron 135 0,487800 x> hidden neuron 135 0,768889 404 w -> hidden neuron 135 0,206534 w -> hidden neuron 136 0,206534
402 a> hidden neuron 134 0,089929 a> hidden neuron 134 0,570111 a> hidden neuron 134 0,194099 403 x> hidden neuron 135 0,538100 x> hidden neuron 135 0,487800 x> hidden neuron 135 0,768889 404 y -> hidden neuron 135 0.250634 y -> hidden neuron 135 0.200529 y -> hidden neuron 135 0.752818
403 x> hidden neuron 135 0,538100 x> hidden neuron 135 0,487800 x> hidden neuron 135 0,768889 404 $y_{}$ > hidden neuron 135 0.250634 $y_{}$ > hidden neuron 135 0.200529 $y_{}$ > hidden neuron 135 0.752818
404 $y > bidden pouron 135$ 0.250634 $y > bidden pouron 135$ 0.200529 $y > bidden pouron 135$ 0.752518
404 y> Indden nedion 155 0,250554 y> Indden nedion 155 0,200525 y> Indden nedion 155 0,752516
405 a> hidden neuron 135 0,409115 a> hidden neuron 135 0,441706 a> hidden neuron 135 0,238165
406 x> hidden neuron 136 0,543000 x> hidden neuron 136 1,00000 x> hidden neuron 136 0,828889
407 y> hidden neuron 136 0,339477 y> hidden neuron 136 0,994109 y> hidden neuron 136 0,315731
408 a> hidden neuron 136 0,120730 a> hidden neuron 136 0,196040 a> hidden neuron 136 0,679723
409 x> hidden neuron 137 0,771111 x> hidden neuron 137 0,248500 x> hidden neuron 137 0,488800
410 y> hidden neuron 137 0,652772 y> hidden neuron 137 0,481140 y> hidden neuron 137 0,793765
411 a> hidden neuron 137 0,813816 a> hidden neuron 137 0,919182 a> hidden neuron 137 0,193598
412 x> hidden neuron 138 0,702222 x> hidden neuron 138 0,784444 x> hidden neuron 138 0,513700
413 y → hidden neuron 138 0,202/11 y → hidden neuron 138 0,646541 y → hidden neuron 138 0,836012
414 a → hidden neuron 138 U,U//1/1 a → hidden neuron 138 U,565605 a → hidden neuron 138 U,639162

		Network weights (Таблиця	a_/_9_відтв.)				
🎰 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 🔤 SANN (Таблі	415	x> hidden neuron 139	0,378900	x> hidden neuron 139	0,635700	x> hidden neuron 139	0,612300
🖶 📴 O_1	416	y> hidden neuron 139	0,519265	y> hidden neuron 139	0,964654	y> hidden neuron 139	0,693594
🕀 🔁 O_2	417	a> hidden neuron 139	0,097266	a> hidden neuron 139	0,090194	a> hidden neuron 139	0,647975
	418	x> hidden neuron 140	0,204444	x> hidden neuron 140	0,502900	x> hidden neuron 140	0,073333
÷ 0 4	419	y> hidden neuron 140	0,056179	y> hidden neuron 140	0,363367	y> hidden neuron 140	0,000244
— 2M Диаграм	420	a> hidden neuron 140	0,502007	a> hidden neuron 140	0,474535	a> hidden neuron 140	0,666503
Паграми	421	x> hidden neuron 141	0,487800	x> hidden neuron 141	0,217778	x> hidden neuron 141	0,259800
Пиаграми	422	y> hidden neuron 141	0,201310	y> hidden neuron 141	0,523702	y> hidden neuron 141	0,687702
Диаграми	423	a> hidden neuron 141	0,442848	a> hidden neuron 141	0,352957	a> hidden neuron 141	0,854283
	424	x> hidden neuron 142	0,647000	x> hidden neuron 142	0,548300	x> hidden neuron 142	0,340800
Палина 20	425	y> hidden neuron 142	0,473843	y> hidden neuron 142	0,846834	y> hidden neuron 142	0,611100
Польша_20_	426	a> hidden neuron 142	0,488794	a> hidden neuron 142	0,459275	a> hidden neuron 142	0,931598
Польша_20_	427	x> hidden neuron 143	0,688889	x> hidden neuron 143	0,634800	x> hidden neuron 143	0,446300
⊞ _ <u></u> дис_а_/_8	428	y> hidden neuron 143	0,165593	y> hidden neuron 143	0,563861	y> hidden neuron 143	0,490329
B and a set of the set	429	a> hidden neuron 143	0,267375	a> hidden neuron 143	0,979419	a> hidden neuron 143	0,951127
🖻 🏧 Scatterplc	430	x> hidden neuron 144	0,368700	x> hidden neuron 144	0,231900	x> hidden neuron 144	0,452600
👘 Histor	431	y> hidden neuron 144	0,136778	y> hidden neuron 144	0,006846	y> hidden neuron 144	0,251120
Network weig	432	a> hidden neuron 144	0,045945	a> hidden neuron 144	0,337798	a> hidden neuron 144	0,666002
	433	x> hidden neuron 145	0,008889	x> hidden neuron 145	0,300300	x> hidden neuron 145	0,855556
	434	y> hidden neuron 145	0,439226	y> hidden neuron 145	0,137937	y> hidden neuron 145	0,120597
	435	a> hidden neuron 145	0,603608	a> hidden neuron 145	0,629946	a> hidden neuron 145	0,186288
	436	x> hidden neuron 146	0,627900	x> hidden neuron 146	0,084444	x> hidden neuron 146	0,802222
	437	y> hidden neuron 146	0,238928	y> hidden neuron 146	0,911635	y> hidden neuron 146	0,262440
	438	a> hidden neuron 146	0,600705	a> hidden neuron 146	0,174054	a> hidden neuron 146	0,506164
	439	x> hidden neuron 147	0,971111	x> hidden neuron 147	0,278300	x> hidden neuron 147	0,768889
	440	y> hidden neuron 147	0,705739	y> hidden neuron 147	0,923417	y> hidden neuron 147	0,605208
	441	a> hidden neuron 147	0,256564	a> hidden neuron 147	0,868684	a> hidden neuron 147	0,536910
	442	x> hidden neuron 148	0,011111	x> hidden neuron 148	0,048889	x> hidden neuron 148	0,625000
	443	y> hidden neuron 148	0,090373	y> hidden neuron 148	0,347144	y> hidden neuron 148	0,876259
	444	a> hidden neuron 148	0,467773	a> hidden neuron 148	0,961248	a> hidden neuron 148	0,375069
	115	v> hidden neuron 1/19	0 333000	v> hidden neuron 1/9	0 /73100	v> hidden neuron 1/19	0 338900

늘 Рабочая_а_7_9_е<		Network weights (Таблиця	а 7 9 відтв.)					
🎚 📑 2М Диаграм		Connections	Weight values	Connections		Weight values	Connections	Weight values
📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1		2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🖶 🔤 SANN (Таблі	445	x> hidden neuron 149	0,333000	x> hidden neuron	149	0,473100	x> hidden neuron 149	0,338900
🖶 📴 O_1	446	y> hidden neuron 149	0,338577	y> hidden neuron	149	0,436174	y> hidden neuron 149	0,011010
🕀 📑 O_2	447	a> hidden neuron 149	0,375882	a> hidden neuron	149	0,458371	a> hidden neuron 149	0,264504
🖶 📴 O_3	448	x> hidden neuron 150	0,295900	x> hidden neuron	150	0,795556	x> hidden neuron 150	0,180000
⊕ <mark>]</mark> 0_4	449	y> hidden neuron 150	0,788132	y> hidden neuron	150	0,288958	y> hidden neuron 150	0,580784
🚊 🔤 2М Диаграм	450	a> hidden neuron 150	0,151060	a> hidden neuron	150	0,651029	a> hidden neuron 150	0,463601
- 🌇 Диаграмі	451	x> hidden neuron 151	0,657200	x> hidden neuron	151	0,585900	x> hidden neuron 151	0,354500
- 🌇 Диаграмі	452	y> hidden neuron 151	0,746935	y> hidden neuron	151	0,61/086	y> hidden neuron 151	0,622885
- 🌇 Диаграмі	453	a> hidden neuron 151	0,145154	a> hidden neuron	151	0,475539	a> hidden neuron 151	0,687034
🌆 Диаграмі	454	x> hidden neuron 152	0,702222	x> hidden neuron	152	0,433000	x> nidden neuron 152	0,971111
- 🌇 Польша_20_	455	y> hidden neuron 152	0,403509	y> hidden neuron	152	0,023271	y> hidden neuron 152	0,075917
📲 Польша_20_	450	x> hidden neuron 152	0,527055	x> hidden neuron	152	0,473434	x -> hidden neuron 152	0,032755
🎰 🏧 дис_а_7_8	458	v> hidden neuron 153	0.283350	v> hidden neuron	153	0,014186	v> hidden neuron 153	0.882152
🛓 🌆 3D Wafer Plo	459	a> hidden neuron 153	0 947248	a> hidden neuron	153	0.891172	a> hidden neuron 153	0.874313
🖨 🌇 Scatterplc	460	x> hidden neuron 154	0.302700	x> hidden neuron	154	0.931111	x> hidden neuron 154	0.131111
📲 Histor	461	v> hidden neuron 154	0.764591	v> hidden neuron	154	0.699560	v> hidden neuron 154	0.499645
Network weig	462	a> hidden neuron 154	0,005375	a> hidden neuron	154	0,357374	a> hidden neuron 154	0,253287
	463	x> hidden neuron 155	0,304700	x> hidden neuron	155	0,251000	x> hidden neuron 155	0,532700
	464	y> hidden neuron 155	0,585698	y> hidden neuron	155	0,652432	y> hidden neuron 155	0,487925
	465	a> hidden neuron 155	0,132441	a> hidden neuron	155	0,676529	a> hidden neuron 155	0,194600
	466	x> hidden neuron 156	0,104444	x> hidden neuron	156	0,464800	x> hidden neuron 156	0,549800
	467	y> hidden neuron 156	0,371793	y> hidden neuron	156	0,605304	y> hidden neuron 156	0,752518
	468	a> hidden neuron 156	0,936938	a> hidden neuron	156	0,887257	a> hidden neuron 156	0,585382
	469	x> hidden neuron 157	0,753333	x> hidden neuron	157	0,971111	x> hidden neuron 157	0,142222
	470	y> hidden neuron 157	0,248133	y> hidden neuron	157	0,090956	y> hidden neuron 157	0,640562
	4/1	a> hidden neuron 157	0,802504	a> hidden neuron	157	0,708354	a> hidden neuron 157	0,286036
	472	x> hidden neuron 158	0,206667	x> hidden neuron	158	0,295400	x> hidden neuron 158	0,828889
	473	y> hidden neuron 158	0,566188	y> nidden neuron	158	0,058680	y> hidden neuron 158	0,213055
	474	a> hidden neuron 150	0,175404	a> hidden neuron	150	0,244631	a> nidden neuron 156	0,252200
	475	x> hidden neuron 159	0,717770	x> hidden neuron	155	0,423000	x -> hidden neuron 159	0,275300
	477	a> hidden neuron 159	0 216524	a> hidden neuron	159	0,324704	a> hidden neuron 159	0.414728
	478	x> hidden neuron 160	0 457000	x> hidden neuron	160	0,660600	x> hidden neuron 160	0.988889
	479	v> hidden neuron 160	0.316066	v> hidden neuron	160	0.373582	v> hidden neuron 160	0,699486
	480	a> hidden neuron 160	0.425731	a> hidden neuron	160	0.521118	a> hidden neuron 160	0.943816
	481	x> hidden neuron 161	0.578400	x> hidden neuron	161	0,762222	x> hidden neuron 161	0,168889
	482	y> hidden neuron 161	0,019781	y> hidden neuron	161	0,782034	y> hidden neuron 161	0,051108
	483	a> hidden neuron 161	0,741744	a> hidden neuron	161	0,099963	a> hidden neuron 161	0,420036
	484	x> hidden neuron 162	0,610400	x> hidden neuron	162	0,217778	x> hidden neuron 162	0,960000
	485	y> hidden neuron 162	0,045434	y> hidden neuron	162	0,882180	y> hidden neuron 162	0,418907
	486	a> hidden neuron 162	0,692596	a> hidden neuron	162	0,716687	a> hidden neuron 162	0,975564
	487	x> hidden neuron 163	0,922222	x> hidden neuron	163	0,673333	x> hidden neuron 163	0,264600
	488	y> hidden neuron 163	0,858755	y> hidden neuron	163	0,870398	y> hidden neuron 163	0,946968

🧁 Рабочая_а_7_9_е<		Network weights (Таблиця	_а_7_9_відтв.)				
🎚 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 📴 SANN (Таблі	488	y> hidden neuron 163	0,858755	y> hidden neuron 163	0,870398	y> hidden neuron 163	0,946968
🖶 📴 O_1	489	a> hidden neuron 163	0,129538	a> hidden neuron 163	0,470118	a> hidden neuron 163	0,557941
i⊞ 📴 0_2	490	x> hidden neuron 164	0,124444	x> hidden neuron 164	0,304200	x> hidden neuron 164	0,988889
	491	y> hidden neuron 164	0,106464	y> hidden neuron 164	0,024451	y> hidden neuron 164	0,911614
⊕ □ 0_4	492	a> hidden neuron 164	0,043013	a> hidden neuron 164	0,092644	a> hidden neuron 164	0,269411
🖃 📴 2М Диаграм	493	x> hidden neuron 165	0,940000	x> hidden neuron 165	0,080000	x> hidden neuron 165	0,652300
Парадиаграми	494	y> hidden neuron 165	0,185602	y> hidden neuron 165	0,699560	y> hidden neuron 165	0,670024
🖓 Диаграмі	495	a> hidden neuron 165	0,114323	a> hidden neuron 165	0,598020	a> hidden neuron 165	0,073840
Пиаграми	496	x> hidden neuron 166	0,904444	x> hidden neuron 166	0,588900	x> hidden neuron 166	0,937778
Диаграми	497	y> hidden neuron 166	0,450432	y> hidden neuron 166	0,261618	y> hidden neuron 166	0,172886
	498	a> hidden neuron 166	0,699903	a> hidden neuron 166	0,513689	a> hidden neuron 166	0,963345
	499	x> hidden neuron 167	0,775556	x> hidden neuron 167	0,666667	x> hidden neuron 167	0,502900
	500	y> hidden neuron 167	0,952918	y> hidden neuron 167	0,427361	y> hidden neuron 167	0,363212
н тарарана предоставите на	501	a> hidden neuron 167	0,952553	a> hidden neuron 167	0,292620	a> hidden neuron 167	0,475819
B. 20 Water Plo	502	x> hidden neuron 168	0,680000	x> hidden neuron 168	0,784444	x> hidden neuron 168	0,408200
Scatterplc	503	y> hidden neuron 168	0,817558	y> hidden neuron 168	0,028367	y> hidden neuron 168	0,133319
Histor	504	a> hidden neuron 168	0,935036	a> hidden neuron 168	0,394621	a> hidden neuron 168	0,110975
Network weig	505	x> hidden neuron 169	0,606400	x> hidden neuron 169	0,200000	x> hidden neuron 169	0,151111
	506	y> hidden neuron 169	0,252535	y> hidden neuron 169	0,994109	y> hidden neuron 169	0,823227
	507	a> hidden neuron 169	0,759061	a> hidden neuron 169	0,902918	a> hidden neuron 169	0,827843
	508	x> hidden neuron 170	0,253900	x> hidden neuron 170	0,117778	x> hidden neuron 170	0,788889
	509	y> hidden neuron 170	0,894066	y> hidden neuron 170	0,888071	y> hidden neuron 170	0,693594
	510	a> hidden neuron 170	0,973173	a> hidden neuron 170	0,294628	a> hidden neuron 170	0,899250
	511	x> hidden neuron 171	0,615700	x> hidden neuron 171	0,611300	x> hidden neuron 171	0,635700
	512	y> hidden neuron 171	0,317567	y> hidden neuron 171	0,835052	y> hidden neuron 171	0,964645
	513	a> hidden neuron 171	0,019549	a> hidden neuron 171	0,281376	a> hidden neuron 171	0,092418
	514	x> hidden neuron 172	0,782222	x> hidden neuron 172	0,848889	x> hidden neuron 172	0,499500
	515	y> hidden neuron 172	0,468540	y> hidden neuron 172	0,593522	y> hidden neuron 172	0,864474
	516	a> hidden neuron 172	0,406212	a> hidden neuron 172	0,959842	a> hidden neuron 172	0,274819
	517	x> hidden neuron 173	0,077778	x> hidden neuron 173	0,547100	x> hidden neuron 173	0,993333
	518	y> hidden neuron 173	0,876410	y> hidden neuron 173	0,300475	y> hidden neuron 173	0,380742
	519	a> hidden neuron 173	0,040080	a> hidden neuron 173	0,145341	a> hidden neuron 173	0,622538
	520	x> hidden neuron 174	0,053333	x> hidden neuron 174	0,162222	x> hidden neuron 174	0,428200

🗁 Рабочая_а_7_9_е<		Network weights (Таблиця	а 7 9 відтв.)				
🗄 🛅 2M Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 🔁 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🔤 SANN (Таблі	521	y> hidden neuron 174	0,629231	y> hidden neuron 174	0,776143	y> hidden neuron 174	0,003668
ia. 🔁 0_1	522	a> hidden neuron 174	0,707711	a> hidden neuron 174	0,897096	a> hidden neuron 174	0,082152
🕀 🔁 O 2	523	x> hidden neuron 175	0,371600	x> hidden neuron 175	0,842222	x> hidden neuron 175	0,797778
a 🔁 0 3	524	y> hidden neuron 175	0,381998	y> hidden neuron 175	0,387302	y> hidden neuron 175	0,399374
in □ 0 4	525	a> hidden neuron 175	0,373380	a> hidden neuron 175	0,385786	a> hidden neuron 175	0,220539
— 🦾 🚄 – – – – – – – – – – – – – – – – – –	526	x> hidden neuron 176	0,510300	x> hidden neuron 176	0,120000	x> hidden neuron 176	0,465800
Пиаграми	527	y> hidden neuron 176	0,321469	y> hidden neuron 176	0,349146	y> hidden neuron 176	0,988215
Диаграми	528	a> hidden neuron 176	0,930631	a> hidden neuron 176	0,371129	a> hidden neuron 176	0,055252
Диаграми	529	x> hidden neuron 177	0,644500	x> hidden neuron 177	0,131111	x> hidden neuron 177	0,606000
Пистрами	530	y> hidden neuron 177	0,378597	y> hidden neuron 177	0,593522	y> hidden neuron 177	0,522083
Диаграмі	531	a> hidden neuron 177	0,613417	a> hidden neuron 177	0,627436	a> hidden neuron 177	0,858689
Польша_20_	532	x> hidden neuron 178	0,344700	x> hidden neuron 178	0,603000	x> hidden neuron 178	0,585000
Польша_20_	533	y> hidden neuron 178	0,935263	y> hidden neuron 178	0,776143	y> hidden neuron 178	0,670024
	534	a> hidden neuron 178	0,207716	a> hidden neuron 178	0,561276	a> hidden neuron 178	0,706663
B Wafer Plo	535	x> hidden neuron 179	0,299800	x> hidden neuron 179	0,860000	x> hidden neuron 179	0,860000
🖻 🌇 Scatterplc	536	y> hidden neuron 179	0,504658	y> hidden neuron 179	0,056728	y> hidden neuron 179	0,593423
	537	a> hidden neuron 179	0,334841	a> hidden neuron 179	0,909344	a> hidden neuron 179	0,384383
Network weig	538	x> hidden neuron 180	0,811111	x> hidden neuron 180	0,175556	x> hidden neuron 180	0,691111
	539	y> hidden neuron 180	0,168994	y> hidden neuron 180	0,128623	y> hidden neuron 180	0,300605
	540	a> hidden neuron 180	0,981482	a> hidden neuron 180	0,960846	a> hidden neuron 180	0,663599
	541	x> hidden neuron 181	0,731111	x> hidden neuron 181	0,868889	x> hidden neuron 181	0,857778
	542	y> hidden neuron 181	0,508060	y> hidden neuron 181	0,005379	y> hidden neuron 181	1,000000
	543	a> hidden neuron 181	0,839741	a> hidden neuron 181	0,496120	a> hidden neuron 181	0,559444
	544	x> hidden neuron 182	0,459500	x> hidden neuron 182	0,713333	x> hidden neuron 182	0,407700
	545	y> hidden neuron 182	0,286251	y> hidden neuron 182	0,229872	y> hidden neuron 182	0,362711
	546	a> hidden neuron 182	0,551356	a> hidden neuron 182	0,514191	a> hidden neuron 182	0,069433
	547	x> hidden neuron 183	0,577100	x> hidden neuron 183	0,497100	x> hidden neuron 183	0,153333
	548	y> hidden neuron 183	0,758706	y> hidden neuron 183	0,770252	y> hidden neuron 183	0,929291
	549	a> hidden neuron 183	0,495100	a> hidden neuron 183	0,649021	a> hidden neuron 183	0,542819
	550	x> hidden neuron 184	0,188889	x> hidden neuron 184	0,711111	x> hidden neuron 184	0,290000
	551	y> hidden neuron 184	0,835214	y> hidden neuron 184	0,994109	y> hidden neuron 184	0,333862
	552	a> hidden neuron 184	0,788891	a> hidden neuron 184	0,601032	a> hidden neuron 184	0,544221
	553	x> hidden neuron 185	0,309100	x> hidden neuron 185	0,075556	x> hidden neuron 185	0,599900
	554	y> hidden neuron 185	0,069363	y> hidden neuron 185	0,351149	y> hidden neuron 185	0,024453
	555	a> hidden neuron 185	0,435942	a> hidden neuron 185	0,118134	a> hidden neuron 185	0,986580
	556	x> hidden neuron 186	0,611300	x> hidden neuron 186	0,391600	x> hidden neuron 186	0,661100
	557	y> hidden neuron 186	0,835214	y> hidden neuron 186	0,388704	y> hidden neuron 186	0,605208
	558	a> hidden neuron 186	0,282990	a> hidden neuron 186	0,033331	a> hidden neuron 186	0,610820
	559	x> hidden neuron 187	0,748889	x> hidden neuron 187	0,817778	x> hidden neuron 187	0,208889
	560	y> hidden neuron 187	0,349282	y> hidden neuron 187	0,811489	y> hidden neuron 187	0,964645
	561	a> hidden neuron 187	0,623127	a> hidden neuron 187	0,314205	a> hidden neuron 187	0,751630
	562	x> hidden neuron 188	0,708889	x> hidden neuron 188	0,636700	x> hidden neuron 188	0,842222
	563	y> hidden neuron 188	0,829328	y> hidden neuron 188	0,057209	y> hidden neuron 188	0,646455
	564	a> hidden neuron 188	0,706710	a> hidden neuron 188	0,338199	a> hidden neuron 188	0,479725
	505		0.040000	200	A 711111	. 1111 400	0.044500

⊳ ÷

÷...

