
ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

40

UDC [004.493.004.94]:004.8
DOI: 10.24025/2306-4412.3.2023.286374

MALWARE DETECTION MODEL BASED ON MACHINE LEARNING

Alan Nafiiev
PhD Student

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute",
Institute of Physics and Technology, Kyiv, Ukraine

https://orcid.org/0009-0004-8604-377X
Dmytro Lande

Doctor of Technical Sciences, Professor
Institute for Information Recording of National Academy

of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0003-3945-1178

Abstract. Every year, malware authors create more and more sophisticated and clever malware that
can harm our computers. Traditional methods, which are based on searching for program signatures
are no longer effective in solving the problem of malware detection. It is being replaced by automated
file analysis, which is a more promising approach to detecting suspicious files. Machine learning
methods are increasingly used to detect such malware programs. However, such solutions may require
a lot of computing resources to perform their operations. Therefore, the task of creating an optimal
machine learning model in terms of learning speed and malware detection accuracy arises. In addition,
usually one method of data representation is not sufficient to detect malicious features of files.
Therefore, this paper will describe two different methods: one method is based on the binary
information of the file, the other one is based on disassembled code of executable files. The purpose of
this work is to improve the efficiency of malware detection by optimising feature extraction methods
and applying machine learning. The main tasks of the study include: extracting features from exe files,
creating several machine learning models and comparing them to determine the most effective one.
The dataset used in this study has been collected from various online sources and consists of 12824
executable files in .exe format, of which 11844 files are malicious and 980 are benign. This paper
presents recommended methods of feature extraction and input data generation for machine learning
models based on the support vector machine algorithm. These methods allow to find the best way to
process the features describing a malicious file. Six machine learning models, each of which
performed well in terms of F-score, precision, and recall metrics, were created. The model that was
created based on the binary type of data representation showed the highest results for all metrics.

Keywords: intrusion detection, PE format, feature extraction, disassembled instructions, support vector
machine.

Introduction

Every year there are more and more methods for detecting malicious software that abandon
traditional signature approaches. Instead, a bet is made on heuristic analysis, behavioral
methods or their combinations (Abri et al., 2019). These methods have gained particular
attention due to their ability to detect zero-day malware. This is software whose signature
is not available to antivirus systems (Handa et al., 2019; Alazab et al., 2011). The use of
machine learning models is the key point of these methods, but it is not without certain
challenges. The main ones are the selection and formation of an optimal set of features

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

41

(features of the file) that allow to best represent the input data set. In addition, it is important
to effectively adapt these features for machine learning models to improve the overall
accuracy of the models and optimize the learning time. Our work is focused precisely on these
aspects. In particular, in the world scientific literature there are already works that offer
various solutions to these issues (Chaudhary, 2021; Kutlay et al., 2020; Al-Khshali et al.,
2020). In our previous study, we have analyzed a set of .exe files with the help of different
machine learning algorithms using the binary code of the file as key features (Nafiiev et al.,
2022). We have considered the executable file in PE format, and also selected the most
optimal parameters for classification algorithms. The algorithm based on support vectors turns
out to be particularly effective. Therefore, in this work, we will build several machine
learning models based on this algorithm. The main purpose of this research is to improve the
process of detecting malware with the help of modernized feature extraction methods and the
use of machine learning models. Within the framework of this study, we have identified the
following tasks:
1. Formation of the input data set for the support vector machine.
2. Research and adaptation of methods for extracting features from files.
3. Construction and evaluation of several machine learning models based on extracted
features.
4. Comparison of models in order to choose the most effective one for detecting malware.

1 Materials and methods

This section describes the main stages of our research. Section 1.1 covers the basics of PE
format. In Subsection 1.2, we consider the formation of the input data set. Subsection 1.3
describes data representation and feature extraction methods, and Subsection 1.4 introduces
the basics of the support vector machine algorithm.

1.1 Description of PE format

There is no doubt that Portable Executable (PE) file format plays a key role in the execution
of software in the Windows operating system. It is universal file format for executable files,
dynamic link libraries (DLLs) and drivers (Microsoft, n.d.). Structural organization of PE
format, which is depicted in Fig. 1, is one of its main features. PE file consists of different
sections containing different types of information. For example, PE header contains metadata
about the file, such as the date of its creation, file size, version, and so on (Sikorski et al.,
2012). Import address table indicates external functions that the program uses, and export
address table indicates the functions that the program exposes for use by other programs.
These tables can provide important information about the behavior of a program because they
indicate the interaction of the program with other programs or with the operating system
(Sikorski et al., 2012; Bilar, 2007). Resource sections can contain different types of data, such
as icons, fonts, images, text lines, etc. These resources can be analyzed to obtain additional
features for static analysis. Using n-grams of bytes or n-grams of instructions, certain patterns
in binary code contained in PE files can be detected. These patterns may indicate typical
behavior of a benign program or behavior specific to malware, such as exploitation of known
vulnerabilities, attempts to bypass antivirus programs, or the presence of malicious content
(Abdessadki et al., 2019). Ultimately, the analysis of PE format can provide a significant
amount of information that can be used to classify a file as malicious or safe one.

