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Abstract – In order to establish the projection properties of 
computer uniform designs of experiments on Sobol’s sequences, an 
empirical comparative statistical analysis of the homogeneity of 2D 
projections of the best known improved designs of experiments 
was carried out using the novel objective indicators of 
discrepancies. These designs show an incomplete solution to the 
problem of clustering points in low-dimensional projections 
graphically and numerically, which requires further research for 
new Sobol’s sequences without the drawback mentioned above. In 
the article, using the example of the first 20 improved Sobol’s 
sequences, a methodology for creating refined designs is proposed, 
which is based on the unconventional use of these already found 
sequences. It involves the creation of the next dimensional design 
based on the best homogeneity and projection properties of the 
previous one. The selection of sequences for creating an initial 
design is based on the analysis of numerical indicators of the 
weighted symmetrized centered discrepancy for two-dimensional 
projections. According to the algorithm, the combination of 
sequences is fixed for the found variant and a complete search of 
the added one-dimensional sequences is performed until the best 
one is detected. According to the proposed methodology, as an 
example, a search for more perfect variants of designs for factor 
spaces from two to nine dimensions was carried out. New 
combinations of Sobol’s sequences with better projection 
properties than those already known are given. Their effectiveness 
is confirmed by statistical calculations and graphically 
demonstrated box plots and histograms of the projection 
indicators distribution of the weighted symmetrized centred 
discrepancy. In addition, the numerical results of calculating the 
volumetric indicators of discrepancies for the created designs with 
different number of points are given. 
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I. INTRODUCTION 
The process of collecting data for scientific and engineering 

research is a rather complex problem due to the difficulties of 
their obtaining in large quantities, which, however, can be 
solved using the design of experiments. An effective design of 
the experiment is of decisive importance in the study of 
scientific problems. In the modern designing of experiments, 
significant attention is paid to their computer variants [1]. The 
scope of their use is rather vast: from technical applications [2]–
[5] to financial engineering [6], which is explained by the 
comprehensive implementation of computer modelling in the 
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practice of scientific research, for example, surrogate 
optimization, quasi-Monte Carlo simulation, stochastic global 
optimization, Pareto set approximation in multi-criteria 
optimization, and some computer graphics applications. 
Among the computer designs of experiments (DOE), we will 
focus on the space filling design, namely uniform designs of 
experiments [7], which are among the most widely used in 
modelling in various tasks. To create appropriate designs with 
a uniform distribution in a unit hypercube, the quasi-Monte 
Carlo method is used, involving one-dimensional sequences 
with low discrepancies to obtain a set of deterministic points. 
Plans on such sequences are called quasi-DOEs. In general, the 
best results are believed to be achieved by plotting on quasi-
random Sobol's LPτ-sequences [8]. A design is considered 
effective if it demonstrates uniformity not only in hyperspace, 
but also for specific low-dimensional projections [9]. However, 
the creation of designs with improved uniformity of low-
dimensional projections is a non-trivial task, and many 
scientific studies have been devoted to this problem. Although 
quasi-random designs based on Sobol’s sequences provide the 
best properties of filling hyperspace points, researchers have 
determined that in certain cases the tendency of distribution 
points to group into clusters in 2D projections, violating their 
uniformity. The established cause of such a problem is an 
unsuccessful selection of sets of direction numbers to calculate 
the points of the Sobol’s sequences, which make up the overall 
experimental design for each specific case. That is, it is the 
rational choice of sets of quasi-sequences that ensures the 
necessary homogeneous properties of designs and the absence 
of bad two-dimensional projections and the collapse effect [6]. 
Attention to maintaining noncollapsing designs is important, 
since the space filling criterion is always aimed only at the 
entire project space, that is, it is essentially volumetric. In fact, 
low-dimensional projections characterise the property of the 
design for placing samples of the sampling to obtain 
information in accordance with the maximum possible number 
of factors, even if some of them do not affect the response. As 
a result, a guaranteed coverage of all subsets of the design with 
samples is observed [10], [11]. 

The first significant steps in improving the projection 
properties of experimental designs on uniformly distributed 
sequences of binary-rational Sobol’s quasi-random numbers 
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were made in paper [12], where the authors proposed the 
introduction of additional conditions of uniformity, known as 
Property A and Property А′. Formulated properties and 
conditions for achieving homogeneity when implementing one 
or both of them as a result of following certain rules for 
choosing direction numbers provided advantages for using this 
type of created Sobol’s sequences over known others. However, 
it turned out that matching properties, especially Property A, 
which is of greater practical interest, is not enough to ensure the 
absence of bad correlations between pairs of measurements 
[13], [14]. 