÷...

Рабочая_а_7_9_е<		Network weights (Таблиця а 7 9	відтв.)				
_i 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
_马 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
撁 SANN (Таблі	564	a> hidden neuron 188	0,706710	a> hidden neuron 188	0,338199	a> hidden neuron 188	0,479725
🗄 📴 0_1	565	x> hidden neuron 189	0,642600	x> hidden neuron 189	0,744444	x> hidden neuron 189	0,311500
🗄 📴 O_2	566	y> hidden neuron 189	0,994115	y> hidden neuron 189	0,105089	y> hidden neuron 189	0,429725
🗄 🛅 O_3	567	a> hidden neuron 189	0,189197	a> hidden neuron 189	0,796099	a> hidden neuron 189	0,385785
÷ 🔁 0_4	568	x> hidden neuron 190	0,711111	x> hidden neuron 190	0,228500	x> hidden neuron 190	0,017778
👍 2M Диаграм	569	y> hidden neuron 190	0,599805	y> hidden neuron 190	0,344740	y> hidden neuron 190	0,117592
🖓 Диаграмі	570	a> hidden neuron 190	0,465771	a> hidden neuron 190	0,885349	a> hidden neuron 190	0,314479
Пиаграми	571	x> hidden neuron 191	0,691111	x> hidden neuron 191	0,498000	x> hidden neuron 191	0,757778
Диаграми	572	y> hidden neuron 191	0,092816	y> hidden neuron 191	0,098291	y> hidden neuron 191	0,929291
Диаграми	573	a> hidden neuron 191	0,115324	a> hidden neuron 191	0,371530	a> hidden neuron 191	0,638161
	574	x> hidden neuron 192	0,417000	x> hidden neuron 192	0,080000	x> hidden neuron 192	0,848889
	575	y> hidden neuron 192	0,559385	y> hidden neuron 192	0,430766	y> hidden neuron 192	0,561250
тольша_20_	576	a> hidden neuron 192	0,499004	a> hidden neuron 192	0,375546	a> hidden neuron 192	0,084105
аруна_7_8	577	x> hidden neuron 193	0,886667	x> hidden neuron 193	0,904444	x> hidden neuron 193	0,706667
3D Water Plo	578	y> hidden neuron 193	0,215417	y> hidden neuron 193	0,817380	y> hidden neuron 193	0,699486
Scatterplc	579	a> hidden neuron 193	0,342649	a> hidden neuron 193	0,277460	a> hidden neuron 193	0,350132
Histog	580	x> hidden neuron 194	0,880000	x> hidden neuron 194	0,797778	x> hidden neuron 194	0,100000
Network weig	581	y> hidden neuron 194	0,385400	y> hidden neuron 194	0,858616	y> hidden neuron 194	0,071166
	582	a> hidden neuron 194	0,454060	a> hidden neuron 194	0,169637	a> hidden neuron 194	0,173068
	583	x> hidden neuron 195	0,243700	x> hidden neuron 195	0,561500	x> hidden neuron 195	0,300800
	584	y> hidden neuron 195	0,511962	y> hidden neuron 195	0,179498	y> hidden neuron 195	0,471797
	585	a> hidden neuron 195	0,671575	a> hidden neuron 195	0,635267	a> hidden neuron 195	0,081662
	586	radial spread hidden neuron 1	0,125204	x> hidden neuron 196	0,545400	x> hidden neuron 196	0,068889
	587	radial spread hidden neuron 2	0,056441	y> hidden neuron 196	0,309088	y> hidden neuron 196	0,562252
	588	radial spread hidden neuron 3	0,133120	a> hidden neuron 196	0,997591	a> hidden neuron 196	0,566254
	589	radial spread hidden neuron 4	0,120569	x> hidden neuron 197	0,441400	x> hidden neuron 197	0,935556
	590	radial spread hidden neuron 5	0,099211	y> hidden neuron 197	0,958763	y> hidden neuron 197	0,554939
	591	radial spread hidden neuron 6	0,100425	a> hidden neuron 197	0,157891	a> hidden neuron 197	0,010265
	592	radial spread hidden neuron 7	0,133120	x> hidden neuron 198	0,594700	x> hidden neuron 198	0,122222
	593	radial spread hidden neuron 8	0,108759	y> hidden neuron 198	0,687778	y> hidden neuron 198	0,723056
	594	radial spread hidden neuron 9	0,141548	a> hidden neuron 198	0,958838	a> hidden neuron 198	0,998999
	595	radial spread hidden neuron 10	0,108227	x> hidden neuron 199	0,580600	x> hidden neuron 199	0,486800
	596	radial spread hidden neuron 11	0,110010	y> hidden neuron 199	0,297271	y> hidden neuron 199	0,328452
	597	radial spread hidden neuron 12	0.069595	a> hidden neuron 199	0.075979	a> hidden neuron 199	0.610319

🗁 Рабочая_а_7_9_е<		Network weights (Таблиця а 7 9	відтв.)				
🛓 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 🔤 SANN (Таблі	598	radial spread hidden neuron 13	0,079803	x> hidden neuron 200	0,817778	x> hidden neuron 200	0,062222
🖶 📴 0_1	599	radial spread hidden neuron 14	0,097344	y> hidden neuron 200	0,717233	y> hidden neuron 200	0,436537
🖶 🦲 O_2	600	radial spread hidden neuron 15	0,072465	a> hidden neuron 200	0,740681	a> hidden neuron 200	0,187289
	601	radial spread hidden neuron 16	0,138717	x> hidden neuron 201	0,571300	x> hidden neuron 201	0,831111
🖶 🔂 0 4	602	radial spread hidden neuron 17	0,116436	y> hidden neuron 201	0,365270	y> hidden neuron 201	0,693594
🖃 📴 2М Диаграм	603	radial spread hidden neuron 18	0,111630	a> hidden neuron 201	0,825514	a> hidden neuron 201	0,050365
- 🖓 Диаграмі	604	radial spread hidden neuron 19	0,155913	x> hidden neuron 202	0,464400	x> hidden neuron 202	0,335900
Пиаграми	605	radial spread hidden neuron 20	0,098824	y> hidden neuron 202	0,758470	y> hidden neuron 202	0,864474
Пиаграми	606	radial spread hidden neuron 21	0,069000	a> hidden neuron 202	0,339705	a> hidden neuron 202	0,727194
Пиаграми	607	radial spread hidden neuron 22	0,108227	x> hidden neuron 203	0,133333	x> hidden neuron 203	0,771111
Польша 20	608	radial spread hidden neuron 23	0,125482	y> hidden neuron 203	0,033254	y> hidden neuron 203	0,846797
	609	radial spread hidden neuron 24	0,090496	a> hidden neuron 203	0,603442	a> hidden neuron 203	0,864598
	610	radial spread hidden neuron 25	0,175257	x> hidden neuron 204	0,102222	x> hidden neuron 204	0,088889
	611	radial spread hidden neuron 26	0,041436	y> hidden neuron 204	0,507078	y> hidden neuron 204	0,380241
SD water Plo	612	radial spread hidden neuron 27	0,149670	a> hidden neuron 204	0,083338	a> hidden neuron 204	0,967251
	613	radial spread hidden neuron 28	0,117669	x> hidden neuron 205	0,224600	x> hidden neuron 205	0,625500
Histor	614	radial spread hidden neuron 29	0,098189	y> hidden neuron 205	0,717233	y> hidden neuron 205	0,259935
Metwork weig	615	radial spread hidden neuron 30	0,129216	a> hidden neuron 205	0,834349	a> hidden neuron 205	0,580976
	616	radial spread hidden neuron 31	0,130885	x> hidden neuron 206	0,044444	x> hidden neuron 206	0,042222
	617	radial spread hidden neuron 32	0,138183	y> hidden neuron 206	0,426860	y> hidden neuron 206	0,840905
	618	radial spread hidden neuron 33	0,122283	a> hidden neuron 206	0,544108	a> hidden neuron 206	0,621536
	619	radial spread hidden neuron 34	0,059396	x> hidden neuron 207	0,768889	x> hidden neuron 207	0,229000
	620	radial spread hidden neuron 35	0,097344	y> hidden neuron 207	0,222461	y> hidden neuron 207	0,976430
	621	radial spread hidden neuron 36	0,133005	a> hidden neuron 207	0,490196	a> hidden neuron 207	0,086068
	622	radial spread hidden neuron 37	0,109404	x> hidden neuron 208	0,886667	x> hidden neuron 208	0,553700
	623	radial spread hidden neuron 38	0,106725	y> hidden neuron 208	0,658323	y> hidden neuron 208	0,893936
	624	radial spread hidden neuron 39	0,067618	a> hidden neuron 208	0,978415	a> hidden neuron 208	0,1/45/0
	625	radial spread hidden neuron 40	0,124890	x> hidden neuron 209	0,951111	x> hidden neuron 209	0,483400
	626	radial spread hidden neuron 41	0,126140	y> hidden neuron 209	0,020044	y> hidden neuron 209	0,852689
	627	radial spread hidden neuron 42	0,125482	a> hidden neuron 209	0,199052	a> hidden neuron 209	0,964848
	628	radial spread hidden neuron 43	0,054337	x> hidden neuron 210	0,682222	x> hidden neuron 210	0,538100
	629	radial spread hidden neuron 44	0,157601	y> hidden neuron 210	0,681887	y> hidden neuron 210	0,249718
	630	radial spread hidden neuron 45	0,239589	a> nidden neuron 210	0,883844	a> hidden neuron 210	0,409320
	031	radial spread hidden neuron 46	0,165401	x> hidden neuron 211	0,200007	x> nidden neuron 211	0,933333
	032	radial spread hidden neuron 47	0,096624	y> hidden neuron 211	0,505764	y> hidden neuron 211	0,946966
	633	radial spread hidden neuron 46	0,000427	a> hidden neuron 211	0,173552	a> hidden neuron 211	0,060640
	034	radial spread hidden neuron 49	0,000437	x> hidden neuron 212	0,104444	x> nidden neuron 212	0,722222
	635	radial apread hidden neuron 50	0,050555	y> hidden neuron 212	0,109/13	y> hidden neuron 212	0,007/02
	637	radial enroad hidden neuron 51	0,051613	a> nidden neuron 212	0,195039	a> nidden neuron 212	0,093890
	638	radial aproad hiddon neuron 52	0,120204	x> hidden neuron 213	0,050000	x> hidden neuron 213	0.888044
	630	radial enread hidden neuron 54	0,034070	y> hidden neuron 213	0,302327	y> hidden neuron 213	0,000044
	640	radial enread hidden neuron 55	0,144400	x -> hidden neuron 213	0.984444	x -> hidden neuron 213	0.200410
	6/1	radial spread hidden neuron 56	0,113507	v> hidden neuron 214	0,504444	v -> hidden neuron 214	0,202200
	140	P P P P P P P P P P P P P P P P P P P	0,103242	y > muder rearon 214	0,010103	, 1111 A44	0,022003

D. C							
Рабочая_а_/_9_е		Network weights (Таблиця_a_7_9	_відтв.)				
на и диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 👍 SANN (Таблі	642	radial spread hidden neuron 57	0,148711	a> hidden neuron 214	0,064704	a> hidden neuron 214	0,020050
i∎ 📑 0_1	643	radial spread hidden neuron 58	0,056551	x> hidden neuron 215	0,329600	x> hidden neuron 215	0,222222
🖶 📑 O_2	644	radial spread hidden neuron 59	0,126594	y> hidden neuron 215	0,817380	y> hidden neuron 215	0,341174
🖶 📴 O_3	645	radial spread hidden neuron 60	0,137211	a> hidden neuron 215	0,176965	a> hidden neuron 215	0,458693
	646	radial spread hidden neuron 61	0,126296	x> hidden neuron 216	0,122222	x> hidden neuron 216	0,955556
🖃 📴 2М Диаграм	647	radial spread hidden neuron 62	0,186869	y> hidden neuron 216	0,723124	y> hidden neuron 216	0,923398
🖓 Диаграмі	648	radial spread hidden neuron 63	0,148711	a> hidden neuron 216	0,998996	a> hidden neuron 216	0,704159
- 🖓 Диаграмі	649	radial spread hidden neuron 64	0,129927	x> hidden neuron 217	0,279300	x> hidden neuron 217	0,962222
Пиаграми	650	radial spread hidden neuron 65	0,128253	y> hidden neuron 217	0,192217	y> hidden neuron 217	0,611100
Диаграми	651	radial spread hidden neuron 66	0,115430	a> hidden neuron 217	0,151967	a> hidden neuron 217	0,181881
Польша 20	652	radial spread hidden neuron 67	0,054337	x> hidden neuron 218	0,370600	x> hidden neuron 218	0,846667
	653	radial spread hidden neuron 68	0,126594	y> hidden neuron 218	0,599413	y> hidden neuron 218	0,699486
	654	radial spread hidden neuron 69	0,056551	a> hidden neuron 218	0,120142	a> hidden neuron 218	0,298755
на страни с	655	radial spread hidden neuron 70	0,094006	x> hidden neuron 219	0,222222	x> hidden neuron 219	0,495600
B 3D Water Plo	656	radial spread hidden neuron 71	0,065526	y> hidden neuron 219	0,341335	y> hidden neuron 219	0,976430
🖻 🚰 Scatterple	657	radial spread hidden neuron 72	0,135372	a> hidden neuron 219	0,457367	a> hidden neuron 219	0,998598
	658	radial spread hidden neuron 73	0,057785	x> hidden neuron 220	0,822222	x> hidden neuron 220	0,268600
Network weig	659	radial spread hidden neuron 74	0,053196	y> hidden neuron 220	0,245495	y> hidden neuron 220	0,723056
	660	radial spread hidden neuron 75	0,130558	a> hidden neuron 220	0,404460	a> hidden neuron 220	0,992188
	661	radial spread hidden neuron 76	0,093278	x> hidden neuron 221	0,802222	x> hidden neuron 221	0,722222
	662	radial spread hidden neuron 77	0,060573	y> hidden neuron 221	0,233777	y> hidden neuron 221	0,840905
	663	radial spread hidden neuron 78	0,057122	a> hidden neuron 221	0,549530	a> hidden neuron 221	0,959440
	664	radial spread hidden neuron 79	0,141848	x> hidden neuron 222	0,188889	x> hidden neuron 222	0,324200
	665	radial spread hidden neuron 80	0,191381	y> hidden neuron 222	0,467019	y> hidden neuron 222	0,370023
	666	radial spread hidden neuron 81	0,144466	a> hidden neuron 222	0,237303	a> hidden neuron 222	0,277223
	667	radial spread hidden neuron 82	0,094639	x> hidden neuron 223	0,820000	x> hidden neuron 223	0,202222
	668	radial spread hidden neuron 83	0,086791	y> hidden neuron 223	0,346242	y> hidden neuron 223	0,270253
	669	radial spread hidden neuron 84	0,057785	a> hidden neuron 223	0,540695	a> hidden neuron 223	0,952129
	670	radial spread hidden neuron 85	0,065526	x> hidden neuron 224	0,598600	x> hidden neuron 224	0,817778
	671	radial spread hidden neuron 86	0,144379	y> hidden neuron 224	0,541328	y> hidden neuron 224	0,687702
	672	radial spread hidden neuron 87	0,054947	a> hidden neuron 224	0,296134	a> hidden neuron 224	0,365254
	673	radial spread hidden neuron 88	0,146138	x> hidden neuron 225	0,915556	x> hidden neuron 225	0,512700
	674	radial spread hidden neuron 89	0,121577	y> hidden neuron 225	0,440080	y> hidden neuron 225	0,032527
	675	radial spread hidden neuron 90	0,135372	a> hidden neuron 225	0,948598	a> hidden neuron 225	0,352535
	676	radial spread hidden neuron 91	0,113139	x> hidden neuron 226	0,704444	x> hidden neuron 226	0,418900
	677	radial spread hidden neuron 92	0,111630	y> hidden neuron 226	0,326113	y> hidden neuron 226	0,063829

