ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

UDC [004.493.004.94]:004.8
DOLI: 10.24025/2306-4412.3.2023.286374

MALWARE DETECTION MODEL BASED ON MACHINE LEARNING

Alan Nafiiev
PhD Student
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute",
Institute of Physics and Technology, Kyiv, Ukraine
https://orcid.org/0009-0004-8604-377X
Dmytro Lande
Doctor of Technical Sciences, Professor
Institute for Information Recording of National Academy
of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0003-3945-1178

Abstract. Every year, malware authors create more and more sophisticated and clever malware that
can harm our computers. Traditional methods, which are based on searching for program signatures
are no longer effective in solving the problem of malware detection. It is being replaced by automated
file analysis, which is a more promising approach to detecting suspicious files. Machine learning
methods are increasingly used to detect such malware programs. However, such solutions may require
a lot of computing resources to perform their operations. Therefore, the task of creating an optimal
machine learning model in terms of learning speed and malware detection accuracy arises. In addition,
usually one method of data representation is not sufficient to detect malicious features of files.
Therefore, this paper will describe two different methods: one method is based on the binary
information of the file, the other one is based on disassembled code of executable files. The purpose of
this work is to improve the efficiency of malware detection by optimising feature extraction methods
and applying machine learning. The main tasks of the study include: extracting features from exe files,
creating several machine learning models and comparing them to determine the most effective one.
The dataset used in this study has been collected from various online sources and consists of 12824
executable files in .exe format, of which 11844 files are malicious and 980 are benign. This paper
presents recommended methods of feature extraction and input data generation for machine learning
models based on the support vector machine algorithm. These methods allow to find the best way to
process the features describing a malicious file. Six machine learning models, each of which
performed well in terms of F-score, precision, and recall metrics, were created. The model that was
created based on the binary type of data representation showed the highest results for all metrics.

Keywords: intrusion detection, PE format, feature extraction, disassembled instructions, support vector
machine.

Introduction

Every year there are more and more methods for detecting malicious software that abandon
traditional signature approaches. Instead, a bet is made on heuristic analysis, behavioral
methods or their combinations (Abri et al., 2019). These methods have gained particular
attention due to their ability to detect zero-day malware. This is software whose signature
is not available to antivirus systems (Handa et al., 2019; Alazab et al., 2011). The use of
machine learning models is the key point of these methods, but it is not without certain
challenges. The main ones are the selection and formation of an optimal set of features

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

40



BicHuk YepkacbKoro gepxaBHOro TeXHOJNOri4YHOro yHiBepcurteTty 3/2023
Bulletin of Cherkasy State Technological University

(features of the file) that allow to best represent the input data set. In addition, it is important
to effectively adapt these features for machine learning models to improve the overall
accuracy of the models and optimize the learning time. Our work is focused precisely on these
aspects. In particular, in the world scientific literature there are already works that offer
various solutions to these issues (Chaudhary, 2021; Kutlay et al., 2020; Al-Khshali et al.,
2020). In our previous study, we have analyzed a set of .exe files with the help of different
machine learning algorithms using the binary code of the file as key features (Nafiiev ef al.,
2022). We have considered the executable file in PE format, and also selected the most
optimal parameters for classification algorithms. The algorithm based on support vectors turns
out to be particularly effective. Therefore, in this work, we will build several machine
learning models based on this algorithm. The main purpose of this research is to improve the
process of detecting malware with the help of modernized feature extraction methods and the
use of machine learning models. Within the framework of this study, we have identified the
following tasks:

1. Formation of the input data set for the support vector machine.

2. Research and adaptation of methods for extracting features from files.

3. Construction and evaluation of several machine learning models based on extracted
features.

4. Comparison of models in order to choose the most effective one for detecting malware.

1 Materials and methods

This section describes the main stages of our research. Section 1.1 covers the basics of PE
format. In Subsection 1.2, we consider the formation of the input data set. Subsection 1.3
describes data representation and feature extraction methods, and Subsection 1.4 introduces
the basics of the support vector machine algorithm.