Hereinafter, the improvement of quasi-sequences was carried 
out using optimization techniques in order to avoid problems 
caused by an unsuccessful choice of direction numbers. In the 
study [15], a computer search is performed for new sets of 
direction numbers that are subject to Property A and are found 
as a result of optimization with a criterion based on t-values in 
the range of values for m, that is, minimization in a certain sense 
of t-values of two-dimensional projections of point sets. The 
authors themselves note the existence of a problem regarding 
the correctness of the selection of appropriate search criteria, 
which does not allow us to consider the task of finding Sobol’s 
sequences with more perfect low-dimensional projections as 
finally solved. In [16], certain shortcomings of the results 
obtained in [15] are given, in particular, it is stated that despite 
the potentially attractive theoretical advantages of the defined 
directions of numbers, they are not confirmed in practice, and 
in some cases even demonstrate unacceptable quality of 2D 
projections. At the same time, in [6] the opposite is stated about 
the positive results of the studies [15], which is confirmed by a 
comparative analysis of numerical calculations on test models. 
The same authors [15] note that the new Sobol’s sequences 
obtained by them on the basis of “optimal” sets of direction 
numbers are, in the worst cases, at least comparable to the old 
ones. 

The next important stage of the research in the direction of 
correcting bad 2D projections was the paper [17], 
demonstrating the effect of imposing additional homogeneity 
properties on low-dimensional sequence projections in addition 
to the uniformity properties of the multidimensional sequence 
itself, which made it possible to achieve positive results in 
comparison with other known Sobol’s sequence generators 
when calculating multidimensional integrals. 

In the paper [18], in the context of considering the problem 
of calculating multidimensional integrals by the quasi-Monte 
Carlo method, a fully deterministic algorithm for optimizing the 
direction numbers of Sobol’s sequences is proposed. In [19], 
the authors try to find a solution to this very problem as a result 
of optimizing the free parameters available in the definition of 
the Matousek scrambling and the Owen scrambling in order to 
obtain the best distribution. The authors of [18], [19] propose a 
continuation of the implementation of the research idea in [20] 
for the situations related to the high dimensionality of the space 
in comparison with the number of points of the sequence used. 
Summarising, we note that in all the mentioned cases, the 
optimization was carried out as a result of a computer search 
using certain filtering techniques of such sets of direction 

numbers that would provide the best distribution of sequences. 
Unfortunately, the authors cited only the indirect results of the 
performed studies, limiting them only to the values of test 
calculations of multidimensional integrals. At the same time, 
they failed to demonstrate the objective numerical 
characteristics of the obtained homogeneous distributions in the 
form of discrepancy indicators, to conduct a statistical and 
graphical analysis of the projection properties for 2D 
measurements. 

In the paper [21], the authors proposed an algorithm for 
creating groups of experimental designs with uniform filling of 
the multidimensional design space with high-quality 
projections in terms of homogeneity in one and two dimensions. 
Sobol’s sequences are used for this purpose, which, according 
to the authors, allows preserving the indicated properties of the 
designs as a whole when combining groups. The algorithm uses 
optimization techniques with the maximin distance criterion 
and a new optimality criterion based on the spread of the 
minimum distance of each point from all others, as well as a 
perturbation strategy when combining groups into a single one 
to effectively achieve homogeneity in the design hyperspace. A 
crucial requirement for the given space-filling design is also 
emphasized, which is critically applied in, at least, sequences 
with a uniform 1D projection. The research considers the 
creation of uniform multidimensional designs with an 
increasing number of points, and, in fact, the projection 
properties of the obtained designs are not addressed, especially 
for the cases of many dimensions, which leaves the issue of 
their quality unresolved. 

Therefore, a critical analysis of the sources of information 
regarding the problem under consideration showed the need for 
additional research of new designs, conditioned by the use of 
such sets of direction numbers for Sobol’s quasi-sequences, 
which guarantee not only general volumetric homogeneity of 
the created designs of experiments, but also their qualitative 
projection properties in 2D dimensions. 

Given the sometimes contradictory information about the 
guide numbers of the Sobol's LPτ-sequences found by previous 
researchers, the goal of this research is to develop a 
methodology for constructing more advanced quasi-
experimental designs based on them, characterised by improved 
2D projection properties and low volumetric discrepancy rates. 

II. RESEARCH METHODOLOGY 
The research methodology was as follows. For conducting 

numerical experiments, the first 20 modified Sobol’s sequences 
were used, the direction numbers for which were calculated 
according to [22]. Designs of experiments with different 
number of points were formed from one-dimensional sequences 
as a result of sequential component-wise selection. The 
generation of designs started with two-dimensional ones and 
was carried out by a complete sorting of all possible 
combinations of the 20 specified sequences. To create three-
dimensional designs, the two-dimensional one best in terms of 
homogeneity and projection properties was used, assuming that 
the next dimensional design can be obtained from the previous 
one. The algorithm involved fixing a combination of sequences 
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for a two-dimensional variant and a full review of the added 
sequences until the best three-dimensional combination was 
found. The evaluation of the quality of the candidate design was 
implemented by calculating the indicators of discrepancies both 
for the design as a whole and for each of its 2D projections. 

Therefore, for a comprehensive assessment of the 
homogeneity of the designs, indicators of both the classic 
centered CD and wrap-around WD discrepancies [1], as well as 
the novel mixed MD [23] and weighted symmetrized centred 
WSCD discrepancies [24] were calculated, the expressions for 
calculating which are given in the APPENDIX. 

