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Abstract—For a class of nonlinear differential equations with Hukuhara derivative, lower bounds
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1. INTRODUCTION
Differential equations with Hukuhara derivative and their generalizations, fuzzy differential equa-

tions [1], [2] are used in the study of the dynamics of systems under conditions of indeterminacy,
ambiguity, and incompleteness of information. The role of this class of differential equations in the study
of generalized differential equations was discussed in Tolstonogov’s monograph [3]. The comparison
method and Lyapunov’s direct method were developed in the monograph [4]. It follows from the
analysis in this monograph and from many papers concerned with the use of the comparison method
and Lyapunov’s direct method for this class of equations that the main impediment to the application of
these methods is that there are no methods for constructing Lyapunov functions. In the present paper,
for a class of nonlinear differential equations with Hukuhara derivative, we propose to use the volume
of the solutions of the equations as an analog of the Lyapunov function. Although such a volume does
not possess properties typical of the classical Lyapunov function, it is, nevertheless, a natural measure
associated with the solutions of this class of equations. Using the powerful geometric apparatus created
by H. Minkowski and A. D. Aleksandrov, we can establish lower bounds for the volume of solutions of
certain differential equations with Hukuhara derivative.

2. AUXILIARY RESULTS
Let conv(Rn) be the metric space of convex compact sets from R

n with the Hausdorff metric. In the
space conv(Rn), the operations of (Minkowski) addition and multiplication by a nonnegative scalar are
defined. If A ∈ L(Rn), where L(Rn) is the set of linear operators R

n, then the action of the operator A
can be extended in a natural way to the space conv(Rn):

Au = {Ax : x ∈ u} ∈ conv(Rn), u ∈ conv(Rn).

Let u ∈ conv(Rn), v ∈ conv(Rn). If there exists an element w ∈ conv(Rn) such that u = w+ v, then
the element w is called the Hukuhara difference of the elements u and v. The notation w = u− v is
used. The difference of two elements of the space conv(Rn) does not always exist.

The notion of Hukuhara difference allows us to define the notion of Hukuhara derivative for the
mapping F : (α, β) → conv(Rn), (α, β) ⊂ R.
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Definition. A mapping F : (α, β) → conv(Rn) is said to be differentiable at a point t0 ∈ (α, β) if there
exists an element DHF (t0) ∈ conv(Rn) such that the limits

lim
�→0+

F (t0 + �)− F (t0)

�
, lim

�→0+

F (t0)− F (t0 − �)

�

exist and are DHF (t0). In this case, DHF (t0) is called the Hukuhara derivative at the point t0.
Differentiability on open, half-open, and closed intervals is defined in the standard way.

A mapping F (t) differentiable on [a, b] ⊂ R can be recovered from its derivative by using the Aumann
integral [4]

F (t) = F (a) +

ˆ t

a
DHF (s) ds, t ∈ [a, b].

Note that the necessary condition for the differentiability of the mapping is that the function diamF (t)
is nondecreasing.

Following Aleksandrov’s papers [5]–[8], let us present some results (necessary for further exposition)
from the geometry of convex bodies.

Let int ui �= ∅, let V [u1, u2, . . . , un] denote the mixed volume of the convex compact sets ui, and let
V [u] be the volume of the body u,

V [u] = V [u, u, . . . , u]
︸ ︷︷ ︸

n

, Vm[u1, u2] = V [u1, . . . , u1,

m
︷ ︸︸ ︷

u2, . . . , u2]
︸ ︷︷ ︸

n

, m = 1, . . . , n− 1,

V0[u1, u2] = V [u1], Vn[u1, u2] = V [u2].

(2.1)

The functional V [u1, . . . , un] is additive and positively homogeneous in each argument, invariant with
respect to the rearrangement of the arguments, as well as continuous in all of its arguments with respect
to the Hausdorff metrics. Therefore, the Steiner formula is valid:

V [u1 + �u2] =

n
∑

k=0

Ck
n�

kVk[u1, u2], � ∈ R+. (2.2)

It follows from this formula that

nV1[u1, u2] = lim
�→0

V [u1 + �u2]− V [u1]

�
.

Aleksandrov’s inequality

V 2[u1, . . . , un−1, un] ≥ V [u1, . . . , un−2, un−1, un−1]V [u1, . . . , un−2, un, un] (2.3)

implies the following inequalities for the functionals Vk[u1, u2]:

V 2
k [u1, u2] ≥ Vk−1[u1, u2]Vk+1[u1, u2],

which yield the estimates

Vk[u1, u2] ≥ V (n−k)/n[u1]V
k/n[u2]. (2.4)

The particular case of the last inequality for k = 1 is the Brunn–Minkowski isoperimetric inequality.

