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Abstract. The problem of increasing the clustering efficiency of vocal speech 
sounds is considered. Centroid and medoid clustering methods that use normal-
ized distances which increases the efficiency of clustering, are proposed. Char-
acteristics and quality criteria based on them are suggested for these methods. 
These methods have been investigated on TIMIT database and are intended for 
intelligent biometric identification systems. 

Keywords: vocal speech sound, centroid, medoid, clustering, inter-cluster dis-
tance, intra-cluster distance, compression ratio. 

1 Introduction 

Automated biometric identification of a person means decision-making based on 
acoustic and visual information, which improves the quality of recognition of the 
person under investigation. Unlike the traditional approach [1], computer biometric 
identification speeds up and increases the likelihood of recognition, which is espe-
cially critical in conditions of limited time. 

A special class of biometric identification of a person is formed by methods based 
on acoustic information [2]. 

To increase the efficiency of analysis, storage and transmission of a speech signal, 
knowledge of the structure of vocal speech sound is required, for which the following 
clustering methods are used. 

Traditional methods (without the use of artificial neural networks and metaheuris-
tics) [3-6] search for a solution faster than metaheuristic methods, some methods do 
not require setting of the number of clusters, but perform only a directed search for a 
solution and some methods require setting of the number of clusters or additional 
parameters. 
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Neural network methods [7-10] perform a search for a solution faster than meta-
heuristic methods, but perform only a directed search for a solution and require exact 
setting of the number of clusters. 

Metaheuristic methods [11-14] perform a random search for a solution, but the 
search for a solution is longer than that of other methods, and require exact setting of 
the number of clusters. 

Thus, only some traditional methods do not require an exact setting of the number 
of clusters, but instead require setting of additional parameters. 

The aim of the work is to increase the clustering efficiency of vocal speech sounds 
by providing an adaptive number of clusters, a minimum number of set parameters 
and parallel information processing. 

To achieve this goal, it is necessary to solve the following tasks: 

1. to develop a centroid clustering method; 
2. to create medoid clustering methods; 
3. to determine the characteristics and quality criterion of the clustering method; 
4. to conduct a numerical study of the proposed clustering methods. 

2 Problem statement 

The problem of increasing the clustering efficiency of vocal speech sound comes 
down to the problem of finding such vector of parameters *  that satisfies the crite-

rion 1 minF SSWB
C 

   , where SSWB  is the ratio of the sums of average intra-

cluster and inter-cluster distances, C  is the compression ratio of speech sound. 

3 Literature review 

Traditional clustering methods include: 

1. Partition-based (partitioning-based) or center-based methods 
In this case, a cluster is a set of objects, each of which is closer to the center of 

this cluster than to the center of any other cluster. The center of the cluster is usu-
ally a centroid (average value of the coordinates of all objects in the cluster) or a 
medoid (an object of the cluster, the average difference of which from other objects 
in the cluster is minimal). These methods consider intersecting areas with a high 
density of objects as different clusters, for example, K-means [15], PAM (k-
medoids) [16], FCM [17], ISODATA [18] methods. The advantage of these meth-
ods consists in a quick search for a solution; some of them do not require setting of 
the number of clusters and have poor sensitivity to noise or random emissions. The 
disadvantage of these methods consists in the presence of only a directed search for 
a solution; a problem with clusters of different shapes, sizes and densities; some of 
them require setting of the number of clusters and are sensitive to noise or random 
emissions or require setting of additional parameters. 
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2. Model mixture or distribution-based or model-based methods 
In this case, a cluster is described by the probability density function. These 

methods should be used when clusters are of different sizes, and the set of objects 
of all clusters can be described by a mixture of distribution densities, for example, 
EM method [19]. The advantage of these methods consists in a quick search for a 
solution; determination of the shape and size of each cluster by the corresponding 
distribution density. The disadvantage of these methods consists in the presence of 
only a directed search for a solution; requirement for precise setting of the number 
of clusters; sensitivity to noise or random emissions; the difficulty of choosing the 
appropriate distribution density. 