🗁 Рабочая_а_7_9_е<		Network weights (Taблица a 7 9	відтв.)				
🛓 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 📴 SANN (Таблі	678	radial spread hidden neuron 93	0,136444	a> hidden neuron 226	0,974500	a> hidden neuron 226	0,822035
🕀 📑 O_1	679	radial spread hidden neuron 94	0,054947	x> hidden neuron 227	0,702222	x> hidden neuron 227	0,377900
🕀 📑 O_2	680	radial spread hidden neuron 95	0,123217	y> hidden neuron 227	0,000977	y> hidden neuron 227	0,488426
🕀 📴 O_3	681	radial spread hidden neuron 96	0,102480	a> hidden neuron 227	0,414198	a> hidden neuron 227	0,350632
⊕ 📴 0_4	682	radial spread hidden neuron 97	0,057122	x> hidden neuron 228	0,928889	x> hidden neuron 228	0,405300
📄 📴 2М Диаграм	683	radial spread hidden neuron 98	0,090725	y> hidden neuron 228	0,265524	y> hidden neuron 228	0,210551
🖓 Диаграмі	684	radial spread hidden neuron 99	0,059396	a> hidden neuron 228	0,549028	a> hidden neuron 228	0,166758
🖓 Диаграмі	685	radial spread hidden neuron 100	0,161143	x> hidden neuron 229	0,404300	x> hidden neuron 229	0,053333
🖓 Диаграмі	686	radial spread hidden neuron 101	0,135946	y> hidden neuron 229	0,317400	y> hidden neuron 229	0,390558
💯 Диаграмі	687	radial spread hidden neuron 102	0,076287	a> hidden neuron 229	0,779433	a> hidden neuron 229	0,675316
🖓 Польша 20	688	radial spread hidden neuron 103	0,088874	x> hidden neuron 230	0,524900	x> hidden neuron 230	0,566400
Польша 20	689	radial spread hidden neuron 104	0,163591	y> hidden neuron 230	0,16/280	y> hidden neuron 230	0,829120
н 🖓 лиса 78	690	radial spread hidden neuron 105	0,132166	a> hidden neuron 230	0,325951	a> hidden neuron 230	0,034722
3D Wafer Plot	691	radial spread hidden neuron 106	0,088874	x> hidden neuron 231	0,851111	x> hidden neuron 231	0,764444
	692	radial spread hidden neuron 107	0,157092	y> hidden neuron 231	0,321806	y> hidden neuron 231	0,082414
B Histor	693	radial spread hidden neuron 108	0,094006	a> hidden neuron 231	0,924001	a> hidden neuron 231	0,889535
	694	radial spread hidden neuron 109	0,069000	x> hidden neuron 232	0,851111	x> hidden neuron 232	0,771111
inetwork weig	695	radial spread hidden neuron 110	0,124890	y> hidden neuron 232	0,207339	y> hidden neuron 232	0,652347
	696	radial spread hidden neuron 111	0,113139	a> hidden neuron 232	0,001471	a> hidden neuron 232	0,814223
	697	radial spread hidden neuron 112	0,137510	x> hidden neuron 233	0,940000	x> hidden neuron 233	0,088889
	698	radial spread hidden neuron 113	0,099211	y> hidden neuron 233	0,917526	y> hidden neuron 233	0,764303
	699	radial spread hidden neuron 114	0,068207	a> hidden neuron 233	0,014708	a> hidden neuron 233	0,014181
	/00	radial spread hidden neuron 115	0,141615	x> hidden neuron 234	0,599900	x> hidden neuron 234	0,111111
	/01	radial spread hidden neuron 116	0,103048	y> hidden neuron 234	0,024691	y> hidden neuron 234	0,952861
	702	radial spread hidden neuron 11/	0,085068	a> hidden neuron 234	0,986547	a> hidden neuron 234	0,234760
	703	radial spread hidden neuron 118	0,158609	x> hidden neuron 235	0,348600	x> hidden neuron 235	0,831111
	704	radial spread hidden neuron 119	0,056817	y> hidden neuron 235	0,793816	y> hidden neuron 235	0,284878
	705	radial spread hidden neuron 120	0,098189	a> hidden neuron 235	0,547120	a> hidden neuron 235	0,303662
	706	radial spread hidden neuron 121	0,130885	x> nidden neuron 236	0,444800	x> hidden neuron 236	0,886667
	707	radial spread hidden neuron 122	0,113648	y> hidden neuron 236	0,540827	y> hidden neuron 236	0,805550
	708	radial spread hidden neuron 123	0,183019	a> nidden neuron 236	0,139719	a> hidden neuron 236	0,089483
	709	radial spread hidden neuron 124	0,132166	x> nidden neuron 237	0,644000	x> hidden neuron 237	0,928889
	710	radial spread hidden neuron 125	0,039358	y> nidden neuron 237	0,231775	y> hidden neuron 237	0,459977
	711	radial spread hidden neuron 126	0,050817	a> nidden neuron 237	0,159296	a> hidden neuron 237	0,257694
	712	radial spread hidden neuron 127	0,063071	x> nidden neuron 238	0,706669	x> hidden neuron 238	0,191111
	713	radial spread hidden neuron 126	0,051517	y> nidden neuron 238	0,670105	y> hidden neuron 236	0,593423
	714	radial spread hidden neuron 129	0,174467	a> nidden neuron 236	0,724517	a> hidden neuron 236	0,010120
	715	radial spread hidden neuron 130	0,090912	x> nidden neuron 239	0,334500	x> nidden neuron 239	0,02000/
	710	radial apread hidden neuron 131	0,100425	y> nidden neuron 239	0,100370	y> nidden neuron 239	0,110088
	710	radial apread hidden neuron 132	0,103048	a> nidden neuron 239	0,425040	a> nidden neuron 239	0,152537
	710	radial apread hidden neuron 133	0,100205	x> nidden neuron 240	0,000000	x> nidden neuron 240	0,410600
	719	radial apread hidden neuron 134	0,051013	y> hidden neuron 240	0,01/380	y> hidden neuron 240	0,123001
	720	radial apread hidden neuron 135	0,000705	a> niquen neuron 240	0,103/92	a> nidden neuron 240	0,271915
	121	radial spread midden neuron 136	0,090725	x> moden neuron 241	0,740000	x> moden neuron 241	0,015300

늘 Рабочая_а_7_9_е<		Network weights (Таблиця а 7 9) відтв.)				
🛓 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🖕 🔤 SANN (Таблі	722	radial spread hidden neuron 137	0,110010	y> hidden neuron 241	0,191716	y> hidden neuron 241	0,283976
🖶 📴 O_1	723	radial spread hidden neuron 138	0,056441	a> hidden neuron 241	0,895590	a> hidden neuron 241	0,895344
🕀 📴 O_2	724	radial spread hidden neuron 139	0,105623	x> hidden neuron 242	0,742222	x> hidden neuron 242	0,935556
⊕ 📴 O_3	725	radial spread hidden neuron 140	0,039358	y> hidden neuron 242	0,770252	y> hidden neuron 242	0,911614
⊕ □ 0_4	726	radial spread hidden neuron 141	0,078108	a> hidden neuron 242	0,193129	a> hidden neuron 242	0,936405
— 2М Диаграм	727	radial spread hidden neuron 142	0,097573	x> hidden neuron 243	0,804444	x> hidden neuron 243	0,724444
Парали	728	radial spread hidden neuron 143	0,090912	y> hidden neuron 243	0,140341	y> hidden neuron 243	0,582787
Пиаграми	729	radial spread hidden neuron 144	0,133838	a> hidden neuron 243	0,423534	a> hidden neuron 243	0,629848
Диаграми	730	radial spread hidden neuron 145	0,115430	x> hidden neuron 244	0,525400	x> hidden neuron 244	0,104444
Диаграми	731	radial spread hidden neuron 146	0,108718	y> hidden neuron 244	0,329117	y> hidden neuron 244	0,988215
	732	radial spread hidden neuron 147	0,079803	a> hidden neuron 244	0,367615	a> hidden neuron 244	0,106569
	733	radial spread hidden neuron 148	0,114891	x> hidden neuron 245	0,988889	x> hidden neuron 245	0,208889
	734	radial spread hidden neuron 149	0,058152	y> hidden neuron 245	0,911635	y> hidden neuron 245	0,296698
⊞-∰ дис_а_/_8	735	radial spread hidden neuron 150	0,076287	a> hidden neuron 245	0,267622	a> hidden neuron 245	0,831849
B and a star and a star and a star a	736	radial spread hidden neuron 151	0,098172	x> hidden neuron 246	0,804444	x> hidden neuron 246	0,762222
Scatterplc	737	radial spread hidden neuron 152	0,097573	y> hidden neuron 246	0,705451	y> hidden neuron 246	0,413598
	738	radial spread hidden neuron 153	0,130523	a> hidden neuron 246	0,336794	a> hidden neuron 246	0,934002
Network weig	739	radial spread hidden neuron 154	0,115362	x> hidden neuron 247	0,151111	x> hidden neuron 247	0,184444
	740	radial spread hidden neuron 155	0,105623	y> hidden neuron 247	0,442984	y> hidden neuron 247	0,664132
	741	radial spread hidden neuron 156	0,034878	a> hidden neuron 247	0,151465	a> hidden neuron 247	0,185286
	742	radial spread hidden neuron 157	0,120238	x> hidden neuron 248	0,877778	x> hidden neuron 248	0,398400
	743	radial spread hidden neuron 158	0,108829	y> hidden neuron 248	0,219056	y> hidden neuron 248	0,805550
	744	radial spread hidden neuron 159	0,113769	a> hidden neuron 248	0,750520	a> hidden neuron 248	0,414227
	745	radial spread hidden neuron 160	0,067618	x> hidden neuron 249	0,937778	x> hidden neuron 249	0,824444
	746	radial spread hidden neuron 161	0,064013	y> hidden neuron 249	0,216652	y> hidden neuron 249	0,723056
	747	radial spread hidden neuron 162	0,064013	a> hidden neuron 249	0,990262	a> hidden neuron 249	0,164755
	748	radial spread hidden neuron 163	0,069218	x> hidden neuron 250	0,051111	x> hidden neuron 250	0,211111
	749	radial spread hidden neuron 164	0,235147	y> hidden neuron 250	0,888071	y> hidden neuron 250	0,929291
	750	radial spread hidden neuron 165	0,183019	a> hidden neuron 250	0,880932	a> hidden neuron 250	0,126198
	751	radial spread hidden neuron 166	0,184481	x> hidden neuron 251	0,380900	x> hidden neuron 251	0,317400
	752	radial spread hidden neuron 167	0,159758	y> hidden neuron 251	0,246897	y> hidden neuron 251	0,946968
	753	radial spread hidden neuron 168	0,166614	a> hidden neuron 251	0,049996	a> hidden neuron 251	0,141321
	754	radial spread hidden neuron 169	0,096815	x> hidden neuron 252	0,659700	x> hidden neuron 252	0,720000
	755	radial spread hidden neuron 170	0,204083	y> hidden neuron 252	0,652432	y> hidden neuron 252	0,070682
	756	radial spread hidden neuron 171	0,116949	a> hidden neuron 252	0,771100	a> hidden neuron 252	0,924688
	757	radial spread hidden neuron 172	0,119567	x> hidden neuron 253	0,737778	x> hidden neuron 253	0,235400

📴 Рабочая_а_/_9_в<		Network weights (Таблиця_a_7_9	відтв.)				
🎰 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 🔤 SANN (Таблі	758	radial spread hidden neuron 173	0,135683	y> hidden neuron 253	0,545735	y> hidden neuron 253	0,923398
i∎-li⊒s 0_1	759	radial spread hidden neuron 174	0,094071	a> hidden neuron 253	0,944582	a> hidden neuron 253	0,818129
	760	radial spread hidden neuron 175	0,058152	x> hidden neuron 254	0,140000	x> hidden neuron 254	0,657700
	761	radial spread hidden neuron 176	0,106186	y> hidden neuron 254	0,320304	y> hidden neuron 254	0,112283
⊕ □ 0_4	762	radial spread hidden neuron 177	0,102994	a> hidden neuron 254	0,180379	a> hidden neuron 254	0,820533
🖃 📴 2М Диаграм	763	radial spread hidden neuron 178	0,157601	x> hidden neuron 255	0,791111	x> hidden neuron 255	0,991111
Папрами	764	radial spread hidden neuron 179	0,126140	y> hidden neuron 255	0,031782	y> hidden neuron 255	0,325047
Пиаграми	765	radial spread hidden neuron 180	0,086791	a> hidden neuron 255	0,948096	a> hidden neuron 255	0,318384
Пиаграми	766	radial spread hidden neuron 181	0,068207	x> hidden neuron 256	0,401400	x> hidden neuron 256	0,605000
Диаграми	767	radial spread hidden neuron 182	0,063071	y> hidden neuron 256	0,073843	y> hidden neuron 256	0,489828
Польша 20	768	radial spread hidden neuron 183	0,138183	a> hidden neuron 256	0,576435	a> hidden neuron 256	0,607315
	769	radial spread hidden neuron 184	0,181469	x> hidden neuron 257	0,241200	x> hidden neuron 257	0,668889
	770	radial spread hidden neuron 185	0,051517	y> hidden neuron 257	0,453299	y> hidden neuron 257	0,551934
но дис_а_r_о	771	radial spread hidden neuron 186	0,155913	a> hidden neuron 257	0,486281	a> hidden neuron 257	0,920782
B SD Water Plo	772	radial spread hidden neuron 187	0,085068	x> hidden neuron 258	0,748889	x> hidden neuron 258	0,700000
Scatterpic	773	radial spread hidden neuron 188	0,159931	y> hidden neuron 258	0,348646	y> hidden neuron 258	0,095136
Histor	774	radial spread hidden neuron 189	0,187153	a> hidden neuron 258	0,622516	a> hidden neuron 258	0,540315
Network weig	775	radial spread hidden neuron 190	0,138717	x> hidden neuron 259	0,873333	x> hidden neuron 259	0,724444
	776	radial spread hidden neuron 191	0,053196	y> hidden neuron 259	0,976436	y> hidden neuron 259	0,215459
	777	radial spread hidden neuron 192	0,145703	a> hidden neuron 259	0,246037	a> hidden neuron 259	0,334008
	778	radial spread hidden neuron 193	0,116749	x> hidden neuron 260	0,031111	x> hidden neuron 260	0,215556
	779	radial spread hidden neuron 194	0,041436	y> hidden neuron 260	0,217654	y> hidden neuron 260	0,976430
	780	radial spread hidden neuron 195	0,169961	a> hidden neuron 260	0,655948	a> hidden neuron 260	0,342320
	781	hidden neuron 1> J_3 залишки	-0,167774	x> hidden neuron 261	0,620100	x> hidden neuron 261	0,864444
	782	hidden neuron 2> J_3 залишки	-0,068678	y> hidden neuron 261	0,480639	y> hidden neuron 261	0,199833
	783	hidden neuron 3> J_3 залишки	-0,189980	a> hidden neuron 261	0,168633	a> hidden neuron 261	0,693944
	784	hidden neuron 4> J_3 залишки	-0,035727	x> hidden neuron 262	0,160000	x> hidden neuron 262	0,735556
	785	hidden neuron 5> J_3 залишки	0,035057	y> hidden neuron 262	0,487549	y> hidden neuron 262	0,681809
	786	hidden neuron 6> J_3 залишки	0,043812	a> hidden neuron 262	0,942173	a> hidden neuron 262	0,283633
	/8/	nidden neuron 7> J_3 залишки	0,229995	x> nidden neuron 263	0,1/1111	x> nidden neuron 263	0,008889
	/00	nidden neuron 8> J_3 залишки	-0,044850	y> hidden neuron 263	0,681887	y> hidden neuron 263	0,408689
	789	nidden neuron 9> J_3 залишки	-0,004453	a> hidden neuron 263	0,621111	a> hidden neuron 263	0,479224
	790	Idden neuron 10> J_3 залишки	0,022915	x> nidden neuron 264	0,168889	x> hidden neuron 264	0,578600
	791	idden neuron 11> J_3 залишки	-0,003635	y> hidden neuron 264	0,051340	y> hidden neuron 264	0,964645
	702	idden neuron 12> J_3 залишки	-0,020437	a> hidden neuron 204	0,410015	a> hidden neuron 264	0,001953
	793	idden neuron 13> J_3 залишки	-0,014237	x> hidden neuron 265	0,470200	x> hidden neuron 265	0,1////0
	794	idden neuron 14> J_3 залишки	0,000123	y> hidden neuron 205	0,175092	y> hidden neuron 265	0,740020
	795	idden neuron 16 > 1.3 sanuuku	-0,0201/1	a> nidden neuron 265	0,123000	a> niquen neuron 265	0,344724
	797	idden neuron 17 -> 1.3 aanuuwu	-0,075501	v> hidden neuron 266	0.224/64	v> hidden neuron 266	0,000000
	798	idden neuron 18 -> 1 3 залишки	0,004505	a> hidden neuron 266	0,224404	a> hidden neuron 266	0,752510
	799	idden neuron 19> I 3 залишки	-0 002719	x> hidden neuron 267	0,041170	x> hidden neuron 267	0,303000
	800	idden neuron 20> 1 3 запишки	0.058524	v> hidden neuron 267	0,360363	v> hidden neuron 267	0,899829
	801	idden neuron 21> .1 3 запишки	-0.067181	a> hidden neuron 267	0.022549	a> hidden neuron 267	0 232757
	100		0.040055		0,022040		0,202101

늘 Рабочая_а_7_9_е<		Network weights (Таблиця а 7 9 в	ідтв.)				
🗄 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📥 🍙 SANN (Таблі	802	hidden neuron 22> J 3 залишки	-0,013355	x> hidden neuron 268	0,973333	x> hidden neuron 268	0,828889
🗄 - 🔁 0_1	803	hidden neuron 23> J 3 залишки	0,041763	y> hidden neuron 268	0,165778	y> hidden neuron 268	0,577378
⊕ - □ 0_2	804	hidden neuron 24> J З залишки	-0,201188	a> hidden neuron 268	0,923600	a> hidden neuron 268	0,703658
🖬 📑 O 3	805	hidden neuron 25> J 3 залишки	-0,091421	x> hidden neuron 269	0,842222	x> hidden neuron 269	0,742222
a 0 4	806	hidden neuron 26> J_3 залишки	0,007461	y> hidden neuron 269	0,758470	y> hidden neuron 269	0,337267
— 🔁 2M Лиаграм	807	hidden neuron 27> J 3 залишки	0,022329	a> hidden neuron 269	0,591193	a> hidden neuron 269	0,032268
Пиаграми	808	hidden neuron 28> J_3 залишки	0,005420	x> hidden neuron 270	0,268600	x> hidden neuron 270	0,704444
Диаграми	809	hidden neuron 29> J_3 залишки	-0,029046	y> hidden neuron 270	0,723124	y> hidden neuron 270	0,325948
Диаграми	810	hidden neuron 30> J_3 залишки	0,039892	a> hidden neuron 270	0,992169	a> hidden neuron 270	0,974562
	811	hidden neuron 31> J_3 залишки	0,028972	x> hidden neuron 271	0,182222	x> hidden neuron 271	0,922222
Парина 20	812	hidden neuron 32> J_3 залишки	0,041026	y> hidden neuron 271	0,917526	y> hidden neuron 271	0,858582
	813	hidden neuron 33> J_3 залишки	0,061799	a> hidden neuron 271	0,482366	a> hidden neuron 271	0,129603
тольша_20_	814	hidden neuron 34> J_3 залишки	0,005228	x> hidden neuron 272	0,384300	x> hidden neuron 272	0,011111
⊕ ∰ дис_а_/_8	815	hidden neuron 35> J_3 залишки	-0,005996	y> hidden neuron 272	0,681887	y> hidden neuron 272	0,935183
B Water Plo	816	hidden neuron 36> J_3 залишки	-0,022867	a> hidden neuron 272	0,216220	a> hidden neuron 272	0,214630
🖻 🎒 Scatterple	817	hidden neuron 37> J_3 залишки	0,027499	x> hidden neuron 273	0,002222	x> hidden neuron 273	0,895556
🔤 🏭 Histor	818	hidden neuron 38> J_3 залишки	0,005530	y> hidden neuron 273	0,864507	y> hidden neuron 273	0,390058
Network weig	819	hidden neuron 39> J_3 залишки	-0,020234	a> hidden neuron 273	0,976508	a> hidden neuron 273	0,769657
	820	hidden neuron 40> J_3 залишки	-0,027535	radial spread hidden neuron 1	0,059672	x> hidden neuron 274	0,211111
	821	hidden neuron 41> J_3 залишки	-0,060106	radial spread hidden neuron 2	0,136372	y> hidden neuron 274	0,864474
	822	hidden neuron 42> J_3 залишки	0,129868	radial spread hidden neuron 3	0,052648	a> hidden neuron 274	0,933000
	823	hidden neuron 43> J_3 залишки	-0,152585	radial spread hidden neuron 4	0,064185	x> hidden neuron 275	0,868889
	824	hidden neuron 44> J_3 залишки	0,014431	radial spread hidden neuron 5	0,103215	y> hidden neuron 275	0,492833
	825	hidden neuron 45> J_3 залишки	-0,000784	radial spread hidden neuron 6	0,100489	a> hidden neuron 275	0,445975
	826	hidden neuron 46> J_3 залишки	-0,055267	radial spread hidden neuron 7	0,117595	x> hidden neuron 276	0,095556
	827	hidden neuron 47> J_3 залишки	-0,023655	radial spread hidden neuron 8	0,132468	y> hidden neuron 276	0,946968
	828	hidden neuron 48> J_3 залишки	0,021504	radial spread hidden neuron 9	0,064731	a> hidden neuron 276	0,549128
	829	hidden neuron 49> J_3 залишки	-0,019139	radial spread hidden neuron 10	0,173292	x> hidden neuron 277	0,469700
	830	hidden neuron 50> J_3 залишки	0,016992	radial spread hidden neuron 11	0,089045	y> hidden neuron 277	0,560749
	831	hidden neuron 51> J_3 залишки	0,005482	radial spread hidden neuron 12	0,120717	a> hidden neuron 277	0,833752
	832	hidden neuron 52> J_3 залишки	0,201620	radial spread hidden neuron 13	0,096222	x> hidden neuron 278	0,862222
	833	hidden neuron 53> J_3 залишки	0,031912	radial spread hidden neuron 14	0,048892	y> hidden neuron 278	0,829120
	834	hidden neuron 54> J_3 залишки	0,000878	radial spread hidden neuron 15	0,058635	a> hidden neuron 278	0,067481
	835	hidden neuron 55> J_3 залишки	0,029324	radial spread hidden neuron 16	0,029950	x> hidden neuron 279	0,396500
	836	hidden neuron 56> J_3 залишки	0,016203	radial spread hidden neuron 17	0,090447	y> hidden neuron 279	0,605208
	837	hidden neuron 57> J_3 залишки	-0,026869	radial spread hidden neuron 18	0,063091	a> hidden neuron 279	0,287038
	838	hidden neuron 58> J_3 залишки	0,031883	radial spread hidden neuron 19	0,072748	x> hidden neuron 280	0,762222
	839	hidden neuron 59> J_3 залишки	-0,136645	radial spread hidden neuron 20	0,116350	y> hidden neuron 280	0,681809
	840	hidden neuron 60> J_3 залишки	-0,008345	radial spread hidden neuron 21	0,050598	a> hidden neuron 280	0,965749