The WSCD indicator should be especially noted for its 
ability to adjust weighting coefficients for spaces of different 
dimensions and the presence of advantages of the new function 
of the divergence calculation kernel, which in the complex to a 
certain extent eliminates the known disadvantages of using 
classical indicators. The selected best designs were compared 
according to the relevant indicators with those obtained on the 
basis of recommendations [15], [17], which were generated by 
the codes borrowed from [25] for the optimality criterion D(6) 
and from [22]. Graphical analysis based on Voronoi diagrams 
was performed for the received 2D projections of the designs. 
In addition, histograms of the distribution of discrepancies of 
all low-dimensional projections of each variant of the design 
were subject to visual analysis, by means of which their quality 
was assessed. Based on the obtained statistical indicators of 
discrepancies of 2D projections, i.e., median, lower and upper 
quartiles, non-outlier range, etc., in combination with the results 
of graphic analysis, conclusions were drawn regarding the 
acceptability of the design variant. 

Therefore, the task was to find new quasi-DOE variants with 
improved projection properties, more perfect in terms of 

indicators than those established by the authors [15] and [25], 
[17] and [22]. 

III. NUMERICAL EXPERIMENTS 
For an empirical study of the projection properties of the 

improved Sobol’s sequences, recognized according to the 
review of publications as the most perfect, a number of 
numerical experiments were conducted on their analysis. 
Experiments were performed for sequence variants, for which 
the following designations were introduced for clarity: 
Joe_2008, which corresponds to the sequences proposed by 
S. Joe and F.Y. Kuo [25], and Sobol_2011, obtained by Sobol 
and co-authors in [22]. Designs created on the first 20 of these 
sequences with the number of points 127 and 1023 were 
selected for calculations. Conclusions regarding the 
homogeneity of 2D design projections were made as a result of 
statistical analysis of the WSCD discrepancy indicators, which 
were calculated for all design projections. For example, Table I, 
Table II and Table III (Appendix) are given, which contain the 
values of these indicators calculated for two-dimensional 
projections of the design with 1023 points. 

The results of the observations are graphically demonstrated 
by box plots presented in Fig. 1. A comparative analysis of 
research results with similar designs of experiments performed 
on classic Sobol’s sequences with a set of direction numbers 
borrowed from [26] and designated as Sobol_1967 was also 
carried out. This made it possible to advance the view of the 
degree of improvement of the low-dimensional projection 
properties of the analysed varieties of Sobol’s sequences.

 

 
(a) 

 
(b) 

Fig. 1. Box-and-whisker plot diagrams for designs with different number of points: (a) N = 127 and (b) N = 1023. 

Some WSCD values are not displayed on the diagrams, 
which differ significantly, even by orders of magnitude, from 
those given, which is explained by the choice of an adequate 
scale that allows detailed visual analysis of the situation. 
Therefore, these emissions for the design with 1023 points are: 
for Sobol_1967 sequences – 272.19·10−7 on the projection 
(ξ3, ξ11), 279.9·10−7 on the projection (ξ8, ξ15) (see Table I); 
Sobol_2011 – 4332·10−7 on the (ξ10, ξ18) projection (see 
Table III). A similar situation is observed for the design with 

127 points, where the emissions on the projections (ξ2, ξ10) and 
(ξ3, ξ9) on the Sobol_1967 sequences take the same values and 
are equal to 172.2·10−5.  

At the same time, a visual analysis of the quality of the 2D 
projections of the designs, namely the homogeneity of the 
distribution of points was carried out using Voronoi diagrams 
to assess the degree of homogeneity in terms of the area of all 
formed segments. Figures 2–4 (Appendix) illustrate the worst 
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pairwise projections with the largest WSCD scores for the 
designs on all kinds of Sobol’s sequences. 

All the projections shown on them demonstrate the tendency 
of the distribution points to group into clusters, which is also 

confirmed by the associative relationship with the calculated 
corresponding values of the weighted symmetrized centred 
discrepancy, shown in the same figures. 

 
TABLE IV 

NEW COMBINATIONS OF SOBOL’S SEQUENCES WITH MORE ADVANCED PROJECTION PROPERTIES 

LPτ ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 
Three-factor uniform design of experiment 
3LPτ−1                     
3LPτ−2                     
3LPτ−3                     
3LPτ−4                     
Four-factor uniform design of experiment 
4LPτ−1                     
4LPτ−2                     
4LPτ−3                     
4LPτ−4                     
Five-factor uniform design of experiment 
5LPτ−1                     
5LPτ−2                     
5LPτ−3                     
5LPτ−4                     
Six-factor uniform design of experiment 
6LPτ−1                     
6LPτ−2                     
6LPτ−3                     
6LPτ−4                     
6LPτ−5                     
6LPτ−6                     
6LPτ−7                     
6LPτ−8                     
6LPτ−9                     
Seven-factor uniform design of experiment 
7LPτ−1                     
7LPτ−2                     
7LPτ−3                     
7LPτ−4                     
7LPτ−5                     
7LPτ−6                     
7LPτ−7                     
Eight-factor uniform design of experiment 
8LPτ−1                     
8LPτ−2                     
8LPτ−3                     
8LPτ−4                     
8LPτ−5                     
8LPτ−6                     
Nine-factor uniform design of experiment 
9LPτ−1                     
9LPτ−2                     
9LPτ−3                     
9LPτ−4                     
9LPτ−5                     
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Empirical comparative analysis of 2D projections of 
experimental designs on the most famous improved Sobol’s 
sequences demonstrates the imperfection of the design variants 
created on their basis. At the same time, it is worth noting the 
convincing advantages of both designs with different numbers 
of points built on the Sobol_2011 sequences over others. 
Therefore, it is advisable to further search for new sets of 
sequences that would provide lower rates of volumetric and 
two-dimensional projection design discrepancies. 