3. Density-based methods 
In this case, a cluster is an area with a high density of objects, which is separated 

by areas with a low density of objects from areas with a high density of objects. 
These methods consider intersecting areas with a high density of objects as a single 
cluster. These methods should be used when noise and random emissions are pre-
sent, clusters have different shapes and sizes, and the number of clusters is un-
known. Methods that define clusters (for example, DBSCAN method [20]) and 
those that provide visualization of clusters (for example, OPTICS method [21]) are 
distinguished. The advantage of these methods consists in the absence of a require-
ment to set the number of clusters; the presence of various shapes and sizes of a 
cluster; poor sensitivity to noise or random emissions. The disadvantage of these 
methods consists in the presence of only a directed search for a solution; a problem 
with clusters of heterogeneous density; slow search for a solution. 

4. Hierarchal methods 
These methods provide visualization of a cluster tree called a dendrogram. On a 

dendrogram, pairs of clusters that are joined (in the case of agglomerative methods) 
or obtained as a result of separation (in the case of divisive methods) are connected 
by a U-shaped arc, the height of which corresponds to the distance between clusters. 
By the method of constructing a dendrogram, these methods are divided into ag-
glomerative or bottom up ones – each object is considered as a singleton cluster, af-
ter which a stepwise combination of pairs of the closest clusters is performed (for 
example, centroid communication, Ward, single communication, full communica-
tion, group average methods [22, 23]) and divisive or top down ones – all objects 
are considered as one cluster, and at each step one of the constructed clusters is di-
vided into a couple of clusters (for example, DIANA, DISMEA methods [22, 23]). 
The advantage of these methods consists in the absence of a requirement to set the 
number of clusters; visibility; some of them don’t strongly tend to clusters of a cer-
tain shape and size and have poor sensitivity to noise or random emissions. The dis-
advantage of these methods consists in the presence of only a directed search for a 
solution; slow search for a solution; some of them strongly tend to clusters of a cer-
tain shape and size, are sensitive to noise or random emissions, tend to discard clus-
ters of high power. 
Usually, the methods listed above either require setting of the number of clusters or 

have a slow search for a solution or require setting of additional parameters, which 
leads to a decrease in the clustering efficiency. 
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Therefore, the urgent task is to increase the clustering efficiency of vocal speech 
sounds by providing an adaptive number of clusters, a minimum number of set pa-
rameters and parallel information processing. 

4 Method clustering of vocal speech sound  

4.1 Centroid clustering of vocal speech sound based on minimum distance 
method 

Centroid clustering of vocal speech sound based on the author’s minimum distance 
method includes the following steps: 

1. Set a lot of samples of vocal speech sound { ( )}iS s n , 1, , 1,i I n N  , which are 
in a single amplitude-time window, where I is the number of samples, N is the 
length of the sample. Set the number of quantization levels of a speech signal L  
(for an 8-bit sound sample 256L  ). Set normalized threshold  , 0 1  . Set 
the number of clusters 0K  . 

2. Calculate normalized squared distance between each pair of sound samples 

 
2

2
i j

ij

s s
D

NL


 , 1,i I , 1,j I . 

3. Calculate the distance between each sound sample and a lot of sound samples 

 
1

I

i ij

j

d D


 , 1,i I . 

4. Determine the number of sound sample with a minimum distance 

 * arg min i
i

i d , 1,i I . 

5. Set a sound sample with a minimum distance as the new cluster center, i.e. 
*1K i

m s  , set the number of sound samples in the new cluster per unit, i.e. 

1 1Ka   , increase the number of clusters, i.e. 1K K  . 
6. Set the sound sample number 1i  . 
7. If *i i , then go to step 13. 
8. Calculate normalized squared distance between the i

th sound sample and cluster 
centers 

 
2

2
i k

k

s m
D

NL


 , 1,k K . 
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9. Calculate the smallest normalized squared distance between the ith sound sample 
and cluster centers 

 * min k
k

d D , 1,k K . 

10. Determine the number of the cluster with a minimum distance 

 * arg min k
k

k D , 1,k K . 