1.1 Description of PE format

There is no doubt that Portable Executable (PE) file format plays a key role in the execution
of software in the Windows operating system. It is universal file format for executable files,
dynamic link libraries (DLLs) and drivers (Microsoft, n.d.). Structural organization of PE
format, which is depicted in Fig. 1, is one of its main features. PE file consists of different
sections containing different types of information. For example, PE header contains metadata
about the file, such as the date of its creation, file size, version, and so on (Sikorski et al.,
2012). Import address table indicates external functions that the program uses, and export
address table indicates the functions that the program exposes for use by other programs.
These tables can provide important information about the behavior of a program because they
indicate the interaction of the program with other programs or with the operating system
(Sikorski et al., 2012; Bilar, 2007). Resource sections can contain different types of data, such
as icons, fonts, images, text lines, etc. These resources can be analyzed to obtain additional
features for static analysis. Using n-grams of bytes or n-grams of instructions, certain patterns
in binary code contained in PE files can be detected. These patterns may indicate typical
behavior of a benign program or behavior specific to malware, such as exploitation of known
vulnerabilities, attempts to bypass antivirus programs, or the presence of malicious content
(Abdessadki et al., 2019). Ultimately, the analysis of PE format can provide a significant
amount of information that can be used to classify a file as malicious or safe one.

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

41



ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

PE File

MS-DOS Header

PE Header

Header Optional Header

—

Sections Table

[Import /Export Address Table]

.data Section J [ .text Section

Sections

.rsrc Section

(
[ .rdata Section
[
[ .idata Section

)
bss Section |
J
J

J
.edata Section ] [ .reloc Section
) (

Figure 1. Structure of PE format

1.2 Formation of the input data set

The creation of the input data set is one of the most important steps in building a machine
learning model. It is also necessary that such a set is well balanced to obtain the most
representative results. The input data was represented by a dataset containing 11.844
malicious .exe files and 980 benign ones. Malicious files were divided into 5 different
families: CryptoRansom (5856), Zbot (1973), Zeus (1413), InstallCore (731), Winwebsec
(657), Mediyes (463), Zeroaccess (407), Locker (300). An infographic of the distribution of
files by type can be seen in Fig. 2.

Locker
Zeroaccess
Mediyes

Zeus
CryptoRansom
Zbot

Benign

InstaliCore

Winwebsec

0 1000 2000 3000 4000 5000 6000
Number of instances in Dataset

Figure 2. Infographic of distribution of files by type

It is worth noting that in the used data set there are significantly fewer safe files than
malicious ones. In real system, this may be a problem, but in our case, such a distribution is
acceptable, since our main task in this work is to investigate methods of feature formation. All
malicious files were taken from "malicia-project.com" and "virusshare.com" websites. Benign
files were taken from the folders of installed legitimate software applications of various
categories. They can be downloaded at "download.cnet.com/windows".

1.3 Identification of features

As already mentioned in this Section, PE executable files contain a lot of different
information that can be used to detect malware. We can consider each file as a sequence of

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

42



BicHuk Yepkacbkoro gepxaBHOro TeXHONOriYHOro yHiBepcuTeTy 3/2023
Bulletin of Cherkasy State Technological University

bytes, a set of trace instructions, or function calls. Different types of file representation require
different approaches to information extraction, selection, and preprocessing. This Section is
aimed at solving these tasks.

1.3.1 Binary data representation

To generate input data for a machine learning model, you need to extract useful bit
information from the executable file. To do this, each file is processed in turn using the pefile
library from the Python programming language. The functions of this module allow to get the
bytes of certain fields from different sections of PE-file in the form of a line. For each file
from the data set, a list containing the sequence of bytes of this file is formed. A visualization
of this process can be seen in Fig. 3.

List of bytes
08 10 60 80-80 10 80 O 2E 746578740000 00 00 10 00 00 00 10
60 90 08 0P-00 8O 0O 08- 00 00 00 02 00 00 00°02 0000 20 00 00 6
2E 72 64 61-74 61 00 00- 30 20 88 B (_ 00 10 00 00 0 E
80 82 60 ee 0000 00 02 00 00 00 04 00 00 40 C
98 80 00 08- 00 10 0000

2E 646174 6100 00 00
00 00 00 02 00 00 00 06 0000 4

00 108 @@ OO—ZCEK N

Figure 3. The process of forming a byte vector, which is filled with different fields
of PE file structure

This study examines two models of binary data representation. The first model uses
only the byte sequence from the header (purple cells in Fig. 1): DOS HEADER,
FILE HEADER, OPTIONAL HEADER, SECTION HEADER, Export, and Import. The
second model uses the entire header and resource section (.rsrc) as it is available in the file
module (orange cells in Fig 1). Fig. 4 shows an example of the fields used for the DOS
Header (The fields, 2016).

