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1. Introduction

At the beginning of the xix century, K. Gauss published 
several fundamental works, which introduced, among other 
things, a series of important statistical concepts such as 
“a least-square method”, “maximum likelihood”, as well as 
substantiated a “normal” distribution. This distribution law, 
often referred to as Gaussian, is by far the most common 
technique of probabilistic description. However, based on a 
series of theoretical limitations, it does not describe all possi-
ble variety of statistics. The axiomatic statement underlying 
Gauss’s approach was slightly altered at the beginning of 
the 20th century in work [1], where a more general law for 

the distribution of errors was justified, termed as an expo-
nential power distribution (EPD). This probabilistic model 
is better suited to describe a larger number of phenomena 
that can be observed in reality. Its versatility is evidenced 
by the fact that the Laplace distribution, Gaussian distri-
bution, and uniform distributions are separate cases of EPD 
at certain values of its form parameter. Therefore, various 
literary sources [2‒5] use alternative designations such as 
the “generalized normal distribution”, “generalized Gaussian 
distribution”, “generalized distribution of errors”, “Subbotin 
distribution”, etc. In addition, the family of exponential 
power distributions includes more complex multimodal [6] 
or asymmetrical [7, 8] modifications.
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This paper considers the application of a method for 
maximizing polynomials in order to find estimates of the 
parameters of a multifactorial linear regression provided 
the random errors of the regression model follow an expo-
nential power distribution. The method used is conceptual-
ly close to a maximum likelihood method because it is based 
on the maximization of selective statistics in the neigh-
borhood of the true values of the evaluated parameters. 
However, in contrast to the classical parametric approach, 
it employs a partial probabilistic description in the form of 
a limited number of statistics of higher orders.

The adaptive algorithm of statistical estimation has 
been synthesized, which takes into consideration the prop-
erties of regression residues and makes it possible to find 
refined values for the estimates of the parameters of a lin-
ear multifactorial regression using the numerical Newton-
Rafson iterative procedure. Based on the apparatus of the 
quantity of extracted information, the analytical expres-
sions have been derived that make it possible to analyze 
the theoretical accuracy (asymptotic variances) of esti-
mates for the method of maximizing polynomials depend-
ing on the magnitude of the exponential power distribution 
parameters.

Statistical modeling was employed to perform a com-
parative analysis of the variance of estimates obtained 
using the method of maximizing polynomials with the accu-
racy of classical methods: the least squares and maximum 
likelihood. Regions of the greatest efficiency for each stud-
ied method have been constructed, depending on the mag-
nitude of the parameter of the form of exponential power 
distribution and sample size. It has been shown that esti-
mates from the polynomial maximization method may 
demonstrate a much lower variance compared to the esti-
mates from a least-square method. And, in some cases (for 
flat-topped distributions and in the absence of a priori 
information), may exceed the estimates from the maximum 
likelihood method in terms of accuracy
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The properties and aspects of EPD practical ap-
plication are addressed in many studies. In particular, 
works [2, 3, 9, 10] consider the methods of finding point and, 
in [11], interval estimates of EPD parameters. Paper [12] 
reported the EPD characteristic function in the form of a 
Taylor series, and [5] investigated the properties of statistics 
of higher orders of this distribution.

The relevance of the problem under study is due to the 
fact that EPD is used as a probabilistic model in solving 
a large number of various practical tasks. In particular, to 
describe the error of measuring instruments and the results 
of measurement [13, 14], random noise and interference 
during the processing of radio [15], video [16], and au-
dio [17] signals; medical [18], biological [19], economic [20] 
statistics; in risk management [21], etc. Special features in 
the approximation of real data and verification of statistical 
hypotheses of correctness from an EPD model are discussed 
in [22, 23]. Methods of generating random sequences for 
the implementation of statistical modeling are tackled in 
works [24‒26]. Such a widespread EPD application gave rise 
to the development of a series of specialized software focused 
on computer statistical simulation. Among them, we note 
the library “normalp” [27] in the high-level programming 
language R, one of the most common among statisticians, 
which contains a set of functions for the statistical treatment 
of data acquired from EPD.