3. STATEMENT OF THE PROBLEM

Consider the following differential equation in the space convRn:

DHu(t) = ψ(t, V [u(t)])Au(t), (3.1)

where DH is the Hukuhara derivative, u ∈ conv(Rn), ψ ∈ C([a,+∞)× [b,+∞);R+), b > 0, and
A ∈ L(Rn).
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Consider the function v0(t) = V [u(t)], where u : [t0,Ω
+(t0, u0)) → conv(Rn) is a solution of the

Cauchy problem of the differential equation (3.1) with the initial condition u(t0) = u0, u0 ∈ conv(Rn),
t0 > a, and V [u0] ≥ b. Let us consider how the function v0(t) changes along the solution u(t). It follows
from Eq. (3.1) that

u(t+ �) = u(t) +

ˆ t+�

t
ψ(s, V [u(s)])Au(s) ds, � > 0.

Using formula (2.2), we obtain

v0(t+ �)− v0(t)

�
=

n
∑

k=1

Ck
n�

k−1Vk

[

u(t),
1

�

t+�ˆ

t

ψ(s, V [u(s)])Au(s) ds

]

.

By the mean-value theorem for the Aumann integral,

lim
�→0+

1

�

ˆ t+�

t
ψ(s, V [u(s)])Au(s) ds = ψ(t, V [u(t)])Au(t)

in the Hausdorff metric [4]; therefore, because the functionals Vk are continuous, we have

lim
�→0+

v0(t+ �)− v0(t)

�
= nψ(t, v0(t))V1[u(t), Au(t)].

Similarly, we prove that

lim
�→0−

v0(t+ �)− v0(t)

�
= nψ(t, v0(t))V1[u(t), Au(t)].

Therefore,

dv0(t)

dt
= nψ(t, v0(t))V1[u(t), Au(t)].

Consider the function

v1(t) = V1[u(t), Au(t)].

As above, we can show that

dv1(t)

dt
= ψ(t, v0(t))

(

(n− 1)V2[u(t), Au(t)] + V1[u(t), A
2u(t)]

)

.

Denoting v2(t) = V2[u(t), Au(t)] and using inequality (2.4) for k = 1, we obtain the estimate

V1[u(t), A
2u(t)]) ≥ |detA|2/nV [u(t)],

which yields

dv1(t)

dt
≥ ψ(t, v0(t))((n − 1)v2(t) + |detA|2/nv0(t)).

Similarly, for

vr(t) = Vr[u(t), Au(t)], r = 2, . . . , n− 1,

we obtain the representation

dvr(t)

dt
= ψ(t, v0(t))

(

(n− r)vr+1(t) + rV [u(t), . . . , u(t)
︸ ︷︷ ︸

n−r

, Au(t), . . . , Au(t)
︸ ︷︷ ︸

r−1

, A2u(t)]
)

. (3.2)

Using inequality (2.3), we can write

V [u(t), . . . , u(t)
︸ ︷︷ ︸

n−r

, Au(t), . . . , Au(t)
︸ ︷︷ ︸

r−1

, A2u(t)]

≥ V (r−1)/r
r [u(t), Au(t)]V 1/r

r [u(t), A2u(t)] ≥ |detA|2/nv(r−1)/r
r (t)v

1/r
0 (t). (3.3)
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It follows from (3.2) and (3.3) that

dvr(t)

dt
≥ ψ(t, v0(t))((n − r)vr+1(t) + r|detA|2/nv(r−1)/r

r (t)v
1/r
0 (t)). (3.4)

The last inequality holds for all r = 0, 1, . . . , n− 1, and it is also necessary to take into account the
equality vn(t) = |detA|v0(t).

Estimate (3.4) is the main estimate, which serves to establish a number of statements about lower
bounds for the volume of the solutions of the differential equation (3.1).

4. MAIN RESULT
Consider the differential equation

dζ(t)

dt
= n|detA|1/nψ(t, ζ)ζ. (4.1)

Statement 4.1. Let the function vψ(t, v) satisfy a local Lipschitz condition in the variable v on
the half-interval [b,+∞), and let ζ : [t0, ω+(t0, ζ0)) → R+ be a solution of the Cauchy problem for
Eq. (4.1) with the initial condition ζ0 ≤ V [u0]. Then, for all t ∈ [t0,min[Ω+(t0, u0), ω

+(t0, ζ0)]), the
following estimate holds:

V [u(t)] ≥ ζ(t).