typedef struct _IMAGE_DOS_HEADER {

WORD e_magic; /* 00: MZ Header signature x*/

WORD e_cblp; /* 02: Bytes on last page of file x/

WORD e_cp; /* 04: Pages in file %/

WORD e_crlc; /* 06: Relocations */

WORD e_cparhdr; /* 08: Size of header in paragraphs */
WORD e_minalloc; /* @a: Minimum extra paragraphs nFeded *x/
WORD e_maxalloc; /* Oc: Maximum extra paragraphs needed %/
WORD e_ss; /* @e: Initial (relative) SS value %/
WORD e_sp; /* 10: Initial SP value */

WORD e_csum; /* 12: Checksum */

WORD e_ip; /* 14: Initial IP value */

WORD e_cs; /* 16: Initial (relative) CS value */

WORD e_1lfarlc; /* 18: File address of relocation table */
WORD e_ovno; /* la: Overlay number x/

WORD e_res[4]; /* 1c: Reserved words x/

WORD e_oemid; /* 24: OEM identifier (for e_oeminfo) */
WORD e_oeminfo; /* 26: OEM information; e_oemid specific x/
WORD e_res2[10]; /* 28: Reserved words x/

DWORD e_lfanew; /* 3c: Offset to extended header x/

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;
#include <poppack.h>

Figure 4. Example of DOS _HEADER fields from PE file structure

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374



ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

Data representation using n-grams was one of the first feature generation methods used
to detect malware (Raff et al., 2018). In this work, we will use a Markov chain, which can be
represented as a graph, in which the vertices are the states of the process (all possible
256 bytes), and the edges are the transitions between the states. As a result, we get a square
matrix of P = ||pl- | || transitions with a dimension of 256*256, where each p;; cell contains the
probability of transition from one byte to another. The transition matrix is subject to the
following conditions:

pij =0, (1)
Vizpij =1. (2)
J

To build such a matrix of transitions, first, based on the collected sequence of bytes for
each file, it is necessary to build an adjacency matrix of the form (00, 01, ..., fH)*(00, 01, ...,
ff). In this adjacency matrix, the number of times one byte was immediately followed by
another byte is counted in each cell. And only then, after the formation of adjacent matrices,
transition matrices are built for all files.

At the final stage, a final matrix with dimensions 12824 (the number of all files)*256"2
is formed, in which each line corresponds to one file and includes its transition matrix
converted into vector form. Each such vector contains 65536 values. A diagram of this
process can be seen in Fig. 5.

transition matrix 1 ) )
\ Final matrix
transition matrix 1

transition matrix 2

transition matrix 2 EE—— transition matrix 3

transition matrix 4
O O O

%o / [ transition malrix 12824 ]
transition matrix 12824

Figure 5. Diagram of formation of the final matrix

Before passing the resulting matrix to the machine learning algorithm, you must first
split this matrix into two parts. One part will be used for learning the model and the other part
for testing. Since our dataset does not contain a large number of different types of malicious
files, it was decided to use 60% of the final matrix for learning and 40% for testing.

1.3.2 Instruction tracing

Executable instruction tracing is also used to detect malware. We generate disassembled code
using IDA Pro, which is opened for each file via the command line using a python script. The
program saves disassembled instructions of each element in .asm files. This is a file format in
which text information is stored. An example of an .asm file is shown in Fig. 6.

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

44



BicHuk YepkacbKoro aepxxaBHOro TeXHOJSOriYHOro yHiBepcuTeTy 3/2023

Bulletin of Cherkasy State Technological University

loc_41128BC: ; CODE XREF: sub_411239+70\u2191j
mov [ebp+var_48], ©
mov [ebp+var_48], 1
[push’| 14h ; dwMilliseconds