According to the proposed methodology, the authors created 
designs of experiments based on their established best set 
Sobol_2011 selected according to the above-mentioned 
homogeneity criteria to ensure acceptable projection properties. 

The search for their more perfect variants with 1023 points 
was carried out for factor spaces from two to nine dimensions. 
Table IV shows the best obtained combinations of Sobol’s 
sequences, which are highlighted in colour, and their coding is 
introduced. 

As a result of statistical calculations, the results of which are 
shown in Fig. 5 in a graphic form, a comparative analysis of the 

combinations of sequences with prototypes proposed by the 
authors for different factor spaces was carried out. 

If for the three-, four- and five-factor designs for their best 
options, the results are actually identical in quality to the 
prototypes, then already on the six-factor design there is a 
certain improvement of the candidate design for the 6LPτ−5 
combination (Fig. 6). It should be noted that in order to find this 
version of the design, it was necessary to investigate a certain 
hierarchical structure of the formation of applicant designs: on 
the basis of 5LPτ−1, applicants 6LPτ−1 – 6LPτ−3 were created; 
based on 5LPτ−2 – respectively 6LPτ−4 – 6LPτ−7, etc. 

The expediency of choosing this particular combination of 
Sobol’s sequences for creating a six-factor experimental design 
is confirmed by the histograms of the distributions of 
discrepancies for the analysed variety and the corresponding 
prototype (Fig. 6b). Both of these designs show almost the same 
indicators of homogeneity of projections. However, the 
prototype has two outliers forming the sequences (ξ4, ξ5) and 
(ξ4, ξ6), unlike the design on the sequence combination 6LPτ−5, 
for which all WSCD values of the projections are within the 
non-outlier range. 

 
(а) 

 
(b) 

 
(c) 

Fig. 5. “Box with whiskers” diagrams for designs of different dimensions with N = 1023: (a) is three-factor and (b) is four-factor and (c) is five-factor. 

 
(a) 

 
(b) 

Fig. 6. The analysis of statistical indicators for six-factor designs: (a) is “box with whiskers” diagrams of WSCD projection indicators and (b) is histograms of the 
distribution of indicators of discrepancies of 2D projections. 
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Table V contains the numerically calculated volume 
measures of CD, WD, MD, and WSCD discrepancies for 
designs with different numbers of points in the six-factor space. 

For all cases of design evaluation with conflicting indicators of 
discrepancies, the WSCD indicator was preferred due to its 
greater perfection [24].  

TABLE V 
INDICATORS OF VOLUMETRIC DISCREPANCIES FOR THE PROPOSED BEST OPTIONS OF SIX-FACTOR DESIGNS OF EXPERIMENTS 

 ON NEW COMBINATIONS OF SEQUENCES 

Combinations of sequences Number of points of the design CD(P)2⋅10−3 WD(P)2 MD(P)2⋅10−3 WSCD(P)2⋅10−3 

6LPτ−1 

N = 31 28.709761 11.310316 144.171298 0.320782 

N = 127 5.68399 11.255842 32.397446 0.04849905 

N = 511 0.45081 11.238943 2.520635 0.003071041 

N = 1023 0.094527 11.23764 0.453312 0.0003291458 

6LPτ−5 

N = 31 18.812932 11.299139 109.346919 0.237927 

N = 127 2.186651 11.246012 12.552014 0.018057 

N = 511 0.431165 11.23892 2.408089 0.002751995 

N = 1023 0.095705 11.237635 0.447015 0.0003171118 

6LPτ−9 

N = 31 15.650665 11.288267 89.731476 0.212231 

N = 127 2.624273 11.244994 12.846477 0.020728 

N = 511 0.207117 11.238016 1.009143 0.001118348 

N = 1023 0.072899 11.23757 0.342922 0.0002955792 

Sobol_2011 

N = 31 16.121807 11.28917 92.531943 0.2162901 

N = 127 1.782498 11.24324 8.927928 0.01401179 

N = 511 0.193313 11.238015 0.969702 0.00108588 

N = 1023 0.063502 11.237552 0.321374 0.0003135235 

The further search for designs of higher dimensionality was 
performed on the basis of the newly found set of 6LPτ−5 
sequences. For the variants of the seven-factor designs found 
by a complete search of the sequence added to the main 
combination calculations of the corresponding statistical 
characteristics were performed according to the algorithm 

similar to the previous experiments. Figure 7 made it possible 
to isolate a promising combination of 7LPτ−1 sequences for the 
further research. Volume indicators of disagreements together 
with the indicators of some good aggregates in the seven-factor 
space are presented in Table VI. 