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

42

Figure 1. Structure of PE format

1.2 Formation of the input data set
The creation of the input data set is one of the most important steps in building a machine
learning model. It is also necessary that such a set is well balanced to obtain the most
representative results. The input data was represented by a dataset containing 11.844
malicious .exe files and 980 benign ones. Malicious files were divided into 5 different
families: CryptoRansom (5856), Zbot (1973), Zeus (1413), InstallCore (731), Winwebsec
(657), Mediyes (463), Zeroaccess (407), Locker (300). An infographic of the distribution of
files by type can be seen in Fig. 2.

Figure 2. Infographic of distribution of files by type

It is worth noting that in the used data set there are significantly fewer safe files than

malicious ones. In real system, this may be a problem, but in our case, such a distribution is
acceptable, since our main task in this work is to investigate methods of feature formation. All
malicious files were taken from "malicia-project.com" and "virusshare.com" websites. Benign
files were taken from the folders of installed legitimate software applications of various
categories. They can be downloaded at "download.cnet.com/windows".

1.3 Identification of features
As already mentioned in this Section, PE executable files contain a lot of different
information that can be used to detect malware. We can consider each file as a sequence of

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

43

bytes, a set of trace instructions, or function calls. Different types of file representation require
different approaches to information extraction, selection, and preprocessing. This Section is
aimed at solving these tasks.

1.3.1 Binary data representation
To generate input data for a machine learning model, you need to extract useful bit
information from the executable file. To do this, each file is processed in turn using the pefile
library from the Python programming language. The functions of this module allow to get the
bytes of certain fields from different sections of PE-file in the form of a line. For each file
from the data set, a list containing the sequence of bytes of this file is formed. A visualization
of this process can be seen in Fig. 3.

Figure 3. The process of forming a byte vector, which is filled with different fields

of PE file structure

This study examines two models of binary data representation. The first model uses
only the byte sequence from the header (purple cells in Fig. 1): DOS_HEADER,
FILE_HEADER, OPTIONAL_HEADER, SECTION_HEADER, Export, and Import. The
second model uses the entire header and resource section (.rsrc) as it is available in the file
module (orange cells in Fig 1). Fig. 4 shows an example of the fields used for the DOS
Header (The fields, 2016).

Figure 4. Example of DOS_HEADER fields from PE file structure

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

44

Data representation using n-grams was one of the first feature generation methods used
to detect malware (Raff et al., 2018). In this work, we will use a Markov chain, which can be
represented as a graph, in which the vertices are the states of the process (all possible
256 bytes), and the edges are the transitions between the states. As a result, we get a square
matrix of 𝑃 = ฮ𝑝௜௝ฮ transitions with a dimension of 256*256, where each 𝑝௜௝ cell contains the
probability of transition from one byte to another. The transition matrix is subject to the
following conditions:

𝑝௜௝ ≥ 0, (1)

∀𝑖 ෍ 𝑝௜௝ = 1.

௝

 (2)

To build such a matrix of transitions, first, based on the collected sequence of bytes for
each file, it is necessary to build an adjacency matrix of the form (00, 01, ..., ff)*(00, 01, ...,
ff). In this adjacency matrix, the number of times one byte was immediately followed by
another byte is counted in each cell. And only then, after the formation of adjacent matrices,
transition matrices are built for all files.

At the final stage, a final matrix with dimensions 12824 (the number of all files)*256^2
is formed, in which each line corresponds to one file and includes its transition matrix
converted into vector form. Each such vector contains 65536 values. A diagram of this
process can be seen in Fig. 5.

Figure 5. Diagram of formation of the final matrix

Before passing the resulting matrix to the machine learning algorithm, you must first

split this matrix into two parts. One part will be used for learning the model and the other part
for testing. Since our dataset does not contain a large number of different types of malicious
files, it was decided to use 60% of the final matrix for learning and 40% for testing.

1.3.2 Instruction tracing
Executable instruction tracing is also used to detect malware. We generate disassembled code
using IDA Pro, which is opened for each file via the command line using a python script. The
program saves disassembled instructions of each element in .asm files. This is a file format in
which text information is stored. An example of an .asm file is shown in Fig. 6.