[call | ds:Sleep
call sub_411565

| mov | [ebp+var_48], eax
cmp [ebp+var_48], ©
jz short loc_4112FB
mov eax, [ebp+var_28]
| mov [ebp+var_24], eax
mov | [ebp+var_4], 3D63h
mov ecx, [ebp+var_24]
[push| ecx
call sub_411000
[add | esp, 4

jmp short loc_411302

Figure 6. A fragment of the .asm file
Note: Used instructions are marked in red

After that, instructions (push, call, cmp, mov, jz, etc.), which are assembled into a two-
dimensional matrix, are sent to each file in turn. Each line of this matrix corresponds to a
sequence of instructions of a specific file. Now the task is to form adjacency matrices for all
files. In binary data representation, we used the number of all existing bytes as the dimension
of the adjacency matrix. However, in the case of instruction tracing, we cannot use all existing
instructions, as their number is counted in the thousands. And this will have a very negative
effect on the learning speed of the model. Therefore, it is necessary to limit the set of
instructions based on which the adjacency matrix is built. To solve this problem, it was
decided to choose the instructions that appear in all files the most times in total. Four sets of
instructions containing 74, 126, 187 and 272 elements were formed. Based on each such set, a
machine learning model will ultimately be built.

Finally, an adjacency matrix is built for each file in the same way as in binary data
representation. The four sets of instructions determine the dimensionality of two-dimensional
square adjacency matrices, in which for each pair of instructions in the matrix, the number of
times the first instruction followed the second is counted. Now, transition matrices are
constructed using adjacency matrices. Transition matrices form the final matrix, as in Fig. 5.
As in binary data representation, the final matrix is divided into two parts - learning and
testing ones, and the share of the learning sample is 60% of the entire data set.

1.4 Machine learning algorithm

For file classification, we use the support vector machine (SVM) algorithm. This algorithm
searches for a hyperplane in the feature space that separates the points of two classes with the
maximum distance (Lifshits, 2006; Burges, 1998). The hyperplane found by the SVM is a
linear combination of data instances, x;, with weights, ;. It is important to note that only
points close to the hyperplane will have nonzero values of a. These points are called support
vectors. Therefore, the goal of SVM learning is to find the weight vector a that describes the
contribution of each data instance to the hyperplane. Using quadratic programming, you can
effectively solve the following optimization problem:

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

45



ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

n 1 n n
max a; — Ez Z a; a;y;yi{x, x;) |- 3)
i=1 =1 j=1
Under the conditions:
n
Z a;y; = O, (4)
i=1
0< a; <C, (5)

where y; is the label of the class of the x; instance, (-, is the scalar product, and C is the
regularization parameter that allows "soft fields". That is, some instances may fall between
fields, which helps prevent data overlearning and provides better accuracy. The weight vector
of the hyperplane is calculated as follows:
w = Z a;yiXi. (6)
i

In the current state of affairs, only linear hyperplanes are possible in the d-dimensional
space determined by x feature vectors. Using the kernel trick, data instances can be projected
into a higher-dimensional space and find a linear hyperplane in it that will be equivalent to a
nonlinear hyperplane in the original d-dimensional space. A new optimization problem arises:

n n n
max Z a; — Z Z a; ajyl-yjl{(xi, x]-) . (7)
i=1

i=1 j=1
The replacement of the scalar product with K (xl-,xj) kernel function is the only
difference from formula (3). In our case, a Gaussian kernel is used, where transition matrices
for two instances are taken and their kernel function (kernel) is calculated according to the
following formula:

N| =

1 12 2
K(x,x') = 82z Zuil*xij) )

Now, taking into account & found in equation (7), our solution is given by:
n

f(x) =sgn (Z a;yiK (x;, xj))’ )]
i=1

where class +1 (benign file) is returned if sum > 0, and class -1 (malicious file) is returned if

sum < 0.

2 Results and discussion

In this study, six machine learning models, four of which are trace representation type and
two are binary type, were created. The indicators of the main metrics can be seen in Table 1.
In this table, Binary r is a model that includes the file resource section. Binary wr model
does not include it. Models called Trace 74 and similar ones are based on the trace type of
data representation, where 74 means the number of instructions used as features. Time means
the learning time of the model, measured in seconds. ROC and Precision-Recall curves can