2. Literature review and problem statement

It is known that a least-square (LS) method is one of 
the most popular approaches to solving problems related to 
regression data analysis. This is due to the fact that a ordi-
nary least-square (OLS) method makes it possible to derive 
a solution in a closed form. It does not require additional 
a priori information about the probabilistic properties of 
the error model and, when meeting a series of conditions 
imposed by the Gauss-Markov theorem, is the best linear 
unbiased appraiser. One of these conditions is the normaliza-
tion of the distribution of regression errors, which minimizes 
the variance of parameter estimates [28]. However, in real 
conditions, there may be a significant deviation of the data 
distribution from the Gaussian law, which significantly im-
pairs the accuracy of OLS assessments, in particular, in the 
presence of individual remote observations (emissions) [29].

One technique to improve the accuracy of regression 
parameter estimates for non-Gaussian data is to replace the 
quadratic loss function with another. This idea is not new, 
since back in 1793 Laplace proposed a method of evalua-
tion based on the least absolute deviations (LAD) method, 
known as the regression appraiser in space L1 [30]. Such 
an appraiser, when compared to OLS, is more effective for 
leptokurtic error distributions demonstrating tails that are 
heavier than those in the Gaussian law. A generalization of 
this approach is the construction of regression appraisers in 
the Lp space, advanced in works [20, 31‒33]. Another ap-
proach that ensures robustness is the use of nonparametric 
estimates of the sign [34] or quantile regression [29], which 
could be successfully applied to both heavy-tailed and 
asymmetric distributions. It is known that each above loss 
function has appropriate distribution models under which 
the estimates of the maximum likelihood estimation (MLE) 
method are equivalent to the estimates of methods that min-
imize corresponding losses. In particular, the OLS appraiser 

corresponds to MLE when the error distribution is normal; 
the LAD appraiser is equivalent to MLE for the Laplace 
distribution, and the Lp appraiser corresponds to MLE when 
regression errors are described by EPD [35].

It is obvious that the key to the use of MLE is the a 
priori determination of the type of probability distribution. 
Note that in addition to the EPD family, many different 
types of symmetric distributions are used to solve the prob-
lems of regression analysis: elliptical laws (logistic, Cauchy, 
Student t-distribution) [36–38], various Gaussian distri-
butions [39, 40]. In addition, there are specially developed 
models of symmetric distributions that make it possible to 
change the value of the excess coefficient and the severity of 
the tails of regression errors [41, 42]. The task is generally 
complicated by the fact that, in addition to selecting an 
adequate model for the distribution of errors, it is necessary 
to carry out a joint assessment of their parameters, the 
uncertainty of which significantly affects the accuracy of 
assessments of informative regression parameters. Under an 
assumption that model errors do not depend on predictors, 
an adaptive approach [43] is often used, which involves a 
series of sequential steps. At the first stage, the parameters of 
the deterministic component of the model are evaluated by a 
simple method that does not require additional information 
about the specificity of the probabilistic distribution of sta-
tistical data. After removing the deterministic component, 
the type of random component of the model is identified, and 
estimates of its parameters are found. At the third stage, they 
find refined (adaptive) assessments of the parameters of the 
deterministic component of the model, taking into consider-
ation a posteriori properties of errors.

The adaptive approach can be based not only on likeli-
hood maximization. An alternative is to use higher-order 
statistics, such as moments or cumulants, for the probabilis-
tic description of regression models [44–47]. The application 
of this notation in combination with the adaptive approach 
to evaluation is the basis of a quadratic modification of 
the least-square method [48]. Different variations of this 
appraiser demonstrate their effectiveness only in the asym-
metry of distributions, using as additional information the 
values of a posteriori estimates of asymmetry coefficients 
and the excess of regression residues [49–51].

