
Citation: Faure, E.; Shcherba, A.;

Makhynko, M.; Stupka, B.; Nikodem,

J.; Shevchuk, R. Permutation-Based

Block Code for Short Packet

Communication Systems. Sensors

2022, 22, 5391. https://doi.org/

10.3390/s22145391

Academic Editor: Naveen

Chilamkurti

Received: 23 June 2022

Accepted: 17 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Permutation-Based Block Code for Short Packet
Communication Systems
Emil Faure 1,2,* , Anatoly Shcherba 1, Mykola Makhynko 3, Bohdan Stupka 1, Joanna Nikodem 4

and Ruslan Shevchuk 4,*

1 Faculty of Information Technology and Systems, Cherkasy State Technological University,
18006 Cherkasy, Ukraine; a.shcherba@chdtu.edu.ua (A.S.); b.a.stupka.fitis20@chdtu.edu.ua (B.S.)

2 State Scientific and Research Institute of Cybersecurity Technologies and Information Protection,
03142 Kyiv, Ukraine

3 GoodLabs Studio Inc., Toronto, ON M5H 3E5, Canada; nmakhinko@goodlabs.studio
4 Department of Computer Science and Automatics, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland;

jnikodem@ath.bielsko.pl
* Correspondence: e.faure@chdtu.edu.ua (E.F.); rshevchuk@ath.bielsko.pl (R.S.)

Abstract: This paper presents an approach to the construction of block error-correcting code for data
transmission systems with short packets. The need for this is driven by the necessity of information
interaction between objects of machine-type communication network with a dynamically changing
structure and unique system of commands or alerts for each network object. The codewords of a
code are permutations with a given minimum pairwise Hamming distance. The purpose of the study
is to develop a statistical method for constructing a code, in contrast to known algebraic methods,
and to investigate the code size. An algorithm for generating codewords has been developed. It can
be implemented both by enumeration of the full set of permutations, and by enumeration of a given
number of randomly selected permutations. We have experimentally determined the dependencies
of the average and the maximum values of the code size on the size of a subset of permutations used
for constructing the code. A technique for computing approximation quadratic polynomials for the
determined code size dependencies has been developed. These polynomials and their corresponding
curves estimate the size of a code generated from a subset of random permutations of such a size that
a statistically significant experiment cannot be performed. The results of implementing the developed
technique for constructing a code based on permutations of lengths 7 and 11 have been presented.
The prediction relative error of the code size did not exceed the value of 0.72% for permutation length
11, code distance 9, random permutation subset size 50,000, and permutation statistical study range
limited by 5040.

Keywords: secure channel coding scheme; permutation; codeword; factorial code; block
error-correcting code; permutation code; code size

1. Introduction

The volume of information transfer including confidential information is continuously
growing. According to the Statista Research Department report [1], over the next years up
to 2025, global data creation is projected to grow to more than 180 zettabytes. A competitive
environment has been created for designing and improving both attack systems and
information security systems. These circumstances lead to an increase in the mathematical
and logical complexity and degree of intellectualization of the used algorithms, processes,
and technical means. As a result, the effectiveness and dependability [2] (reliability and
security) of telecommunication systems and networks, as well as their components that
implement data protection functions need to be improved.

Integrating methods of channel coding and cryptographic protection, or secure chan-
nel coding schemes, is one of the ways to increase the efficiency of information-processing

Sensors 2022, 22, 5391. https://doi.org/10.3390/s22145391 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145391
https://doi.org/10.3390/s22145391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2046-481X
https://orcid.org/0000-0001-5381-9528
https://doi.org/10.3390/s22145391
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145391?type=check_update&version=2

Sensors 2022, 22, 5391 2 of 18

tools, as well as to ensure data protection during its storage and transmission in telecom-
munication systems and networks.

Note that short packet transmission [3] is a key feature of modern wireless systems,
ultra-reliable networks, sensor networks, massive machine-type communications (MTC),
and IoT applications [4]. The prevalence of such systems and networks in the modern
world requires the creation of new and the adaptation of existing approaches, to ensure
the transmitted information integrity and confidentiality. In particular, the resources
performance necessary for channel coding and cryptographic protection as well as the
resources speed can play a decisive role.

This study considers an information interaction of MTC objects in a network with a
dynamically changing structure. Each object of such a network, for example, a dynamic
wireless sensor network [5], has its own unique system of commands or alerts. This system
of commands or alerts forms an ensemble of messages to be agreed between the object of
information interaction and other network participants.

1.1. Related Literature

Currently known secure-channel coding schemes are based on the McEliece cryp-
tosystem [6–9], universal stochastic coding [10,11], ‘golden’ cryptography [12,13], perfect
algebraic constructions [14,15], and the use of permutations [16,17].

This study develops an approach using permutations.
The methodology of integrated-information security based on non-separable factorial

coding [18,19] uses a subset of the set of permutations π of numbers {0; 1; . . . ; M− 1}
as codewords. Each number {0; 1; . . . ; M− 1} is encoded by a binary code with a fixed
length of lr = dlog2 Me bits. Such information conversion allows getting a non-standard
and redundant frame structure that does not require a separate field for the syncword,
allows maintaining frame synchronization on the data signal, and allows the non-separable
factorial code being used as a transport mechanism in short packet communications [20–27].
The cost of including syncwords is not negligible in such systems [28–30]. Using a non-
separable factorial code makes it possible to effectively search for frame boundaries even
with a bit error rate close to 0.5, which is important for information transmission under
the conditions of strong noise [31,32]. In addition, non-separable factorial coding may
be a suitable tool to implement a cross-layer integrated approach to security and achieve
secure short-packet communication from the perspective of both cryptography and physical
layer security [26,27].

Previous studies [33,34] investigate the ability of a non-separable factorial code to de-
tect and correct communication channel errors. The efficiency of the code has been proven,
which is achieved, among other factors, due to its synchronization properties [31,32]. The
studies [33,34] use the binary Hamming distance between codewords.

In this paper, similarly to the error-correcting Reed-Solomon coding [35], we will
consider symbols as elements of a codeword. This approach is of interest to ensure reliable
transmission of permutations, in particular, for a three-pass cryptographic protocol based
on permutations [36].

We introduce the following definition to distinguish between the binary Hamming
distance used in previous studies [33,34] and the Hamming distance between permutations
of symbols {0; 1; . . . ; M− 1}.

Definition 1. The symbol Hamming distance Dij between two permutations πi and πj is the
number of symbol positions in which permutations πi and πj are different.

It is obvious that Dij = Dji and 0 ≤ Dij ≤ M. In addition, Dij = 0 if and only if
πi = πj.

Definition 2. A block code (M, Dmin) is a code generated with a subset of permutations of length
M with symbol Hamming distance Dij ≥ Dmin.

Sensors 2022, 22, 5391 3 of 18

In this case, Dmin is the symbol code distance.
Let N(M, Dmin) be the (M, Dmin)-code size equal to the number of its codewords.
Since the code size N(M, Dmin) determines the amount of information transmitted

by each codeword equal to log2(N(M, Dmin)) bits, the use of a (M, Dmin)-code of the
maximum size is the most efficient in terms of channel capacity. The last statement also
follows from the central problem of coding theory [37,38].

In the literature [39], the (M, Dmin)-codes are called error correcting permutation
codes. These codes are used for error correction of powerline communications using M-ary
frequency shift keying modulation [40].

There are lower bounds for N(M, Dmin) (in particular, Gilbert–Varshamov bounds
and their improvements) as well as algebraic techniques for constructing (M, Dmin)-
codes [39,41–47]. For example, N(M, 2) = N(M, 1) = M!, N(M, 3) = M!/2, if M is a prime
power then N(M, M− 1) = M(M− 1) and N(M + 1, M− 1) = (M + 1)M(M− 1) [41],
N(11, 8) = 7920 and N(12, 8) = 95, 040 [42]. Studies [39,43] use automorphism groups to
provide N(M, Dmin) lower bounds. The authors of the literature [44] use permutations
invariant under isometries. The study [45,46] uses sequential partition and extension,
parallel partition and extension, and a modified Kronecker product operation. The recent
study [47] improves N(M, Dmin) lower bounds using permutation rational functions.