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

46



BicHuk YepkacbKoro aepxxaBHOro TeXHOJSOriYHOro yHiBepcuTeTy 3/2023
Bulletin of Cherkasy State Technological University

also be observed in Fig. 7. The results show that all our models have fairly close indicators.
However, it is still possible to select the best model, relying on the F-score metric, which is
the harmonic mean between precision and recall. Models based on binary data representation
have proven to be quite effective, especially when a resource section is used. A slight
advantage in all metrics was shown by the Binary r model. However, the learning time of this
model also increased slightly as more data was used. These high metrics are explained by the
fact that binary code often displays file properties that are specific for malware, such as
specific coding pattern, specific libraries, or command sequences. For security systems that
rely on speed of response and high accuracy, models learned on binary representation,
especially with the resource section, should be used. Among the models based on
disassembled instructions, the model with 74 instructions (Trace 74) turned out to be the
most efficient one. In addition, the learning time of this model is significantly less than that of
the variants with 126, 187 and 272 features, which is a significant plus. This proves that it is
not always necessary to use a large amount of learning data for high classification quality.
More precisely, the correct selection of "important" instructions can give an advantage over a
large volume. When developing systems for detecting malicious files based on trace
instructions, we recommend focus on the quality, not the quantity, of data. This not only
improves the accuracy, but also reduces the computational cost and learning time of the
model. It is also worth noting that binary representation models have shown a comparable
accuracy result to the best model learned on trace instructions.

' ROC Curves ‘ Precision-Recall Curves
1.001 ', 1.00 p———e—————————
": ;';A - ""‘_‘—7.{ o o= Y_\\%}
09s{ | 098 )
0.901 0.96 1 \ N
0.85 trace 74, auc=0.9946 0.94 | trace 74, auc=0.9995
trace 126, auc=0.9921 trace 126, auc=0.9994
trace 187, auc=0.9906 trace 187, auc=0.9992
0.801 . trace 272, auc=0.9908 | g7 | trace 272, auc=0.9993
binary_wr, auc=0.9956 binary_wr, auc=0.9996
binary_r, auc=0.9961 binary_r, auc=0.9997
S 0.00 0.02 0.04 006 008 010 012 0.14 0'98_95 0.96 0.97 0.98 0.99 1.00

Figure 7. ROC and Precision-Recall curves

The results of our models accuracy may seem too high (Table 1), but some limitations
should be taken into account. First, the data set used is not well balanced. Benign files are an
order of magnitude fewer than viral ones, so the machine learning model will be better able to
recognize malicious files. This is acceptable in our research, but a real file recognition system
should use a balanced and carefully filtered data set. Second, there are not many different
types of malicious files in the collected data set. Viruses of the same type are very similar to
each other, which makes it easy for a machine learning algorithm to recognize such files.
Future studies should use as many varieties of malicious files as possible to obtain a more
representative result of the detection accuracy.

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

47



ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

Table 1. Results of evaluation of machine learning models

recall precision F-score
0 1 0 1 0 1
Binary wr | 0.9130 | 0.9909 |0.8873|0.9932|0.9000 | 0.9921 | 0.9956 | 0.9996 | 795
Binary r | 0.9239 | 0.9915 |0.8947 | 0.9940 | 0.9090 | 0.9928 | 0.9961 | 0.9997 | 816
Trace 74 | 0.9130 | 0.9893 |0.8689 | 0.9932 | 0.8904 | 0.9912 | 0.9946 | 0.9995 | 99
Trace 126 | 0.9094 | 0.9873 |0.8479|0.9929 | 0.8776 [ 0.9901 | 0.9921 | 0.9994 | 255
Trace 187 | 0.8695 | 0.9887 |0.8571 | 0.9898 | 0.8633 [ 0.9893 | 0.9906 | 0.9992 | 490
Trace 272 | 0.8369 | 0.9882 |0.8461 | 0.9873 | 0.8415 [ 0.9877 | 0.9908 | 0.9993 | 747

roc_auc|pr_auc | Time

Conclusions

In this work, a method for detecting malicious programs based on machine learning was
presented. We analyzed machine learning models that were built based on two different
feature extraction approaches. The first approach used bitwise file information obtained from
the PE structure using the Python pefile library. Two models were generated, one of which
used the resource section of the file for learning. The second approach used executable
instruction tracing. The disassembled code was generated using the IDA Pro program. 4 sets
of features, each of which contained a different number of instructions (74, 126, 187 and 272)
and corresponded to one machine learning model, were formed. All six models showed a
good result of the accuracy of detecting malicious files. Our study demonstrates the
importance of choosing a feature extraction approach when building machine learning
models. Models based on the binary representation showed the best accuracy, especially the
one that included the resource section. On the other hand, there was an opportunity to
optimize the malware detection process through instruction tracing, especially when a limited
number of instructions was used. It was found that the model learned on the least number of
instructions (Trace 74) showed the highest values for all metrics. In addition, this model
requires the least time for its learning, which is a significant advantage for using such a model
in real file classification systems. Thus, it can be argued that the principle of using all possible
data for classification does not always give the best accuracy result. Sometimes it is useful to
select a small part of the entire set of features on which the learned model will show the
highest accuracy result.