The principle of adaptive evaluation by taking into 
consideration the properties of statistics of higher orders 
underlying the second-order least squares estimator (SLS) 
is similar to the idea of using a polynomial maximization 
method (PMM) to evaluate the regression parameters [52]. 
Paper [53] shows that when using, as the basis functions of 
power transformations, the PMM-estimation for the power 
S=2 demonstrates similar accuracy with the estimates of the 
SLS. The common property is also that in the symmetry of 
the distribution of statistical data, SLS (like PMM at S=2) 
degenerates into OLS. Therefore, it cannot be used to evalu-
ate regression parameters with symmetric errors of the EPD 
type [53, 54].

We also note a certain conceptual similarity of PMM to 
MLE, which implies that both methods employ the principle 
of maximizing certain selective statistics in the vicinity of 
the true values of the parameters that are evaluated. Howev-
er, in contrast to MLE, PMM uses not the density of distri-
bution, but a simpler probabilistic description in the form of 
the final number of moments or cumulants to form such sta-
tistics. Note the functionality of PMM, which was success-
fully used to assess the shear of symmetrical [55–57] and 
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asymmetrical [58] distributions, to determine the moment 
of changes (disorder) of the properties of random sequences 
in the a posteriori problem statement [59], and others. In 
particular, works [60, 61] consider the use of cubic (at the 
power of polynomial S=3) modification of PMM to solve 
the problem of adaptive evaluation of the scalar parameter of 
experimental data acquired from EPD. Their results suggest 
that PMM estimates may have significantly lower variances 
both compared to nonparametric estimates (median, middle, 
and mid-range) and to the estimates of maximum likelihood. 
But, since both the linear multifactor regression model and 
the principles of finding assessments of components of its 
vector parameter are more complex and differ from those 
discussed in the cited works, the issue of the effectiveness of 
applying a polynomial maximization method for such a task 
remains unresolved.

3. The aim and objectives of the study

The purpose of this study is to synthesize the algorithms 
of polynomial evaluation of parameters of linear regression 
and to analyze their accuracy depending on the properties 
of regression errors having exponential power distribution. 
This would make it possible to make a reasoned choice 
(taking into consideration the specificity of real problems) 
between the proposed solution and approaches based on 
classical methods.

To accomplish the aim, the following tasks have been set:
– to apply a polynomial maximization method to synthe-

size algorithms for the adaptive evaluation of linear regres-
sion parameters; 

– to analyze the theoretical accuracy of PMM estima-
tions depending on the values of regression error parameters; 

– to carry out, by statistical modeling, a comparative anal-
ysis of the effectiveness (according to a criterion of the amount 
of variance) of MLE estimates with respect to OLS and MLE.

4. Using a polynomial maximization method to evalu-
ate regression parameters

Suppose there is a linear multifactor regression model of 
N observations that describes the dependence of the values 
of the target variable Y on the regressors X

( ) ,v v vy f= + ξ,Xθ 1, ,v N=


   (1)

where the deterministic component

( )
1

,
0

, ,
Q

v p p v
p

f a x
−

=

= ∑Xθ     (2)

is the linear function with a vector parameter θ={a0, a1, …, aQ-1}, 
whose components are subject to evaluation. 

It is assumed that regression errors ξv represent a se-
quence of independent and equally distributed random 
variables, which are adequately described by the exponential 
power distribution in the following form

( ) ( )1

1
exp ,

2 1 1
w

p

β

β β
β β

 ξ
ξ = − σ Γ + β βσ 

  (3)

where the values of the parameters are of the scale σβ and 
form β, which may be a priori unknown.

To solve the set problem of regression analysis, one can use 
a PMM modification for the statistical evaluation of vector 
parameters with unevenly distributed data [52]. It is based on 
the property of maximizing the functionality in the form of a 
stochastic polynomial of the S order in a general form

( ) ( ) ( )
1 1 1 1

d d ,
a aN S S N

SN i v iv iv iv
v i i v

L y k a z k a z
= = = =

= φ − Ψ∑∑ ∑∑∫ ∫  (4)

in the vicinity of the true value of some parameter a to be 
evaluated. As the basis functions of polynomial (4), one can 
use power transformations ( ) .i

i v vy yφ =  It is assumed that for 
random values yv there is a sequence of initial moments αi of 
the corresponding order