🗁 Рабочая_а_7_9_е<		Network weights (Таблица а 7 9 в	ілтв.)				
🗄 🛅 2M Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🖕 📴 SANN (Таблі	841	hidden neuron 61> J 3 залишки	0,045465	radial spread hidden neuron 22	0,140900	x> hidden neuron 281	0,675556
👜 🔂 0_1	842	hidden neuron 62> J_3 залишки	-0,012923	radial spread hidden neuron 23	0,195214	y> hidden neuron 281	0,346583
🕀 📴 O_2	843	hidden neuron 63> J_3 залишки	0,055642	radial spread hidden neuron 24	0,160528	a> hidden neuron 281	0,206818
⊕- <mark>⊡</mark> 0_3	844	hidden neuron 64> J_3 залишки	-0,051878	radial spread hidden neuron 25	0,130155	x> hidden neuron 282	0,044444
	845	hidden neuron 65> J_3 залишки	0,076296	radial spread hidden neuron 26	0,101929	y> hidden neuron 282	0,687702
📥 🔤 2М Диаграм	846	hidden neuron 66> J_3 залишки	0,034780	radial spread hidden neuron 27	0,087743	a> hidden neuron 282	0,446475
🖓 Диаграмі	847	hidden neuron 67> J_3 залишки	0,138719	radial spread hidden neuron 28	0,128822	x> hidden neuron 283	0,093333
	848	hidden neuron 68> J_3 залишки	-0,062943	radial spread hidden neuron 29	0,103454	y> hidden neuron 283	0,136725
Пиаграми	849	hidden neuron 69> J_3 залишки	0,032212	radial spread hidden neuron 30	0,067844	a> hidden neuron 283	0,637660
Диаграми	850	hidden neuron 70> J_3 залишки	0,022889	radial spread hidden neuron 31	0,136296	x> hidden neuron 284	0,664100
	851	hidden neuron 71> J_3 залишки	-0,022689	radial spread hidden neuron 32	0,118648	y> hidden neuron 284	0,068720
	852	hidden neuron 72> J_3 залишки	0,027555	radial spread hidden neuron 33	0,093101	a> hidden neuron 284	0,273317
	853	hidden neuron 73> J_3 залишки	-0,013290	radial spread hidden neuron 34	0,059672	x> hidden neuron 285	0,215556
⊞дис_а_/_8	854	hidden neuron 74> J_3 залишки	-0,007464	radial spread hidden neuron 35	0,068694	y> hidden neuron 285	0,235994
B 3D Water Plo	855	hidden neuron 75> J_3 залишки	-0,029358	radial spread hidden neuron 36	0,091660	a> hidden neuron 285	0,305665
E M Scatterple	856	hidden neuron 76> J_3 залишки	-0,120756	radial spread hidden neuron 37	0,109161	x> hidden neuron 286	0,451700
🚰 Histor	857	hidden neuron 77> J_3 залишки	-0,521409	radial spread hidden neuron 38	0,099744	y> hidden neuron 286	0,152351
Network weig	858	hidden neuron 78> J_3 залишки	-0,026337	radial spread hidden neuron 39	0,092997	a> hidden neuron 286	0,277724
	859	hidden neuron 79> J_3 залишки	0,168976	radial spread hidden neuron 40	0,065977	x> hidden neuron 287	0,797778
	860	hidden neuron 80> J_3 залишки	0,008174	radial spread hidden neuron 41	0,065977	y> hidden neuron 287	0,494737
	861	hidden neuron 81> J_3 залишки	0,025758	radial spread hidden neuron 42	0,066522	a> hidden neuron 287	0,846972
	862	hidden neuron 82> J_3 залишки	-0,133971	radial spread hidden neuron 43	0,060531	x> hidden neuron 288	0,166667
	863	hidden neuron 83> J_3 залишки	0,009417	radial spread hidden neuron 44	0,077283	y> hidden neuron 288	0,156759
	864	hidden neuron 84> J_3 залишки	-0,010000	radial spread hidden neuron 45	0,047740	a> hidden neuron 288	0,823036
	865	hidden neuron 85> J_3 залишки	0,057923	radial spread hidden neuron 46	0,087215	x> hidden neuron 289	0,563500
	866	hidden neuron 86> J_3 залишки	0,080692	radial spread hidden neuron 47	0,091334	y> hidden neuron 289	0,593423
	867	hidden neuron 87> J_3 залишки	-0,033190	radial spread hidden neuron 48	0,048634	a> hidden neuron 289	0,364353
	868	hidden neuron 88> J_3 залишки	0,010712	radial spread hidden neuron 49	0,061598	x> hidden neuron 290	0,682222
	869	hidden neuron 89> J_3 залишки	-0,034093	radial spread hidden neuron 50	0,157652	y> hidden neuron 290	0,787873
	870	hidden neuron 90> J_3 залишки	-0,019385	radial spread hidden neuron 51	0,139372	a> hidden neuron 290	0,059659
	871	hidden neuron 91> J_3 залишки	0,142248	radial spread hidden neuron 52	0,136298	x> hidden neuron 291	0,315400
	872	hidden neuron 92> J_3 залишки	-0,022784	radial spread hidden neuron 53	0,029950	y> hidden neuron 291	0,425819
	873	hidden neuron 93> J_3 залишки	-0,013182	radial spread hidden neuron 54	0,054956	a> hidden neuron 291	0,538412
	874	hidden neuron 94> J_3 залишки	-0,163054	radial spread hidden neuron 55	0,129853	x> hidden neuron 292	0,385700
	875	hidden neuron 95> J_3 залишки	0,005546	radial spread hidden neuron 56	0,104535	y> hidden neuron 292	0,717164
	876	hidden neuron 96> J_3 залишки	0,065787	radial spread hidden neuron 57	0,101132	a> hidden neuron 292	0,843567
	877	hidden neuron 97> J_3 залишки	0,033403	radial spread hidden neuron 58	0,140132	x> hidden neuron 293	0,964444
	878	hidden neuron 98> J_3 залишки	-0,176843	radial spread hidden neuron 59	0,077851	y> hidden neuron 293	0,888044
	879	hidden neuron 99> J_3 залишки	-0,008100	radial spread hidden neuron 60	0,113353	a> hidden neuron 293	0,139318
	880	hidden neuron 100> J_3 залишки	0,027672	radial spread hidden neuron 61	0,065927	x> hidden neuron 294	0,942222
	881	hidden neuron 101> J_3 залишки	0,077882	radial spread hidden neuron 62	0,106986	y> hidden neuron 294	0,840905
	882	hidden neuron 102> J_3 залишки	-0,022516	radial spread hidden neuron 63	0,105982	a> hidden neuron 294	0,365755
	883	hidden neuron 103> J_3 залишки	-0,032931	radial spread hidden neuron 64	0,066522	x> hidden neuron 295	0,229500
	884	hidden neuron 104> J_3 залишки	-0,064934	radial spread hidden neuron 65	0,051816	y> hidden neuron 295	0,245811

📂 Рабочая_а_/_9_в<		Network weights (Таблиця а 7 9 в	ідтв.)				
🛓 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 👍 SANN (Таблі	885	hidden neuron 105> J_3 залишки	-0,032938	radial spread hidden neuron 66	0,124850	a> hidden neuron 295	0,061121
🖶 📑 0_1	886	hidden neuron 106> J_3 залишки	0,030045	radial spread hidden neuron 67	0,220398	x> hidden neuron 296	0,713333
🕀 📴 O_2	887	hidden neuron 107> J_3 залишки	0,013925	radial spread hidden neuron 68	0,137267	y> hidden neuron 296	0,266346
🕁 📴 O_3	888	hidden neuron 108> J_3 залишки	-0,017400	radial spread hidden neuron 69	0,060531	a> hidden neuron 296	0,556940
i 0_ 4	889	hidden neuron 109> J_3 залишки	0,005035	radial spread hidden neuron 70	0,136519	x> hidden neuron 297	0,068889
🖃 🔤 2М Диаграм	890	hidden neuron 110> J_3 залишки	-0,042724	radial spread hidden neuron 71	0,067750	y> hidden neuron 297	0,301005
🖓 Диаграмі	891	hidden neuron 111> J_3 залишки	-0,203517	radial spread hidden neuron 72	0,158000	a> hidden neuron 297	0,410722
- 🖓 Диаграмі	892	hidden neuron 112> J_3 залишки	0,031864	radial spread hidden neuron 73	0,047740	radial spread hidden neuron 1	0,098262
Пиаграми	893	hidden neuron 113> J_3 залишки	-0,035237	radial spread hidden neuron 74	0,117595	radial spread hidden neuron 2	0,039563
Диаграми	894	hidden neuron 114> J_3 залишки	0,056909	radial spread hidden neuron 75	0,101132	radial spread hidden neuron 3	0,114494
	895	hidden neuron 115> J_3 залишки	0,033089	radial spread hidden neuron 76	0,063091	radial spread hidden neuron 4	0,108127
	896	hidden neuron 116> J_3 залишки	0,013113	radial spread hidden neuron 77	0,114169	radial spread hidden neuron 5	0,064410
	897	hidden neuron 117> J_3 залишки	-0,070626	radial spread hidden neuron 78	0,093226	radial spread hidden neuron 6	0,132819
н дис_а_/_а	898	hidden neuron 118> J_3 залишки	0,014681	radial spread hidden neuron 79	0,107571	radial spread hidden neuron 7	0,100287
B 3D Water Plo	899	hidden neuron 119> J_3 залишки	-0,022045	radial spread hidden neuron 80	0,095956	radial spread hidden neuron 8	0,095663
Scatterple	900	hidden neuron 120> J_3 залишки	0,112155	radial spread hidden neuron 81	0,173590	radial spread hidden neuron 9	0,095130
	901	hidden neuron 121> J_3 залишки	-0,013159	radial spread hidden neuron 82	0,064185	radial spread hidden neuron 10	0,088319
Network weig	902	hidden neuron 122> J_3 залишки	-0,099520	radial spread hidden neuron 83	0,068519	radial spread hidden neuron 11	0,136076
	903	hidden neuron 123> J_3 залишки	0,014893	radial spread hidden neuron 84	0,073536	radial spread hidden neuron 12	0,095313
	904	hidden neuron 124> J_3 залишки	0,014371	radial spread hidden neuron 85	0,049963	radial spread hidden neuron 13	0,079811
	905	hidden neuron 125> J_3 залишки	0,555310	radial spread hidden neuron 86	0,106348	radial spread hidden neuron 14	0,044800
	906	hidden neuron 126> J_3 залишки	0,023547	radial spread hidden neuron 87	0,134121	radial spread hidden neuron 15	0,115807
	907	hidden neuron 127> J_3 залишки	0,092125	radial spread hidden neuron 88	0,128872	radial spread hidden neuron 16	0,087728
	908	hidden neuron 128> J_3 залишки	0,335741	radial spread hidden neuron 89	0,047389	radial spread hidden neuron 17	0,122416
	909	hidden neuron 129> J_3 залишки	-0,092596	radial spread hidden neuron 90	0,071495	radial spread hidden neuron 18	0,067424
	910	hidden neuron 130> J_3 залишки	0,026778	radial spread hidden neuron 91	0,051816	radial spread hidden neuron 19	0,125849
	911	hidden neuron 131> J_3 залишки	-0,071395	radial spread hidden neuron 92	0,109632	radial spread hidden neuron 20	0,118214
	912	hidden neuron 132> J 3 залишки	-0,023439	radial spread hidden neuron 93	0,049963	radial spread hidden neuron 21	0,093392
	913	hidden neuron 133> J_3 залишки	0,062490	radial spread hidden neuron 94	0,118241	radial spread hidden neuron 22	0,061703
	914	hidden neuron 134> J З залишки	0,015882	radial spread hidden neuron 95	0,134948	radial spread hidden neuron 23	0,108209
	915	hidden neuron 135> Ј 3 залишки	0,171883	radial spread hidden neuron 96	0,069552	radial spread hidden neuron 24	0,065369
	916	hidden neuron 136> Ј 3 залишки	-0,058648	radial spread hidden neuron 97	0,130844	radial spread hidden neuron 25	0,108127
	917	hidden neuron 137> Ј 3 залишки	0.006228	radial spread hidden neuron 98	0,081172	radial spread hidden neuron 26	0,121373
	918	hidden neuron 138> J 3 залишки	0,069358	radial spread hidden neuron 99	0,102456	radial spread hidden neuron 27	0,129357
	919	hidden neuron 139> J 3 залишки	-0.085618	radial spread hidden neuron 100	0,111259	radial spread hidden neuron 28	0.067333
	920	hidden neuron 140> J З залишки	-0,363373	radial spread hidden neuron 101	0,126338	radial spread hidden neuron 29	0,108010
	921	hidden neuron 141> J З залишки	-0.033263	radial spread hidden neuron 102	0,086881	radial spread hidden neuron 30	0,088828
	922	hidden neuron 142> J З залишки	-0,023568	radial spread hidden neuron 103	0,080149	radial spread hidden neuron 31	0,102301
	923	hidden neuron 143> J З залишки	0.031525	radial spread hidden neuron 104	0.052116	radial spread hidden neuron 32	0.070671
	924	hidden neuron 144> J З залишки	0.055161	radial spread hidden neuron 105	0,155730	radial spread hidden neuron 33	0.052486
	925	hidden neuron 145> J_3 залишки	0,020912	radial spread hidden neuron 106	0,102904	radial spread hidden neuron 34	0,088666

🗁 Рабочая_а_7_9_е<		Network weights (Таблица а 7 9 в	ілтв.)				
🛓 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
—📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
📄 🍙 SANN (Таблі	926	hidden neuron 146> J_3 залишки	-0,032266	radial spread hidden neuron 107	0,054541	radial spread hidden neuron 35	0,129298
⊕ - □ 0_1	927	hidden neuron 147> J_3 залишки	0,018292	radial spread hidden neuron 108	0,069552	radial spread hidden neuron 36	0,056490
⊡ □_2	928	hidden neuron 148> J_3 залишки	0,089690	radial spread hidden neuron 109	0,068519	radial spread hidden neuron 37	0,063166
🖶 🔁 O_3	929	hidden neuron 149> J_3 залишки	-0,016359	radial spread hidden neuron 110	0,050761	radial spread hidden neuron 38	0,053556
🕀 📴 O_4	930	hidden neuron 150> J_3 залишки	-0,002575	radial spread hidden neuron 111	0,081923	radial spread hidden neuron 39	0,130134
🖃 📴 2М Диаграм	931	hidden neuron 151> J_3 залишки	-0,040330	radial spread hidden neuron 112	0,052648	radial spread hidden neuron 40	0,113046
👘 Диаграмі	932	hidden neuron 152> J_3 залишки	0,021620	radial spread hidden neuron 113	0,129958	radial spread hidden neuron 41	0,073201
🛺 Диаграмі	933	hidden neuron 153> J_3 залишки	-0,087484	radial spread hidden neuron 114	0,098590	radial spread hidden neuron 42	0,080321
📅 Диаграмі	934	hidden neuron 154> J_3 залишки	-0,004244	radial spread hidden neuron 115	0,104671	radial spread hidden neuron 43	0,057165
🖓 Диаграмі	935	hidden neuron 155> J_3 залишки	0,037224	radial spread hidden neuron 116	0,087743	radial spread hidden neuron 44	0,050601
Польша 20	936	hidden neuron 156> J_3 залишки	-0,134458	radial spread hidden neuron 117	0,078039	radial spread hidden neuron 45	0,066072
Польша 20	937	hidden neuron 157> J_3 залишки	-0,071428	radial spread hidden neuron 118	0,084600	radial spread hidden neuron 46	0,105403
амс а 7.8	938	hidden neuron 158> J_3 залишки	-0,019528	radial spread hidden neuron 119	0,072272	radial spread hidden neuron 47	0,076323
B 3D Wafer Plot	939	hidden neuron 159> J_3 залишки	-0,038256	radial spread hidden neuron 120	0,111259	radial spread hidden neuron 48	0,083598
	940	hidden neuron 160> J_3 залишки	-0,059173	radial spread hidden neuron 121	0,095956	radial spread hidden neuron 49	0,068513
	941	hidden neuron 161> J_3 залишки	0,078937	radial spread hidden neuron 122	0,124228	radial spread hidden neuron 50	0,065369
	942	hidden neuron 162> J_3 залишки	0,057456	radial spread hidden neuron 123	0,077283	radial spread hidden neuron 51	0,140238
ivetwork weig	943	hidden neuron 163> J_3 залишки	0,002001	radial spread hidden neuron 124	0,076929	radial spread hidden neuron 52	0,136076
	944	hidden neuron 164> J_3 залишки	0,050364	radial spread hidden neuron 125	0,123835	radial spread hidden neuron 53	0,063166
	945	hidden neuron 165> J_3 залишки	-0,035642	radial spread hidden neuron 126	0,177632	radial spread hidden neuron 54	0,103947
	946	hidden neuron 166> J_3 залишки	-0,026466	radial spread hidden neuron 127	0,112887	radial spread hidden neuron 55	0,051322
	947	hidden neuron 167> J_3 залишки	0,026077	radial spread hidden neuron 128	0,155793	radial spread hidden neuron 56	0,082553
	948	hidden neuron 168> J_3 залишки	-0,023183	radial spread hidden neuron 129	0,109464	radial spread hidden neuron 57	0,070671
	949	hidden neuron 169> J_3 залишки	0,262543	radial spread hidden neuron 130	0,154544	radial spread hidden neuron 58	0,066981
	950	hidden neuron 170> J_3 залишки	-0,035666	radial spread hidden neuron 131	0,000001	radial spread hidden neuron 59	0,069592
	951	hidden neuron 171> J_3 залишки	0,001406	radial spread hidden neuron 132	0,039096	radial spread hidden neuron 60	0,093094
	952	hidden neuron 172> J_3 залишки	-0,044952	radial spread hidden neuron 155	0,040919	radial spread hidden neuron 61	0,060905
	955	hidden neuron 173> J_3 залишки	0,007724	radial spread hidden neuron 134	0,100409	radial spread hidden neuron 62	0,000072
	954	hidden neuron 174> J_3 залишки	-0,002947	radial spread hidden neuron 135	0,110041	radial spread hidden neuron 63	0,110523
	955	hidden neuron 175> J_3 залишки	0,040193	radial spread hidden neuron 130	0,109769	radial spread hidden neuron 65	0,102112
	957	hidden neuron 177 > 1 3 aanuuru	0,003073	radial spread hidden neuron 137	0,051002	radial spread hidden neuron 66	0,123323
	958	hidden neuron 178 -> 1 3 aanuuru	-0,014330	radial spread hidden neuron 139	0,034330	radial spread hidden neuron 67	0.087879
	959	hidden neuron 179> J_3 запишки	0,072736	radial spread hidden neuron 140	0,080313	radial spread hidden neuron 68	0.051259
	960	hidden neuron 180> 1 3 запишки	0.076403	radial spread hidden neuron 141	0.086558	radial spread hidden neuron 69	0.057428
	961	hidden neuron 181> 1 3 запишки	-0.058156	radial spread hidden neuron 142	0 118822	radial spread hidden neuron 70	0 108719
	962	hidden neuron 182> 1 3 запишки	0.003360	radial spread hidden neuron 142	0 110212	radial spread hidden neuron 71	0.050143
	963	hidden neuron 183> J 3 залишки	-0.009806	radial spread hidden neuron 144	0.103678	radial spread hidden neuron 72	0.087969
	964	hidden neuron 184> J 3 залишки	0.035014	radial spread hidden neuron 145	0.050761	radial spread hidden neuron 73	0.066981
	965	hidden neuron 185> J 3 запишки	-0.397644	radial spread hidden neuron 146	0.097860	radial spread hidden neuron 74	0.070613
	966	hidden neuron 186> J 3 запишки	0.026099	radial spread hidden neuron 147	0,110906	radial spread hidden neuron 75	0.125252
	967	hidden neuron 187> J З залишки	0.067012	radial spread hidden neuron 148	0,180065	radial spread hidden neuron 76	0.134232
	968	hidden neuron 188> J З залишки	-0.016377	radial spread hidden neuron 149	0.080313	radial spread hidden neuron 77	0.119156
	969	hidden neuron 189> J 3 залишки	-0.015630	radial spread hidden neuron 150	0.080952	radial spread hidden neuron 78	0.099441
	968 969	hidden neuron 188> J_3 залишки hidden neuron 189> J_3 залишки	-0,016377 -0,015630	radial spread hidden neuron 149 radial spread hidden neuron 150	0,080313 0,080952	radial spread hidden neuron 77 radial spread hidden neuron 78	0,11 0,09