In this study, in contrast to known algebraic methods, we present a statistical method
for constructing a (M, Dmin)-code and estimating its size N(M, Dmin). We also take into
account the fact that the (M, Dmin)-code must be unique for each object in the dynamic
wireless sensor network, and the code agreement between the participants of the informa-
tion exchange process can take place by applying a cryptographic protocol [36]. In such
conditions, increasing the variability and unpredictability of the codeword ensemble is a
necessary key condition for ensuring the protocol strength.

1.2. Main Contributions

We will generate codewords for a (M, Dmin)-code by enumerating a set of permuta-
tions {π} of length M and selecting permutations with the symbol Hamming distance to
all preselected permutations not exceeding the Dmin value. Constructing a (M, Dmin)-code
is complicated by the fact that when M increases, it is practically impossible to generate
M! permutations.

The goal of the study is to determine the dependence of the code size N(M, Dmin) on
the values of M and Dmin when using the proposed statistical method.

To achieve this goal, the following tasks must be solved.

• A statistical algorithm to generate codewords for a (M, Dmin)-code must be developed
and implemented.

• An analysis of the distribution frequency of a random value N(M, Dmin) for a given
number of implementations of the codeword generating algorithm must be performed.
The distribution law for N(M, Dmin) must be determined.

• The dependences of the average and the maximum (M, Dmin)-code size, its standard
deviation from the parameters M and Dmin must be explored.

• A technique to estimate a (M, Dmin)-code size depending on parameters M and Dmin
must be developed and applied.

1.3. Paper Structure

This paper is organized as follows: Section 2 describes an algorithm to generate a set
of codewords, analyses the dependence of the (M, Dmin)-code size on the values of M and
Dmin, and presents a technique for constructing an approximation polynomial for the code
size dependencies; Section 3 shows the results of implementing the developed technique
for M = 11 and discusses the results, and Section 4 is the conclusion.

Sensors 2022, 22, 5391 4 of 18

2. Materials and Methods
2.1. Algorithm to Generate Codewords

Figure 1 shows the algorithm to generate a set of codewords of a (M, Dmin)-code.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

1.3. Paper Structure
This paper is organized as follows: Section 2 describes an algorithm to generate a set

of codewords, analyses the dependence of the (), minM D -code size on the values of M
and minD , and presents a technique for constructing an approximation polynomial for
the code size dependencies; Section 3 shows the results of implementing the developed
technique for 11M = and discusses the results, and Section 4 is the conclusion.

2. Materials and Methods
2.1. Algorithm to Generate Codewords

Figure 1 shows the algorithm to generate a set of codewords of a (), minM D -code.
Initially the set of codewords does not contain permutations. The initial complete set

of !M permutations is generated randomly. The first permutation is selected and placed
into the set of codewords being generated. Then the second permutation is selected and
the Hamming distance to the first codeword is calculated for it. If the calculated distance
is no less than the given minD value, the second permutation is also placed into the set of
codewords. Otherwise, the next permutation from the initial set is selected. We continue
the process of selecting permutations, calculating the Hamming distances to all selected
codewords, and placing the permutation into the set of codewords if all calculated
Hamming distances are no less than minD till all permutations of the initial set have been
enumerated. After that, the number of permutations in the set of codewords is counted.

Figure 1. Algorithm to generate a set of codewords.

Constructing of a complete set of !M permutations can be implemented both by
generating them in a certain, for example, lexicographic order with subsequent mixing,
and by using random factorial numbers []0; ! 1M − and their bijective transformation into
permutations. At the same time, storing the permutation numbers (or the corresponding
factorial numbers) instead of the permutations reduces the required amount of memory;
however, due to additional transformations, it leads to an increase in the time to generate
and output a permutation.

To reduce the amount of memory required to store the full set of !M permutations,
the initial set of permutations can be generated simultaneously with their analysis. In this
case, in the algorithm of Figure 1, there is no block for generating the initial set of per-
mutations, and the block for selecting the next permutation is replaced by a block for
generating the next permutation (Figure 2).

Figure 1. Algorithm to generate a set of codewords.

Initially the set of codewords does not contain permutations. The initial complete
set of M! permutations is generated randomly. The first permutation is selected and
placed into the set of codewords being generated. Then the second permutation is selected
and the Hamming distance to the first codeword is calculated for it. If the calculated
distance is no less than the given Dmin value, the second permutation is also placed into
the set of codewords. Otherwise, the next permutation from the initial set is selected. We
continue the process of selecting permutations, calculating the Hamming distances to all
selected codewords, and placing the permutation into the set of codewords if all calculated
Hamming distances are no less than Dmin till all permutations of the initial set have been
enumerated. After that, the number of permutations in the set of codewords is counted.

Constructing of a complete set of M! permutations can be implemented both by
generating them in a certain, for example, lexicographic order with subsequent mixing,
and by using random factorial numbers [0; M!− 1] and their bijective transformation into
permutations. At the same time, storing the permutation numbers (or the corresponding
factorial numbers) instead of the permutations reduces the required amount of memory;
however, due to additional transformations, it leads to an increase in the time to generate
and output a permutation.

To reduce the amount of memory required to store the full set of M! permutations, the
initial set of permutations can be generated simultaneously with their analysis. In this case,
in the algorithm of Figure 1, there is no block for generating the initial set of permutations,
and the block for selecting the next permutation is replaced by a block for generating the
next permutation (Figure 2).

At the same time, the uniqueness check of the generated permutation is additionally
implemented in the new block. Table 1 shows estimates of the mathematical expectation
N(M, Dmin) and the standard deviation σ(N(M, Dmin)) of the code size, as well as its
maximum value Nmax(M, Dmin) obtained as a result of implementing the algorithm shown
in Figure 1 for 10,000 experiments with M = 7 and Dmin = {4, 5, 6}.

Sensors 2022, 22, 5391 5 of 18Sensors 2022, 22, x FOR PEER REVIEW 5 of 19

Figure 2. Algorithm to generate a set of codewords without storing the full set of permutations.

At the same time, the uniqueness check of the generated permutation is additionally
implemented in the new block. Table 1 shows estimates of the mathematical expectation

(), minN M D and the standard deviation ()(), minN M Dσ of the code size, as well as its
maximum value (),max minN M D obtained as a result of implementing the algorithm
shown in Figure 1 for 10,000 experiments with 7M = and { }4,5,6minD = .

Table 1. Values of (), minN M D , ()(), minN M Dσ , and (),max minN M D for 7M = and

{ }4,5,6minD = .

minD 4 5 6

()7, minN D 199.6787 49.8305 15.1698

()()7, minN Dσ 4.1532 1.6693 0.9384

(),max minN M D 217 57 19

Figure 3 shows a histogram of the distribution of a random value (), minN M D for
7M = and 4minD = .

Figure 3. Histogram of the distribution of a random value ()7,4N .

Let the null hypothesis state that the distribution of a random value ()7,4N cor-
responds to a normal distribution. The use of Pearson’s chi-squared test 2χ [48] indi-
cates that there is no reason to reject the null hypothesis with the achieved p-value (sig-
nificance level) of 0.2768.

Figure 2. Algorithm to generate a set of codewords without storing the full set of permutations.

Table 1. Values of N(M, Dmin), σ(N(M, Dmin)), and Nmax(M, Dmin) for M = 7 and Dmin = {4, 5, 6}.

Dmin 4 5 6

N(7, Dmin) 199.6787 49.8305 15.1698
σ(N(7, Dmin)) 4.1532 1.6693 0.9384
Nmax(M, Dmin) 217 57 19

Figure 3 shows a histogram of the distribution of a random value N(M, Dmin) for
M = 7 and Dmin = 4.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 19

Figure 2. Algorithm to generate a set of codewords without storing the full set of permutations.

At the same time, the uniqueness check of the generated permutation is additionally
implemented in the new block. Table 1 shows estimates of the mathematical expectation

(), minN M D and the standard deviation ()(), minN M Dσ of the code size, as well as its
maximum value (),max minN M D obtained as a result of implementing the algorithm
shown in Figure 1 for 10,000 experiments with 7M = and { }4,5,6minD = .