Acknowledgements
None.

Conflict of Interest
None.

References

Abdessadki, 1., & Lazaar, S. (2019). A new classification based model for malicious pe files
detection. International Journal of Computer Network and Information Security, 11(6), 1-9.

Abri, F., Siami-Namini, S., Khanghah, M.A., Soltani, F.M. et al. (2019). The performance of
machine and deep learning classifiers in detecting zero-day vulnerabilities. arXiv:1911.09586.

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

48



BicHuk YepkacbKoro gepxaBHOro TeXHOJNOri4YHOro yHiBepcurteTty 3/2023
Bulletin of Cherkasy State Technological University

Alazab, M., Venkatraman, S., Watters, P., & Alazab M. (2011). Zero-day malware detection
based on supervised learning algorithms of api call signatures. In Australasian Data Mining
Conference (pp. 171-182).

Al-Khshali, H.H., Ilyas, M., & Ucan, O.N. (2020). Effect of pe file header features
on accuracy. In IEEE Symposium Series on Computational Intelligence.

Bilar, D. (2007). Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics.

Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2, 121-167.

Chaudhary, P. (2021). Pe file-based malware detection using machine learning.
In Proceedings of International Conference on Artificial Intelligence and Applications
(pp. 113-123).

Handa, A., Sharma, A., & Shukla, S.K. (2019). Machine learning in cybersecurity: A review.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.

Kutlay, A., & Karaduzovi¢-Hadziabdi¢, K. (2020). Static based classification of malicious
software using machine learning methods. Lecture Notes in Networks and Systems book
series, 83.

Lifshits, Yu. (2006). Algorithms for internet: Support vector machines.

Microsoft. "Portable Executable". (n.d.). Retrieved from https://learn.microsoft.com/en-
us/windows/win32/debug/pe-format.

Nafiiev, A., Kholodulkin, H., & Rodionov, A. (2022). Comparative analysis of machine
learning methods for detecting malicious files. Theoretical and Applied Cybersecurity, 3(1).
Raff, E., Zak, R. et al. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques.

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands on Guide
to Dissecting Malicious Software.

The fields used for the DOS Header. (2016). Retrieved from https://github.com/wine-
mirror/wine/blob/master/include/winnt.h.

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

49



ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

MOJEJIb BUABJEHHSA HIKIJIJINBOT'O ITPOT'PAMHOI'O
3ABE3IIEYEHHA HA OCHOBI MAIIMHHOI'O HABYAHHSA

A. E. Hadien
AcrmipaHT
HarionanbHuit TexHiuHUMA yHiBepcuTeT YKpainu "KuiBChbKuil MOMITEXHIYHUH IHCTUTYT
imeHi Iropst Cikopcebkoro", ¢i3uko-TexHIuHuH iHCTUTYT, M. KuiB, Ykpaina

https://orcid.org/0009-0004-8604-377X

J. B. Jlanae
JIOKTOp TeXHIYHUX HAYK, Tpodecop
[acTuTyT IpOobIIEM peectpartii iHGopMarii
HamionanbHoi akanemii Hayk Ykpainu, M. Kuis, Ykpaina
https://orcid.org/0000-0003-3945-1178