Галоная_а_/_э_с ~	1	Network weights (Габлиця_а_/_У_відтв.)						
🗄 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values	
— 📑 SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1	
📄 📴 SANN (Таблі	970	hidden neuron 190> J_3 залишки	0,011007	radial spread hidden neuron 151	0,092997	radial spread hidden neuron 79	0,098262	
🛓 📑 0_1	971	hidden neuron 191> J_3 залишки	0,256746	radial spread hidden neuron 152	0,112567	radial spread hidden neuron 80	0,073074	
i∎-li⊒ 0_2	972	hidden neuron 192> J_3 залишки	0,026807	radial spread hidden neuron 153	0,124228	radial spread hidden neuron 81	0,057428	
	973	hidden neuron 193> J_3 залишки	0,016000	radial spread hidden neuron 154	0,091334	radial spread hidden neuron 82	0,120756	
⊕ - <u></u> 	974	hidden neuron 194> J_3 залишки	0,030143	radial spread hidden neuron 155	0,101592	radial spread hidden neuron 83	0,098556	
— 2М Диаграм	975	hidden neuron 195> J_3 залишки	0,109500	radial spread hidden neuron 156	0,090447	radial spread hidden neuron 84	0,094211	
Парадиаграми	976	hidden bias> J_3 залишки	0,438016	radial spread hidden neuron 157	0,142858	radial spread hidden neuron 85	0,097592	
Пиаграми	977			radial spread hidden neuron 158	0,124092	radial spread hidden neuron 86	0,063589	
Пиаграми	978			radial spread hidden neuron 159	0,058635	radial spread hidden neuron 87	0,107824	
Диаграми	979			radial spread hidden neuron 160	0,077989	radial spread hidden neuron 88	0,096957	
	980			radial spread hidden neuron 161	0,096014	radial spread hidden neuron 89	0,094935	
	981			radial spread hidden neuron 162	0,126338	radial spread hidden neuron 90	0,129520	
	982			radial spread hidden neuron 163	0,127696	radial spread hidden neuron 91	0,053556	
	983			radial spread hidden neuron 164	0,106986	radial spread hidden neuron 92	0,086223	
SD water Plo	984			radial spread hidden neuron 165	0,052116	radial spread hidden neuron 93	0,133444	
	985			radial spread hidden neuron 166	0,115277	radial spread hidden neuron 94	0,140953	
Histor	986			radial spread hidden neuron 167	0,128822	radial spread hidden neuron 95	0,070613	
Metwork weig	987			radial spread hidden neuron 168	0,088848	radial spread hidden neuron 96	0,113811	
	988			radial spread hidden neuron 169	0,110906	radial spread hidden neuron 97	0,036267	
	989			radial spread hidden neuron 170	0,048892	radial spread hidden neuron 98	0,104039	
	990			radial spread hidden neuron 171	0,105130	radial spread hidden neuron 99	0,070286	
	991			radial spread hidden neuron 172	0,072272	radial spread hidden neuron 100	0,098748	
	992			radial spread hidden neuron 173	0,077095	radial spread hidden neuron 101	0,132642	
	993			radial spread hidden neuron 1/4	0,065927	radial spread hidden neuron 102	0,109912	
	994			radial spread hidden neuron 175	0,123835	radial spread hidden neuron 103	0,064410	
	995			radial spread hidden neuron 1/6	0,091001	radial spread hidden neuron 104	0,104080	
	996			radial spread hidden neuron 177	0,097203	radial spread hidden neuron 105	0,134954	
	997			radial spread hidden neuron 1/8	0,131811	radial spread hidden neuron 106	0,108604	
	998			radial spread hidden neuron 1/9	0,082884	radial spread hidden neuron 107	0,141230	
	999			radial spread hidden neuron 180	0,152867	radial spread hidden neuron 108	0,116844	
	1000			radial spread hidden neuron 181	0,100910	radial spread hidden neuron 109	0,072609	
	1001			radial spread hidden neuron 182	0,060968	radial spread hidden neuron 110	0,109660	
	1002			radial spread hidden neuron 183	0,067750	radial spread hidden neuron 111	0,105610	
	1003			radial spread hidden neuron 184	0,184038	radial spread hidden neuron 112	0,063589	
	1004			radial spread hidden neuron 185	0,077530	radial spread hidden neuron 113	0,140402	
	1005			radial spread hidden neuron 186	0,037759	radial spread hidden neuron 114	0,104039	
	1006			radial spread hidden neuron 187	0,094318	radial spread hidden neuron 115	0,097757	
	1007			radial spread hidden neuron 188	0,115026	radial spread hidden neuron 116	0,103252	
	1008			radial spread hidden neuron 189	0,122324	radial spread hidden neuron 11/	0,090926	
	1009			radial spread hidden neuron 190	0,141949	radial spread hidden neuron 118	0,121905	
	1010			radial spread hidden neuron 191	0,086952	radial spread hidden neuron 119	0,115681	
	1011			radial spread hidden neuron 192	0,081923	radial spread hidden neuron 120	0,073074	
	1012			radial spread hidden neuron 193	0,071495	radial spread hidden neuron 121	0,133372	
	1013			radial spread hidden neuron 194	0.064731	radial spread hidden neuron 122	0.051322	

Галоная_а_/_э_с	1
🕀 📑 2М Диаграм	L
— 📑 SANN (Таблі	h
🖃 🚋 SANN (Таблі	E
🖶 📴 O_1	Ŀ
🕀 📑 O_2	Ľ
	Ľ
	Ľ
🖃 📴 2М Диаграм	Ľ
- 📅 Диаграмі	Ľ
🚽 🖓 Диаграмі	Ľ
🚽 🖓 Диаграмі	E
📅 Диаграмі	H
🖓 Польша_20_	H
	E
⊕ 📅 дис_а_7_8	Ŀ
🖃 🌆 3D Wafer Plo	Ŀ
Scatterplc	Ŀ
- 🖓 Histor	Ŀ
Network weig	ŀ

F	Connections	Weight values	Connections	Weight values	Connections	Weight values
Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
1014			radial spread hidden neuron 195	0,102904	radial spread hidden neuron 123	0,09386
1015			radial spread hidden neuron 196	0,160528	radial spread hidden neuron 124	0,10028
1016			radial spread hidden neuron 197	0,130844	radial spread hidden neuron 125	0,098988
1017			radial spread hidden neuron 198	0,115408	radial spread hidden neuron 126	0,077209
1018			radial spread hidden neuron 199	0,077095	radial spread hidden neuron 127	0,06270
1019			radial spread hidden neuron 200	0,119746	radial spread hidden neuron 128	0,06208
1020			radial spread hidden neuron 201	0,065621	radial spread hidden neuron 129	0,06490
1021			radial spread hidden neuron 202	0,102456	radial spread hidden neuron 130	0,13525
1022			radial spread hidden neuron 203	0,048634	radial spread hidden neuron 131	0,09058
1023			radial spread hidden neuron 204	0,092864	radial spread hidden neuron 132	0,16137
1024			radial spread hidden neuron 205	0,106294	radial spread hidden neuron 133	0,09566
1025			radial spread hidden neuron 206	0,107571	radial spread hidden neuron 134	0,08866
1026			radial spread hidden neuron 207	0,060968	radial spread hidden neuron 135	0,09043
1027			radial spread hidden neuron 208	0,077274	radial spread hidden neuron 136	0,12206
1028			radial spread hidden neuron 209	0,216624	radial spread hidden neuron 137	0,06270
1029			radial spread hidden neuron 210	0.115408	radial spread hidden neuron 138	0.06490
1030			radial spread hidden neuron 211	0.078039	radial spread hidden neuron 139	0.06888
1031			radial spread hidden neuron 212	0.085025	radial spread hidden neuron 140	0.06733
1032			radial spread hidden neuron 213	0,143018	radial spread hidden neuron 141	0.12974
1033			radial spread hidden neuron 214	0.164700	radial spread hidden neuron 142	0.13567
1034			radial spread hidden neuron 215	0,124850	radial spread hidden neuron 143	0.13886
1035			radial spread hidden neuron 216	0.072531	radial spread hidden neuron 144	0.09759
1036			radial spread hidden neuron 217	0.047389	radial spread hidden neuron 145	0.11668
1037			radial spread hidden neuron 218	0 096546	radial spread hidden neuron 146	0 10244
1038			radial spread hidden neuron 219	0.054541	radial spread hidden neuron 147	0 10173
1039			radial spread hidden neuron 220	0 103566	radial spread hidden neuron 148	0.05376
1040			radial spread hidden neuron 221	0.068990	radial spread bidden neuron 149	0.09058
1041			radial spread hidden neuron 222	0.096814	radial spread bidden neuron 150	0 14069
1042			radial spread bidden neuron 223	0 108431	radial spread bidden neuron 151	0 11381
1043			radial spread hidden neuron 224	0 121172	radial spread hidden neuron 152	0 10230
1044			radial spread hidden neuron 225	0 104033	radial spread hidden neuron 153	0.09421
1045			radial spread hidden neuron 226	0 109961	radial spread hidden neuron 155	0 11438
1046			radial spread hidden neuron 227	0.088848	radial spread hidden neuron 155	0 130/2
1040			radial opread hidden neuron 228	0,000040	radial spread hidden neuron 155	0,1042
1047			radial spread hidden neuron 220	0,103404	radial spread hidden neuron 150	0,06851
1040			radial spread hidden neuron 230	0,121331	radial spread hidden neuron 158	0.08833
1050			radial spread hidden neuron 221	0,000302	radial enread hidden neuron 150	0,00033
1050			radial spread hidden neuron 222	0,120505	radial spread hidden neuron 160	0,12001
1052			radial spread hidden neuron 222	0,132400	radial opread hidden neuron 161	0,20499
1052			radial spread hidden neuron 224	0,003045	radial opread hidden neuron 160	0,12035
1055			radial aproad bidden pource 225	0,152730	radial oproad hidden pource 162	0,20210
1054			radial aproad bidden pource 225	0,006546	radial oproad hidden neuron 164	0,11307
1055			radial apread hidden neuron 236	0,030546	radial oproad bidden pource 400	0,00096
1050			radial spread hidden neuron 237	0,039096	radial spread hidden neuron 165	0,07485
1057			radial spread hidden neuron 238	0,070013	radial spread hidden neuron 166	0,16574

🚰 Гаййчая_а_/_э_с т	1
🗄 📑 2М Диаграм	
— 📑 SANN (Таблі	۱v
🖶 🍙 SANN (Таблі	1
i∎ 📑 0_1	1
🕀 📴 O_2	1
🖶 📴 O_3	1
🗈 📴 O_4	1
🚊 🔤 2М Диаграм	1
- 🛺 Диаграмі	1
- 🛺 Диаграмі	1
- 🛺 Диаграмі	1
🖓 Диаграмі	Ľ
Польша_20	Ľ
🔤 Польша_20_	H
🕀 🏧 дис_а 7_8	H
3D Wafer Plo	H
Scatterplc	H
- A Histor	H
Network weig	H
	H

	Network weights (Габлиця_а_/_9_в	зідтв.)				
	Connections	Weight values	Connections	Weight values	Connections	Weight values
Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
1058			radial spread hidden neuron 239	0,077851	radial spread hidden neuron 167	0,080321
1059			radial spread hidden neuron 240	0,097860	radial spread hidden neuron 168	0,095315
1060			radial spread hidden neuron 241	0,116350	radial spread hidden neuron 169	0,127903
1061			radial spread hidden neuron 242	0,096014	radial spread hidden neuron 170	0,072609
1062			radial spread hidden neuron 243	0,097802	radial spread hidden neuron 171	0,052486
1063			radial spread hidden neuron 244	0,114504	radial spread hidden neuron 172	0,071809
1064			radial spread hidden neuron 245	0,109769	radial spread hidden neuron 173	0,150707
1065			radial spread hidden neuron 246	0,108903	radial spread hidden neuron 174	0,109847
1066			radial spread hidden neuron 247	0,061598	radial spread hidden neuron 175	0,113438
1067			radial spread hidden neuron 248	0,099236	radial spread hidden neuron 176	0,126965
1068			radial spread hidden neuron 249	0,091084	radial spread hidden neuron 177	0,087969
1069			radial spread hidden neuron 250	0,109909	radial spread hidden neuron 178	0,068884
1070			radial spread hidden neuron 251	0,095821	radial spread hidden neuron 179	0,105058
1071			radial spread hidden neuron 252	0,070013	radial spread hidden neuron 180	0,113073
1072			radial spread hidden neuron 253	0,110212	radial spread hidden neuron 181	0,140809
1073			radial spread hidden neuron 254	0,094757	radial spread hidden neuron 182	0,090926
1074			radial spread hidden neuron 255	0,082884	radial spread hidden neuron 183	0,060750
1075			radial spread hidden neuron 256	0,095120	radial spread hidden neuron 184	0,095577
1076			radial spread hidden neuron 257	0,094097	radial spread hidden neuron 185	0,142800
1077			radial spread hidden neuron 258	0,080952	radial spread hidden neuron 186	0,069838
1078			radial spread hidden neuron 259	0,134232	radial spread hidden neuron 187	0,082621
1079			radial spread hidden neuron 260	0,114645	radial spread hidden neuron 188	0,101731
1080			radial spread hidden neuron 261	0,142758	radial spread hidden neuron 189	0,094935
1081			radial spread hidden neuron 262	0,091662	radial spread hidden neuron 190	0,170038
1082			radial spread hidden neuron 263	0,093153	radial spread hidden neuron 191	0,129357
1083			radial spread hidden neuron 264	0,074186	radial spread hidden neuron 192	0,114032
1084			radial spread hidden neuron 265	0,064225	radial spread hidden neuron 193	0,074627
1085			radial spread hidden neuron 266	0,099236	radial spread hidden neuron 194	0,170038
1086			radial spread hidden neuron 267	0,037759	radial spread hidden neuron 195	0,082553
1087			radial spread hidden neuron 268	0,091084	radial spread hidden neuron 196	0,135637
1088			radial spread hidden neuron 269	0,127971	radial spread hidden neuron 197	0,114032
1089			radial spread hidden neuron 270	0.050598	radial spread hidden neuron 198	0,136640
1090			radial spread hidden neuron 271	0,169874	radial spread hidden neuron 199	0,101245
1091			radial spread hidden neuron 272	0,103849	radial spread hidden neuron 200	0,114386
1092			radial spread hidden neuron 273	0,109909	radial spread hidden neuron 201	0,056490
1093			hidden neuron 1> J 3 залишки	-0.069716	radial spread hidden neuron 202	0.077209
1094			hidden neuron 2> J 3 залишки	-0,037890	radial spread hidden neuron 203	0,106510
1095			hidden neuron 3> J 3 залишки	0,032815	radial spread hidden neuron 204	0,145499
1096			hidden neuron 4> J 3 залишки	0,011156	radial spread hidden neuron 205	0,091288
1097			hidden neuron 5> J 3 залишки	0,054668	radial spread hidden neuron 206	0,098156
1098			hidden neuron 6> J 3 залишки	0,167226	radial spread hidden neuron 207	0,064440
1099			hidden neuron 7> J 3 залишки	-0.023834	radial spread hidden neuron 208	0.068884
1100			hidden neuron 8> J 3 залишки	0.022713	radial spread hidden neuron 209	0.128840
1101			hidden neuron 9> J 3 запишки	-0.003782	radial spread hidden neuron 210	0.121549

М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
	VVeight	1.RBF 3-190-1	1.RBF 3-195-1	Z.RDF 3-2/3-1	Z.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
АМИ (Таблі	1102			hidden neuron 10> J_3 залишки	-0,038308	radial spread hidden neuron 211	0,103102
0_1	1103			hidden neuron 11> J_3 залишки	0,008232	radial spread hidden neuron 212	0,074857
0_2	1104			hidden neuron 12> J_3 залишки	0,133769	radial spread hidden neuron 213	0,035866
0_3	1105			hidden neuron 13> J_3 залишки	0,010162	radial spread hidden neuron 214	0,120756
0_4	1106			hidden neuron 14> J_3 залишки	-0,010610	radial spread hidden neuron 215	0,087879
И Диаграм	1107			hidden neuron 15> J_3 залишки	-0,089327	radial spread hidden neuron 216	0,070286
🕽 Диаграмі	1108			hidden neuron 16> J_3 залишки	-0,016042	radial spread hidden neuron 217	0,039563
🛛 Диаграмі	1109			hidden neuron 17> J_3 залишки	-0,013387	radial spread hidden neuron 218	0,073455
Диаграми	1110			hidden neuron 18> J_3 залишки	-0,372149	radial spread hidden neuron 219	0,128840
Диаграми	1111			hidden neuron 19> J_3 залишки	0,371222	radial spread hidden neuron 220	0,142637
ольша 20	1112			hidden neuron 20> J_3 залишки	-0,128573	radial spread hidden neuron 221	0,106863
ольша 20	1113			hidden neuron 21> J_3 залишки	-0,044376	radial spread hidden neuron 222	0,104349
олошо <u>со</u>	1114			hidden neuron 22> J_3 залишки	-0,032211	radial spread hidden neuron 223	0,122494
	1115			hidden neuron 23> J_3 залишки	0,038114	radial spread hidden neuron 224	0,073455
	1116			hidden neuron 24> J_3 залишки	0,003639	radial spread hidden neuron 225	0,153869
Scatterpic	1117			hidden neuron 25> J_3 залишки	-0,001718	radial spread hidden neuron 226	0,194521
Histor	1118			hidden neuron 26> J_3 залишки	-0,020976	radial spread hidden neuron 227	0,095343
etwork weig	1119			hidden neuron 27> J_3 залишки	0,305445	radial spread hidden neuron 228	0,095315
	1120			hidden neuron 28> J_3 залишки	-0,143166	radial spread hidden neuron 229	0,132014
	1121			hidden neuron 29> J_3 залишки	-0,111519	radial spread hidden neuron 230	0,110787
	1122			hidden neuron 30> J_3 залишки	-0,295943	radial spread hidden neuron 231	0,057867
	1123			hidden neuron 31> J_3 залишки	0,017916	radial spread hidden neuron 232	0,067424
	1124			hidden neuron 32> J_3 залишки	-0,003398	radial spread hidden neuron 233	0,160497
	1125			hidden neuron 33> J_3 залишки	0,139811	radial spread hidden neuron 234	0,103526
	1126			hidden neuron 34> J_3 залишки	0,054936	radial spread hidden neuron 235	0,088335
	1127			hidden neuron 35> J 3 залишки	0,047859	radial spread hidden neuron 236	0,040462
	1128			hidden neuron 36> J_3 залишки	-0,098878	radial spread hidden neuron 237	0,098748
	1129			hidden neuron 37> J_3 залишки	0,128195	radial spread hidden neuron 238	0,135637
	1130			hidden neuron 38> J 3 залишки	0,023350	radial spread hidden neuron 239	0,054466
	1131			hidden neuron 39> J 3 залишки	0,038402	radial spread hidden neuron 240	0,050837
	1132			hidden neuron 40> J З залишки	0,015088	radial spread hidden neuron 241	0,077572
	1133			hidden neuron 41> J 3 залишки	0.018570	radial spread hidden neuron 242	0.050601
	1134			hidden neuron 42> J 3 залишки	-0,030938	radial spread hidden neuron 243	0,069838
	1135			hidden neuron 43> J 3 залишки	0.396384	radial spread hidden neuron 244	0.123431
	1136			hidden neuron 44> J 3 залишки	0.136573	radial spread hidden neuron 245	0.123332
	1137			hidden neuron 45> J 3 залишки	-0.105421	radial spread hidden neuron 246	0.063379
	1138			hidden neuron 46> J 3 залишки	-0.071357	radial spread hidden neuron 247	0.051259
	1139			hidden neuron 47> J 3 запишки	-0.005938	radial spread hidden neuron 248	0 109660
	1140			hidden neuron 48> J 3 залишки	-0 209917	radial spread hidden neuron 249	0.054466
	1141			hidden neuron 49> J_3 залишки	-0.014428	radial spread hidden neuron 250	0.064440
	1142			hidden neuron 50> ,1 3 sanwuww	-0.0139/5	radial spread hidden neuron 251	0 108330
	1143			hidden neuron 51> . 3 запишки	0.049233	radial spread hidden neuron 252	0.057867
	1144			hidden neuron 52 -> 1 3 sanwuwa	0.055746	radial spread hidden neuron 252	0.082621
	1145			hidden neuron 52 -> 0_3 aanuuru	0.005769	radial spread hidden neuron 254	0 128207
	1145			пициен пецгоп 55> 3_3 Залишки	0,005758	radial spread moden nedfon 254	0,12