Table 1. Values of (), minN M D , ()(), minN M Dσ , and (),max minN M D for 7M = and

{ }4,5,6minD = .

minD 4 5 6

()7, minN D 199.6787 49.8305 15.1698

()()7, minN Dσ 4.1532 1.6693 0.9384

(),max minN M D 217 57 19

Figure 3 shows a histogram of the distribution of a random value (), minN M D for
7M = and 4minD = .

Figure 3. Histogram of the distribution of a random value ()7, 4N .

Let the null hypothesis state that the distribution of a random value ()7,4N cor-
responds to a normal distribution. The use of Pearson’s chi-squared test 2χ [48] indi-
cates that there is no reason to reject the null hypothesis with the achieved p-value (sig-
nificance level) of 0.2768.

Figure 3. Histogram of the distribution of a random value N(7, 4).

Let the null hypothesis state that the distribution of a random value N(7, 4) corre-
sponds to a normal distribution. The use of Pearson’s chi-squared test χ2 [48] indicates that
there is no reason to reject the null hypothesis with the achieved p-value (significance level)
of 0.2768.

The normality of the distribution of a random value N(M, Dmin) is also confirmed
for M = 7 and Dmin = 5: p-value = 0.6313 . However, p-value = 0.0000 for M = 7 and
Dmin = 6.

Note that as the value of M increases, the implementation of the algorithm shown in
Figure 1 becomes more difficult, since the generation of a complete set of M! permutations
requires a significant amount of memory and processor time (Figure 4). For example,
storing of M! = 39, 916, 800 (M = 11) permutations using a fixed length binary code to
encode permutation symbols requires 209.37 MB of memory; for M = 15 this amount is
8.92 TB. These calculations do not take into account the need to store service information.

Sensors 2022, 22, 5391 6 of 18

If we add service information then the memory amount required to form a complete set
of permutations in the Python programming language [49] is 67 MB for M = 9, 667 MB
for M = 10, 7.15 GB for M = 11, and 70 GB for M = 12. It is possible to somewhat
reduce the amount of used memory by optimizing the program code. However, it is
almost impossible to implement the algorithm shown in Figure 1 on a standard modern
workstation when M ≥ 12.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

The normality of the distribution of a random value (), minN M D is also confirmed
for 7M = and 5minD = : value 0.6313p − = . However, value 0.0000p − = for 7M =
and 6minD = .

Note that as the value of M increases, the implementation of the algorithm shown
in Figure 1 becomes more difficult, since the generation of a complete set of !M per-
mutations requires a significant amount of memory and processor time (Figure 4). For
example, storing of ! 39,916,800M = ()11M = permutations using a fixed length binary
code to encode permutation symbols requires 209.37 MB of memory; for M=15 this
amount is 8.92 TB. These calculations do not take into account the need to store service
information. If we add service information then the memory amount required to form a
complete set of permutations in the Python programming language [49] is 67 MB for

9M = , 667 MB for 10M = , 7.15 GB for 11M = , and 70 GB for 12M = . It is possible to
somewhat reduce the amount of used memory by optimizing the program code. How-
ever, it is almost impossible to implement the algorithm shown in Figure 1 on a standard
modern workstation when 12M ≥ .

The average time to generate one permutation was determined experimentally by
generating 1,000,000 permutations of a given length M .

All experiments in this research were implemented in the Python programming
language [49] using the PyCharm Community Edition 2020.3 [50] integrated develop-
ment environment on a desktop personal computer with the following parameters:
• OS—Windows 10
• CPU—Intel Core i5-10400F
• RAM 32Gb (2x16Gb dual channel 3200Mhz)
• GPU—GeForce GTX 1650 4Gb
• Hard Drive—SSD M.2 2280 1TB Samsung

Figure 4. The required amount of memory and time to generate a complete set of !M permuta-
tions.

Here, we provide the possibility to construct a (), minM D -code for the values of M
that do not allow generating !M permutations in practice.

The approach proposed in this study is based on the following. The algorithm to
generate a set of codewords shown in Figure 1 is preserved. At the same time, the initial
set of permutations is a proper subset of the complete set of !M permutations. The size
of such a proper subset is denoted by limN .

2.2. Algorithms to Generate the Initial Set of limN Random Permutations

Permutations of the initial set will also be generated randomly. Here, we consider
two algorithms:

Figure 4. The required amount of memory and time to generate a complete set of M! permutations.

The average time to generate one permutation was determined experimentally by
generating 1,000,000 permutations of a given length M.

All experiments in this research were implemented in the Python programming
language [49] using the PyCharm Community Edition 2020.3 [50] integrated development
environment on a desktop personal computer with the following parameters:

• OS—Windows 10
• CPU—Intel Core i5-10400F
• RAM 32Gb (2x16Gb dual channel 3200Mhz)
• GPU—GeForce GTX 1650 4Gb
• Hard Drive—SSD M.2 2280 1TB Samsung

Here, we provide the possibility to construct a (M, Dmin)-code for the values of M that
do not allow generating M! permutations in practice.

The approach proposed in this study is based on the following. The algorithm to
generate a set of codewords shown in Figure 1 is preserved. At the same time, the initial
set of permutations is a proper subset of the complete set of M! permutations. The size of
such a proper subset is denoted by Nlim.

2.2. Algorithms to Generate the Initial Set of Nlim Random Permutations

Permutations of the initial set will also be generated randomly. Here, we consider
two algorithms:

1. Generating a random integer decimal number in the range [0; M!− 1], converting
the decimal number into a factorial number using division operations [51], and then
converting the factorial number into a permutation [51];

2. Randomly generating individual digits of a factorial number and converting the
factorial number into a permutation.

For example, permutation π = (3, 2, 4, 0, 1, 5, 6) with the basic permutation
π0 = (0, 1, 2, 3, 4, 5, 6) can be generated with both the first and the second algorithm.
The first algorithm: A decimal number A = 2448〈10〉 is generated, converted into a fac-
torial number A = 3220000〈F〉 = 3 · 6! + 2 · 5! + 2 · 4! + 0 · 3! + 0 · 2! + 0 · 1! + 0 · 0!, and
then converted into a permutation syndrome [52] SF = (3, 2, 2, 0, 0, 0, 0) and a permuta-
tion π = (3, 2, 4, 0, 1, 5, 6) itself. The second algorithm: Each element of the syndrome

Sensors 2022, 22, 5391 7 of 18

SF = (3, 2, 2, 0, 0, 0, 0) is generated separately and is then converted into a permutation
π = (3, 2, 4, 0, 1, 5, 6).

Both of the above algorithms to generate the initial set of permutations control the
uniqueness of permutations within the set (Figure 5).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19

1. Generating a random integer decimal number in the range []0; ! 1M − , converting the
decimal number into a factorial number using division operations [51], and then
converting the factorial number into a permutation [51];

2. Randomly generating individual digits of a factorial number and converting the
factorial number into a permutation.
For example, permutation ()3,2,4,0,1,5,6π = with the basic permutation
()0 0,1, 2,3, 4,5,6π = can be generated with both the first and the second algorithm. The

first algorithm: A decimal number 102448A = is generated, converted into a factorial
number 3220000 3 6! 2 5! 2 4! 0 3! 0 2! 0 1! 0 0!FA = = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ , and then converted into
a permutation syndrome [52] ()3, 2, 2,0,0,0,0FS = and a permutation ()3,2,4,0,1,5,6π =
itself. The second algorithm: Each element of the syndrome ()3,2, 2,0,0,0,0FS = is gen-
erated separately and is then converted into a permutation ()3,2,4,0,1,5,6π = .

Both of the above algorithms to generate the initial set of permutations control the
uniqueness of permutations within the set (Figure 5).

(a) (b)

Figure 5. Algorithms to generate the initial set of limN random permutations: (a) By division; (b)
By generating digits.

Note that the above algorithms to generate limN permutations can also be applied in
the block for generating the next permutation of the algorithm in Figure 2. In this case,
the algorithms will output the permutation for analysis instead of writing it to the
memory.

Figure 5. Algorithms to generate the initial set of Nlim random permutations: (a) By division; (b) By
generating digits.

Note that the above algorithms to generate Nlim permutations can also be applied in
the block for generating the next permutation of the algorithm in Figure 2. In this case, the
algorithms will output the permutation for analysis instead of writing it to the memory.

