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Abstract 
The problem of insufficient forecast efficiency for supply chain management is solved. A 

neural network forecast model based on the Time-Delay Mean Field Boltzmann Machine 

with time delays in the visible layer has been created. In the process of adjusting the structure 

of the developed model, the length of the hidden layer was determined, and the calculation of 

the model parameters was carried out on the basis of the parallel computing platform CUDA. 

Improving forecast accuracy and speed of calculations makes it possible to improve the 

quality of the forecast, resulting in increased supply flexibility and reduced logistics costs. A 

software toolkit based on the Matlab package has been developed, which makes it possible to 

implement the proposed method. The developed software tools are used to solve the problem 

of supply chains forecasting. 
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1. Introduction 

Supply chains are complex adaptive systems characterized by structural and dynamic complexity, 

operating under a large number of random factors. Supply chain management is based on forecasting 

the demand for the final product. This requires efficient and intelligent supply chain planning. 
Planning challenges include, but are not limited to, fragmented data across the organization and 

difficulty in forecasting deliveries. This leads to low accuracy of sales plans, a large volume of 

illiquid products and, as a result, to losses for the company. 
The tasks of reducing inventory and increasing turnover are directly related to the accuracy of 

forecasting sales. When calculating safety stock, the average deviation of sales from forecasts is one 

of the main components. Today, one of the main problems in the field of supply chain management is 
the lack of forecast efficiency [1-4]. Therefore, the decisions made may not be accurate and fast 

enough. Improving forecast accuracy can lead to an increase in inventory turnover, as well as increase 

sales due to a decrease in the number of out-of-stock. Thus, the creation of effective forecasting 

methods for supply chain management is an urgent task. 
There is a set of methods as a means for forecasting, among which are: 

 logical forecasting methods based on classification and regression trees [5]; 

 forecasting methods based on exponential smoothing [6]; 

 regression and autoregressive forecasting methods [7]; 

 neural network forecasting methods [8, 9]; 

 structural forecasting methods based on Markov chains [10]. 

Using artificial neural networks for forecasting provides the following advantages: 

 assumptions about the distribution of input features are not required;  

 analysis of systems with a high degree of nonlinearity is possible;  
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 high adaptability;  

 rapid model development;  

 the relationships between the input features are investigated on ready-made models;  

 a priori information about the input features may be missing;  

 the original data may be incomplete or contain noise, as well as highly correlated;  

 analysis of systems with a large number of input features is possible;  

 analysis of systems with heterogeneous characteristics is possible; 

 a complete enumeration of all possible models is not required. 

Therefore, a neural network forecasting method will be used in the article. 

2. Formal problem statement 

Let the training set )},{(  dxS  , P,1  be given for the forecast. 

Then the problem of improving the forecast accuracy for the Time-Delay Mean Field Boltzmann 

Machine (TDMFBM) model is ),( Wxg , where x – is the input vector, W – is the vector of 

parameters, represented as the problem of finding such a vector of parameters *W  for this model, that 

satisfies criterion min)),((
1

1

2*  


P

dWxg
P

F


 . 

The aim of the work is to create an effective forecasting method for supply chain management. To 

achieve this goal, the following tasks were set and solved: 

 analyze existing neural network forecasting methods; 

 create a neural network forecast model based on the mean field Boltzmann machine; 

 choose a criterion for evaluating the effectiveness of a neural network forecast model based 

on the mean field Boltzmann machine; 

 develop a method for identifying the parameters values of the neural network forecast model 

based on the mean field Boltzmann machine; 

 perform numerical studies. 

3. Literature review 

The number of publications demonstrates significant attention to the application of advanced 

analytics, methods and modern computer tools of artificial intelligence in the field of supply chain 

management, but also leaves unresolved and insufficiently studied a number of problems regarding 

the development and synthesis of methods and models of artificial intelligence. 

The most commonly used forecast neural networks are:  

1. Gateway neural networks: 

 long short-term memory (LSTM) [11, 12]; 

 bidirectional long short-term memory (BLSTM) [13, 14]; 

 gateway recurrent unit (GRU) [15-17]; 

 bidirectional gateway recurrent unit (BGRU) [18, 19]. 

2. Reservoir neural networks: 

 echo state network (ESN) [20, 21]; 

 liquid state machine (LSM) [22-24]. 