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

45

Figure 6. A fragment of the .asm file

Note: Used instructions are marked in red

After that, instructions (push, call, cmp, mov, jz, etc.), which are assembled into a two-
dimensional matrix, are sent to each file in turn. Each line of this matrix corresponds to a
sequence of instructions of a specific file. Now the task is to form adjacency matrices for all
files. In binary data representation, we used the number of all existing bytes as the dimension
of the adjacency matrix. However, in the case of instruction tracing, we cannot use all existing
instructions, as their number is counted in the thousands. And this will have a very negative
effect on the learning speed of the model. Therefore, it is necessary to limit the set of
instructions based on which the adjacency matrix is built. To solve this problem, it was
decided to choose the instructions that appear in all files the most times in total. Four sets of
instructions containing 74, 126, 187 and 272 elements were formed. Based on each such set, a
machine learning model will ultimately be built.

Finally, an adjacency matrix is built for each file in the same way as in binary data
representation. The four sets of instructions determine the dimensionality of two-dimensional
square adjacency matrices, in which for each pair of instructions in the matrix, the number of
times the first instruction followed the second is counted. Now, transition matrices are
constructed using adjacency matrices. Transition matrices form the final matrix, as in Fig. 5.
As in binary data representation, the final matrix is divided into two parts - learning and
testing ones, and the share of the learning sample is 60% of the entire data set.

1.4 Machine learning algorithm
For file classification, we use the support vector machine (SVM) algorithm. This algorithm
searches for a hyperplane in the feature space that separates the points of two classes with the
maximum distance (Lifshits, 2006; Burges, 1998). The hyperplane found by the SVM is a
linear combination of data instances, 𝑥௜, with weights, 𝛼௜. It is important to note that only
points close to the hyperplane will have nonzero values of 𝛼. These points are called support
vectors. Therefore, the goal of SVM learning is to find the weight vector α that describes the
contribution of each data instance to the hyperplane. Using quadratic programming, you can
effectively solve the following optimization problem:

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

46

max
ఈ

ቌ෍ 𝑎௜

௡

௜ୀଵ

−
1

2
෍ ෍ 𝛼௜

௡

௝ୀଵ

௡

௜ୀଵ

𝛼௝𝑦௜𝑦௝〈𝑥௜, 𝑥௝〉ቍ. (3)

Under the conditions:

෍ 𝛼௜𝑦௜ = 0

௡

௜ୀଵ

, (4)

0 ≤ 𝛼௜ ≤ 𝐶, (5)

where 𝑦௜ is the label of the class of the 𝑥௜ instance, 〈∙,∙〉 is the scalar product, and C is the
regularization parameter that allows "soft fields". That is, some instances may fall between
fields, which helps prevent data overlearning and provides better accuracy. The weight vector
of the hyperplane is calculated as follows:

𝜔 = ෍ 𝛼௜𝑦௜𝑥௜

௜

. (6)

In the current state of affairs, only linear hyperplanes are possible in the d-dimensional
space determined by 𝑥 feature vectors. Using the kernel trick, data instances can be projected
into a higher-dimensional space and find a linear hyperplane in it that will be equivalent to a
nonlinear hyperplane in the original d-dimensional space. A new optimization problem arises:

max
ఈ

൮෍ 𝑎௜

௡

௜ୀଵ

−
1

2
෍ ෍ 𝛼௜

௡

௝ୀଵ

௡

௜ୀଵ

𝛼௝𝑦௜𝑦௝𝐾൫𝑥௜, 𝑥௝൯൲. (7)

The replacement of the scalar product with 𝐾൫𝑥௜ , 𝑥௝൯ kernel function is the only
difference from formula (3). In our case, a Gaussian kernel is used, where transition matrices
for two instances are taken and their kernel function (kernel) is calculated according to the
following formula:

𝐾(𝑥, 𝑥ᇱ) = 𝛿ଶ𝑒
ି భ

మഊమ ∑ ቀ௫೔ೕି௫೔ೕ
ᇲ ቁ

మ

೔,ೕ . (8)

Now, taking into account 𝛼 found in equation (7), our solution is given by:

𝑓(𝑥) = 𝑠𝑔𝑛 ൭෍ 𝛼௜𝑦௜𝐾൫𝑥௜, 𝑥௝൯

௡

௜ୀଵ

൱, (9)

where class +1 (benign file) is returned if sum ≥ 0, and class -1 (malicious file) is returned if
sum < 0.