Comparing the speed of the two algorithms for generating random permutations
shown in Figure 5, we evaluated the performance of only the distinctive parts of the
presented algorithms, the procedures for generating factorial numbers. The average time
to generate one factorial number (Figure 6) was calculated based on the results of the
generation of 10,000 numbers.

Sensors 2022, 22, 5391 8 of 18

Sensors 2022, 22, x FOR PEER REVIEW 8 of 19

Comparing the speed of the two algorithms for generating random permutations
shown in Figure 5, we evaluated the performance of only the distinctive parts of the
presented algorithms, the procedures for generating factorial numbers. The average time
to generate one factorial number (Figure 6) was calculated based on the results of the
generation of 10,000 numbers.

The achieved graphs indicate that the time to generate a factorial number with the
first algorithm (Figure 5) increases with an increase of the M value much faster than the
second method. In addition, unlike the first algorithm, the processes for the second algo-
rithm in Figure 5 are convenient for parallelization. This circumstance makes it possible
to further increase the performance of the algorithm.

In this paper, we will use the second proposed algorithm to generate the initial set of
limN random permutations, !limN M< .

Figure 6. The average time to generate one factorial number using two different algorithms.

2.3. Dependence of the (), minM D -Code Size on the Values of M , minD , and limN

We will use (), ,min limM D N to denote block factorial code (), minM D formed by a
subset of limN random permutations, and will use (), ,min limN M D N to denote the size of

(), ,min limM D N -code.
Next, we determine the dependence of the size (), ,min limN M D N on the value of

limN . Such dependence can be used both to determine the required value of limN when
designing a data transmission system with a (), minM D -code, and to evaluate the effi-
ciency of the code constructed from limN random permutations.

We will determine the dependence (), ,min limN M D N experimentally. In this case,
the limN values are formed as follows.

Let ()0 ln ln !t M= . Then

() 0ln ln limN t t= − ∆ ⋅ , (1)

or

()()0exp explimN t t= − ∆ ⋅ , (2)

where ∆ is a step;
0,1,2, ,t T= .

Let 7M = . Here, we accept 0.04∆ = for 7M = . Values limN for 0,1,2, ,30t =
are given in Table 2.

Table 2. Dependence of limN for 7M = and 0.04∆ = when 0,1, 2, ,30t = .

t limN t limN t limN t limN t limN t limN
0 5040 6 817 12 195 18 63 24 26 30 13

Figure 6. The average time to generate one factorial number using two different algorithms.

The achieved graphs indicate that the time to generate a factorial number with the first
algorithm (Figure 5) increases with an increase of the M value much faster than the second
method. In addition, unlike the first algorithm, the processes for the second algorithm in
Figure 5 are convenient for parallelization. This circumstance makes it possible to further
increase the performance of the algorithm.

In this paper, we will use the second proposed algorithm to generate the initial set of
Nlim random permutations, Nlim < M!.

2.3. Dependence of the (M, Dmin)-Code Size on the Values of M, Dmin, and Nlim

We will use (M, Dmin, Nlim) to denote block factorial code (M, Dmin) formed by a
subset of Nlim random permutations, and will use N(M, Dmin, Nlim) to denote the size of
(M, Dmin, Nlim)-code.

Next, we determine the dependence of the size N(M, Dmin, Nlim) on the value of Nlim.
Such dependence can be used both to determine the required value of Nlim when designing
a data transmission system with a (M, Dmin)-code, and to evaluate the efficiency of the
code constructed from Nlim random permutations.

We will determine the dependence N(M, Dmin, Nlim) experimentally. In this case, the
Nlim values are formed as follows.

Let t0 = ln(ln M!). Then

ln(ln Nlim) = t0 − ∆ · t, (1)

or
Nlim = exp(exp(t0 − ∆ · t)), (2)

where ∆ is a step; t = 0, 1, 2, . . . , T.
Let M = 7. Here, we accept ∆ = 0.04 for M = 7. Values Nlim for t = 0, 1, 2, . . . , 30 are

given in Table 2.

Table 2. Dependence of Nlim for M = 7 and ∆ = 0.04 when t = 0, 1, 2, . . . , 30.

t Nlim t Nlim t Nlim t Nlim t Nlim t Nlim

0 5040 6 817 12 195 18 63 24 26 30 13
1 3608 7 628 13 159 19 54 25 23
2 2617 8 488 14 130 20 46 26 20
3 1922 9 383 15 108 21 40 27 18
4 1429 10 303 16 90 22 34 28 16
5 1075 11 242 17 75 23 30 29 74

Sensors 2022, 22, 5391 9 of 18

Similarly to Figure 3, Figure 7 shows the histograms of the distribution of a ran-
dom value N(M, Dmin, Nlim) for Nlim = {13; 14; 18; 23; 30; 46} at M = 7 and Dmin = 4,
constructed as a result of 10,000 experiments.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19

1 3608 7 628 13 159 19 54 25 23
2 2617 8 488 14 130 20 46 26 20
3 1922 9 383 15 108 21 40 27 18
4 1429 10 303 16 90 22 34 28 16
5 1075 11 242 17 75 23 30 29 14

Similarly to Figure 3, Figure 7 shows the histograms of the distribution of a random
value (), ,min limN M D N for { }13;14;18;23;30;46limN = at 7M = and 4minD = , con-
structed as a result of 10,000 experiments.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Histograms of the distribution of a random variable ()7,4, limN N for: (a) 13limN = ; (b)

14limN = ; (c) 18limN = ; (d) 23limN = ; (e) 30limN = ; (f) 46limN = .

By analogy with the distribution of a random value ()7,4N , we accept the null sta-
tistical hypothesis, which states that a random variable ()7, ,min limN D N is normally dis-
tributed. We apply Pearson’s chi-square test to test the null hypothesis. Table 3 shows the
p-values obtained for ()7, ,min limN D N at { }4,5,6minD = and limN from Table 2.

Figure 7. Histograms of the distribution of a random variable N(7, 4, Nlim) for: (a) Nlim = 13;
(b) Nlim = 14; (c) Nlim = 18; (d) Nlim = 23; (e) Nlim = 30; (f) Nlim = 46.

By analogy with the distribution of a random value N(7, 4), we accept the null statisti-
cal hypothesis, which states that a random variable N(7, Dmin, Nlim) is normally distributed.
We apply Pearson’s chi-square test to test the null hypothesis. Table 3 shows the p-values
obtained for N(7, Dmin, Nlim) at Dmin = {4, 5, 6} and Nlim from Table 2.

Sensors 2022, 22, 5391 10 of 18

Table 3. p-values for N(7, Dmin, Nlim).

Nlim \ Dmin 4 5 6
13 0.000000 0.193433 0.000002
14 0.000000 0.367169 0.000000
16 0.000000 0.380055 0.000090
18 0.000000 0.589350 0.000028
20 0.000000 0.288059 0.000000
23 0.000000 0.755697 0.000000
26 0.000000 0.000328 0.337444
30 0.000012 0.000049 0.000011
34 0.299914 0.000002 0.013646
40 0.035342 0.002416 0.000689
46 0.421327 0.008021 0.000055
54 0.622645 0.000000 0.000001
63 0.755772 0.000324 0.000297
75 0.832253 0.000087 0.000013
90 0.104076 0.713204 0.018065
108 0.653265 0.647142 0.001913
130 0.978050 0.010121 0.000001
159 0.076289 0.000081 0.000449
195 0.061514 0.003801 0.000813
242 0.427242 0.066269 0.026604
303 0.489814 0.410349 0.025393
383 0.044070 0.053179 0.020188
488 0.527648 0.076959 0.031807
628 0.000791 0.594741 0.336770
817 0.242391 0.926065 0.037511

1075 0.949684 0.470563 0.932577
1429 0.019384 0.038698 0.093501
1922 0.912574 0.428931 0.177253
2617 0.085210 0.085414 0.000893
3608 0.545212 0.143008 0.000000
5040 0.276788 0.631289 0.000000

In Table 3, the green highlights the cases where the normal distribution for N(7, Dmin, Nlim)
at the significance level of α = 0.05 is confirmed; and the red highlights the cases where
the normal distribution for N(7, Dmin, Nlim) is not confirmed. These results can serve as
evidence that at large Dmin values the normal distribution begins to be observed at smaller
values of Nlim.