Table 1 shows the comparative characteristics of forecasting neural networks. 

The learning rate is directly proportional to the computational complexity. For LSTM 
computational complexity ~PN(1)(5M(0)+ 3M(0)S+24S+S2), for BLSTM computational complexity 
~2PN(1)(5M(0)+ 3M(0)S+24S+S2)), for GRU computational complexity ~PN(1)6(M(0)+N(1)), for BGRU 

computational complexity ~PN(1)6(M(0)+N(1)), for ESN computational complexity 
~PN(1)(M(0)+N(1))+(max{P,M(0)+N(1)})2, for LSM computational complexity ~PN(r)(N(r)M(0)+ N(1)), 



116 

 

where M(0) – the number of unit delays for the input layer, S – the number of cell, N(1) – the number of 

neurons in the first layer, N(r) – the number of neurons in the reservoir layer, P – training set 

cardinality, N(1)<<P, N(r)<<P. According to Table 1, none of the networks meets all the criteria.  

Thereby, the creation of a neural network that will eliminate the specified drawback is relevant. 

Table 1 

Comparative characteristics of forecasting neural networks 

Network 

Criterion 
LSTM BLSTM GRU BGRU ESN LSM 

The presence of feedback + + + + + + 

Low probability of getting 

into a local extremum 

- - - - - - 

High learning speed - - - - - - 

Possibility of batch training - - - - - - 

4. Materials and methods 

4.1. Block diagram of a neural network forecast model 

Figures 1-2 show a block diagram of a forecast model based on the Time-Delay Mean Field 

Boltzmann Machine (TDMFBM) of two types, which is a recurrent neural network with one hidden 

layer. 
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Figure 1: Block diagram of the forecast model based on the Time-Delay Mean Field Boltzmann 

Machine with time delays for the input neurons of the visible layer (TDMFBM type 1) 

In contrast to the traditional mean field Boltzmann machine (MFBM) [25, 26], time delays are 

used for the neurons of the visible layer, and the neurons of the visible layer are not connected with 

each other. TDMFBM type 1 has time delays in the input layer. TDMFBM type 2 has time delays in 

the input and output layers. 

4.2. Forecasting model based on TDMFBM type 1 

Positive phase (steps 1-3) 
1. Initial time step 

1 . 

Initialization of the state of the visible input neurons of the time delay 
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0)(  tin x , inMt ,1 . 

2. Initialization of the state of visible input, hidden and output neurons 
inin
 xx )( , 0x )(h , 0x )(out . 

3. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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where hin
tijw   – synaptic weights between the visible input layer (taking into account unit delays) and 

the hidden layer, 
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Figure 2: Block diagram of the forecast model based on the Time-Delay Mean Field Boltzmann 
Machine with time delays for the input and output neurons of the visible layer (TDMFBM type 2) 

hout
ijw   – synaptic weights between the visible output and the hidden layer, 

hh
ijw   – synaptic weights inside the hidden layers, 

h
jb  – bias of neurons of the hidden layer, 

inM  – the number of unit delays for the visible input layer, 
inN  – the number of neurons in the input layer, 
hN  – the number of neurons in the hidden layer, 
outN  – the number of neurons in the output layer. 

Negative phase (step 4) 

4. Computation of the state of visible output neurons ( outNj ,1 ) at time   
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where out
jb  – bias of neurons of the visible output layer. 

The result is vector ))(),...,(( 1  out

N

out
outxx . 
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4.3. Forecasting model based on TDMFBM type 2 

Positive phase (steps 1-3) 

1. Initial time step 

1 . 

Initialization of the state of the visible input and output neurons of the time delay 

0)(  tin x , inMt ,1 ,   0)(  tout x , outMt ,1 . 

2. Initialization of the state of visible input and output neurons 
inin
 xx )( , 0x )(h , 0x )(out . 

3. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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where hin
tijw   – synaptic weights between the visible input layer (taking into account unit delays) and 

the hidden layer, 
hout

tijw   – synaptic weights between the visible output layer (taking into account unit delays) and the 

hidden layer, 
hh

ijw   – synaptic weights inside the hidden layers, 

h
jb  – bias of neurons of the hidden layer, 

inM  – the number of unit delays for the visible input layer, 
outM  – the number of unit delays for the visible output layer, 

inN  – the number of neurons in the input layer, 
hN  – the number of neurons in the hidden layer, 
outN  – the number of neurons in the output layer. 