 
(a)  

(b) 
Fig. 7. The analysis of statistical indicators for seven-factor designs: (a) is “box with whiskers” diagrams of WSCD projection indicators and (b) is histograms of 
the distribution of indicators of discrepancies of 2D projections. 
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TABLE VI 
INDICATORS OF VOLUMETRIC DISCREPANCIES FOR THE PROPOSED BEST OPTIONS OF SEVEN-FACTOR DESIGNS OF EXPERIMENTS 

ON NEW COMBINATIONS OF SEQUENCES  

Combinations of sequences Number of points of the design CD(P)2⋅10−3 WD(P)2 MD(P)2⋅10−3 WSCD(P)2⋅10−3 

7LPτ−1 

N = 31 27.764583 15.09819 236.127016 0.30377 

N = 127 4.015851 15.000214 31.537308 0.028634 

N = 511 0.657797 14.985909 5.047348 0.003506745 

N = 1023 0.157093 14.983722 1.038758 0.0004488243 

7LPτ−4 

N = 31 29.15454 15.098286 240.503813 0.314502 

N = 127 3.738329 15.000705 30.213014 0.024719 

N = 511 0.708433 14.985927 5.137145 0.003363344 

N = 1023 0.222409 14.983803 1.293564 0.0005254929 

7LPτ−5 

N = 31 30.52608 15.101158 250.3278 0.325074 

N = 127 3.625625 14.999033 27.756465 0.0235 

N = 511 0.663962 14.985932 5.05543 0.00345667 

N = 1023 0.211747 14.983844 1.322887 0.0005580185 

Sobol_2011 

N = 31 26.622533 15.086056 216.993973 0.2944844 

N = 127 3.140208 14.994981 21.999524 0.02005147 

N = 511 0.359587 14.984643 2.540841 0.001547291 

N = 1023 0.129471 14.983632 0.879688 0.000456143 

The creation of designs for eight- and nine-factor spaces was 
carried out in the same way. The best seven-factor sequence 
combination of 7LPτ−1 was used as the basis for constructing 
the next eight-factor design. As a result, two aggregates were 
selected – 8LPτ−2 and 8LPτ−3, which have practically the same 
indicators of projection discrepancies and which serve as the 
basis for creating nine-factor designs. As in the previous cases, 
for designs of smaller dimensions, the selection and analysis of 
new combinations of sequences was carried out using scale 
diagrams (Figs. 8a and 9a) and for designs on the selected 

aggregates, the histograms of distributions of WSCD projection 
indicators were constructed (Figs. 8b and 9b). Accordingly, 
Table VII and Table VIII show the volume differences for the 
best sequence combinations found for the eight- and nine-factor 
designs. 

Therefore, the proposed methodology for finding new 
combinations of Sobol’s quasi-sequences ensures the necessary 
homogeneous projection properties of designs and the absence 
of the effect of unwanted grouping of points into clusters. 

 
(a) 

 
(b) 

Fig. 8. The analysis of statistical indicators for eight-factor designs. (a) is “box with whiskers” diagrams of WSCD projection indicators and (b) is histograms of 
the distribution of indicators of discrepancies of 2D projections. 
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(a) 

 
(b) 

Fig. 9. The analysis of statistical indicators for nine-factor designs: (a) is “box with whiskers” diagrams of WSCD projection indicators and (b) is histograms of the 
distribution of indicators of discrepancies of 2D projections. 

TABLE VII 
INDICATORS OF VOLUMETRIC DIFFERENCES FOR THE PROPOSED BEST OPTIONS OF EIGHT-FACTOR DESIGNS OF EXPERIMENTS 

ON NEW COMBINATIONS OF SEQUENCES 

Combinations of sequences Number of points of the design CD(P)2⋅10−3 WD(P)2 MD(P)2⋅10−3 WSCD(P)2⋅10−3 

8LPτ−2 

N = 31 41.801831 20.179579 500.049228 0.39116 
N = 127 6.202748 20.007122 65.24872 0.034757 
N = 511 0.979025 19.982362 10.310375 0.004103681 

N = 1023 0.291468 19.978804 2.664993 0.0006569325 

8LPτ−3 

N = 31 42.525733 20.186607 510.692672 0.396249 
N = 127 6.315941 20.009777 69.788755 0.03655 
N = 511 1.15486 19.982538 11.029995 0.004280242 

N = 1023 0.332366 19.97884 2.840957 0.000701116 

8LPτ−5 

N = 31 43.777951 20.183487 513.672709 0.398842 
N = 127 7.344476 20.009389 73.38338 0.042357 
N = 511 1.418529 19.983353 12.930556 0.005074828 

N = 1023 0.312688 19.978919 2.879081 0.0006739865 

Sobol_2011 

N = 31 39.298077 20.161438 460.138167 0.37228556 
N = 127 5.373487 20.000598 51.01718 0.02622118 
N = 511 0.706348 19.980819 6.744938 0.00226884 