Figure 8 shows the graphs of estimates of the mathematical expectation N(M, Dmin, Nlim),
standard deviation σ(N(M, Dmin, Nlim)), and the maximum value Nmax(M, Dmin, Nlim) of
the (M, Dmin)-code size against the value Nlim. The curves on Figure 8 are obtained as a
result of 10,000 experiments for M = 7 and Dmin = {4, 5, 6}.

Sensors 2022, 22, 5391 11 of 18
Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

(a)

(b)

(c)

Figure 8. Graphs of (), ,min limN M D N , ()(), ,min limN M D Nσ and (), ,max min limN M D N for

7M = and: (а) 4minD = ; (b) 5minD = ; (c) 6minD = .

Figure 8. Graphs of N(M, Dmin, Nlim), σ(N(M, Dmin, Nlim)) and Nmax(M, Dmin, Nlim) for M = 7 and:
(a) Dmin = 4; (b) Dmin = 5; (c) Dmin = 6.

Sensors 2022, 22, 5391 12 of 18

Figure 8 also shows the approximation curves [53] and equations, as well as the
approximation reliability coefficient R2 for the dependences of estimates of the mathe-
matical expectation N(M, Dmin, Nlim) and the maximum value Nmax(M, Dmin, Nlim). The
R2 close to unity indicates an accurate description of the dependencies N(7, Dmin, Nlim)
and Nmax(7, Dmin, Nlim) for Dmin = {4, 5, 6} by a second-degree polynomial of the form
y = ax2 + bx + c. Table 4 summarizes the coefficients a, b, c for the N(7, Dmin, Nlim) and
Nmax(7, Dmin, Nlim) approximation polynomials.

Table 4. Coefficients of quadratic approximation polynomials for N(7, Dmin, Nlim) and
Nmax(7, Dmin, Nlim).

N(7,Dmin,Nlim) Nmax(7,Dmin,Nlim)

Dmin a b c a b c

4 0.2140 −0.5782 13.7624 0.1954 0.6071 12.0047

5 0.0200 0.7702 7.4438 0.0088 1.1765 11.4452

6 0.0025 0.2554 4.8764 0.0030 0.2366 8.6812

Note that x = T − t + 1 according to Equation (2). Then the approximation functions
can be easily calculated by setting the values of t for the required Nlim.

2.4. Technique for Constructing an Approximation Polynomial

To construct approximations for dependencies N(M, Dmin, Nlim) and Nmax(M, Dmin, Nlim)
and, if necessary, to perform extrapolation to predict the behaviour of these functions at
Nlim values exceeding the upper limit of the range of their statistical study, it is necessary
to perform the next steps:

1. To calculate t0 = ln(ln M!), to set ∆ and T values, and to calculate tmin = t0 − ∆ · T;
2. To generate dependencies N(M, Dmin, Nlim) and Nmax(M, Dmin, Nlim) for the range of

Nlim values determined in accordance with (2);
3. To determine approximation polynomials for N(M, Dmin, Nlim) and Nmax(M, Dmin, Nlim).

It is also possible to select the values of Nlim for constructing dependencies N(M, Dmin, Nlim)
and Nmax(M, Dmin, Nlim) in the opposite direction with respect to (1), from the smallest to
the largest. In this case, the method to obtain approximations is as follows:

1. Values of tmin, ∆, and T are chosen. Values of Nlim are calculated using an expression

Nlim = exp(exp(tmin + ∆ · t)), (3)

where t = 0, 1, 2, . . . , T. It’s obvious that T ≤ (ln(ln M!)− tmin)/∆;
2. Dependences N(M, Dmin, Nlim) and Nmax(M, Dmin, Nlim) are also formed for the

range of Nlim values determined in accordance with (3);
3. Quadratic approximation polynomials are calculated for N(M, Dmin, Nlim) and

Nmax(M, Dmin, Nlim).

To obtain approximation polynomials of the form y = at2 + bt + c in the obtained
expressions of the form y = ax2 + bx + c, it is necessary to perform the replacement
x = t + 1.

3. Results

Here, we apply the developed method for M = 11 when it is necessary to predict the
average and the maximum number of codewords with Dmin = 9 formed by Nlim = 30, 000
and Nlim = 50, 000 random permutations.

To construct approximations, we use the Nlim values given in Table 2 for the step
∆ = 0.04 at t0 = ln(ln 7!) = 2.1430. Figure 9 shows the graphs of the estimates of the
mathematical expectation N(11, 9, Nlim) and the maximum value Nmax(11, 9, Nlim) of the

Sensors 2022, 22, 5391 13 of 18

code size (11, 9, Nlim) against the value Nlim = {13; 16; 20; . . . ; 2617; 5040}. Each value of
N(11, 9, Nlim) and Nmax(11, 9, Nlim) was formed as a result of 10,000 experiments.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

To obtain approximation polynomials of the form 2y at bt c= + + in the obtained
expressions of the form 2y ax bx c= + + , it is necessary to perform the replacement

1x t= + .

3. Results
Here, we apply the developed method for 11M = when it is necessary to predict

the average and the maximum number of codewords with 9minD = formed by
30,000limN = and 50,000limN = random permutations.

To construct approximations, we use the limN values given in Table 2 for the step
0.04∆ = at ()0 ln ln 7! 2.1430t = = . Figure 9 shows the graphs of the estimates of the

mathematical expectation ()11,9, limN N and the maximum value ()11,9,max limN N of the
code size (),11,9 limN against the value { }13;16;20; ;2617;5040limN = . Each value of

()11,9, limN N and ()11,9,max limN N was formed as a result of 10,000 experiments.

Figure 9. Graphs ()11,9, limN N and ()11,9,max limN N when 0.04∆ = .

If we place values 30,000limN = and 50,000limN = into the expression (1)

() 0ln ln limN t t= − ∆ ⋅ , and calculate the corresponding values of 1 ln 5040ln
0.04 ln lim

t
N

= , we can

get ()30,000 4.7498limt N = = − , ()50,000 5.9588limt N = = − . Note that 1x T t= − + ,

30T = . Then the predicted values ()11,9, limN N and ()11,9,max limN N are equal to
73.3836 and 81.2250 for 30,000limN = and 77.1631 and 84.8191 for 50,000limN = .

Figure 10 shows the histograms of the distribution of random values
()411,9,3 10N × and ()411,9,5 10N × constructed as a result of 30K = experiments. The

resulting average values are 72.8667 and 76.5667 (maximum values are 76 and 81).

Figure 9. Graphs N(11, 9, Nlim) and Nmax(11, 9, Nlim) when ∆ = 0.04.

If we place values Nlim = 30, 000 and Nlim = 50, 000 into the expression (1)
ln(ln Nlim) = t0 − ∆ · t, and calculate the corresponding values of t = 1

0.04 ln ln 5040
ln Nlim

, we can
get t(Nlim = 30, 000) = −4.7498, t(Nlim = 50, 000) = −5.9588. Note that x = T − t + 1,
T = 30. Then the predicted values N(11, 9, Nlim) and Nmax(11, 9, Nlim) are equal to 73.3836
and 81.2250 for Nlim = 30, 000 and 77.1631 and 84.8191 for Nlim = 50, 000.

Figure 10 shows the histograms of the distribution of random values N
(
11, 9, 3× 104)

and N
(
11, 9, 5× 104) constructed as a result of K = 30 experiments. The resulting average

values are 72.8667 and 76.5667 (maximum values are 76 and 81).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

(a) (b)

Figure 10. Histograms of the distribution of a random value ()11,9, limN N for: (a) 30,000limN =

; (b) 50,000limN = .

Here, we determine the confidence interval for the obtained sample means [54]:

() () (), 1 , 1, , , , , ,sample min lim K min lim sample min lim K
s sN M D N t N M D N N M D N t
K Kα α− −− < < +

,

where (), ,sample min limN M D N is the sample mean;

1 sample
Ks

K
σ= ⋅

−
 is the corrected sample standard deviation, sampleσ is the sample

standard deviation;
K is the number of experiments ()30K = ;

2, 1Ktα − is the the upper 2α quantile of Student’s t-distribution with 1K − degrees
of freedom.