11. If *d  , then calculate the new center of the *k
th cluster, i.e. * *

*

* 1
ik k

k

k

a m s
m

a





, 

increase the number of sound samples in the *k
th cluster, i.e. * * 1

k k
a a  . 

12. If *d  , then set the ith sample as the new cluster center, i.e. 1K im s  , set the 
number of sound samples in the new cluster per unit 1 1Ka   , increase the number 
of clusters, i.e. 1K K  . 

13. If i I , then go to the new sample, i.e. 1i i  , go to step 7. 

The method results in an adaptive set of centroids. 

4.2 Medoid clustering of vocal speech sound based on minimax distance 
method 

Medoid clustering of vocal speech sound based on minimax distance method, unlike 
the traditional version, preliminarily determines the number of a sound sample with a 
minimum distance for a non-random choice of the first cluster center and includes the 
following steps: 

1. Set a lot of samples of vocal speech sound { ( )}iS s n , 1, , 1,i I n N  , which are 
in a single amplitude-time window, where I is the number of samples, N is the 
length of the sample. Set the number of clusters 0c  . 

2. Calculate the squared distance between each pair of sound samples 

 
2

ij i jD s s  , 1,i I , 1,j I . 

3. Calculate the distance between each sound sample and a lot of sound samples 

 
1

I

i ij

j

d D


 , 1,i I . 

4. Determine the number of sound sample with a minimum distance 

 * arg min i
i

i d , 1,i I . 
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5. Set a sound sample with a minimum distance as the new cluster center, i.e. 
*1( ) ( )c i

n s n   , 1,n N , increase the number of clusters, i.e. 1c c  . 
6. Calculate the squared distance between each sound sample and each cluster center 

 2
ik i kD s   , 1,i I , 1,k c . 

7. Calculate a minimax squared distance between sound samples and cluster centers 

 * max min ik
ki

d D , 1,i I , 1,k c . 

8. Determine the number of sound sample with a minimax squared distance 

 * arg max min ik
ki

i D , 1,i I , 1,k c . 

9. If 1c  , then set a sound sample with a minimax squared distance as the new clus-
ter center, i.e. *1( ) ( )c i

n s n   , 1,n N , increase the number of clusters, i.e. 
1c c  , go to step 6. 

10. Calculate the average squared distance between cluster centers 

 
2

2
1

2 c c

i j

i j ic c
  

 

 
  . 

11. Verification of the termination condition. 

If *

2
d


 , then set a sound sample with a minimax squared distance as the new 

cluster center, i.e. *1( ) ( )c i
n s n   , 1,n N , increase the number of clusters, i.e. 

1c c  , go to step 6. 

12. Calculate the distance between each sound sample and each cluster center 

 ik i kD s   , 1,i I , 1,k c . 

13. Determine for each sound sample the cluster center closest to it 

 arg mini ik
k

u D , 1,i I , 1,k c . 

The method results in an adaptive set of medoids. 

4.3 Medoid clustering of vocal speech sound based on subtractive clustering 
method 

Medoid clustering of vocal speech sound based on subtractive clustering method, 
unlike the traditional version, uses the normalization of squared distances for calculat-
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ing the potentials of sound samples to specify normalized standard deviations and 
includes the following steps: 

1. Set a lot of samples of vocal speech sound { ( )}iS s n , 1, , 1,i I n N  , which are 
in a single amplitude-time window, where I is the number of samples, N is the 
length of the sample. Set the number of quantization levels of a speech signal L  
(for an 8-bit sound sample 256L  ). Set the threshold to stop the method  , 
0 1  . Set standard deviations a  and b , b a  , 0 1a  , 0 1b  . 
Set the number of clusters 0c  . 

2. Calculate the potential of each sound sample 

 
2

4
2 2

1
( )

s si j

NLa

I

j

P i e 






 , 1,i I . 

3. Determine the number of sound sample with a maximum potential 

 * arg max ( )
i

i P i , 1,i I . 