N = 1023 0.286071 19.978708 2.564797 0.0008006 

TABLE VIII 
INDICATORS OF VOLUMETRIC DISCREPANCIES FOR THE PROPOSED BEST OPTIONS OF NINE-FACTOR DESIGNS OF EXPERIMENTS 

ON NEW COMBINATIONS OF SEQUENCES 

Combinations of sequences Number of points of the design CD(P)2⋅10−3 WD(P)2 MD(P)2⋅10−3 WSCD(P)2⋅10−3 

9LPτ−3 

N = 31 67.232965 27.016216 1129.27 0.52973 
N = 127 10.661591 26.694216 153.832956 0.051675 
N = 511 2.120955 26.646693 26.37223 0.006021832 

N = 1023 0.560823 26.639486 6.904157 0.0009819638 

9LPτ−5 

N = 31 70.3771 26.997248 1103.327 0.558465 
N = 127 10.224223 26.694576 150.898447 0.046483 
N = 511 1.856867 26.64589 24.16055 0.00531544 

N = 1023 0.62457 26.639544 7.37461 0.0010498648 

Sobol_2011 

N = 31 61.564693 26.980562 1027.54246 0.499997 
N = 127 9.140274 26.682701 123.055175 0.038443 
N = 511 1.439116 26.643266 16.910987 0.003331481 

N = 1023 0.496914 26.63914 6.187372 0.00117735 
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IV. CONCLUSIONS 
Summarising the results of the research, it can be noted that 

the authors’ empirical analysis of the low-dimensional 
projection properties obtained by the predecessors of the 
improved Sobol sequences showed that they did not manage to 
fully solve the problem of guaranteeing highly homogeneous 
two-dimensional projections in multivariate homogeneous 
designs of experiments within the framework defined by them. 
It turned out that generally quite good designs of experimental 
created on these sequences are characterised in some 2D 
projections by sometimes even a “catastrophic” ability to group 
points into clusters. Such projections may not manifest 
themselves abnormally in cases where the factor hyperspace is 
significantly multidimensional and characterised by thousands 
of dimensions. However, in modelling practice, there are other 
cases where the presence of such projections in the designs is a 
significant obstacle. For such cases, it is desirable to have sets 
of Sobol’s quasi-sequences with no tendency to cluster in 
projections. 

Prospects for a possible further solution to the mentioned 
problem, according to the authors, consist in the search for new 
Sobol’s sequences as combinations of those containing the best 
prototype followed by their cataloguing. Numerous examples 
of the implementation of this idea give reason to believe that it 
is fruitful. It was possible to obtain a number of combinations 
of six-, seven-, eight- and nine-component Sobol’s sequences 
that allowed for the creation of computer uniform designs with 
better projection properties than the best prototype. However, it 
turned out that the identified positive trend was not universal, 
that is, during the creation of variants of experimental designs 
based on the found new sets of sequences, it became clear that 
they lost their advantages as a result of changing the number of 
points in the design. In other words, the found combinations of 
sequences have a specialized purpose and can be successfully 
used only for the number of design points for which they were 
searched. This fact certainly somewhat limits their wider use, 
but does not exclude their use in a number of cases where it is 
important to obtain high-quality design projections. 
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APPENDIX 

The expressions for calculating discrepancies [1. 23]: centred L2-discrepancy (CD) –  

[ ] 22
2

1 1 11 1

13 2 1 1 1 1 1 1( ) 1 0.5 0.5 1 0.5 0.5
12 2 2 2 2 2

d d dN N N

kj kj kj ji kj ji
k k jj i

CD P x x x x x x
N N= = == =

     = − ⋅ + ⋅ − − ⋅ − + ⋅ + ⋅ − + ⋅ − − ⋅ −          
∑ ∑∑∏ ∏  

wrap-around L2-discrepancy (WD) - [ ] ( )2
2

1 1 1

4 1 3( ) 1
3 2

d dN N

ki ji ki ji
k i j

WD P x x x x
N = = =

   = + ⋅ − − ⋅ − −      
∑∑∏ . 

mixture L2-discrepancy (MD) –  

[ ]
2

2
2 21 1 11 1

15 1 1 1 1 3
19 2 5 1 1 1 1 1 8 4 2 4 2 4( )
12 3 4 2 4 2 1

2

d ij kj ij kjd dN N N

ij ij
i i kj j

ij kj

x x x x
MD P x x

N N
x x= = == =

 
− ⋅ − − ⋅ − − ⋅ − +     = − − ⋅ − − ⋅ − +         + ⋅ − 

 

∑ ∑∑∏ ∏ . 

weighted symmetrized centred discrepancy (WSCD) -  

[ ]2 2
2

1 1 11 1

2 2 1 1( ) 1 1 1 1
3 2

d d dN N N

ij ij ij kj
i k ij j

WSCD P x x x x
N N= = == =

               = + ⋅ω − ⋅ + ω⋅ + − + ⋅ + ω⋅ − −                              
∑ ∑∑∏ ∏ , 

where N is the number of points of the experimental design, d is the dimensionality of space, ω is a weight that takes the value of 1/4 for low-dimensional 
designs of experiments and 1/20 for high-dimensional designs. 