Let 0.05α = . Then, the confidence interval is ()72.1346;73.5987 for

()411.9,3 10N × , and it is ()75.8825;77.2509 for ()411.9,5 10N × .
The predicted values of 73.3836 and 77.1631 fall within the indicated confidence in-

tervals.
Then, let 0.08∆ = when ()0 ln ln 7! 2.1430t = = . Figure 11 shows the graphs of the

estimates of the mathematical expectation ()11,9, limN N and the maximum value
()11,9,max limN N of the (),11,9 limN -code size against the value

{ }13;16;20; ;2617;5040limN = . Each value of ()11,9, limN N and ()11,9,max limN N was
formed as a result of 10,000 experiments.

Figure 10. Histograms of the distribution of a random value N(11, 9, Nlim) for: (a) Nlim = 30, 000;
(b) Nlim = 50, 000.

Here, we determine the confidence interval for the obtained sample means [54]:

Nsample(M, Dmin, Nlim)−
s√
K

tα,K−1 < N(M, Dmin, Nlim) < Nsample(M, Dmin, Nlim) +
s√
K

tα,K−1,

where Nsample(M, Dmin, Nlim) is the sample mean;

s =
√

K
K−1 · σsample is the corrected sample standard deviation, σsample is the sample

standard deviation;
K is the number of experiments (K = 30);
tα/2,K−1 is the the upper α/2 quantile of Student’s t-distribution with K− 1 degrees

of freedom.

Sensors 2022, 22, 5391 14 of 18

Let α = 0.05. Then, the confidence interval is (72.1346; 73.5987) for N
(
11.9, 3× 104),

and it is (75.8825; 77.2509) for N
(
11.9, 5× 104).

The predicted values of 73.3836 and 77.1631 fall within the indicated confidence
intervals.

Then, let ∆ = 0.08 when t0 = ln(ln 7!) = 2.1430. Figure 11 shows the graphs of the esti-
mates of the mathematical expectation N(11, 9, Nlim) and the maximum value Nmax(11, 9, Nlim)
of the (11, 9, Nlim)-code size against the value Nlim = {13; 16; 20; . . . ; 2617; 5040}. Each value
of N(11, 9, Nlim) and Nmax(11, 9, Nlim) was formed as a result of 10,000 experiments.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

(a) (b)

Figure 10. Histograms of the distribution of a random value ()11,9, limN N for: (a) 30,000limN =

; (b) 50,000limN = .

Here, we determine the confidence interval for the obtained sample means [54]:

() () (), 1 , 1, , , , , ,sample min lim K min lim sample min lim K
s sN M D N t N M D N N M D N t
K Kα α− −− < < +

,

where (), ,sample min limN M D N is the sample mean;

1 sample
Ks

K
σ= ⋅

−
 is the corrected sample standard deviation, sampleσ is the sample

standard deviation;
K is the number of experiments ()30K = ;

2, 1Ktα − is the the upper 2α quantile of Student’s t-distribution with 1K − degrees
of freedom.

Let 0.05α = . Then, the confidence interval is ()72.1346;73.5987 for

()411.9,3 10N × , and it is ()75.8825;77.2509 for ()411.9,5 10N × .
The predicted values of 73.3836 and 77.1631 fall within the indicated confidence in-

tervals.
Then, let 0.08∆ = when ()0 ln ln 7! 2.1430t = = . Figure 11 shows the graphs of the

estimates of the mathematical expectation ()11,9, limN N and the maximum value
()11,9,max limN N of the (),11,9 limN -code size against the value

{ }13;16;20; ;2617;5040limN = . Each value of ()11,9, limN N and ()11,9,max limN N was
formed as a result of 10,000 experiments.

Figure 11. Graphs N(11, 9, Nlim) and Nmax(11, 9, Nlim) when ∆ = 0.08.

By placing values Nlim = 30, 000 and Nlim = 50, 000 into the expression (1)
ln(ln Nlim) = t0 − ∆ · t, and calculating the corresponding values of t = 1

0.08 ln ln 5040
ln Nlim

we get t(Nlim = 30, 000) = −2.3749, t(Nlim = 50, 000) = −2.9794. Taking into account that
x = T − t + 1, T = 15, the predicted values N(11, 9, Nlim) and Nmax(11, 9, Nlim) are equal
to 73.3922 and 80.8342 for Nlim = 30, 000 and 77.1775 and 84.3992 for Nlim = 50, 000.

Let the step ∆ be further increased. Table 5 summarizes the predicted values
N(11, 9, Nlim) and Nmax(11, 9, Nlim) for Nlim = 30, 000 and Nlim = 50, 000 when
∆ = {0.04; 0.08; 0.012; . . . ; 0.4; 0.44}.

Table 5. Predicted values N(11, 9, Nlim) and Nmax(11, 9, Nlim) for Nlim = 30, 000 and Nlim = 50, 000
depending on the step ∆ value.

∆ T
Expected N(11,9,Nlim) Expected Nmax(11,9,Nlim)

Nlim = 30,000 Nlim = 50,000 Nlim = 30,000 Nlim = 50,000

0.04 30 73.3836 77.1631 81.2250 84.8191
0.08 15 73.3922 77.1775 80.8342 84.3992
0.12 10 73.3180 77.0940 80.1974 83.6976
0.16 7 73.2486 77.0101 79.6796 83.1427
0.20 6 73.2849 77.0551 79.4527 82.8157
0.24 5 73.2955 77.0786 79.9968 83.4801
0.28 4 73.1316 76.8810 79.6330 82.9191
0.32 3 72.9731 76.6821 80.5106 84.1495
0.36 3 73.1561 76.9123 80.0525 83.5624
0.4 3 73.1844 76.9536 79.0658 82.3375

0.44 2 72.9079 76.6054 79.6497 83.0483

Table 5 shows that all predicted values fall within the indicated confidence intervals
(72.1346; 73.5987) for N

(
11.9, 3× 104) and (75.8825; 77.2509) for N

(
11.9, 5× 104).

Sensors 2022, 22, 5391 15 of 18

Here, we calculate and present in Table 6 the relative prediction error for the values
given in Table 5. We assume that the maximum number of reference points (T = 30) forms
the most accurate prediction.

Table 6. Relative prediction error, %.

∆ T
Expected N(11,9,Nlim)

Nlim = 30,000 Nlim = 50,000

0.04 30 0.00 0.00
0.08 15 0.01 0.02
0.12 10 0.09 0.09
0.16 7 0.18 0.20
0.20 6 0.13 0.14
0.24 5 0.12 0.11
0.28 4 0.34 0.37
0.32 3 0.56 0.62
0.36 3 0.31 0.33
0.4 3 0.27 0.27

0.44 2 0.65 0.72

The results in Table 6 indicate that three points as far as possible from each other
(T = 2) are sufficient to obtain an approximation curve (an approximation polynomial of
the second degree). At the same time, the authors recommend using four points (T = 3) to
construct such a curve.

Here, we discuss the study results.
The proposed algorithm to generate codewords allows for the provision of the neces-

sary technical result of constructing (M, Dmin)-code with the required code distance. How-
ever, the obtained N(M, Dmin) values do not reach the known lower bounds [39,41–47]. For
example, Nmax(11, 9, 5040) = 67. At the same time, paper [39] gives the lower bound of 154
for the (11, 9)-code size. The corresponding values for M = 7 are Nmax(7, 6, 5040) = 19 vs.
the lower bound of 42 and Nmax(7, 5, 5040) = 57 vs. the lower bound of 77 in [39]. However,
we cannot say that the result is negative. First, in this study, we used not an algebraic, but a
statistical method for code construction. Second, the proposed statistical method, unlike the
algebraic method, allows for the construction of a unique system of commands or alerts for
dynamic wireless sensor network objects. Note also that increasing the N(M, Dmin)-code
size may lead to a decrease in the number of different possible (M, Dmin)-codes, which
can be constructed for the defined values of M, Dmin, and Nlim. In turn, the number of
different possible (M, Dmin)-codes is important for applying the (M, Dmin)-code both in
secure-channel coding schemes and for constructing a unique system of commands or
alerts for MTC objects. At the same time, we do not deny the need to continue the search
for new effective and fast statistical methods for (M, Dmin)-code construction or to improve
the proposed method. Determining the balance between the (M, Dmin)-code size and the
number of possible different (M, Dmin)-codes is an actual problem that can be the subject
for further research.