{ } ,i
iv v ivE yΨ = = α 1, ,i S=


1, ,v N=


  (5)

and there are twice differentiated for the parameter a.
By analogy with MLE, the estimate of the parameter a 

can be derived by solving the following equation

1 0ˆ ˆ

0.
S N

i
SN iv v iv

i va a a a

d
L k y

da = == =

 = − α = ∑∑   (6)

The optimal kiv coefficients that maximize functional-
ity (4) and minimize the variance of estimates (for the cor-
responding order of the polynomial S) of the parameters are 
derived by solving the following system of linear algebraic 
equations

( , )
1

,
S

jv i j v iv
j

d
k F

da=

= α∑ 1, ,i S=


1, ,v N=


 (7)

where ( , ) ( ) ,i j v i j v iv jvF += α − α α , 1, .i j S=


To find estimates of the vector parameter θ={a0, a1, …, aQ-1}, 
it is necessary to use Q polynomials ( ),p

SNL  0, 1p Q= −


 for each 
component of the vector parameter ap. In this case, every p-th 
stochastic polynomial ( )p

snL  as a function of the parameter ap 
at known values of other components of the vector also has a 
maximum in the vicinity of the true value of this parameter at 
N→∞. Thus, the desired estimates can be found by solving the 
system of Q equations in the following form

( )

1 1 ˆ

0,
p p

S N
p i

iv v iv
i v a a

k y
= = =

 − α = ∑∑  0, 1.p Q= −


  (8)

It should be noted that when using polynomials of the 
S≥2 power, finding the PMM estimates of a vector param-
eter in most cases requires the use of numerical methods 
for solving the systems of nonlinear equations. Our work 
employs an approach based on a Newton-Rafson iterative 
numerical procedure. This numerical method is often used 
in similar situations when using PMM to find estimates for 
the linear regression parameters [62, 63]. It is based on the 
principle of linearization by decomposing the left-hand part 
of each nonlinear equation of system (8) into a Taylor series 
in the neighborhood of the true value of the vector θ. If lim-
ited to the first two terms of the series, it is possible to record 
the following linear system in a matrix form

( ) ( )1
( 1) ( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ/ / ,k k k k
S S S S

−
+  θ = θ − θ θ Z Y F Y   (9)

which can be used for the iterative search of valuation values. 
To derive system (9), it is necessary to calculate the ma-
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trix-column Fs(Y/θ(k)), which is composed of the elements of 
the left-hand part of each nonlinear equation in system (8), 
and a square matrix

( ) ( ) ( )( ) ( ) ( )ˆ ˆ ˆ/ /k k k
S S Sθ = θ + θZ Y H Y J

with components

( , ) ( )

1 1

,
S N
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H k y N
a= =
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= − α ∂  

∑ ∑

where the elements of the matrix of the amount of informa-
tion extracted
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,

1 1

,
N S

p q p
SN i v iv

v i q

J k
a= =

∂
= α

∂∑∑ , 0, 1.p q Q= −
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 (10)

To start the iterative procedure, it is assumed that there 
is some initial approximation θ(1), for which “rough” assess-
ments can be selected, to be found by a simpler evaluation 
method [52].

5. Finding PMM estimates for the linear multifactorial 
regression parameters

Works [53, 54] show that with the symmetry of the 
distribution of the model of regression residues, the PMM 
estimations, derived by using the S=1 and S=2 order poly-
nomials, are equivalent to the OLS estimates. Therefore, we 
consider the case of finding the PMM estimates based on the 
use of the S=3 order polynomials. The ratio for the first 6 ini-
tial moments, necessary to build a system of equations (6), 
can be represented in the form:
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where μi are the central moments of regression errors v, 
which depend on the parameters of scale σβ and form β of 
distribution (3) and can be calculated from a general formula 
given in [27]:

( )
2

1 1 1 22 21 3 .
i i

i i
− −− − −

β     µ = Γ + β Γ β Γ β σ        (12)