TABLE I 
DISCREPANCY VALUES OF WSCD ⋅ 10−7 FOR DESIGN ON THE SOBOL_1967 SEQUENCES 

 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 
ξ1 3.135271 3.446261 3.586738 3.655722 3.157862 3.450995 20.20318 4.733149 7.264484 
ξ2  3.27521 4.420583 4.419499 5.515511 3.29763 3.642641 3.450114 3.679757 
ξ3   3.314533 3.858025 4.292092 6.618729 4.842493 21.45324 4.966227 
ξ4    7.556529 8.226353 4.043833 3.932138 5.596591 5.701185 
ξ5     4.090172 7.935852 20.47511 21.63889 21.23221 
ξ6      5.16709 9.251812 4.39926 21.5892 
ξ7       3.674877 4.045617 4.31512 
ξ8        3.92267 21.0705 
ξ9         24.15898 
ξ10          
ξ11          
ξ12          
ξ13          
ξ14          
ξ15          
ξ16          
ξ17          
ξ18          
ξ19          

 ξ11 ξ12 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 
ξ1 4.776211 21.58757 5.313264 4.317837 7.246687 3.298493 3.690371 4.443629 7.790726 4.433307 
ξ2 8.234781 5.761331 9.53217 5.952952 5.209362 26.66922 3.221957 7.04957 4.196881 4.506192 
ξ3 272.1966 23.53816 24.57291 6.663328 5.052704 4.938041 7.165084 4.667765 8.242427 4.799243 
ξ4 3.441723 3.618375 71.19144 76.26067 4.161565 11.70234 4.645157 6.682162 4.277706 6.170309 
ξ5 7.180612 5.634211 12.38862 3.451816 8.504796 5.53103 4.372423 6.321572 4.189077 20.23596 
ξ6 4.194298 7.897992 5.267591 20.01587 4.137402 21.25421 4.785323 7.550409 4.680258 3.95661 
ξ7 4.38662 5.090417 7.772068 3.521008 8.245029 22.74584 7.50879 7.139842 3.619694 20.99323 
ξ8 3.577598 4.561826 5.428419 4.409712 279.9596 4.707672 3.648729 3.292502 4.566422 4.426012 
ξ9 3.821121 8.280628 7.706479 3.669583 3.483265 5.887212 3.330872 4.193432 3.291396 21.20911 
ξ10 4.021908 3.977921 3.450031 5.015911 10.88844 4.171001 3.665614 73.46166 5.999559 26.31009 
ξ11  3.298475 4.40806 21.3764 19.97826 71.61944 9.667457 7.17474 21.38016 5.280181 
ξ12   4.044699 7.262044 73.75374 7.927747 13.33699 25.71056 3.39636 4.397036 
ξ13    3.597228 6.457606 7.339785 4.415319 7.666438 4.921669 8.404516 
ξ14     20.44443 3.668402 3.424172 12.81079 8.801858 6.473425 
ξ15      9.512942 4.392525 4.193861 75.69399 4.290341 
ξ16       14.73467 4.377707 4.629005 8.297501 
ξ17        5.536856 7.54368 3.480233 
ξ18         10.03214 5.6842 
ξ19          24.51987 
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TABLE II 
DISCREPANCY VALUES OF WSCD · 10−7 FOR DESIGN ON THE JOE_2008 SEQUENCES 

 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 
ξ1 6.07952 5.173161 4.462667 4.514601 5.621243 3.809093 5.058498 21.456978 7.459557 
ξ2  8.560936 6.761909 6.844661 9.022332 7.302943 17.394579 8.582609 11.12089 
ξ3   5.874076 6.255624 7.400787 6.347632 8.454173 7.659716 12.42753 
ξ4    7.348459 8.860304 3.382962 6.525121 5.133513 12.416441 
ξ5     4.677235 3.65814 5.811236 5.274983 7.382682 
ξ6      5.889926 7.083168 10.369522 9.781544 
ξ7       6.104199 3.868105 8.959195 
ξ8        7.185477 10.530805 
ξ9         12.778902 
ξ10          
ξ11          
ξ12          
ξ13          
ξ14          
ξ15          
ξ16          
ξ17          
ξ18          
ξ19          

 ξ11 ξ12 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 
ξ1 8.899532 20.349856 12.750539 6.381515 6.381515 5.317316 3.847379 8.095746 5.30034 7.782563 
ξ2 9.076746 8.55609 6.658351 10.01775 8.565456 7.879552 10.718573 14.93764 10.060482 11.842014 
ξ3 8.297442 6.758906 26.199112 9.790689 10.450336 8.140247 27.65486 14.331752 7.437651 24.181083 
ξ4 6.922296 7.34811 4.702787 8.853243 6.052472 9.547748 5.202914 9.631521 7.151582 4.856908 
ξ5 23.514363 5.418481 6.066549 6.076401 8.384584 5.228337 4.984077 7.936029 7.30586 5.851847 
ξ6 7.304917 23.674174 5.51932 11.256906 5.392946 14.788289 6.434512 8.908644 7.062925 6.714404 
ξ7 8.418274 4.879356 4.169602 6.946566 4.778555 5.439054 5.85908 9.154483 9.200837 3.82683 
ξ8 8.258958 5.947349 6.435293 9.732339 7.659161 7.59419 8.426515 10.804007 8.164208 9.756372 
ξ9 9.438028 3.976547 4.852622 6.257823 5.947816 5.341221 15.570131 9.33989 7.521185 5.618402 
ξ10 10.970445 8.158907 8.155839 10.769644 8.086096 12.792888 9.262765 32.562993 9.384904 13.823929 
ξ11  6.173936 6.746424 10.059056 10.90312 7.698906 24.78481 10.884554 7.844262 73.654829 
ξ12   4.42556 8.643193 4.945183 5.560573 3.848321 12.378489 9.148992 3.72115 
ξ13    8.169775 4.073376 6.463288 26.195181 8.629196 5.244579 4.612301 
ξ14     7.792285 89.187338 10.320001 12.716166 26.881124 8.53127 
ξ15      73.016964 9.065372 9.273948 5.925364 8.959646 
ξ16       15.691358 10.891428 7.028169 22.443878 
ξ17        8.33157 5.797317 7.025411 
ξ18         10.348238 26.53023 
ξ19          11.675859 