2 Results and discussion

In this study, six machine learning models, four of which are trace representation type and
two are binary type, were created. The indicators of the main metrics can be seen in Table 1.
In this table, Binary_r is a model that includes the file resource section. Binary_wr model
does not include it. Models called Trace_74 and similar ones are based on the trace type of
data representation, where 74 means the number of instructions used as features. Time means
the learning time of the model, measured in seconds. ROC and Precision-Recall curves can

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

47

also be observed in Fig. 7. The results show that all our models have fairly close indicators.
However, it is still possible to select the best model, relying on the F-score metric, which is
the harmonic mean between precision and recall. Models based on binary data representation
have proven to be quite effective, especially when a resource section is used. A slight
advantage in all metrics was shown by the Binary_r model. However, the learning time of this
model also increased slightly as more data was used. These high metrics are explained by the
fact that binary code often displays file properties that are specific for malware, such as
specific coding pattern, specific libraries, or command sequences. For security systems that
rely on speed of response and high accuracy, models learned on binary representation,
especially with the resource section, should be used. Among the models based on
disassembled instructions, the model with 74 instructions (Trace_74) turned out to be the
most efficient one. In addition, the learning time of this model is significantly less than that of
the variants with 126, 187 and 272 features, which is a significant plus. This proves that it is
not always necessary to use a large amount of learning data for high classification quality.
More precisely, the correct selection of "important" instructions can give an advantage over a
large volume. When developing systems for detecting malicious files based on trace
instructions, we recommend focus on the quality, not the quantity, of data. This not only
improves the accuracy, but also reduces the computational cost and learning time of the
model. It is also worth noting that binary representation models have shown a comparable
accuracy result to the best model learned on trace instructions.

Figure 7. ROC and Precision-Recall curves

The results of our models accuracy may seem too high (Table 1), but some limitations

should be taken into account. First, the data set used is not well balanced. Benign files are an
order of magnitude fewer than viral ones, so the machine learning model will be better able to
recognize malicious files. This is acceptable in our research, but a real file recognition system
should use a balanced and carefully filtered data set. Second, there are not many different
types of malicious files in the collected data set. Viruses of the same type are very similar to
each other, which makes it easy for a machine learning algorithm to recognize such files.
Future studies should use as many varieties of malicious files as possible to obtain a more
representative result of the detection accuracy.

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

48

Table 1. Results of evaluation of machine learning models

recall precision F-score

roc_auc pr_auc Time
0 1 0 1 0 1

Binary_wr 0.9130 0.9909 0.8873 0.9932 0.9000 0.9921 0.9956 0.9996 795

Binary_r 0.9239 0.9915 0.8947 0.9940 0.9090 0.9928 0.9961 0.9997 816

Trace_74 0.9130 0.9893 0.8689 0.9932 0.8904 0.9912 0.9946 0.9995 99

Trace_126 0.9094 0.9873 0.8479 0.9929 0.8776 0.9901 0.9921 0.9994 255

Trace_187 0.8695 0.9887 0.8571 0.9898 0.8633 0.9893 0.9906 0.9992 490

Trace_272 0.8369 0.9882 0.8461 0.9873 0.8415 0.9877 0.9908 0.9993 747

Conclusions

In this work, a method for detecting malicious programs based on machine learning was
presented. We analyzed machine learning models that were built based on two different
feature extraction approaches. The first approach used bitwise file information obtained from
the PE structure using the Python pefile library. Two models were generated, one of which
used the resource section of the file for learning. The second approach used executable
instruction tracing. The disassembled code was generated using the IDA Pro program. 4 sets
of features, each of which contained a different number of instructions (74, 126, 187 and 272)
and corresponded to one machine learning model, were formed. All six models showed a
good result of the accuracy of detecting malicious files. Our study demonstrates the
importance of choosing a feature extraction approach when building machine learning
models. Models based on the binary representation showed the best accuracy, especially the
one that included the resource section. On the other hand, there was an opportunity to
optimize the malware detection process through instruction tracing, especially when a limited
number of instructions was used. It was found that the model learned on the least number of
instructions (Trace_74) showed the highest values for all metrics. In addition, this model
requires the least time for its learning, which is a significant advantage for using such a model
in real file classification systems. Thus, it can be argued that the principle of using all possible
data for classification does not always give the best accuracy result. Sometimes it is useful to
select a small part of the entire set of features on which the learned model will show the
highest accuracy result.

Acknowledgements

None.

Conflict of Interest

None.

References

Abdessadki, I., & Lazaar, S. (2019). A new classification based model for malicious pe files
detection. International Journal of Computer Network and Information Security, 11(6), 1-9.
Abri, F., Siami-Namini, S., Khanghah, M.A., Soltani, F.M. et al. (2019). The performance of
machine and deep learning classifiers in detecting zero-day vulnerabilities. arXiv:1911.09586.