To find the optimal coefficients that minimize the vari-
ance of PMM estimates at S=3, the following expressions are 
necessary for derivatives from the first 3 moments:

1 1.
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By solving a system of equations (7) analytically by a 
Kramer method (taking into consideration expressions (11) 
and (13)), we obtain:
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Substituting the coefficients (14) in (8), after certain 
transformations, the system of equations for finding the esti-
mates can be written as:
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It is obvious that the PMM estimates can only be found 
through a numerical solution to equation systems, in par-
ticular, using the Newton-Rafson iterative procedure (9), 
for which it is necessary to calculate the following elements
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1 1
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As an initial approximation, those OLS estimates can be 
used whose formation does not require additional informa-
tion about the properties of regression residues.

6. Accuracy of PMM estimates of the linear multifactorial 
regression parameters

Since, at S=1, the PMM estimates of the components of 
vector parameter θ of linear regression model (1) are equiva-
lent to OLS estimates, their accuracy, in this case, coincides. 
The variation matrix containing the variance value of such 
estimates takes the following form

( ) ( )
1

2OLS PMM1 .T −
 = = µ  V V XX    (18)

It is known that such linear estimates are optimal (ac-
cording to the criterion of the minimum variance) only for 
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the situation when errors of the regression model follow a 
Gaussian distribution, which is known to be a separate case 
of EPD (3) at β=2. 

For the analytical calculation of the amount of variance in 
the parameter estimates by a maximum likelihood method, we 
use a matrix of the amount of information according to Fisher, 
calculated for regression models with EPD [64]. Taking into 
consideration (18), the corresponding variation matrix can be 
represented in the following form

( ) ( )MLE OLSMLE OLS ,g=V V

where

MLE OLS 1

21

1

1

32
.g

−

−

−

 Γ + β 
   Γ − β Γ   β 

=   (19)

To derive analytical expressions describing the vari-
ances in the PMM estimates of components of the vector 
parameter θ, we use the matrix Js(θ) of the amount of in-
formation obtained when applying the S order stochastic 
polynomials, consisting of elements (10). It has been prov-
en in [52] that with an increase in the order of stochastic 
polynomial the variance of PMM estimates decreases while 
the amount of information extracted at S→∞ tends to the 
information by Fisher. In this case, the variances in the 
PMM estimates of the components of vector parameter θ 
in an asymptotic case (at N→∞) are elements of the main 
diagonal of the variation matrix, which is inverse to Js(θ).

Using expressions (12) for EPD moments and (14) for 
optimal coefficients, we can show that the elements of the 
variation matrix of PMM estimates at S=3 differ from the 
elements of the matrix of linear OLS estimates (18) by the 
following coefficient

( ) ( )PMM3 OLSPMM3 OLS ,g=V V

that can be represented in the form

It is necessary to note the versatility of expressions (20) 
and (19) since they are equivalent to similar formulae de-
scribing the ratio of variances in the MLE estimates and 
PMM estimates to the variance of linear estimation in the 
form of arithmetic mean shift of EPD [61].

The analysis of these dependences, shown in Fig. 1, re-
veals that for the leptokurtic (sharp-topped) distributions 
at β<2 the relative efficiency of MLE can be significantly 
higher than other methods. In the case of Gaussian distribu-
tion at β=2, the accuracy of all three methods (MLE, PMM, 
and OLS) is the same. As the value of the form parameter 
β>2 increases, for a sufficiently wide range of values, the 
theoretical efficiency of MLE and PMM does not actually 
differ but can significantly exceed OLS. For the essentially 
plateau-kurtic (flat-topped) distributions at β>2, the rela-
tive efficiency of MLE increases slightly relative to PMM.

Note that the estimate of the coefficient of reduction 
of variance (20) can be represented not only as a function 
dependent on the parameter of the form of EPD but also 

as dependence on the values of the central moments μr or 
dimensionless cumulant coefficients γr:
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6 3 2
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15 30.
µ µ

γ = − +
µ µ

This representation makes it possible to more simply es-
timate the value of the efficiency of PMM estimates depend-
ing on the degree of non-Gaussian regression errors [54].