TABLE III 
DISCREPANCY VALUES WSCD · 10−7 FOR DESIGN ON THE SOBOL_2011 SEQUENCES 

 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 
ξ1 3.135271 3.446261 3.586738 3.655722 3.157862 3.450995 20.203178 7.868513 7.264484 
ξ2  3.27521 4.420583 4.419499 5.515511 3.29763 3.642641 3.445448 3.450845 
ξ3   3.314533 3.858025 4.292092 6.618729 4.842493 4.188611 5.362813 
ξ4    7.556529 8.226353 4.043833 3.932138 4.026576 24.606687 
ξ5     4.090172 7.935852 20.475111 21.041678 4.510269 
ξ6      5.16709 9.251812 4.39926 8.933427 
ξ7       3.674877 20.916865 4.357111 
ξ8        4.221276 3.825997 
ξ9         24.158983 
ξ10          
ξ11          
ξ12          
ξ13          
ξ14          
ξ15          
ξ16          
ξ17          
ξ18          
ξ19          
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 ξ11 ξ12 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 

ξ1 5.522727 21.587565 5.163961 3.608647 4.111322 3.298493 3.690371 4.443629 7.790726 4.433307 
ξ2 5.286045 8.747392 3.858653 4.525241 5.629277 7.404457 3.221957 7.04957 4.196881 4.506192 
ξ3 4.416827 4.492691 3.437189 5.650867 3.932931 3.44501 7.165084 4.667765 8.242427 4.799243 
ξ4 8.751314 3.319769 7.550999 5.491008 5.076047 9.1222 4.645157 6.682162 4.277706 6.170309 
ξ5 3.597338 3.793 14.068279 4.963509 3.269856 10.346055 4.372423 6.321572 4.189077 20.235958 
ξ6 10.358882 4.631987 5.267591 3.593118 20.159489 8.915712 4.785323 7.550409 4.680258 3.95661 
ξ7 4.423946 3.816675 11.429993 5.555263 4.519451 3.481079 7.50879 7.139842 3.619694 20.993226 
ξ8 22.016528 5.275681 22.299666 4.409712 3.821247 7.25049 3.648729 3.292502 4.566422 4.426012 
ξ9 3.821121 8.280628 7.706479 3.669583 3.483265 5.887212 6.144301 4.345068 4.48582 22.441446 
ξ10 4.021908 3.977921 3.450031 5.015911 10.888441 4.171001 3.684277 4332.9478 72.13149 26.366083 
ξ11  3.298475 4.40806 21.3764 19.978255 71.619443 7.497897 4.335065 5.106125 9.777936 
ξ12   4.044699 7.262044 73.753745 7.927747 6.245093 8.671346 3.638977 5.404832 
ξ13    3.597228 6.457606 7.339785 5.131507 8.578586 3.35457 24.827855 
ξ14     20.444432 3.668402 3.274869 3.367372 7.570108 7.294009 
ξ15      9.512942 3.310078 4.417816 77.410977 5.260811 
ξ16       5.571196 21.510236 8.781497 27.740144 
ξ17        5.536856 7.54368 3.480233 
ξ18         10.032143 5.6842 
ξ19          24.519874 

 
 

 
(a) 

 
(b) 

 
(c)  

(d) 
Fig. 2. Visualization of projections of experimental designs on Sobol_1967 sequences. (a) and (b) (ξ2. ξ10) and (ξ11. ξ12) respectively for N = 127. (c) and (d) 
(ξ8. ξ15) and (ξ15. ξ19) respectively for N = 1023. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Visualization of projections of experiment designs on Joe_2008 sequences. (a) and (b) (ξ1. ξ17) and (ξ19. ξ20) respectively for N = 127. (c) and (d) (ξ14. ξ16) 
and (ξ10. ξ18) respectively for N = 1023. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Visualization of projections of experimental designs on Sobol_2011 sequences. (a) and (b) (ξ11. ξ12) and (ξ10. ξ18) respectively for N = 127. (c) and (d) 
(ξ15. ξ19) and (ξ10. ξ18) respectively for N = 1023. 

 