늘 Рабочая_а_7_9_е<		Network weights (Таблиця а 7 9	відтв.)				
🕀 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
SANN (Таблі	Weight	1.RBF 3-195-1	1.RBF 3-195-1	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚍 🌈 SANN (Таблі	1145			hidden neuron 53> J_3 залишки	0,005758	radial spread hidden neuron 254	0,128297
ia - 🔁 0_1	1146			hidden neuron 54> J_3 залишки	0,000271	radial spread hidden neuron 255	0,117623
🕀 📑 O_2	1147			hidden neuron 55> J_3 залишки	0,095039	radial spread hidden neuron 256	0,105834
🖶 📑 O_3	1148			hidden neuron 56> J_3 залишки	0,025672	radial spread hidden neuron 257	0,073201
🖶 🔁 0_4	1149			hidden neuron 57> J_3 залишки	0,102718	radial spread hidden neuron 258	0,103252
🖃 📴 2М Диаграм	1150			hidden neuron 58> J_3 залишки	0,061289	radial spread hidden neuron 259	0,128516
🛺 Диаграмі	1151			hidden neuron 59> J_3 залишки	0,256356	radial spread hidden neuron 260	0,151768
- Диаграми	1152			hidden neuron 60> J_3 залишки	0,048922	radial spread hidden neuron 261	0,036267
Пиаграми	1153			hidden neuron 61> J_3 залишки	-0,026725	radial spread hidden neuron 262	0,074627
Диаграми	1154			hidden neuron 62> J_3 залишки	0,214046	radial spread hidden neuron 263	0,118322
Полина 20	1155			hidden neuron 63> J_3 залишки	0,014515	radial spread hidden neuron 264	0,085813
	1156			hidden neuron 64> J_3 залишки	0,007986	radial spread hidden neuron 265	0,088828
тольша_20_	1157			hidden neuron 65> J_3 залишки	0,024974	radial spread hidden neuron 266	0,099441
⊕ <u>ф</u> ис_а_/_8	1158			hidden neuron 66> J_3 залишки	0,008513	radial spread hidden neuron 267	0,035866
😑 🏧 3D Wafer Plo	1159			hidden neuron 67> J 3 залишки	0,046389	radial spread hidden neuron 268	0,093373
😑 🎒 Scatterplc	1160			hidden neuron 68> J З залишки	0,029389	radial spread hidden neuron 269	0,162112
- 🏭 Histog	1161			hidden neuron 69> J 3 залишки	-0,231207	radial spread hidden neuron 270	0,050143
Network weig	1162			hidden neuron 70> J 3 залишки	0,007422	radial spread hidden neuron 271	0,052394
	1163			hidden neuron 71> J 3 залишки	-0,007507	radial spread hidden neuron 272	0,103526
	1164			hidden neuron 72> J 3 залишки	0.017947	radial spread hidden neuron 273	0.134377
	1165			hidden neuron 73> J 3 залишки	0.013924	radial spread hidden neuron 274	0.088319
	1166			hidden neuron 74> J 3 залишки	0.026247	radial spread hidden neuron 275	0.118283
	1167			hidden neuron 75> J 3 залишки	0.025145	radial spread hidden neuron 276	0.060750
	1168			hidden neuron 76> J 3 запишки	0 243591	radial spread hidden neuron 277	0 115913
	1169			hidden neuron 77> J З запишки	0.000943	radial spread hidden neuron 278	0 040462
	1170			hidden neuron 78> .1 3 залишки	0.019101	radial spread hidden neuron 279	0.044800
	1171			hidden neuron 79> 1 3 запишки	0.093700	radial spread hidden neuron 280	0.072609
	1172			hidden neuron 80> .1 3 запишки	0.065530	radial spread hidden neuron 281	0 128847
	1173			hidden neuron 81 -> 1 3 запишки	0.011851	radial spread hidden neuron 282	0 127771
	1174			hidden neuron 82 -> 1 3 запишки	-0.024813	radial spread hidden neuron 283	0,098988
	1175			hidden neuron 83 -> 1_3 запишки	-0,024013	radial spread hidden neuron 284	0.093746
	1176			hidden neuron 84 -> 1_3 залишки	-0,002303	radial spread hidden neuron 285	0,053740
	1177			hidden neuron 85 > 1.3 consumer	0,169433	radial apread hidden neuron 286	0,104031
	1178			hidden neuron 86 > 1.3 samuuru	-0,150455	radial spread hidden neuron 287	0,050057
	1170			hidden neuron 97 > 1 2 convurue	-0,104003	radial apread hidden neuron 200	0,116454
	11/9			hidden neuron 67> J_3 залишки	0,091700	radial spread hidden neuron 200	0,110404
	1100			hidden neuron 66> J_3 залишки	-0,024470	radial spread hidden neuron 209	0,102711
	1101			hidden neuron 69> J_3 ЗАЛИШКИ	0,525630	radial spread hidden neuron 290	0,057165
	1102			hidden neuron 90> J_3 залишки	-0,003490	radial spread hidden neuron 291	0,095577
	1183			hidden neuron 91> J_3 ЗАЛИШКИ	0,009794	radial spread hidden neuron 292	0,129745
	1184			пidden neuron 92> J_3 залишки	0,395233	radial spread hidden neuron 293	0,052394
	1185			nidden neuron 93> J_3 залишки	-0,011314	radial spread hidden neuron 294	0,097042
	1186			nidden neuron 94> J_3 залишки	-0,122203	radial spread hidden neuron 295	0,115807
	118/			hidden neuron 95> J_3 залишки	0,028161	radial spread hidden neuron 296	0,091288
	1188			hidden neuron 96> J_3 залишки	0,072721	radial spread hidden neuron 297	0,098556

 Рабочая______

 2M Диаграм

 SANN (Таблі

 SANN (Таблі

 O_1

 O_2

 O_3

 O_4

 ZM Диаграм

 ZM ZM ZM

309

Рабочая_а_/_9_е<		Network weights (Tai	блиця а 7 9 від	тв.)			
📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі		1.RBF 3-195-1	1.RBF	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
👍 SANN (Таблі	Weight		3-195-1				
÷- 🔁 0_1	1189		1	hidden neuron 97> J_3 залишки	-0,005272	hidden neuron 1> J_3 залишки	-0,017473
÷ 0_2	1190			hidden neuron 98> J_3 залишки	0,027304	hidden neuron 2> J_3 залишки	-0,027500
in − 1 0 3	1191			hidden neuron 99> J_3 залишки	-0,061717	hidden neuron 3> J_3 залишки	0,120382
	1192			hidden neuron 100> J_3 залишки	0,002713	hidden neuron 4> J_3 залишки	-0,061263
🔁 2М Лиаграм	1193			hidden neuron 101> J_3 залишки	-0,031464	hidden neuron 5> J_3 залишки	-0,020279
Пиаграм	1194			hidden neuron 102> J_3 залишки	0,032047	hidden neuron 6> J_3 залишки	0,167025
Диаграми	1195			hidden neuron 103> J_3 залишки	0,086454	hidden neuron 7> J_3 залишки	-0,004010
	1196			hidden neuron 104> J_3 залишки	0,041654	hidden neuron 8> J_3 залишки	0,068398
Пистрами	1197			hidden neuron 105> J_3 залишки	-0,006283	hidden neuron 9> J_3 залишки	-0,035866
диаграмі	1198			hidden neuron 106> J_3 залишки	-0,120825	hidden neuron 10> J_3 залишки	0,068118
Польша_20_	1199			hidden neuron 107> J_3 залишки	-0,320248	hidden neuron 11> J_3 залишки	0,033822
🖆 Польша_20_	1200			hidden neuron 108> J_3 залишки	-0,154032	hidden neuron 12> J_3 залишки	-0,030953
🏧 дис_а_7_8	1201			hidden neuron 109> J_3 залишки	-0,005203	hidden neuron 13> J_3 залишки	-0,011879
💯 3D Wafer Plo	1202			hidden neuron 110> J_3 залишки	0,204089	hidden neuron 14> J_3 залишки	0,003092
📄 🏠 Scatterplc	1203			hidden neuron 111> J_3 залишки	0,045005	hidden neuron 15> J_3 залишки	-0,167489
🔤 🏧 Histor	1204			hidden neuron 112> J_3 залишки	0,005636	hidden neuron 16> J_3 залишки	-0,010209
Network weig	1205			hidden neuron 113> J_3 залишки	0,017063	hidden neuron 17> J_3 залишки	0,068378
	1206			hidden neuron 114> J_3 залишки	0,014129	hidden neuron 18> J_3 залишки	-0,035553
	1207			hidden neuron 115> J_3 залишки	0,022771	hidden neuron 19> J_3 залишки	0,007897
	1208			hidden neuron 116> J_3 залишки	-0,380081	hidden neuron 20> J_3 залишки	-0,134339
	1209			hidden neuron 117> J_3 залишки	0,119117	hidden neuron 21> J_3 залишки	-0,061487
	1210			hidden neuron 118> J_3 залишки	0,024702	hidden neuron 22> J_3 залишки	-0,210868
	1211			hidden neuron 119> J_3 залишки	-0,041634	hidden neuron 23> J_3 залишки	-0,325381
	1212			hidden neuron 120> J_3 залишки	0,022281	hidden neuron 24> J_3 залишки	0,020949
	1213			hidden neuron 121> J_3 залишки	0,010552	hidden neuron 25> J_3 залишки	0,147875
	1214			hidden neuron 122> J_3 залишки	-0,113283	hidden neuron 26> J_3 залишки	0,004832
	1215			hidden neuron 123> J_3 залишки	-0,182518	hidden neuron 27> J_3 залишки	-0,007630
	1216			hidden neuron 124> J_3 залишки	0,139823	hidden neuron 28> J_3 залишки	0,068662
	1217			hidden neuron 125> J_3 залишки	-0,020239	hidden neuron 29> J_3 залишки	-0,288124
	1218			hidden neuron 126> J_3 залишки	0,008040	hidden neuron 30> J_3 залишки	-0,009212
	1219			hidden neuron 127> J_3 залишки	-0,027996	hidden neuron 31> J_3 залишки	-0,029628
	1220			hidden neuron 128> J_3 залишки	0,030932	hidden neuron 32> J_3 залишки	0,052267
	1221			hidden neuron 129> J_3 залишки	0,046986	hidden neuron 33> J_3 залишки	0,028864
	1222			hidden neuron 130> J_3 залишки	0,018415	hidden neuron 34> J_3 залишки	0,252931
	1223			hidden neuron 131> J_3 залишки	-0,045531	hidden neuron 35> J_3 залишки	0,030977
	1224			hidden neuron 132> J_3 залишки	-0,217220	hidden neuron 36> J_3 залишки	-0,015185
	1225			hidden neuron 133> J_3 залишки	0,009989	hidden neuron 37> J_3 залишки	-0,000887
	1226			hidden neuron 134> J_3 залишки	-0,000652	hidden neuron 38> J_3 залишки	-0,089445
	1227			hidden neuron 135> J_3 залишки	-0,113241	hidden neuron 39> J_3 залишки	-0,048658
	1228			hidden neuron 136> J_3 залишки	0,006441	hidden neuron 40> J_3 залишки	0,242239
	1229			hidden neuron 137> J_3 залишки	0,188166	hidden neuron 41> J_3 залишки	0,007532
	1230			hidden neuron 138> J_3 залишки	-0,000936	hidden neuron 42> J_3 залишки	-0,036884
	1231			hidden neuron 139> J_3 залишки	0,017097	hidden neuron 43> J_3 залишки	-0,038664
	1000			hiddon nouron 140 S. J. 2 consume	0.040704	hiddon nouron 44 S. J. 2 consumer	0.0101/0

⊘

÷

🗁 Рабочая_а_7_9_е<		Network weights (Tai	блиця а 7 9 віл	тв)			
🗄 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
SANN (Таблі		1.RBF 3-195-1	1 RBF	2 RBF 3-273-1	2 RBF 3-273-1	3 RBF 3-297-1	3 RBF 3-297-1
🗆 🗖 SANN (Таблі	Weight	1.101 0-100-1	3-195-1	2.101 0 210 1	2.1101 0 210 1	5.RBF 5 251 1	5.1121 5 251 1
0 1	1232			hidden neuron 140> J 3 залишки	0,040781	hidden neuron 44> J 3 залишки	-0,013148
a 0 2	1233			hidden neuron 141> J 3 залишки	0,031333	hidden neuron 45> J 3 залишки	0,023666
i 0 3	1234			hidden neuron 142> J_3 залишки	0,010819	hidden neuron 46> J_3 залишки	0,048212
÷ 04	1235			hidden neuron 143> J_3 залишки	0,038484	hidden neuron 47> J_3 залишки	-0,019841
Параграм	1236			hidden neuron 144> J_3 залишки	0,217309	hidden neuron 48> J_3 залишки	-0,065353
Пиаграм	1237			hidden neuron 145> J_3 залишки	-0,388711	hidden neuron 49> J_3 залишки	0,035792
Диаграми	1238			hidden neuron 146> J_3 залишки	-0,000950	hidden neuron 50> J_3 залишки	-0,022561
диаграмі	1239			hidden neuron 147> J_3 залишки	-0,025790	hidden neuron 51> J_3 залишки	-0,127165
диаграмі	1240			hidden neuron 148> J_3 залишки	0,065273	hidden neuron 52> J_3 залишки	-0,019156
диаграмі	1241			hidden neuron 149> J_3 залишки	-0,002651	hidden neuron 53> J_3 залишки	0,000093
Польша_20_	1242			hidden neuron 150> J_3 залишки	0,051208	hidden neuron 54> J_3 залишки	-0,009913
💮 Польша_20_	1243			hidden neuron 151> J_3 залишки	-0,031105	hidden neuron 55> J_3 залишки	-0,057615
⊕ ∰ дис_а_7_8	1244			hidden neuron 152> J_3 залишки	-0,023806	hidden neuron 56> J_3 залишки	0,059758
🖨 🎒 3D Wafer Plo	1245			hidden neuron 153> J_3 залишки	-0,037164	hidden neuron 57> J_3 залишки	0,007929
😑 🏠 Scatterplc	1246			hidden neuron 154> J_3 залишки	0,028701	hidden neuron 58> J_3 залишки	0,020865
	1247			hidden neuron 155> J_3 залишки	0,047271	hidden neuron 59> J_3 залишки	0,043447
Network weig	1248			hidden neuron 156> J 3 залишки	0,035816	hidden neuron 60> J 3 залишки	0,006058
	1249			hidden neuron 157> J_3 залишки	-0,021973	hidden neuron 61> J_3 залишки	-0,003687
	1250			hidden neuron 158> J_3 залишки	0,092168	hidden neuron 62> J_3 залишки	-0,004445
	1251			hidden neuron 159> J_3 залишки	0,100631	hidden neuron 63> J_3 залишки	0,047451
	1252			hidden neuron 160> J 3 залишки	-0,110432	hidden neuron 64> J 3 залишки	0,083234
	1253			hidden neuron 161> J 3 залишки	0,035826	hidden neuron 65> J 3 залишки	0,031680
	1254			hidden neuron 162> J 3 залишки	0,015749	hidden neuron 66> J 3 залишки	-0,001175
	1255			hidden neuron 163> J 3 залишки	-0,015901	hidden neuron 67> J 3 залишки	0,156761
	1256			hidden neuron 164> J 3 залишки	-0,151610	hidden neuron 68> J 3 залишки	0,020511
	1257			hidden neuron 165> J_3 залишки	-0,022965	hidden neuron 69> J_3 залишки	0,310785
	1258			hidden neuron 166> J_3 залишки	0,156283	hidden neuron 70> J_3 залишки	-0,036639
	1259			hidden neuron 167> J_3 залишки	0,051090	hidden neuron 71> J_3 залишки	0,251499
	1260			hidden neuron 168> J_3 залишки	0,258073	hidden neuron 72> J_3 залишки	0,044029
	1261			hidden neuron 169> J 3 залишки	0,029202	hidden neuron 73> J 3 залишки	-0,066909
	1262			hidden neuron 170> J 3 залишки	0,008850	hidden neuron 74> J 3 залишки	-0,140345
	1263			hidden neuron 171> J 3 залишки	0,032939	hidden neuron 75> J 3 залишки	-0,125673
	1264			hidden neuron 172> J 3 залишки	0,033645	hidden neuron 76> J 3 залишки	-0,012762
	1265			hidden neuron 173> J 3 залишки	-0,181258	hidden neuron 77> J 3 залишки	0,086392
	1266			hidden neuron 174> J_3 залишки	0,012926	hidden neuron 78> J_3 залишки	-0,004970
	1267			hidden neuron 175> J_3 залишки	0,019072	hidden neuron 79> J_3 залишки	0,058692
	1268			hidden neuron 176> J_3 залишки	0,019391	hidden neuron 80> J_3 залишки	-0,007535
	1269			hidden neuron 177> J 3 залишки	0,051172	hidden neuron 81> J З залишки	-0,431549
	1270			hidden neuron 178> J 3 залишки	0,007203	hidden neuron 82> J З залишки	0,040803
	1271			hidden neuron 179> .L 3 запишки	0 003824	hidden neuron 83> .1 3 запишки	0 125155