The study has shown that the relative error in predicting the size of (M, Dmin)-code
increases with increasing the hypothetical number Nlim of permutations in the initial set, as
well as with increasing the step ∆. However, the nature of this dependence is not obvious
and can be further investigated.

4. Conclusions

In this paper, we have developed and implemented a statistical algorithm to generate
codewords of a (M, Dmin)-code by enumerating a set of permutations {π} of length M and
selecting permutations with the symbol Hamming distance to all preselected codewords
not exceeding the Dmin value.

Sensors 2022, 22, 5391 16 of 18

We applied two algorithms to generate a random factorial number. The first algorithm
is based on the conversion from a random decimal number by division, and the second
algorithm is based on the random generation of individual digits of a factorial number. We
found that the second method is faster.

We have determined experimentally the dependences of the average and the maximum
values of the size N(M, Dmin, Nlim) of a (M, Dmin)-code constructed from a subset of Nlim
permutations, on the value of Nlim.

A technique to compute approximation quadratic polynomials for the determined
dependences of the average and the maximum values of the (M, Dmin)-code size has
been developed. A key feature of this technique is to use the function (1) of a double
logarithm ln(ln Nlim) and to use a quadratic polynomial. The approximation polynomials
and their corresponding curves can be used to extrapolate the dependencies and predict
their behavior at Nlim values exceeding the upper limit of their statistical study range.

Finally, we confirmed the effectiveness of the developed technique to estimate the
average and the maximum size values N(11.9, Nlim) for Nlim = 30, 000 and Nlim = 50, 000
at the upper limit of the statistical study range Nlim = 5040. The prediction relative error
of (M, Dmin)-code size did not exceed the value of 0.72% obtained for Nlim = 50, 000
and ∆ = 0.44.

Author Contributions: Conceptualization, E.F. and A.S.; methodology, E.F., A.S., M.M., B.S. and
J.N.; software, M.M. and B.S.; validation, M.M., B.S. and R.S.; investigation, A.S., M.M., E.F. and
B.S.; writing—original draft preparation, E.F., A.S. and J.N.; writing—review and editing, E.F., A.S.,
M.M. and B.S.; funding acquisition, E.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partly funded by the Ministry of Education and Science of Ukraine, grant
number 0120U102607.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All initial data, program codes will be provided upon request to the
correspondent’s e-mail with appropriate justification.

Acknowledgments: The authors thank the anonymous reviewers for their useful comments that
helped to improve this paper. The authors are grateful to Valerii Shvydkyi for helpful remarks
and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statista Research Department. Volume of Data/Information Created, Captured, Copied, and Consumed Worldwide from 2010 to

2025. Available online: https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed on 22 June 2022).
2. Avizienis, A.; Laprie, J.-C.; Randell, B. Fundamental Concepts of Dependability; Department of Computing Science Technical Report

Series; Department of Computing Science, University of Newcastle upon Tyne: Newcastle upon Tyne, UK, 2001; p. 21.
3. Durisi, D.; Liva, G.; Polyanskiy, Y. Short-Packet Transmission. In Information Theoretic Perspectives on 5G Systems and Beyond; Marić,

I., Shamai (Shitz), S., Simeone, O., Eds.; Cambridge University Press: Cambridge, UK, 2022.
4. Mahmood, N.H.; Böcker, S.; Moerman, I.; López, O.A.; Munari, A.; Mikhaylov, K.; Clazzer, F.; Bartz, H.; Park, O.-S.; Mercier,

E.; et al. Machine Type Communications: Key Drivers and Enablers towards the 6G Era. J. Wirel. Com. Netw. 2021, 2021, 134.
[CrossRef]

5. Elhoseny, M.; Hassanien, A.E. Dynamic Wireless Sensor Networks: New Directions for Smart Technologies. In Studies in Systems,
Decision and Control, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-92807-4.

6. McEliece, R.J. A Public-Key Criptosystem Based on Algebraic Theory; Jet Propulsi on Lab: Pasadena, CA, USA, 1978; pp. 114–116.
7. Rao, T.R.N. Joint Encryption and Error Correction Schemes. In Proceedings of the 11th Annual International Symposium on

Computer Architecture—ISCA ’84, Ann Arbor, MI, USA, 5–7 June 1984; ACM Press: New York, NY, USA, 1984; pp. 240–241.
8. Niederreiter, H. Knapsack-Type Cryptosystems and Algebraic Coding Theory. Prob. Control Inf. Theory 1986, 15, 159–166.
9. Rao, T.R.N.; Nam, K.-H. Private-Key Algebraic-Coded Cryptosystems. In Advances in Cryptology—CRYPTO’ 86; Odlyzko,

A.M., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1987; Volume 263, pp. 35–48, ISBN
978-3-540-18047-0.

https://www.statista.com/statistics/871513/worldwide-data-created/
http://doi.org/10.1186/s13638-021-02010-5

Sensors 2022, 22, 5391 17 of 18

10. Kløve, T.; Korzhik, V.I. Error Detecting Codes: General Theory and Their Application in Feedback Communication Systems; Kluwer
Academic Publishers: Boston, MA, USA, 1995; ISBN 978-0-7923-9629-1.

11. Kløve, T. Codes for Error Detection; Series on Coding Theory and Cryptology; World Scientific: Singapore, 2007; Volume 2, ISBN
978-981-270-586-0.

12. Stakhov, A.P. The “Golden” Matrices and a New Kind of Cryptography. Chaos Solitons Fractals 2007, 32, 1138–1146. [CrossRef]
13. Stakhov, A.P. The Golden Section, Fibonacci Numbers, Mathematics of Harmony and “Golden” Scientific Revolution. Comput.

Sci. Cybersecur. 2016, 2016, 31–68.
14. Mazurkov, M.I.; Chechel’nitskii, V.Y.; Murr, P. Information Security Method Based on Perfect Binary Arrays. Radioelectron.

Commun. Syst. 2008, 51, 612–614. [CrossRef]
15. Mazurkov, M.I.; Chechelnytskyi, V.Y.; Nekrasov, K.K. Three-Level Cryptographic System for Block Data Encryption. Radioelectron.

Commun. Syst. 2010, 53, 376–379. [CrossRef]
16. Borisenko, A.A.; Kalashnikov, V.V.; Kulik, I.A.; Goryachev, A.E. Generation of Permutations Based Upon Factorial Numbers.

In Proceedings of the Eighth International Conference on Intelligent Systems Design and Applications, Kaohiung, Taiwan, 26
November 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 57–61.

17. Borysenko, A.A.; Horiachev, O.Y.; Matsenko, S.M.; Kobiakov, O.M. Noise-Immune Codes Based on Permutations. In Proceedings
of the 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kiev, Ukraine,
24–27 May 2018; IEEE: Washington, DC, USA, 2018; pp. 609–612.

18. Al-Azzeh, J.S.; Ayyoub, B.; Faure, E.; Shvydkyi, V.; Kharin, O.; Lavdanskyi, A. Telecommunication Systems with Multiple Access
Based on Data Factorial Coding. Int. J. Commun. Antenna Propag. 2020, 10, 102–113. [CrossRef]

19. Faure, E.; Shcherba, A.; Vasiliu, Y.; Fesenko, A. Cryptographic Key Exchange Method for Data Factorial Coding. CEUR Workshop
Proc. 2020, 2654, 643–653.

20. Durisi, G.; Koch, T.; Popovski, P. Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets.
Proc. IEEE 2016, 104, 1711–1726. [CrossRef]

21. Lee, B.; Park, S.; Love, D.J.; Ji, H.; Shim, B. Packet Structure and Receiver Design for Low Latency Wireless Communications With
Ultra-Short Packets. IEEE Trans. Commun. 2018, 66, 796–807. [CrossRef]

22. Bana, A.-S.; Trillingsgaard, K.F.; Popovski, P.; de Carvalho, E. Short Packet Structure for Ultra-Reliable Machine-Type Communi-
cation: Tradeoff between Detection and Decoding. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: Washington, DC, USA, 2018; pp. 6608–6612.