4. Set the potential *( )P i  as the new cluster potential, i.e. *( 1) ( )P c P i  . 
5. Calculate the new potential of each sound sample 

 
24 1

2 2
( ) ( ) ( 1)

si c

NL
bP i P i P c e





 

   , 1,i I . 

6. Verification of the termination condition. 

If ( 1)
(1)

P c

P


 , then set a sound sample with the highest potential as the new clus-

ter center, i.e. *1( ) ( )c i
n s n   , 1,n N , increase the number of clusters, i.e. 1c c  , 

go to step 3. 

7. Calculate the distance between each sound sample and each cluster center 

 ik i kD s   , 1,i I , 1,k c . 

8. Determine for each normalized sound sample the cluster center closest to it 

 arg mini ik
k

u D , 1,i I , 1,k c . 

The method results in an adaptive set of medoids. 
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4.4 Medoid clustering of vocal speech sound based on minimum average 
distance method 

Medoid clustering of vocal speech sound based on the author’s method of minimum 
average distance includes the following steps: 

1. Set a lot of samples of vocal speech sound { ( )}iS s n , 1, , 1,i I n N  , which are 
in a single amplitude-time window, where I is the number of samples, N is the 
length of the sample. Set the number of quantization levels of a speech signal L  
(for an 8-bit sound sample 256L  ). Set the radius of the neighborhood of sound 
samples  , 0 1  . Set the number of clusters 0c  . Set a lot of samples of 
speech sound that haven’t fallen into existing clusters, { ( )}iS s n . 

2. Calculate normalized squared distance between each pair of sound samples 

 
2

2
i j

ij

s s
D

NL


 , 1,i I , 1,j I . 

3. Calculate the distance between each sound sample and a lot of sound samples 

 
1

I

i ij

j

d D


 , 1,i I . 

4. Determine the neighborhood of each sound sample 

 , { | , 1, }i ijU j D j I    , 1,i I . 

5. Determine the neighborhood of the sound sample with a minimum average dis-
tance 

 * arg min i

i S

d
i

S


 
, 

 *
*

,i
U U


 . 

6. Calculate the new distance between each sound sample and a lot of sound samples 
that haven’t fallen into existing clusters 

 
*

*

0,
,i

i ik

k

i U
d

d D i U

    


 , *
,ik U U  , i S  . 

7. Determine the new neighborhood for each sound sample that hasn’t fallen into ex-
isting clusters. 
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*

, * *
,

,
\ ,i

i

i U
U

U U i U




   
, i S  . 

8. Set a sound sample with a minimum average distance as the new cluster center, i.e. 
*1( ) ( )c i

n s n   , 1,n N , increase the number of clusters, i.e. 1c c  . 
9. Verification of the termination condition. 

If *\S U   , then *\S S U  , go to step 5. 

10. Calculate the distance between each sound sample and each cluster center (code-
book vector) 

 ik i kD s   , 1,i I , 1,k c . 

11. Determine for each sound sample the cluster center closest to it 

 arg mini ik
k

u D , 1,i I , 1,k c . 

The method results in an adaptive set of medoids. 

5 Determination of characteristics and quality criterion for 
clustering methods of vocal speech sound 

To evaluate clustering methods, the following characteristics are used in the work: 

1. The sum of average intra-cluster distances: 

─  in the case of centroid clustering methods 
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1

1
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─ in the case of medoid clustering methods 
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where kA  is a cluster. 

2. The sum of inter-cluster distances: 

─ in the case of centroid clustering methods 

 2

1

K

k

k

SSB m m


  , 

 1

I

i

i

s

m
I




 

─ in the case of medoid clustering methods 

 2
1

1

c

k

k

SSB  


  . 

3. The ratio of the sums of average intra-cluster and inter-cluster distances  

 SSW
SSWB

SSB
 . 