7. Statistical modeling by Monte Carlo 
method

Based on the statistical modeling by 
the Monte Carlo method, we have experi-
mentally verified the theoretical results of 
our analysis of the effectiveness of various 

methods for evaluating the parameters of a linear regression 
model with EPD errors. Similar to works [60, 61], its im-
plementation employed the R language with the software 
module “normalp package”. This module contains a set of 
functions for generating random values from EPD, as well 
as statistical estimation of linear regression parameters 
with EPD errors by a maximum likelihood method [27].

Since the theoretical values of the coefficients of the ratio of 
the variance in estimates (20) and (19) are the same for all com-
ponents of the vector parameter θ, we used, as their quantitative 
empirical analogs, geometric averaging in the following form:

( )

( )

1
2

1
MLE

MLE OLS 2
0 OLS

ˆ
ˆ ,

ˆ
p

p

QQ
a

p a

g
−

=

 σ
 =

σ  
∏  

( )

( )

1
2

1
PMM3

PMM3 OLS 2
0 OLS

ˆ
ˆ ,

ˆ
p

p

QQ
a

p a

g
−

=

 σ
 =

σ  
∏   (22)

( )
( )

2

PMM3 OLS

1 1 1 1

1 1 1 1 1

2

21 13
9

5 3 7 .

3 3 5 76 3

g

p− − − −

− − − − − − −

       Γ Γ − Γ Γ       

             Γ Γ − Γ Γ Γ + Γ Γ       

=

β β β
=

β   β β ββ β β

 (20)

Fig. 1. Dependence of the coefficient of reduction in the 
variance g MLE/OLS and g PMM3/OLS on the EPD β form parameter
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where 

( )
2

OLS
ˆ ,

pa
σ  ( )

2

MLE
ˆ ,

pa
σ  ( )

2

PMM3
ˆ

pa
σ

are the values of the variance of the parameter estimates 
obtained using the appropriate method averaged on the basis 
of M experiments.

It should be noted that statistical modeling was carried 
out for two fundamentally different situations in terms of 
the presence of a priori information on the characteristics 
of the random component of the regression model. In the 
first (idealized, from a practical point of view) case, the 
value of the parameters of EPD distribution (3) was consid-
ered a priori known, and their values were used in finding 
the PMM estimates. This information also made it possible 
to calculate, based on (12), the values of paired moments 
up to the 6th order, required to find PMM estimates at 
power S=3. It is obvious that, in real conditions, such a 
priori information is practically absent. Therefore, in the 
second case, an adaptive approach is used. As mentioned 
above, it is based on the hypothesis about the similarity 
of the distribution of a random component of the regres-
sion model and regression residues obtained using linear 
evaluation methods, in particular, OLS. Thus, instead of a 
priori parameter values necessary for both the use of MLE 
and PMM, their a posteriori estimates, found on regression 
OLS residues, can be used. It is obvious that this approach 
is asymptotically-approximate and its accuracy improves 
with an increase in the sample size N.

For statistical modeling of parameter evaluation, the 
deterministic component of regression model (2) used was 
a two-factor linear dependence with a parameter vector 
θ={1, 3, 1}, which were considered unknown and subject to 
evaluation. Tables 1, 2 give a set of statistical modeling re-
sults for different values of the magnitude of the parameter 
of EPD form β=1, 2, 3, 5, 10, and sample sizes N=20, 50, 100, 
200, obtained from M=104 multiple experiments.

Fig. 2 shows the boundaries that designate the regions of 
greatest efficiency (based on the criterion of the minimum 
variance) when applying various evaluation methods: OLS, 
MLE, and PMM.

These regions are built for the practical situation of the 
absence of a priori information about the true values of the 
parameters of a random component of the regression model. 

They are also derived from statistical modeling by the Monte 
Carlo method (for M=104 experiments) at different values of 
the EPD form parameter β and sample size N.