23. Salamat Ullah, S.; Liew, S.C.; Liva, G.; Wang, T. Short-Packet Physical-Layer Network Coding. IEEE Trans. Commun. 2020, 68,
737–751. [CrossRef]

24. Salamat Ullah, S.; Liew, S.C.; Liva, G.; Wang, T. Implementation of Short-Packet Physical-Layer Network Coding. IEEE Trans.
Mob. Comput. 2021, 20, 1. [CrossRef]

25. Wu, J.; Kim, W.; Shim, B. Pilot-Less One-Shot Sparse Coding for Short Packet-Based Machine-Type Communications. IEEE Trans.
Veh. Technol. 2020, 69, 9117–9120. [CrossRef]

26. Feng, C.; Wang, H. Secure Short-Packet Communications at the Physical Layer for 5G and Beyond. arXiv 2021, arXiv:2107.05966.
[CrossRef]

27. Feng, C.; Wang, H.-M.; Poor, H.V. Reliable and Secure Short-Packet Communications. IEEE Trans. Wirel. Commun. 2022, 21,
1913–1926. [CrossRef]

28. Nguyen, A.T.P.; Le Bidan, R.; Guilloud, F. Superimposed Frame Synchronization Optimization for Finite Blocklength Regime. In
Proceedings of the 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), Marrakech, Morocco,
15–19 April 2019; IEEE: Washington, DC, USA, 2019; pp. 1–6.

29. Nguyen, A.T.P.; Le Bidan, R.; Guilloud, F. Trade-Off Between Frame Synchronization and Channel Decoding for Short Packets.
IEEE Commun. Lett. 2019, 23, 979–982. [CrossRef]

30. Nguyen, A.T.P.; Guilloud, F.; Le Bidan, R. On the Optimization of Resources for Short Frame Synchronization. Ann. Telecommun.
2020, 75, 635–640. [CrossRef]

31. Faure, E.; Shcherba, A.; Stupka, B. Permutation-Based Frame Synchronisation Method for Short Packet Communication Systems.
In Proceedings of the 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), Cracow, Poland, 22 September 2021; IEEE: Washington, DC, USA, 2021; pp. 1073–1077.

32. Al-Azzeh, J.; Faure, E.; Shcherba, A.; Stupka, B. Permutation-Based Frame Synchronization Method for Data Transmission
Systems with Short Packets. Egypt. Inform. J. 2022, in press. [CrossRef]

33. Faure, E.V. Factorial coding with data recovery. Visnyk Cherkaskogo Derzhavnogo Tehnol. Univ. 2016, 2, 33–39.
34. Faure, E.V. Factorial Coding with Error Correction. Radio Electron. Comput. Sci. Control. 2017, 3, 130–138. [CrossRef]
35. Reed, I.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [CrossRef]
36. Shcherba, A.; Faure, E.; Lavdanska, O. Three-Pass Cryptographic Protocol Based on Permutations. In Proceedings of the 2020

IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 25 November 2020; IEEE:
Washington, DC, USA, 2020; pp. 281–284.

37. Conway, J.H.; Sloane, N.J.A. Sphere Packings, Lattices, and Groups, 3rd ed.; Springer: New York, NY, USA, 1999; ISBN 978-1-4757-6568-7.
38. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error Correcting Codes; North Holland Mathematical Library; North Holland

Publishing Co.: Amsterdam, The Netherlands, 1977; ISBN 978-0-444-85193-2.

http://doi.org/10.1016/j.chaos.2006.03.069
http://doi.org/10.3103/S0735272708110095
http://doi.org/10.3103/S0735272710070058
http://doi.org/10.15866/irecap.v10i2.17216
http://doi.org/10.1109/JPROC.2016.2537298
http://doi.org/10.1109/TCOMM.2017.2755012
http://doi.org/10.1109/TCOMM.2019.2956920
http://doi.org/10.1109/TMC.2021.3071329
http://doi.org/10.1109/TVT.2020.2995840
http://doi.org/10.1109/MCOMSTD.121.2100028
http://doi.org/10.1109/TWC.2021.3108042
http://doi.org/10.1109/LCOMM.2019.2913363
http://doi.org/10.1007/s12243-020-00787-y
http://doi.org/10.1016/j.eij.2022.05.005
http://doi.org/10.15588/1607-3274-2017-3-15
http://doi.org/10.1137/0108018

Sensors 2022, 22, 5391 18 of 18

39. Smith, D.H.; Montemanni, R. A New Table of Permutation Codes. Des. Codes Cryptogr. 2012, 63, 241–253. [CrossRef]
40. Vinck, A.J.H. Coded Modulation for Power Line Communications. arXiv 2011, arXiv:1104.1528. [CrossRef]
41. Frankl, P.; Deza, M. On the Maximum Number of Permutations with given Maximal or Minimal Distance. J. Comb. Theory Ser. A

1977, 22, 352–360. [CrossRef]
42. Dixon, J.D.; Mortimer, B. Permutation Groups; Springer: New York, NY, USA, 1996; ISBN 978-1-4612-0731-3.
43. Chu, W.; Colbourn, C.J.; Dukes, P. Constructions for Permutation Codes in Powerline Communications. Des. Codes Cryptogr. 2004,

32, 51–64. [CrossRef]
44. Janiszczak, I.; Lempken, W.; Östergård, P.R.J.; Staszewski, R. Permutation Codes Invariant under Isometries. Des. Codes Cryptogr.

2015, 75, 497–507. [CrossRef]
45. Bereg, S.; Mojica, L.G.; Morales, L.; Sudborough, H. Kronecker Product and Tiling of Permutation Arrays for Hamming Distances.

In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017;
IEEE: Washington, DC, USA; pp. 2198–2202.

46. Bereg, S.; Mojica, L.G.; Morales, L.; Sudborough, H. Constructing Permutation Arrays Using Partition and Extension. Des. Codes
Cryptogr. 2020, 88, 311–339. [CrossRef]

47. Bereg, S.; Malouf, B.; Morales, L.; Stanley, T.; Sudborough, I.H. Using Permutation Rational Functions to Obtain Permutation
Arrays with Large Hamming Distance. Des. Codes Cryptogr. 2022, 90, 1659–1677. [CrossRef]

48. Neyman, J.; Pearson, E.S. On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference: Part I.
Biometrika 1928, 20A, 175. [CrossRef]

49. Python 3.10.5 Documentation. Available online: https://docs.python.org/3/ (accessed on 2 June 2022).
50. Other Versions—PyCharm Edu. Available online: https://www.jetbrains.com/pycharm/download/download-thanks.html?

platform=windows&code=PCC (accessed on 2 June 2022).
51. Borysenko, O.; Kulyk, I.; Horiachev, O. Electronic system for generating permutations based on factorial numbers. Her. Sumy

State Univ. 2007, 1, 183–188.
52. Faure, E.; Shvydkyi, V.; Shcherba, A. Method for Generating Reproducible and Unpredictable Sequence of Permutations. Bezpeka

ìnf. 2014, 20, 253–258. [CrossRef]
53. Celant, G.; Broniatowski, M. Interpolation and Extrapolation Optimal Designs 1: Polynomial Regression and Approximation Theory;

Mathematics and Statistics; John Wiley: London, UK; Hoboken, NJ, USA, 2016; ISBN 978-1-84821-995-3.
54. Meeker, W.Q.; Hahn, G.J.; Escobar, L.A. Statistical Intervals: A Guide for Practitioners and Researchers, 2nd ed.; Wiley series in

Probability and Statistics; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-0-471-68717-7.

http://doi.org/10.1007/s10623-011-9551-8
http://doi.org/10.48550/ARXIV.1104.1528
http://doi.org/10.1016/0097-3165(77)90009-7
http://doi.org/10.1023/B:DESI.0000029212.52214.71
http://doi.org/10.1007/s10623-014-9930-z
http://doi.org/10.1007/s10623-019-00684-z
http://doi.org/10.1007/s10623-022-01039-x
http://doi.org/10.2307/2331945
https://docs.python.org/3/
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
http://doi.org/10.18372/2225-5036.20.7552

	Introduction
	Related Literature
	Main Contributions
	Paper Structure

	Materials and Methods
	Algorithm to Generate Codewords
	Algorithms to Generate the Initial Set of Nlim Random Permutations
	Dependence of the (M,Dmin) -Code Size on the Values of M , Dmin , and Nlim
	Technique for Constructing an Approximation Polynomial

	Results
	Conclusions
	References