In addition, to assess the quality of clustering methods, the following characteris-
tics – compression ratio for speech sound – is proposed in the work: 

 I
C

c
 , 

where I  is the number of samples of vocal speech sound, c  – the number of clusters. 
The following criterion for the quality of clustering, which means choosing such a 

value   that minimizes the sum of the inverse of compression ratio and the ratio of 
the sums of average intra-cluster and inter-cluster distances, is formulated in the pa-
per: 

 1 minF SSWB
C 

   .   (1) 

For centroid clustering of vocal speech sound based on minimum distance method 
  . For medoid clustering of vocal speech sound based on subtractive clustering 

method ( , , )a b    . For medoid clustering of vocal speech sound based on min-
imum average distance method   . 

6 Experiments and results 

Numerical experiments were carried out using notebook Intel Core i5 8th Gen, 
MATLAB package, CUDA technology of parallel information processing on the Ge-



11 

Force 920M graphics card with the number of threads in the block sN  = 1024. In this 
case, the most time-consuming (computational complexity 2( )O I , where I  is the 
number of samples of vocal speech sound) step 2 of all four proposed clustering 
methods was parallelized. This made it possible to speed up the search for a solution. 

For speech signals containing vocal sounds, the sampling frequency df  = 8 kHz 
and the number of quantization levels L = 256 were set. The length of the sample of 
vocal speech sound 256N  . 

For modified method of subtractive clustering, the following fixed parameter val-
ues  =0.01, 1.25b a   were set. 

The results of a numerical study of the proposed clustering methods for vocal 
sounds of people from TIMIT database are presented in Table 1. 

The result presented in Table 1 shows that the author's method of minimum aver-
age distance provides the smallest F value, calculated according to (1). The compres-
sion ratio is approximately 7.5, i.e. the number of stored samples is reduced by about 
7.5 times. 

Based on the experiments, the following conclusions can be drawn. 
The author’s method of minimum distance should be used only when centroids are 

required, and not medoids, since it has the largest F and the lowest compression ratio. 

Table 1. Results of a numerical study of vector quantization methods 

Characteristics 
of clustering 

methods 

Author's 
method of 
minimum 
distance 

Modified 
minimax 
distance 
method 

Modified 
subtractive 
clustering 
method 

Author's 
method of 
minimum 

average dis-
tance 

Compression 
ratio 4.5429 10.7500 7.5834 7.5834 

F 0.3157 0.2712 0.2420 0.2400 

Number of 
parameters 1 0 3  1 

The modified method of minimax distance performs a coarser adjustment of the 
number of clusters than the modified method of subtractive clustering and the author's 
method of minimum average distance, because it does not use parameters. On the 
other hand, an operator does not need to set any parameters, the values of which are 
established empirically. 

The modified method of subtractive clustering performs finer adjustment of the 
number of clusters than the modified method of minimax distance, because it uses 
parameters. It requires more complex setting than the author's method of minimum 
average distance, because it uses three parameters, the values of which are established 
empirically. 

The author's method of minimum average distance performs finer adjustment of 
the number of clusters than the modified method of minimax distance, because it uses 
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parameters. It requires simpler adjustment than the modified method of subtractive 
clustering, because it uses only one parameter, the value of which is established em-
pirically. 

7 Conclusions 

The article considers the problem of increasing the clustering efficiency of vocal 
speech sounds. The following clustering methods are proposed – the author’s method 
of minimum distance, the author’s method of minimum average distance, the modi-
fied method of minimax distance (unlike the traditional version, it preliminarily de-
termines the number of a sound sample with a minimum distance for non-random 
choice of the first cluster center), the modified method of subtractive clustering (un-
like the traditional version, it uses squared distances normalization to set normal stan-
dard deviations in calculating the potentials of sound samples). Characteristics and 
quality criteria based on them are proposed for these methods. The proposed methods 
allow to increase the clustering efficiency of vocal speech sounds by providing an 
adaptive number of clusters, a minimum number of specified parameters and parallel 
information processing. The proposed methods are intended for software implementa-
tion on GPU using CUDA technology, which speeds up the process of finding a solu-
tion. Software that implements the proposed methods has been developed and re-
searched on TIMIT database. The conducted experiments have confirmed the oper-
ability of the developed software and allow to recommend it for use in practice when 
solving problems of biometric identification of a person. Prospects for further re-
search are to test the proposed methods on a wider set of test databases. 
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