Proof. It follows from estimate (3.4) for r = 0 and the Brunn–Minkowski inequality that the func-
tion v0(t) satisfies the differential inequality

dv0(t)

dt
≥ n|detA|1/nv0(t)ψ(t, v0(t)).

Using the differential inequality theorem [9] concludes the proof of the statement.

Some additional constraints on the function ψ(t, v) allow us to obtain sharper estimates for the
volume of the solution of Eq. (3.1). Let k be a natural number, 2 ≤ k ≤ n− 1. Consider the nonlinear
system of differential equations

dθr(t)

dt
= ψ(t, θ0(t))((n − r)θr+1(t) + r|detA|2/nθ(r−1)/r

r (t)θ
1/r
0 (t)), r = 0, . . . , k − 1,

dθk(t)

dt
= ψ(t, θ0(t))((n − k)|detA|(k+1)/nθ0(t) + k|detA|2/nθ(k−1)/k

k (t)θ
1/k
0 (t)).

(4.2)

Statement 4.2. Let the function ψ(t, v) satisfy a local Lipschitz condition in the variable v
on the half-interval [b,+∞) and be nondecreasing in the variable v, and let the function
θ : [t0, ω

+(t0, θ0)) → R
k+1
+ be a solution of the Cauchy problem for the system of equations (4.2)

with the initial conditions

θ0(t0) ≤ V [u0], θr(t0) ≤ Vr[u0, Au0], r = 1, . . . , k.

Then, for all t ∈ [t0,min[Ω+(t0, u0), ω
+(t0, θ(t0))]), the following estimate holds:

V [u(t)] ≥ θ0(t). (4.3)

Proof. Applying inequality (2.4) to inequality (3.4) for r = k, we obtain the estimate

dvk(t)

dt
≥ ψ(t, v0(t))((n − k)vk+1(t) + k|detA|2/nv(k−1)/k

k (t)v
1/k
0 (t))

≥ ψ(t, v0(t))((n − k)|detA|(k+1)/nv0(t) + k|detA|2/nv(k−1)/k
k (t)v

1/k
0 (t)). (4.4)

Since the function ψ(t, v) is nondecreasing in v, the right-hand sides of the system of differential
inequalities composed of inequalities (3.4) for r = 0, . . . , k and of inequality (4.4) satisfy the Ważevski
condition [9] in the cone Rk

+. Since the solutions of this system are positive under the condition that the
initial data are positive, it follows that, by the differential inequality theorem [9], inequality (4.3) holds.
The statement is proved.
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Consider the nonlinear system

dηr(t)

dt
= ψ(t, η0(t))((n − r)ηr+1(t) + r|detA|(r+1)/nη0(t)), r = 0, . . . , k − 1,

dηk(t)

dt
= n|detA|(k+1)/nψ(t, η0(t))η0(t).

(4.5)

Statement 4.3. Let the function ψ(t, v) satisfy a local Lipschitz condition in the variable v
on the half-interval [b,+∞) and be nondecreasing in the variable v, and let the function
η : [t0, ω

+(t0, θ0)) → R
k+1
+ be a solution of the Cauchy problem for the system of equations (4.5)

with the initial conditions

η0(t0) ≤ V [u0], ηr(t0) ≤ Vr[u0, Au0], r = 1, . . . , k.

Then, for all t ∈ [t0,min[Ω+(t0, u0), ω
+(t0, η(t0))]), the following estimate holds:

V [u(t)] ≥ η0(t).

Proof. In order to prove this statement, it suffices to apply inequalities (3.1) to inequality (3.4); this
yields the estimates

dvr(t)

dt
≥ ψ(t, v0(t))((n − r)vr+1(t) + r|detA|2/nv(r−1)/r

r (t)v
1/r
0 (t))

≥ ψ(t, v0(t))((n − r)vr+1(t) + r|detA|(r+1)/nv0(t)), r = 0, . . . , k − 1,

dvk(t)

dt
≥ ψ(t, v0(t))((n − k)vk+1(t) + r|detA|2/nv(k−1)/k

k (t)v
1/k
0 (t))

≥ n|detA|(k+1)/nψ(t, v0(t))v0(t).

In the case k = 1, system (4.5) takes the form

dη0(t)

dt
= nψ(t, η0(t))η1(t),

dη1(t)

dt
= n|detA|2/nψ(t, η0(t))η0(t). (4.6)

In this case, we can weaken the assumptions with respect to the function ψ(t, v).