Table 1

Coefficients of the ratio of variance in estimates in the 
presence of a priori information

β

Results of statistical modeling

PMM3 OLSĝ

PMM3 OLSg
MLE OLSĝ

MLE OLSgN N

20 50 100 200 20 50 100 200

10 0.98 0.56 0.46 0.44 0.4 0.74 0.49 0.39 0.36 0.31

5 0.88 0.72 0.66 0.64 0.61 0.84 0.71 0.65 0.63 0.61

3 0.95 0.91 0.9 0.89 0.89 0.95 0.91 0.9 0.88 0.88

2 1 1 1 1 1 1 1 1 1 1

1 1.57 1.21 1.19 0.89 0.85 0.91 0.73 0.66 0.61 0.5

Table 2

Coefficients of the ratio of variance in estimates in the 
absence of a priori information

β

Results of statistical modeling

PMM3 OLSĝ

PMM3 OLSg
MLE OLSĝ

MLE OLSgN N

20 50 100 200 20 50 100 200

10 0.87 0.61 0.49 0.43 0.4 1.06 0.64 0.47 0.39 0.31

5 0.98 0.8 0.69 0.65 0.61 1.15 0.86 0.75 0.7 0.61

3 1.11 0.97 0.94 0.91 0.89 1.26 1.08 0.99 0.93 0.88

2 1.35 1.15 1.07 1.03 1 1.22 1.06 1.04 1.02 1

1 3.2 1.17 0.82 0.82 0.85 0.91 0.72 0.66 0.61 0.5

8. Experiment with real data on regression dependences 
with EPD errors

To illustrate the feasibility of the proposed approach, 
we shall use an example involving real data, considered 
in [27, 64], which also investigates the use of EPD as a mod-
el of errors of linear regression. That set, taken from [65], 
contains data on the box office revenue, in millions of dollars 
(Gross), and the number of home videos sold in thousands 
(Video), for a sample of 30 movies. The task is to define the 
dependence of the number of videos sold on the profit at 
the box office, which is adequately described by the linear 
regression (Fig. 3, a).

The OLS estimates of the parameters of such a re-
gression model are the following values: ( )OLS

0ˆ 76.54;a =
( )OLS

1̂ 4.33.a =  When using, to evaluate the parameters of 
regression by a maximum likelihood method and visual-
ization of results (Fig. 3, b), the functionality of “normalp-
package” software [27], we obtain the following estimated 
values: ( )MLE

0ˆ 77.41;a =  ( )MLE
1̂ 4.37.a =  By fitting the estimate 

of the parameter of EPD form of regression OLS residues 
ˆ 2.39β =  to (19), we obtain an estimate of the coefficient 

MLE OLS
ˆ 0.97.g =  By estimating the value of cumulant coef-
ficients of the 4th 4ˆ 0.59γ = −  and 6th 4ˆ 2.14γ =  orders and 
using (21), we find the estimated value of the coefficient 

PMM3 OLS
ˆ 0.88g = . At the same time, the refined adaptive 
PMM3-estimates of the parameters of the regression model 
are ( )PMM3

0ˆ 79.99;a =  ( )PMM3
1̂ 4.37.a =

Fig. 2. Efficiency regions of methods for finding estimates of 
linear regression parameters with EPD errors
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9. Discussion of results of studying the effectiveness of 
PMM estimates for regression parameters with EPD errors

The analysis of the theoretical and experimental values 
of the coefficients of the ratio of the variance in estimates 
shows that there is a certain correlation of analytical calcula-
tions and results obtained through statistical modeling. The 

difference is due to the fact that the expressions 
describing the variances in MLE and PMM 
estimates were obtained for the asymptotic case 
(at N→∞). Data from Table 1 confirm that as 
the sample volume increases, the discrepancy 
between the theoretical and experimental data 
decreases.