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

49

Alazab, M., Venkatraman, S., Watters, P., & Alazab M. (2011). Zero-day malware detection
based on supervised learning algorithms of api call signatures. In Australasian Data Mining
Conference (pp. 171-182).
Al-Khshali, H.H., Ilyas, M., & Ucan, O.N. (2020). Effect of pe file header features
on accuracy. In IEEE Symposium Series on Computational Intelligence.
Bilar, D. (2007). Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics.
Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2, 121-167.
Chaudhary, P. (2021). Pe file-based malware detection using machine learning.
In Proceedings of International Conference on Artificial Intelligence and Applications
(pp. 113-123).
Handa, A., Sharma, A., & Shukla, S.K. (2019). Machine learning in cybersecurity: A review.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
Kutlay, A., & Karađuzović-Hadžiabdić, K. (2020). Static based classification of malicious
software using machine learning methods. Lecture Notes in Networks and Systems book
series, 83.
Lifshits, Yu. (2006). Algorithms for internet: Support vector machines.
Microsoft. "Portable Executable". (n.d.). Retrieved from https://learn.microsoft.com/en-
us/windows/win32/debug/pe-format.
Nafiiev, A., Kholodulkin, H., & Rodionov, A. (2022). Comparative analysis of machine
learning methods for detecting malicious files. Theoretical and Applied Cybersecurity, 3(1).
Raff, E., Zak, R. et al. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques.
Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands on Guide
to Dissecting Malicious Software.
The fields used for the DOS Header. (2016). Retrieved from https://github.com/wine-
mirror/wine/blob/master/include/winnt.h.

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© A. Е. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

50

МОДЕЛЬ ВИЯВЛЕННЯ ШКІДЛИВОГО ПРОГРАМНОГО
ЗАБЕЗПЕЧЕННЯ НА ОСНОВІ МАШИННОГО НАВЧАННЯ

А. Е. Нафієв

Аспірант
Національний технічний університет України "Київський політехнічний інститут

імені Ігоря Сікорського", фізико-технічний інститут, м. Київ, Україна
https://orcid.org/0009-0004-8604-377X

Д. В. Ланде
Доктор технічних наук, професор

Інститут проблем реєстрації інформації
Національної академії наук України, м. Київ, Україна

https://orcid.org/0000-0003-3945-1178

Анотація. З кожним роком автори шкідливого програмного забезпечення створюють все більш
досконалі та хитромудрі шкідливі програми, які можуть завдати шкоди нашим комп’ютерам.
Традиційні методи, які ґрунтуються на пошуку сигнатур програм, перестають бути
ефективними для вирішення проблеми детекції шкідливого програмного забезпечення.
На зміну приходить автоматизація аналізу файлів, яка є більш перспективним підходом для
виявлення підозрілих файлів. Для виявлення таких програм все частіше використовують
методи машинного навчання. Однак для виконання своїх операцій такі рішення можуть
потребувати багато обчислювальних ресурсів. Тому виникає задача створення оптимальної
моделі машинного навчання з погляду швидкості навчання і точності детекції шкідливого
програмного забезпечення. Крім того, зазвичай одного методу представлення даних
недостатньо для якісного виявлення шкідливих ознак файлів. Тому в цій роботі буде описано
два різні методи: один підхід ґрунтується на бінарній інформації файлу, другий полягає
у використанні трасувальних інструкцій. Мета цієї роботи – підвищення ефективності
виявлення шкідливого програмного забезпечення шляхом оптимізації методів вилучення ознак
та застосування машинного навчання. Основні задачі дослідження включають: вилучення ознак
з exe. файлів, створення кількох моделей машинного навчання та їх порівняння для визначення
найефективнішої моделі. Використаний у цьому дослідженні набір даних був зібраний з різних
інтернет-джерел та складається з 12824 виконуваних файлів у форматі .exe, з яких 11844 файлів
є шкідливими, а 980 – доброякісними. У статті представлено рекомендовані методи вилучення
ознак та генерації вхідних даних для моделей машинного навчання на основі алгоритму
машини опорних векторів. Ці методи дозволяють знайти найкращий шлях для обробки ознак,
що описують шкідливий файл. Було створено шість моделей машинного навчання, кожна з
яких показала високі показники метрик F-score, precision та recall. Модель, яка була створена на
основі бінарного типу представлення даних, показала найвищі результати по всіх метриках.

Ключові слова: виявлення вторгнень, PE формат, вилучення ознак, дизасембльовані
інструкції, машина опорних векторів.

Дата надходження: 26.08.2023
Прийнято: 12.09.2023