Negative phase (step 4) 

4. Computation of the state of visible output neurons ( outNj ,1 ) at time   
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where out
jb  – bias of neurons of the visible output layer. 

The result is vector ))(),...,(( 1  out

N

out
outxx . 

4.4. Criterion for evaluating the effectiveness of a neural network forecast 

model  

In this work, for training the TDMFBM model, a model adequacy criterion was chosen, which 

means the choice of such values of parameters hin
tijwW { , hout

tijw  , inin
tijw  , }outout

tijw  , which deliver a 

minimum of the mean squared error (the difference between the model output and the desired output): 
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W

P N

i

i
out

i
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dx
P

F min)(
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1 1

2  
 

 . (1) 

The training of the TDMFBM model is subject to criterion (1). 

4.5. Method for determining the parameter values of the forecasting model 

based on TDMFBM type 1 

1. Number of training iteration 1n , initialization by means of uniform distribution on the 

interval (0,1) or [-0.5, 0.5] bias )(nbout
i , outNi ,1 , )(nbh

j , hNj ,1 , and weights )(nw hin
tij
 , 

inMt ,0 , inNi ,1 , hNj ,1 , )(nw outin
tij
 , inMt ,0 , inNi ,1 , outNj ,1 , )(nw hout

ij
 , outNi ,1 , 

hNj ,1 , )(nw hh
ij
 , hNi ,1 , hNj ,1 , 0)(  nw hin

tii , 0)(  nw outin
tij , 0)(  nw hout

ii , 
0)(  nw hh

ii , 
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tji
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tij

  , )()( nwnw hout
ji
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  , )()( nwnw hh
ji
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ij

  , where inM  is 

the number of unit delays for visible input neurons. 

2. A training set })1,0(,)1,0(|),{(
outin NoutNinoutin   xxxx , P,1  is set, where in

x  –  th 

training vector of states of visible input neurons, out
x  –  th training vector of states of visible output 

neurons, P  – is the power of the training set. 

Positive phase (steps 3-6) 

3. Initial time step 

1 . 

Initialization of the state of the visible input neurons of the time delay 

0)(  tin x , 0)(1  tin x , inMt ,1 . 

4. Initialization of the state of visible input and output neurons 
inin
 xx )( , 0x )(h , outout

 xx )( . 

5. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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6. Preservation of the state of neurons in the positive phase at time  , i.e. )()(1  inin
xx  , 

)()(1  outout
xx  , )()(1  hh xx  . If P , then 1  , go to 4. 

Negative phase (steps 7-11) 

7. Initial time step 

 =1. 

Initialization of the state of the visible input neurons of the time delay 

0)(  tin x , 0)(2  tin x , 
inMt ,1 . 

8. Initialization of the state of visible input and output, hidden neurons 

)(1)(  inin
xx  , )(1)(  outout

xx  , )(1)(  hh
xx  . 

9. Computation of the state of visible output neurons ( outNj ,1 ) at time   
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10. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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11. Saving the state of neurons in the negative phase at time  , i.e. )()(2  inin
xx  , 

)()(2  outout
xx  , )()(2  hh

xx  . If P , then 1  , go to 8. 

12. Adjustment of synaptic weights and bias based on Boltzmann's rule 
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13. If 
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4.6. Method for determining the parameter values of the forecasting model 
based on TDMFBM type 2 

1. Number of training iteration 1n , initialization by means of uniform distribution on the 

interval (0,1) or [-0.5, 0.5] bias )(nbout
i , 

outNi ,1 , )(nbh
j , hNj ,1 , and weights )(nw hin

tij
 , 

inMt ,0 , 
inNi ,1 , hNj ,1 , )(nw outin

tij
 , 

inMt ,0 , 
inNi ,1 , outNj ,1 , )(nw hout

tij
 , 

outMt ,0 , 

outNi ,1 , hNj ,1 , )(nw hh
ij
 , 

hNi ,1 , hNj ,1 , 0)(  nw hin
tii , 0)(  nw outin

tij , 0)(  nw hout
tii , 
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where inM  is the number of unit delays for visible input neurons, outM  is the number of single 

delays for visible output neurons. 