늘 Рабочая_а_7_9_е<		Network weights (Tab	лиця а 7_9 від	(тв.)			
🕀 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
— 📑 SANN (Таблі		1.RBF 3-195-1	1.RBF	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🚊 👍 SANN (Таблі	Weight		3-195-1				
🖶 📴 0_1	1275			hidden neuron 183> J_3 залишки	0,016946	hidden neuron 87> J_3 залишки	0,044936
⊕ □ 0_2	1276			hidden neuron 184> J_3 залишки	0,028607	hidden neuron 88> J_3 залишки	0,078494
🖶 🔁 O 3	1277			hidden neuron 185> J_3 залишки	0,235544	hidden neuron 89> J_3 залишки	-0,019500
in 0 4	1278			hidden neuron 186> J_3 залишки	-0,013415	hidden neuron 90> J_3 залишки	-0,044467
— 🔁 2М Лиаграм	1279			hidden neuron 187> J_3 залишки	0,027220	hidden neuron 91> J_3 залишки	0,156649
Пиаграми	1280			hidden neuron 188> J_3 залишки	-0,114322	hidden neuron 92> J_3 залишки	-0,011647
Диаграми	1281			hidden neuron 189> J_3 залишки	-0,179761	hidden neuron 93> J_3 залишки	0,068581
Пиаграми	1282			hidden neuron 190> J_3 залишки	-0,185038	hidden neuron 94> J_3 залишки	-0,010717
Диаграмі	1283			hidden neuron 191> J_3 залишки	0,050653	hidden neuron 95> J_3 залишки	-0,071110
Диаграмі	1284			hidden neuron 192> J_3 залишки	-0,013923	hidden neuron 96> J_3 залишки	-0,004553
тольша_20_	1285			hidden neuron 193> J_3 залишки	-0,013406	hidden neuron 97> J_3 залишки	-0,018003
Польша_20_	1286			hidden neuron 194> J_3 залишки	0,004654	hidden neuron 98> J_3 залишки	0,043272
⊞ ∰ дис_а_7_8	1287			hidden neuron 195> J_3 залишки	0,069674	hidden neuron 99> J_3 залишки	-0,000361
B 3D Wafer Plo	1288			hidden neuron 196> J_3 залишки	0,030746	hidden neuron 100> J_3 залишки	0,051855
😑 🎒 Scatterplc	1289			hidden neuron 197> J_3 залишки	0,036133	hidden neuron 101> J_3 залишки	-0,039021
🚰 Histog	1290			hidden neuron 198> J_3 залишки	0,012065	hidden neuron 102> J_3 залишки	-0,007363
Network weig	1291			hidden neuron 199> J_3 залишки	0,254427	hidden neuron 103> J_3 залишки	0,204387
	1292			hidden neuron 200> J_3 залишки	-0,010876	hidden neuron 104> J_3 залишки	-0,010376
	1293			hidden neuron 201> J_3 залишки	0,154833	hidden neuron 105> J_3 залишки	0,056790
	1294			hidden neuron 202> J_3 залишки	0,047281	hidden neuron 106> J_3 залишки	-0,017725
	1295			hidden neuron 203> J_3 залишки	0,061416	hidden neuron 107> J_3 залишки	0,008493
	1296			hidden neuron 204> J_3 залишки	0,103710	hidden neuron 108> J_3 залишки	-0,040081
	1297			hidden neuron 205> J_3 залишки	-0,001274	hidden neuron 109> J_3 залишки	0,008422
	1298			hidden neuron 206> J_3 залишки	0,059187	hidden neuron 110> J_3 залишки	0,015676
	1299			hidden neuron 207> J_3 залишки	0,069761	hidden neuron 111> J_3 залишки	0,293395
	1300			hidden neuron 208> J_3 залишки	-0,021328	hidden neuron 112> J_3 залишки	0,054251
	1301			hidden neuron 209> J_3 залишки	-0,015245	hidden neuron 113> J_3 залишки	0,183084
	1302			hidden neuron 210> J_3 залишки	-0,022594	hidden neuron 114> J_3 залишки	-0,254842
	1303			hidden neuron 211> J_3 залишки	-0,081528	hidden neuron 115> J_3 залишки	-0,024421
	1304			hidden neuron 212> J_3 залишки	-0,137761	hidden neuron 116> J_3 залишки	0,056086
	1305			hidden neuron 213> J_3 залишки	0,006391	hidden neuron 117> J_3 залишки	-0,002582
	1306			hidden neuron 214> J_3 залишки	-0,016815	hidden neuron 118> J_3 залишки	0,014840
	1307			hidden neuron 215> J_3 залишки	-0,076425	hidden neuron 119> J_3 залишки	0,080910
	1308			hidden neuron 216> J_3 залишки	-0,000670	hidden neuron 120> J_3 залишки	-0,025201
	1309			hidden neuron 217> J_3 залишки	-0,485405	hidden neuron 121> J_3 залишки	-0,059681
	1310			hidden neuron 218> J_3 залишки	-0,132352	hidden neuron 122> J_3 залишки	-0,108668
	1311			hidden neuron 219> J_3 залишки	0,434603	hidden neuron 123> J_3 залишки	0,006713
	1312			hidden neuron 220> J_3 залишки	0,105880	hidden neuron 124> J_3 залишки	0,018738
	1313			hidden neuron 221> J_3 залишки	-0,056389	hidden neuron 125> J_3 залишки	-0,143826
	1314			hidden neuron 222> J_3 залишки	-0,021394	hidden neuron 126> J_3 залишки	0,021727
	1315			hidden neuron 223> J_3 залишки	-0,004362	hidden neuron 127> J_3 залишки	-0,017866
	1316			hidden neuron 224> J_3 залишки	-0,004260	hidden neuron 128> J_3 залишки	-0,022607
	1317			hidden neuron 225> J_3 залишки	0,080379	hidden neuron 129> J_3 залишки	-0,013151
	1210	1		hiddon nouron 200 S 1 2 consume	0.054600	hiddon nouron 120 - S. I. 2 consumu	0.000001

渣 Рабочая_а_7_9_е<		Network weights (Таблиця_а_7_9_відтв.)							
🎚 📴 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values		
📑 SANN (Таблі		1.RBF 3-195-1	1.RBF	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1		
📄 📴 SANN (Таблі	Weight		3-195-1						
i i i i i i i i i i i i i i i i i i i	1318			hidden neuron 226> J 3 залишки	-0,054690	hidden neuron 130> J 3 залишки	-0,026984		
0 2	1319			hidden neuron 227> J 3 залишки	-0,076809	hidden neuron 131> J 3 залишки	0,132386		
÷ 0 3	1320			hidden neuron 228> J 3 залишки	-0,065847	hidden neuron 132> J_3 залишки	0,040794		
m <u>0</u> 4	1321			hidden neuron 229> J 3 залишки	0,077732	hidden neuron 133> J_3 залишки	-0,127891		
Параграм	1322			hidden neuron 230> J 3 залишки	-0,175898	hidden neuron 134> J_3 залишки	-0,290585		
Пиртории	1323			hidden neuron 231> J 3 залишки	-0,069224	hidden neuron 135> J 3 залишки	-0,005341		
Диаграми	1324			hidden neuron 232> J_3 залишки	-0,035709	hidden neuron 136> J_3 залишки	0,056783		
Преднаграми	1325			hidden neuron 233> J_3 залишки	0,000821	hidden neuron 137> J_3 залишки	0,023897		
диаграмі	1326			hidden neuron 234> J_3 залишки	0,145947	hidden neuron 138> J_3 залишки	-0,001642		
диаграмі	1327			hidden neuron 235> J_3 залишки	0,012996	hidden neuron 139> J_3 залишки	0,021418		
Польша_20_	1328			hidden neuron 236> J_3 залишки	0,047537	hidden neuron 140> J_3 залишки	-0,076894		
Польша_20_	1329			hidden neuron 237> J_3 залишки	-0,185500	hidden neuron 141> J_3 залишки	0,073284		
🕀 🏧 дис_а_7_8	1330			hidden neuron 238> J_3 залишки	0,016515	hidden neuron 142> J_3 залишки	-0,206312		
B Wafer Plo	1331			hidden neuron 239> J_3 залишки	-0,083719	hidden neuron 143> J_3 залишки	0,103913		
😑 🎒 Scatterple	1332			hidden neuron 240> J_3 залишки	0,028608	hidden neuron 144> J_3 залишки	0,082086		
🔤 🏭 Histor	1333			hidden neuron 241> J_3 залишки	0,179236	hidden neuron 145> J_3 залишки	-0,162595		
Network weig	1334			hidden neuron 242> J_3 залишки	-0,037973	hidden neuron 146> J_3 залишки	-0,052287		
	1335			hidden neuron 243> J_3 залишки	-0,196038	hidden neuron 147> J_3 залишки	-0,013029		
	1336			hidden neuron 244> J_3 залишки	-0,094173	hidden neuron 148> J_3 залишки	0,003977		
	1337			hidden neuron 245> J_3 залишки	0,008824	hidden neuron 149> J_3 залишки	-0,190730		
	1338			hidden neuron 246> J_3 залишки	-0,017663	hidden neuron 150> J_3 залишки	-0,045177		
	1339			hidden neuron 247> J_3 залишки	0,084051	hidden neuron 151> J_3 залишки	-0,042310		
	1340			hidden neuron 248> J_3 залишки	0,051656	hidden neuron 152> J_3 залишки	0,009858		
	1341			hidden neuron 249> J_3 залишки	0,076270	hidden neuron 153> J_3 залишки	0,036012		
	1342			hidden neuron 250> J_3 залишки	0,031530	hidden neuron 154> J_3 залишки	-0,068038		
	1343			hidden neuron 251> J_3 залишки	-0,037405	hidden neuron 155> J_3 залишки	0,068701		
	1344			hidden neuron 252> J_3 залишки	0,017302	hidden neuron 156> J_3 залишки	-0,009413		
	1345			hidden neuron 253> J_3 залишки	-0,006142	hidden neuron 157> J_3 залишки	0,023579		
	1346			hidden neuron 254> J_3 залишки	-0,054748	hidden neuron 158> J_3 залишки	0,169191		
	1347			hidden neuron 255> J_3 залишки	-0,089190	hidden neuron 159> J_3 залишки	-0,004493		
	1348			hidden neuron 256> J_3 залишки	-0,010953	hidden neuron 160> J_3 залишки	-0,032214		
	1349			hidden neuron 257> J_3 залишки	-0,028481	hidden neuron 161> J_3 залишки	0,029757		
	1350			hidden neuron 258> J_3 залишки	0,003915	hidden neuron 162> J_3 залишки	0,020401		
	1351			hidden neuron 259> J_3 залишки	-0,005653	hidden neuron 163> J_3 залишки	-0,018546		
	1352			hidden neuron 260> J_3 залишки	-0,171400	hidden neuron 164> J_3 залишки	-0,011266		
	1353			hidden neuron 261> J_3 залишки	-0,045860	hidden neuron 165> J_3 залишки	-0,025135		
	1354			hidden neuron 262> J_3 залишки	-0,115507	hidden neuron 166> J_3 залишки	-0,075992		
	1355			hidden neuron 263> J_3 залишки	-0,052687	hidden neuron 167> J_3 залишки	0,021676		
	1356			hidden neuron 264> J_3 залишки	-0,260620	hidden neuron 168> J_3 залишки	0,111955		

гачичая_а_/_э_с	1 1	Network weights (Tat	олицяа / У від	тв.)			
🎚 📑 2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі		1.RBF 3-195-1	1.RBF	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
🖃 🔤 SANN (Таблі	Weight		3-195-1				
ini - 🔁 0_1	1357			hidden neuron 265> J_3 залишки	-0,008683	hidden neuron 169> J_3 залишки	-0,038170
i 0 2	1358			hidden neuron 266> J_3 залишки	0,007172	hidden neuron 170> J_3 залишки	0,008543
ia∎ 0 3	1359			hidden neuron 267> J_3 залишки	-0,036920	hidden neuron 171> J_3 залишки	-0,028422
m 0 4	1360			hidden neuron 268> J_3 залишки	-0,031742	hidden neuron 172> J_3 залишки	-0,001009
— 🤁 2М Лиаграм	1361			hidden neuron 269> J_3 залишки	0,018307	hidden neuron 173> J_3 залишки	0,021202
Пиаграми	1362			hidden neuron 270> J_3 залишки	0,089671	hidden neuron 174> J_3 залишки	-0,116497
Диаграми	1363			hidden neuron 271> J_3 залишки	0,007318	hidden neuron 175> J_3 залишки	0,099489
Диаграми	1364			hidden neuron 272> J_3 залишки	0,099164	hidden neuron 176> J_3 залишки	-0,014295
Пистрами	1365			hidden neuron 273> J_3 залишки	-0,028440	hidden neuron 177> J_3 залишки	-0,089681
тар диаграми	1366			hidden bias> J_3 залишки	0,385792	hidden neuron 178> J_3 залишки	-0,059588
тольша_20_	1367					hidden neuron 179> J_3 залишки	0,021680
Польша_20_	1368					hidden neuron 180> J_3 залишки	-0,021180
⊕ ∰ дис_а_/_8	1369					hidden neuron 181> J_3 залишки	-0,021331
B 3D Wafer Plo	1370					hidden neuron 182> J_3 залишки	-0,061856
E- Scatterplc	1371					hidden neuron 183> J_3 залишки	0,003712
- 🚰 Histor	1372					hidden neuron 184> J_3 залишки	-0,117529
Network weig	1373					hidden neuron 185> J_3 залишки	0,330175
	1374					hidden neuron 186> J_3 залишки	0,021787
	1375					hidden neuron 187> J_3 залишки	-0,025582
	1376					hidden neuron 188> J_3 залишки	0,033262
	1377					hidden neuron 189> J_3 залишки	0,076746
	1378					hidden neuron 190> J_3 залишки	0,007312
	1379					hidden neuron 191> J_3 залишки	0,004005
	1380					hidden neuron 192> J_3 залишки	0,015416
	1381					hidden neuron 193> J_3 залишки	0,025064
	1382					hidden neuron 194> J_3 залишки	-0,055108
	1383					hidden neuron 195> J_3 залишки	0,031093
	1384					hidden neuron 196> J_3 залишки	0,148563
	1385					hidden neuron 197> J_3 залишки	-0,031827
	1386					hidden neuron 198> J_3 залишки	-0,130564
	1387					hidden neuron 199> J_3 залишки	0,021876
	1388					hidden neuron 200> J_3 залишки	0,064995
	1389					hidden neuron 201> J_3 залишки	0,020790
	1390					hidden neuron 202> J_3 залишки	-0,035398
	1391					hidden neuron 203> J_3 залишки	-0,009012
	1392					hidden neuron 204> J_3 залишки	-0,032883
	1393					hidden neuron 205> J_3 залишки	-0,103011
	1394					hidden neuron 206> J_3 залишки	-0,025969
	1395					hidden neuron 207> J_3 залишки	0,009584
	1396					hidden neuron 208> J_3 залишки	0,012204
	1397					hidden neuron 209> J_3 залишки	-0,037416
	1398					hidden neuron 210> J_3 залишки	0,093393
	1399					hidden neuron 211> J_3 залишки	-0,040925
						pingoon polition (1971 - S. L. 7 continued	

🗁 Рабочая_а_/_9_е<	I 1	Vetwork weights (Tai	блиця а 7 9 відтв.)			
🗄 🛅 2М Диаграм	l t	Connections	Weight values	Connections	Weight values	Connections	Weight values
📑 SANN (Таблі		1.RBF 3.195.1	1 RBF	2 RBF 3-273-1	2 RBF 3-273-1	3 RBF 3-297-1	3 RBF 3-297-1
🖃 👍 SANN (Таблі	Weight		3-195-1				
🗄 🛅 0_1	1400					hidden neuron 212> J_3 залишки	-0,003822
⊕ <u>©</u> 0_2	1401					hidden neuron 213> J_3 залишки	-0,004277
i 0 3	1402					hidden neuron 214> J_3 залишки	-0,013473
m 1 0 4	1403					hidden neuron 215> J_3 залишки	0,017646
— 🔁 2М Диаграм	1404					hidden neuron 216> J_3 залишки	-0,005540
Пиаграми	1405					hidden neuron 217> J_3 залишки	0,014805
Диаграми	1406					hidden neuron 218> J_3 залишки	-0,001582
Диаграми	1407					hidden neuron 219> J_3 залишки	0,025952
	1408					hidden neuron 220> J_3 залишки	0,192233
	1409					hidden neuron 221> J_3 залишки	-0,002322
	1410					hidden neuron 222> J_3 залишки	-0,031413
польша_20_	1411					hidden neuron 223> J_3 залишки	0,184432
⊕ ∰ дис_а_/_8	1412					hidden neuron 224> J_3 залишки	-0,012212
B 3D Water Plo	1413					hidden neuron 225> J_3 залишки	0,173278
E Scatterplc	1414					hidden neuron 226> J_3 залишки	-0,121929
	1415					hidden neuron 227> J_3 залишки	-0,063960
Network weig	1416					hidden neuron 228> J_3 залишки	-0,096311
	1417					hidden neuron 229> J_3 залишки	-0,362539
	1418					hidden neuron 230> J_3 залишки	-0,008580
	1419					hidden neuron 231> J_3 залишки	0,268081
	1420					hidden neuron 232> J_3 залишки	0,022446
	1421					hidden neuron 233> J_3 залишки	-0,077413
	1422					hidden neuron 234> J_3 залишки	-0,003074
	1423					hidden neuron 235> J_3 залишки	-0,131632
	1424					hidden neuron 236> J_3 залишки	-0,002200
	1425					hidden neuron 237> J_3 залишки	-0,064143
	1426					hidden neuron 238> J_3 залишки	-0,179766
	1427					hidden neuron 239> J_3 залишки	-0,024863
	1428					hidden neuron 240> J_3 залишки	0,034201
	1429					hidden neuron 241> J_3 залишки	0,035982
	1430					hidden neuron 242> J_3 залишки	0,000762
	1431					hidden neuron 243> J_3 залишки	-0,029546
	1432					hidden neuron 244> J_3 залишки	0,019436
	1433					hidden neuron 245> J_3 залишки	-0,107438
	1434					hidden neuron 246> J_3 залишки	-0,100679
	1435					hidden neuron 247> J_3 залишки	-0,025203
	1436					hidden neuron 248> J_3 залишки	-0,013504
	1437					hidden neuron 249> J_3 залишки	0,030417
	1438					hidden neuron 250> J_3 залишки	-0,008925
	1439					hidden neuron 251> J_3 залишки	-0,038331
	1440					hidden neuron 252> J 3 залишки	-0,434696

4	Connections 1.RBF 3-195-1	Weight values 1.RBF	Connections 2.RBF 3-273-1	Weight values 2.RBF 3-273-1	Connections 3.RBF 3-297-1	Weight values 3.RBF 3-297-1
weight		3-195-1				
1443					hidden neuron 255> J 3 залишки	-0,033055
1444					hidden neuron 256> J_3 залишки	-0,026287
1445					hidden neuron 257> J_3 залишки	-0,013076
1446					hidden neuron 258> J_3 залишки	-0,159003
1447					hidden neuron 259> J_3 залишки	-0,104987
1448					hidden neuron 260> J_3 залишки	-0,004541
1449					hidden neuron 261> J_3 залишки	-0,038475
1450					hidden neuron 262> J_3 залишки	-0,032592
1451					hidden neuron 263> J_3 залишки	0,070381
1452					hidden neuron 264> J_3 залишки	-0,024138
1453					hidden neuron 265> J_3 залишки	-0,040070
1454					hidden neuron 266> J_3 залишки	-0,019207
1455					hidden neuron 267> J_3 залишки	-0,002751
1456					hidden neuron 268> J_3 залишки	0,005526
1457					hidden neuron 269> J_3 залишки	-0,080949
1458					hidden neuron 270> J_3 залишки	-0,166416
1459					hidden neuron 271> J_3 залишки	-0,006477
1460					hidden neuron 272> J_3 залишки	-0,058438
1461					hidden neuron 273> J_3 залишки	-0,023253
1462					hidden neuron 2/4> J_3 залишки	-0,116519
1463					hidden neuron 275> J_3 залишки	-0,047762
1464					hidden neuron 276> J_3 залишки	-0,002411
1465					hidden neuron 277> J_3 залишки	-0,007007
1466					hidden neuron 278> J_3 залишки	-0,006580
1467					hidden neuron 279> J_3 залишки	0,005199
1468					hidden neuron 280> J_3 залишки	-0,036217
1469					hidden neuron 281> J_3 залишки	-0,041236
1470					hidden neuron 282> J_3 залишки	-0,139262
14/1					hidden neuron 283> J_3 залишки	-0,024916
14/2					hidden neuron 284> J_3 залишки	-0,158566
14/3					hidden neuron 285> J_3 залишки	0,007311
14/4					hidden neuron 286> J_3 залишки	-0,100063
1475					hidden neuron 287> J_3 залишки	0,005314
14/6					hidden neuron 288> J_3 залишки	0,241248
14//					hidden neuron 289> J_3 залишки	-0,033974
14/8					hidden neuron 290> J_3 залишки	0,022313
14/9					nidden neuron 291> J_3 залишки	0,009808
1480					nidden neuron 292> J_3 залишки	-0,027015
1481					nidden neuron 293> J_3 залишки	0,009421
1482					nidden neuron 294> J_3 залишки	-0,014753
1483					nidden neuron 295> J_3 залишки	0,073139
1464					hidden neuron 296> J_3 ЗАЛИШКИ	0,108052
1465					hidden neuron 297> J_3 ЗАЛИШКИ	-0,169993
7444						

🧁 Pa	абочая_а_7_9_е<		Network weights (Tab	ілиця_а_7_9_від	(тв.)			
÷- 🗋	2М Диаграм		Connections	Weight values	Connections	Weight values	Connections	Weight values
	SANN (Таблі		1.RBF 3-195-1	1.RBF	2.RBF 3-273-1	2.RBF 3-273-1	3.RBF 3-297-1	3.RBF 3-297-1
ė- 🗖	SANN (Табль	Weight		3-195-1				
ŧ	i 🔁 0_1	1473					hidden neuron 285> J_3 залишки	0,007311
) <mark></mark> 0_2	1474					hidden neuron 286> J_3 залишки	-0,100063
	- 0_3	1475					hidden neuron 287> J_3 залишки	0,005314
		1476					hidden neuron 288> J_3 залишки	0,241248
	2М Диаграм	1477					hidden neuron 289> J_3 залишки	-0,033974
17	Пиаграми	1478					hidden neuron 290> J_3 залишки	0,022313
	Пиаграми	1479					hidden neuron 291> J_3 залишки	0,009808
	Пиртрами	1480					hidden neuron 292> J_3 залишки	-0,027015
	Пистрама	1481					hidden neuron 293> J_3 залишки	0,009421
100	диаграмі	1482					hidden neuron 294> J_3 залишки	-0,014753
	о Польша_20_	1483					hidden neuron 295> J_3 залишки	0,073139
- 2	И Польша_20_	1484					hidden neuron 296> J_3 залишки	0,108052
🗄 🕀 📋	∑дис_а_7_8	1485					hidden neuron 297> J 3 залишки	-0,169993
÷-	3D Wafer Plo	1486					hidden bias> <u>J_</u> 3 залишки	0,458618

ДОДАТОК Е

СПИСОК ПУБЛІКАЦІЙ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Наукові праці, в яких опубліковано основні наукові результати дисертації

[1] The RBF-Metamodel Development of Surface Eddy-Current Probe for the Surrogate Optimal Synthesis Problem [Text] / V. Ya. Halchenko, R. V. Trembovetska, V. V. Tychkov // International Journal "NDT Days". – 2018. – Vol. 1, Issue 4. – P. 425-433.