Statement 4.4. Let the function vψ(t, v) satisfy a local Lipschitz condition in the variable v
on the half-interval [b,+∞) and be nondecreasing in the variable v, and let the function
η : [t0, ω

+(t0, η(t0))) → R
2
+ be a solution of the Cauchy problem for the system of equations (4.6)

with the initial conditions

η0(t0) = V [u0], η1(t0) = V1[u0, Au0].

Then, for all t ∈ [t0,min[Ω+(t0, u0), ω
+(t0, η(t0))]), the following estimate holds:

V [u(t)] ≥ η0(t).

Proof. Along with system (4.6), we consider the auxiliary system

dη0(t)

dt
= nψ(t, η0(t))η1(t)− ε,

dη1(t)

dt
= n|detA|2/nψ(t, η0(t))η0(t)− ε (4.7)

with the initial conditions

η0(t0, ε) = V [u0]− ε, η1(t0) = V1[u0, Au0]− ε,

where ε is a sufficiently small positive number. Let

m(t) = V [u(t)]− η0(t, ε).

Let T be a number such that

t0 < T < min[Ω+(t0, u0), ω
+(t0, η(t0))].
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Then there exists a sufficiently small positive number ε0 such that, for all ε, 0 < ε < ε0, the solution
η0(t, ε), η1(t, ε) exists on the closed interval [t0, T ], is positive, and

η0(t, ε) → η0(t), η1(t, ε) → η1(t) as ε → 0+

uniformly in t ∈ [t0, T ]. Let us prove that

m(t) > 0 for all t ∈ [t0, T ].

Indeed, if this is so, then since m(t0) > 0, there exists an instant of time t1 ∈ (t0, T ] such that m(t1) = 0
and m(t) > 0 for all t ∈ [t0, t1). Therefore, (dm/dt)(t1) ≤ 0. On the other hand, it follows from
inequality (3.4) for r = 0 and the first equation of system (4.7) that

dm

dt
(t1) = ε+ nψ(t1, η0(t1))(v1(t1)− η1(t1)).

If v1(t1)− η1(t1) ≥ 0, then we immediately obtain a contradiction. But if the inequality

v1(t1)− η1(t1) < 0

holds, then there exists an instant of time t2 ∈ [t0, t1) such that

v1(t2)− η1(t2) = 0, v1(t)− η1(t) > 0, t ∈ [t0, t2).

In this case, it follows from inequality (3.4) for r = 1 and the second equation of system (4.7) that

0 ≥ dv1
dt

(t2)−
dη1
dt

(t2) ≥ ε+ n|detA|2/n(v0(t2)ψ(t2, v0(t2))− η0(t2)ψ(t2, η0(t2))) ≥ ε.

The resulting contradiction proves the inequality v0(t) > η(t, ε) for t ∈ [t0, T ]. The passage to the limit
as ε → 0+ concludes the proof of the statement.

Note that the system of equations (4.6) can readily be reduced to one equation

dη0
dt

= nψ(t, η0)
√

|detA|2/nη20 + V 2
1 [u0, Au0]− |detA|2/nV 2[u0] , η0(t0) = V [u0].

Example. Consider the differential equation

DHu(t) = Au(t), (4.8)

where u ∈ conv(Rn) and A ∈ L(Rn). Applying Statement 4.1, we obtain the following estimate for the
volume of the solution of this equation:

V [u(t)] ≥ V [u0]e
n|detA|1/n(t−t0), t ≥ t0. (4.9)

Statement 4.4 implies the estimate

V [u(t)] ≥ V [u0] cosh(n|detA|1/n(t− t0)) +
V1[u0, Au0]

|detA|1/n
sinh(n|detA|1/n(t− t0)), t ≥ t0. (4.10)

Thus, estimate (4.10) is sharper than estimate (4.9). However, in order to apply estimate (4.10), we need
to know more about the initial conditions: it is necessary to know not only the volume V [u0], but also
the first mixed volume V1[u0, Au0]. For example, if u0 is the unit ball, then, in addition to its volume, it is
necessary to know the area of the surface of the ellipsoid, which is the image of this ball under the linear
transformation A. Also note that, for operators close to scalar ones, estimates (4.9) and (4.10) lead to
practically the same result. The systems of comparison equations obtained in the present paper for k ≥ 2
allow us to obtain still sharper estimates of the volume of the solution u(t); however, it is necessary to
have even greater knowledge about the initial condition; namely, it is necessary to know all the mixed
volumes Vr[u0, Au0], r = 0, . . . , k.
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