2. A training set })1,0(,)1,0(|),{(
outin NoutNinoutin   xxxx  is set, P,1 , where in

x  –  th training 

vector of states of visible input neurons, out
x  –  th training vector of states of visible output neurons, 

P  is the power of the training set. 

Positive phase (steps 3-6) 

3. Initial time step 

1 . 

Initialization of the state of the visible input and output neurons of the time delay 

0)(  tin x , 0)(1  tin x , inMt ,1 ,     0)(  tout x , 0)(1  tout x , outMt ,1 . 

4. Initialization of the state of visible input and output neurons 
inin
 xx )( , 0x )(h , outout

 xx )( . 

5. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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6. Saving the state of neurons in a positive phase at time  , i.e. )()(1  inin
xx  , 

)()(1  outout
xx  , )()(1  hh xx  . If P , then 1  , go to 4. 

Negative phase (steps 7-11) 
7. Initial time step 

 =1. 

Initialization of the state of the visible input and output neurons of the time delay 

0)(  tin x , 0)(2  tin x , inMt ,1 , 

0)(  tout x , 0)(2  tout x , outMt ,1 . 

8. Initialization of the state of visible input and output, hidden neurons 

)(1)(  inin
xx  , )(1)(  outout

xx  , )(1)(  hh
xx  . 

9. Computation of the state of visible output neurons ( outNj ,1 ) at time   
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10. Computation of the state of hidden neurons ( hNj ,1 ) at time   
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11. Saving the state of neurons in the negative phase at time  , i.e. )()(2  inin
xx  , 

)()(2  outout
xx  , )()(2  hh

xx  . If P , then 1  , go to 8. 
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12. Adjustment of synaptic weights and bias based on Boltzmann's rule 
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13. If 
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5. Experiments and results 

To determine the structure of the forecasting model based on TDMFBM with 16 input neurons, i.e. 
determining the amount of hidden neurons, a number of experiments were carried out, the results of 
which are presented in Figure 3. As input data to determine the values of the parameters of the neural 
network forecasting model, a sample of values of the economic activities of the logistics company 
«Ekol Ukraine» was used. The criterion for choosing the structure of the neural network model was 
the minimum mean squared error (MSE) of forecasting. The dataset capacity for the "cost of 
transportation" indicator was 1000. The dataset was divided into three parts - training data (60%), test 
data (20%), test data (20%). The training took place over 100 epochs. The change in the MSE value 
chosen as the loss function depended on the training epoch number and occurred exponentially. The 
common parameters for all neural networks were the number of neurons in the hidden layer. As can 
be seen from Figure 3, with an increase in the amount of hidden neurons the error value decreases. 
For the forecast, it is sufficient to use 32 hidden neurons, since with a further increase in their amount 
the change in the error value is insignificant. The work investigated forecasting neural networks 
according to the criterion of the minimum mean squared error (MSE) of the forecast (Table 2).  

According to Table 2, TDMFBM type 2 has the highest forecast accuracy. TDMFBM type 1 can 
train in burst mode unlike other networks. Thus, type 1 TDMFBM has the fastest learning rate. 

Table 2 
Comparative characteristics of forecasting neural networks 

Network 
Criterion 

LSTM GRU BLSTM BGRU ESN LSM 
TDMFBM 
type 1 / 2 

Minimum MSE 
of the forecast 

0.10 0.12 0.09 0.11 0.08 0.10 0.06 / 0.02 
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Figure 3: Graph of the dependence of the mean squared error (MSE) value on the amount of hidden 
neurons 

6. Conclusions 

1. To solve the problem of improving forecast quality for effective supply chain management, 
forecast methods were analyzed. According to the studies carried out, neural networks are currently 
the most effective forecasting tool. 

2. In order to improve the forecast efficiency, the MFBM neural network was selected, modified 
(by introducing time delays in the visible layer), and the structure of its model was identified in the 
process of numerical study. The conducted study showed that with 32 neurons in the hidden layer, the 
value of the root mean square error changes little, and the proposed network performs the forecast 
with a minimum error. 

3. A method for calculating the values of the parameters of the created neural network forecast 
model was proposed. This ensures high accuracy and speed of the forecast. 

4. The developed approach can be used for forecasting in various intelligent computer systems of 
general and special purpose. 
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