[2] Застосування нейрокомп'ютинга на етапі побудови метамоделей в процесі оптимального сурогатного синтезу антен [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2018. – № 74. – с. 60-72. (Web of Science).

[3] Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як складова сурогатного оптимального синтезу [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Вісник Херсонського національного технічного університету. – 2018. – № 3 (66). – Т. 1. – С. 32–38.

[4] Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems [Text] / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov // Eastern-European Journal of Enterprise Technologies. – 2018. - N_{2} 5/5 (95). - P. 39-46. (Scopus).

[5] Побудова RBF-метамоделей структур збудження рухомого концентричного вихрострумового перетворювача [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Електротехніка та електромеханіка. – 2019. – № 2. – С. 28-38. (Web of Science).

[6] Nonlinear surrogate synthesis of the surface circular eddy current probes / Halchenko V. Ya., Trembovetska R. V., Tychkov V. V., Storchak A. V. // Przegląd elektrotechniczny. – 2019. - № 9. – P. 76-82. (Web of Science, Scopus).

[7] Оптимальний сурогатний параметричний синтез накладних кругових неспіввісних вихрострумових перетворювачів із рівномірною чутливістю в зоні контролю [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Вісник Херсонського національного технічного університету. – 2019. – № 2(69). - Частина 2. - С. 118-125.

[8] Линейный синтез несоосных накладных вихретоковых преобразователей [Текст] / В. Я. Гальченко, Р. В. Трембовецкая, В. В. Тычков // International Journal "NDT Days". - 2019. – Vol. 2. – Issue. 3. - Р. 259-268.

[9] Оцінка точності нейромережевих метамоделей кругових накладних вихрострумових перетворювачів [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков, А. В. Сторчак // Вісник Черкаського державного технологічного університету. – 2019. – № 2. – С. 18-29.

[10] Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system / R.V. Trembovetska, V.Y. Halchenko, V.V. Tychkov // International Scientific Journal «Mathematical Modeling». – 2019.
- vol. 3. - Issue 4. - P. 113-116.

[11] Surface eddy current probes: excitation systems of the optimal electromagnetic field (review) / V.Ya. Halchenko, R.V. Trembovetskaya, V.V. Tychkov // Devices and Methods of Measurements. – 2020, vol. 11, no. 2, pp. 91–104. (Web of Science).

[12] Відновлення приповерхневих радіальних профілів електрофізичних характеристик циліндричних об'єктів при вихрострумових вимірюваннях із наявністю апріорних даних. Формування вибірки для побудови сурогатної моделі / В.Я. Гальченко, В.В. Тичков, А.В. Сторчак, Р.В. Трембовецька // Український метрологічний журнал. – 2020. – № 1. – С. 35-50. (Web of Science).

[13] The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence / Halchenko

V.Ya., Trembovetska R.V., Tychkov V.V., Storchak A.V. // Applied Computer Systems. – 2020. – vol. 25, no. 1, pp. 70-76. (Web of Science).

[14] Методи створення метамоделей: стан питання / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков, А.В. Сторчак // Вісник Вінницького політехнічного інституту. - 2020. – № 4 (151). - С. 74 – 88.

[15] Створення сурогатної моделі для відновлення приповерхневих профілів електрофізичних характеристик циліндричних об'єктів / В. Я. Гальченко, А. В. Сторчак, Р. В. Трембовецька, В. В. Тичков // Український метрологічний журнал. - 2020. - № 3. – С. 27-35. (Web of Science).

[16] Оптимальне проектування вихрострумових перетворювачів та аналіз методів розв'язку нелінійних обернених задач / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков // Прикладні питання математичного моделювання. – 2020. – т.3. – № 2.2. – С. 93-104.

[17] Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, A. V. Storchak // International Journal "NDT Days". - 2020. – Vol. 3. – Issue. 4. - P. 184-190.

[18] Linear synthesis of frame eddy current probes with a planar excitation system / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, C. V. Bazilo // International Scientific Journal «Mathematical Modeling». – 2020. - vol. 4. - Issue 3. – P. 86-90.

[19] Застосування МLР-метамоделей в задачах сурогатної оптимізації
[Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Молодий вчений.
— 2018. — №2 (54). – С. 32–39. (Open Academic Journals Index, Academic Resource Index ResearchBib).

[20] Побудова МLР-метамоделі накладного вихрострумового перетворювача для задач сурогатного оптимального синтезу [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Технічні вісті. – 2018. – № 1(47),

[21] Свідоцтво 102018 Україна про реєстрацію авторського права на твір «Комп'ютерна програма «Програма створення багатовимірного комп'ютерного однорідного плану експерименту на основі R_d-послідовностей»» [Текст] / Гальченко В.Я., Трембовецька Р.В., Тичков В.В. (Україна); заявник та власник Гальченко В.Я., Трембовецька Р.В., Тичков В.В. - №103492; заявл.24.12.20; зареєстровано 25.01.21 в Державному реєстрі свідоцтв про реєстрацію авторського права на твір.

Наукові праці апробаційного характеру

[22] Побудова RBF-метамоделей в задачах сурогатної оптимізації [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька // Теоретикопрактичні проблеми використання математичних методів і комп'ютерноорієнтованих технологій в освіті та науці : II Всеукраїнська конференція, Київ, 28 березня 2018 р. : матеріали доповідей. – Київ: Київ. ун-т ім. Б. Грінченка, 2018. – С. 179–184.

[23] Визначення впливу плану обчислювального експерименту на ефективність побудови RBF-метамоделей [Електронний ресурс] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Теоретико-практичні проблеми використання математичних методів і комп'ютерно-орієнтованих технологій в освіті та науці : II Всеукраїнська конференція, Київ, 28 березня 2018 р. : матеріали доповідей. – Київ: Київ. ун-т ім. Б. Грінченка, 2018. – С. 223–228.

[24] Апроксимація поверхні відгуку засобами штучного інтелекту [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Сучасні тенденції розвитку науки: II Міжнародна науково-практична конференція, Ужгород, 23– 24 лютого 2018 р. : матеріали доповідей. — Херсон: Видавничий дім "Гельветика", 2018. – С. 54–57. [25] Застосування метамоделей для вирішення задач синтезу вихрострумових перетворювачів з однорідним розподілом щільності струму в зоні контролю [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Приладобудування: стан і перспективи : XVII Міжнародна науково-технічна конференція, 15–16 травня 2018 р. : тези доповідей. – Київ: ПБФ КПІ ім. Ігоря Сікорського, 2018. – С. 146–147.

[26] Вирішення складних задач оптимізації з використанням метамоделей [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Information Technologies in Education, Science and Technology" (ITEST-2018) : IV International Scientific-Practical Conference, Cherkasy, 17–18 May, 2018 : proceedings. – Cherkasy: ChSTU, 2018. – P. 37–42.

[27] The Approximation Surface Review of the Multidimensional Target
Function for Surrogate Optimization Problem [Text] / R. V. Trembovetska, V. Ya.
Halchenko, V. V. Tychkov // Advanced Information Systems and Technologies: VI
International scientific conference, Sumy, 16–18 May, 2018 : proceedings. –
[Edited by S. I. Protsenko, V. V. Shendryk]. – Sumy: Sumy State University, 2018.
– P. 34–38.

[28] Метамоделювання як метод проектування вихрострумових перетворювачів з апріорі визначеними властивостями [Текст] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Вимірювальна та обчислювальна техніка в технологічних процесах: XVIII міжнародна науковотехнічна конференція, Одеса, 8–13 червня 2018 р. : матеріали доповідей. – Одеса: ОНАЗ ім. О.С. Попова, 2018. – С. 105–107.

[29] Нейромережева метамодель циліндричного накладного вихрострумового перетворювача як складова сурогатного оптимального синтезу [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // XIX Міжнародна конференція з математичного моделювання (МКММ-2018), Херсон, 17-21 вересня 2018 р. : тези доповідей. – Херсон: ХНТУ, 2018. – С. 8.

[30] Використання цільових функцій-замісників в оптимальному сурогатному синтезі вихрострумових перетворювачів [Текст] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // Сучасні проблеми прикладної математики та інформатики : XXIV Всеукраїнська наукова конференція, Львів, 26–28 вересня 2018 р. : матеріали доповідей. – Львів: Вид-во Тараса Сороки, 2018. – С. 28–34.

[31] Визначення обчислювальної ресурсоємності математичних моделей накладних вихрострумових перетворювачів із врахуванням ефекту швидкості для задач оптимального синтезу [Текст] / [Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков та ін.] // Датчики, прилади та системи–2018 : VII Міжнародна науково-технічна конференція, Черкаси – Херсон – Лазурне, 17–21 вересня 2018 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2018. – С. 40–46.

[32] Нейрокомпьютинг – инструментальное средство проектирования вихретоковых преобразователей [Текст] / [В. Я. Гальченко, Р. В. Трембовецкая, В. В. Тычков и др.] // Проблеми інформатики та моделювання (ПІМ–2018) : XVIII Міжнародна конференція, Харків–Одеса, 15–19 вересня 2018 р. : тези конференції. – Харків : НТУ «ХПІ», 2018. – С. 30.

[33] Побудова нейромережевих метамоделей для вирішення зворотних задач реконструкції електрофізичних параметрів циліндричних об'єктів [Електронний ресурс] / [В. О. Діденко, В. В. Тичков, Р. В. Трембовецька, В.Я. Гальченко] // Метрологічні аспекти прийняття рішень в умовах роботи на техногенно-небезпечних об'єктах : Всеукраїнська науково-практична інтернетконференція здобувачів вищої освіти і молодих учених, Харків, 1-2 листопада 2018 р. : матеріали конференції. – Харків : ХНАДУ, 2018. – С. 20-22. [34] Нейромережеве моделювання в задачах відновлення електрофізичних параметрів циліндричних об'єктів при вихрострумовому контролі [Електронний ресурс] / [А. В. Сторчак, В. В. Тичков, В. Я. Гальченко, Р.В. Трембовецька] // Метрологічні аспекти прийняття рішень в умовах роботи на техногенно-небезпечних об'єктах : Всеукраїнська науково-практична інтернет-конференція здобувачів вищої освіти і молодих учених, Харків, 1-2 листопада 2018 р. : матеріали конференції. – Харків : ХНАДУ, 2018. – С. 71-73.

покращення [35] Методи точності нейромережевих метамоделей вихрострумових перетворювачів сурогатного накладних для синтезу [Електронний ресурс] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков // Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2018) : 2-nd scientific conference with international participation, Poland, Lublin, 15-19 october 2018. : Conference proceedings. -Poland : USNDT, 2018. – № 2. – P. 47-49.

[36] Побудова математичної моделі прямої задачі в проблемі реконструкції електрофізичних параметрів циліндричних об'єктів контролю вихрострумовим методом [Електронний ресурс] / [А. В. Сторчак, В. В. Тичков, Р. В. Трембовецька, В. Я. Гальченко] // Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2018) : 2-nd scientific conference with international participation, Poland, Lublin, 15–19 october 2018. : Conference proceedings. – Poland : USNDT, 2018. – \mathbb{N} 2. – P. 50-51.

[37] Сурогатний нелінійний синтез вихрострумових перетворювачів [Текст] / [Гальченко В.Я., Трембовецька Р.В., Тичков В.В.] // Міжнародний науковий симпозіум «Інтелектуальні рішення». Обчислювальний інтелект (результати, проблеми, перспективи): праці міжнар. наук.-практ. конф., 15-20 квітня 2019 р. Ужгород / М-во освіти і науки України, ДВНЗ «Ужгородський національний університет», та [ін.]. – Ужгород : ПП «Інвазор», 2019. - С. 78-80. [38] Сурогатне моделювання в задачах ідентифікації параметрів об'єктів контролю [Електронний ресурс] / [Гальченко В.Я., Тичков В.В., Трембовецька Р.В., Сторчак А.В.] // Інформатика, математика, автоматика (IMA-2019) : науково-практична конференція, Суми, 23-26 квітня 2019 р. : матеріали конференції. – Суми: СДУ, 2019 – С. 189.

[39] Розв'язок ресурсоємних обернених задач електротехніки методами сурогатної оптимізації [Електронний ресурс] / [Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В.] // Фізика, електроніка, електротехніка (ФЕЕ-2019) : науково-практична конференція, Суми, 23-26 квітня 2019 р. : матеріали конференції. – Суми: СДУ, 2019 – С. 135.

[40] Комп'ютерне моделювання вихрострумового контролю багатошарових циліндричних виробів [Електронний ресурс] / [Сторчак А.В., Трембовецька Р.В., Гальченко В.Я., Тичков В.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науково-практичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 179-182.

[41] Постановка проблематики комп'ютерного моделювання вихрострумового контролю циліндричних провідних виробів [Електронний ресурс] / [Тичков В.В., Трембовецька Р.В., Гальченко В.Я., Сторчак А.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науковопрактичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 183-185.

[42] Сурогатне моделювання для розв'язку обернених задач вихрострумового контролю [Електронний ресурс] / [Трембовецька Р.В., Гальченко В.Я., Тичков В.В.] // Обробка сигналів і негаусівських процесів : VII Міжнародної науково-практичної конференції, Черкаси, 23-24 травня 2019 р. : праці конференції. – Черкаси: ЧДТУ, 2019 – С. 186-187. [43] Сурогатний параметричний синтез неспіввісних вихрострумових перетворювачів із рівномірною чутливістю [Електронний ресурс] / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тичков // ХХ Міжнародна конференція з математичного моделювання (МКММ–2019), Херсон, 16–20 вересня 2019 р. : тези доповідей. – Херсон: ХНТУ, 2019. – С. 100.

[44] Моделювання вихрострумового контролю циліндричних виробів із неперервним розподілом електрофізичних параметрів [Text] / Сторчак А.В., Трембовецька Р.В., Гальченко В.Я., Тичков В.В. // Датчики, прилади та системи–2019 : VIII Міжнародна науково-технічна конференція, Черкаси – Херсон – Лазурне, 16–20 вересня 2019 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2019. – С. 9–12.

[45] Застосування сурогатної оптимізації в задачах синтезу вихрострумових давачів [Text] / Трембовецька Р.В., Гальченко В.Я., Тичков В.В. // Датчики, прилади та системи–2019 : VIII Міжнародна науково-технічна конференція, Черкаси – Херсон – Лазурне, 16–20 вересня 2019 р. : тези доповідей. – Черкаси: видавець ФОП Гордієнко Є.І., 2019. – С. 13–17.

[46] Побудова багатопараметрової нейромережевої метамоделі накладних вихрострумових перетворювачів об'ємної структури / Р.В. Трембовецька, В.Я. Гальченко, В.В. Тичков // Ш-я науково-технічна конференція з міжнародною участю «Неруйнівний контроль в контексті асоційованого членства України в Європейському Союзі», 17-19 вересня 2019 р. : Збірник матеріалів. Київ, Україна: УТ НКТД, – 2019 – № 3. – С. 19-21.

[47] Аналіз досліджень щодо реконструкції електрофізичних параметрів об'єктів при вихрострумовому контролі / Сторчак А. В., Гальченко В. Я., Тичков В. В., Трембовецька Р. В. // Метрологічні аспекти прийняття рішень в умовах роботи на техногенно-небезпечних об'єктах : Всеукраїнська науковопрактична інтернет-конференція здобувачів вищої освіти і молодих учених, Харків, 4-5 листопада 2019 р. : матеріали конференції. – Харків : ХНАДУ, 2019. – С. 121-125.

[48] Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system / R.V. Trembovetska, V.Y. Halchenko, V.V. Tychkov // Proceedings of the III International scientific conference «Mathematical modeling». Tematic fields: Theoretical foundations and specificity of mathematical modelling. Mathematical modelling of technological processes and systems, 11–14.12.2019, Borovets, Bulgaria: Scientific-technical union of Mechanical Engineering - Industry 4.0, Sofia, Bulgaria. – Vol. III. - Issue 1(3)/2019. – P.56-59.

[49] Реконструкція профілів характеристик матеріалу циліндричних об'єктів шляхом розв'язку оберненої задачі вихрострумового вимірювального контролю / Сторчак А.В., Гальченко В.Я., Трембовецька Р.В., Тичков В.В. // Information Technologies in Education, Science and Technology" (ITEST-2020) : V International Scientific-Practical Conference, Cherkasy, May 21-23, 2020. – Cherkasy: ChSTU, 2020. – C. 34-36.

[50] Побудова ефективних багатовимірних комп'ютерних планів експерименту / Гальченко В.Я., Трембовецька Р.В., Тичков В.В., Сторчак А.В. // Information Technologies in Education, Science and Technology" (ITEST-2020) : V International Scientific-Practical Conference, Cherkasy, May 21-23, 2020. – Cherkasy: ChSTU, 2020. – C. 116-121.

[51] Методи побудови метамоделей для сурогатної оптимізації [Електронний ресурс] / [Трембовецька Р.В., Гальченко В.Я., Тичков В.В., Сторчак А.В.] // Інформатика, математика, автоматика (IMA-2020) : науковопрактична конференція, Суми, 20-24 квітня 2020 р. : матеріали конференції. – Суми: СДУ, 2020. – С. 243-244.

[52] Ідентифікація електрофізичних характеристик об'єктів із використанням «м'яких обчислень» [Електронний ресурс] / [Тичков В.В.,

Сторчак А.В., Гальченко В.Я., Трембовецька Р.В.] // Фізика, електроніка, електротехніка (ФЕЕ-2020) : науково-практична конференція, Суми, 20-24 квітня 2020 р. : матеріали конференції. – Суми: СДУ, 2020. – С. 143-144.

[53] Аналіз методів розв'язку нелінійних обернених задач та їх застосування до проектування вихрострумових перетворювачів / В.Я. Гальченко, Р.В. Трембовецька, В.В. Тичков, А.В. Сторчак // XXI Міжнародна конференція з математичного моделювання (МКММ–2020), Херсон, 14–18 вересня 2020 р. : тези доповідей. – Херсон: ХНТУ, 2020. – С. 44.

[54] Синтез об'ємних структур системи збудження вихрострумових перетворювачів [Електронний ресурс] / Р. В. Трембовецька, В. Я. Гальченко, В. В. Тичков, А. В. Сторчак // Матеріали XV міжнародної конференції "Контроль і управління в складних системах (КУСС-2020)", м. Вінниця, 8-10 жовтня 2020 р.– Електрон. текст. дані. – Вінниця : ВНТУ, 2020.

[55] Інверсія штучних нейронних мереж в обернених задачах вихрострумової структуроскопії [Електронний ресурс] / А. В. Сторчак, В. Я. Гальченко, В. В. Тичков, Р. В. Трембовецька // Матеріали XV міжнародної конференції "Контроль і управління в складних системах (КУСС-2020)", м. Вінниця, 8-10 жовтня 2020 р.– Електрон. текст. дані. – Вінниця : ВНТУ, 2020.

[56] Застосування нейромережі з «тандем»-архітектурою для розв'язку оберненої задачі при вихрострумовому вимірювальному контролі / В. В. Тичков, А. В. Сторчак, В. Я. Гальченко, Р. В. Трембовецька // Проблеми енергоефективності та автоматизації в промисловості та сільському господарстві : Міжнародна науково-практична on-line конференція, Кропивницький, 11-12 листопада 2020 р. – збірник тез доповідей. – Кропивницький : КНТУ, 2020. – С. 148-150.

[57] Linear synthesis of frame eddy current probes with a planar excitation system / R. V. Trembovetska, V. Ya. Halchenko, V. V. Tychkov, C. V. Bazilo // Proceedings of the IV International scientific conference «Mathematical modeling».
Tematic fields: Theoretical foundations and specificity of mathematical modelling. Mathematical modelling of technological processes and systems, 9–12.12.2020, Borovets, Bulgaria: Scientific-technical union of Mechanical Engineering - Industry 4.0, Sofia, Bulgaria. – Vol. IV. - Issue 1(4)/2020. – P. 20-24.