The experimental results also confirm the the-
sis mentioned above that the accuracy of obtain-
ing the MLE and PMM estimates is significantly 
influenced by the factor of the presence/absence 
of a priori information on the properties of the 
error model. For MLE, these are the parameters 
of EPD; for PMM, these are the paired central 
moments up to the 6th order. Data from Table 2 
reflect an important fact that in the absence of  
a priori information about the properties of EPD 
for flat-topped distributions (β>2), the efficiency 
of PMM estimates may be higher than the MLE 
estimates. This can be explained by the fact that, 
in these conditions, the impact of uncertainty of 
the value of the EPD form parameter on MLE is 
more significant than the impact of uncertainty 
of central moments on PMM. At the same time, 
the relative decrease in the variance of PMM 
estimates (compared to MLE) depends both on 
the form parameter and on the amount of sample 
values and is especially significant at small sam-
pling. Such results are especially important from 
a practical point of view since for most real situ-
ations a priori information about the true values 
of the parameters of a random component of the 
regression model is absent.

Based on the set of our results, the following 
conclusions can be drawn about the relative ef-
fectiveness of PMM (in the absence of a priori 
information about the values of regression error 
parameters):

1. When the distribution of regression er-
rors is close to Gaussian (β=2) the most effec-
tive (both in terms of accuracy and ease of im-
plementation) are estimates of the least-square 
method.

2. For leptokurtic (sharp-topped) distribu-
tions with heavy tails, in general, the maximum 
likelihood method is more effective. For small 
sample sizes, the efficiency limit is near β=1.3 
and smoothly asymptotically (with growth in N) 
increases to β=1.7.

3. For plateau-kurtic (flat-topped) distribu-
tions for a sufficiently wide range of values of the 
form parameter β the best efficiency is demon-
strated by a polynomial maximization method. 
For small sample sizes, the lower limit of effi-
ciency (between OLS and PMM) approximately 
begins at β=3 and parabolically asymptotically 
(with growth in N) tends to β=2.

4. For large values of the form parameter β>6 (which 
corresponds to the probabilistic distributions close to a uni-
form law) at large sample volumes, the maximum likelihood 
method is more effective, again. The boundary that separates 
MLE and PMM is even more dependent on the amount of 
sample values but the difference in their accuracy (in rela-
tion to the variance of estimates) is only a few percent.

Fig. 3. Linear regression model: a – experimental data and dependences 
built by different methods; b – characteristics of OLS residues when 

using EPD

a

b
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It should be noted that the current work is an integral part 
of the study on the feasibility of using a polynomial maximiza-
tion method to find estimates of the parameters of statistical 
data with EPD. Its results are correlated to a large degree with 
the conclusions drawn in [60, 61], which consider a simpler 
task of assessing the EPD shift parameter when using PMM.

In general, the results reported here provide an opportu-
nity to choose the most effective among the analyzed methods 
for evaluating the parameters of linear regression depending 
on the volume of sample data and the properties of regression 
errors, in case they differ from Gaussian idealization but are 
symmetrical and adequately described by the EPD model. 

The next stage of our research may address a modifi-
cation of the proposed approach to find estimates of the 
parameters of regression of the nonlinear type, as well as 
the evaluation of parameters of autoregressive models.

10. Conclusions

1. The algorithm for finding adaptive estimates of the 
linear regression parameters, synthesized using a poly-

nomial maximization method is less resource-intensive 
when compared to the estimation algorithm based on a 
maximum likelihood method. The simplification is due to 
the fact that, instead of identifying and evaluating the pa-
rameters of the distribution of regression errors, we used 
the estimates of central moments to the 6th order that are 
simpler in terms of computation.

2. The theoretical accuracy (of the variance in es-
timates) of a polynomial maximization method is close 
enough to the accuracy of a maximum likelihood method 
and can significantly exceed the accuracy of a least-square 
method. All three methods are characterized by the same 
accuracy only if the regression errors abide the Gaussian 
distribution (as a separate case of EPD).

3. The results of our statistical modeling indicate 
that for an almost important situation of the absence of 
a priori information about the values of regression error 
parameters (for plateau-kurtic EPD), the PMM estimates 
may demonstrate the lowest relative variance. At the same 
time, the maximum possible increase in accuracy with re-
spect to OLS is up to 60 %, and with respect to MLE ‒ up 
to 10 %.
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