AHoTanisi. 3 KOXKHIM POKOM aBTOPH IIKiUTHBOTO MPOTPAMHOTO 3a0e3TeUeHHs CTBOPIOIOTH BCE OLIBII
JIOCKOHATI Ta XUTPOMYJIPI IIKIIJINBI MPOTPaMU, sSKi MOKYTh 3aBIATH IITKOJHM HAIIUM KOMIT IOTEPAM.
Tpanuiiiiai MeTomu, sKi TPYHTYIOTBCS Ha TIONIYKY CHUTHATYp MpOrpaM, IepPecTaloTh OyTH
e(DeKTUBHUMU I BUPIMICHHS MPOOJEeMH JCTEKIi IIKi[UIMBOTO MPOTPAMHOTO 3a0e3MeUeHHS.
Ha 3MiHy mpuxoauTh aBTOMaTu3allis aHamizy (aimiB, ska € OUIbII MePCHCKTUBHUM IIIXOA0M IS
BUSIBJCHHS Migo3piaux ¢aimie. [Iasd BUSABICHHS TaKUX IIPOrpaM BCE 4YacTillle BHKOPHUCTOBYIOThH
METOJM MAIIMHHOTO HaBuaHHS. OJHAK /s BUKOHAHHS CBOIX OIEpamid Taki PIlICHHS MOXYTh
notTpeOyBaTi OaraTto OOYMCIIOBAIbHHX pecypciB. ToMy BHHHKAa€ 3ajjada CTBOPEHHS ONTHMABHOI
MOJEINII MAalTMHHOTO HABYAHHSA 3 IOTJIAMY IIBHIKOCTI HABYAHHS 1 TOYHOCTI METEKINi IIKiIJTABOTO
nporpamHoro 3abesmedeHHs. Kpim Toro, 3a3Buyail OJHOTO METOAY TMPEACTABICHHS JaHUX
HEJOCTaTHBO JIJIS SIKICHOTO BUSIBIICHHSI IITKIUTMBHX O3HAK (aitniB. ToMy B mili poOoTi Oyjie onmmcaHo
JBa Pi3HI METOOW: OOWH MiAXiJ IPYHTYeTbca Ha OiHapHiil iH(opmamii ¢aiimy, Apyruil moisrae
y BUKOPUCTaHHI TpacyBaJlbHUX IHCTPYKIid. MeTa 1€l poOOTH — MIABUINCHHSA €(QEKTUBHOCTI
BHSIBJICHHSI IITKIJTABOTO MTPOTPaMHOTO 3a0e3MeUeHHS MIJITXOM OTTHMI3allii METOIB BUIIyUEHHS O3HAK
Ta 3aCTOCYBaHHS MAITMHHOTO HaB4aHHs. OCHOBHI 3aj1a4i JOCITIKECHHS BKJIFOUAIOTh. BUITYYCHHS 03HAK
3 exe. (hailmiB, CTBOPEHHS KUTBKOX MOJIENIeH MAIIMHHOTO HABUAHHS Ta 1X MOPIBHAHHS IS BU3HAYCHHS
HalieeKTUBHIIIOT Mo, BUKopucTaHU y IIbOMY JOCIIKCHHI HaOIp HaHuX OyB 310paHuil 3 piI3HUX
IHTEpHET-IKepe Ta CKiamaerbes 3 12824 BukonyBaHux (daitais y hopmari .exe, 3 sskux 11844 ¢aiinis
€ mKijumBuMH, a 980 — MOOPOSKICHUMU. Y CTaTTi MPEJICTABICHO PEKOMEHI0BaHI METOIU BILTyYCHHS
O3HaK Ta TeHepallii BXiAHMX MaHWX JUIS MOJENiell MAIllMHHOTO HAaBYAaHHS Ha OCHOBI alTOPUTMY
MAaIlIMHU OMOPHUX BEKTOPIB. Lli MEeTOMM MO3BOJISAIOTH 3HAWTH HAWKpAIIHMA NUIAX JUIsi 00OpOOKH O3HAK,
0 OMUCYIOTh IIKIIUIMBUH (aiin. Bymo cCTBOpeHO WICTh MOJENECH MAIIMHHOTO HAaBYaHHS, KOXHA 3
SIKUX TTOKa3ajia BUCOKI MTOKa3HUKHU METpHK F-score, precision ta recall. Momens, sika Oyia CTBOpeHa Ha
OCHOBI OIHAPHOTO TUITY MPE/CTABICHHS TJAHMX, TIOKa3aJla HAWMBHII PE3YJIBTATH 110 BCiX METPUKAX.

KirouoBi ciaoBa: BusiBieHHs BTOpraeHb, PE Qopmar, BuiydeHHS O3HaK, AM3aceMOJIbOBaHI
IHCTPYKLii, MalllMHA OLIOPHUX BEKTOPIB.

Jlama naoxooicenns: 26.08.2023
Ipuiinamo. 12.09.2023

© A. E. Nafiiev, D. V. Lande, 2023
DOI: 10.24025/2306-4412.3.2023.286374

50



