
Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

51

UDC 004.021
DOI: 10.24025/2306-4412.3.2023.286553

SPADE SOFTWARE AGENTS AND THEIR IMPACT
ON HARDWARE RESOURCES

Eduard Zelenko

Ph. D. Student
Cherkasy State Technological University

460 Shevchenko Blvd., Cherkasy, 18006, Ukraine
https://orcid.org/0000-0002-9939-3830

Yevheniia Kataieva
Ph. D., Associate Professor

Cherkasy State Technological University
460 Shevchenko Blvd., Cherkasy, 18006, Ukraine

Slovak University of Technology in Bratislava
Vazovova 5, 812 43 Bratislava 1, Slovak Republic

https://orcid.org/0000-0002-9668-4739

Abstract. Eliminating the disadvantages of updating prices with a large number of products in the
online store, we have found a solution in the application of the Smart Python Agent Development
Environment (SPADE). The article presents the process of collecting data on SPADE and Openfire
Server performance metrics in order to determine and analyze the consumption of system resources
when connecting software agents with different types of behavior, in different numbers, as well as
during interaction with a web application.
In current study, JMeter is used as a tool for data collection and performance testing (including load
and stress). Quantitative and qualitative methods of data analysis are used. When processing the
collected values of indicators for the use of hardware resources, methods of mathematical statistics
have been used to identify relations between indicators. To compare the behaviors of the SPADE
software agent, to determine the effectiveness of one over the other, as well as to determine the
effectiveness of using the agent interface in command line mode compared to its web counterpart in
the form of a graphical user interface (in terms of performance), formulas for calculating the growth
rate are used.
During the study, the advantage of SPADE in the speed of program code execution; the difference in
performance between agent behaviors, as well as between agent web user interface (AWUI) and
command line interface (CLI) modes; features of using the CLI mode of the agent for interactive user
interaction with the application in order to quickly fix errors that occur during the interaction of the
agent with the web application have been determined.
Integration of SPADE agents into the pricing process has practical implications for retailers, opening up
opportunities to study and develop new tools for subsequent application in solving specific problems.

Keywords: XMPP, Python, behavior, web, JMeter, CPU, RAM.

Introduction
Solving the problem of pricing in the absence of up-to-date data, an integrated approach was
used using correlation and data monitoring through the application programming interface
(API) (Zelenko, 2022). Despite the profitability, the developed software prototype (the
minimum viable product (MVP) (Graffius, 2023; Umbreen et al., 2022), which was used by
the German company for two years (Zelenko et al., Classification, 2023), had several
limitations, the main of which was associated with a large time spent on executing the
program code for updating prices (≈100-110 s) and, as a result, an increase in the load on the
web server. Other important disadvantages include the cost of additional time and financial

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

52

resources for the development and support of: a method for reporting errors that require a
human decision; graphical user interface (GUI) for making these decisions as well as for
interacting with the software during the price update process.

The capabilities of the technologies used did not allow eliminating the first
disadvantage and made it difficult to eliminate the second one, so it was decided to make
changes to the application architecture. In the process of searching for new technologies, a
solution was found, which consisted in the use of SPADE.

The goal is to study the impact of SPADE software agents on PC hardware resources
and determining the effectiveness of their use compared to the web user interface (UI) in
terms of performance. The tasks are: collect data on XMPP server performance metrics
during its testing (including load and stress testing); determine the amount and analyze the
consumed hardware resources over a certain time interval when connecting SPADE software
agents with different basic types of behavior, in different quantities, as well as during
interaction with a web application when performing the main function – updating prices.

Materials and methods
Software agent (hereinafter – agent) can be considered as a software object that can exhibit
the above multi-dimensions or as an encapsulated computer system that is situated in some
environment, and that is capable of flexible, autonomous action in that environment in order
to meet its designed objectives. Researchers consider agent-oriented development as a natural
and a logical evolution of the current software development paradigms, such as structured and
object-orientated approaches, as it presents a higher-level of abstraction and encapsulation.
Agent-oriented approaches can significantly enhance our ability to model, design and build
complex, distributed software systems (Slhoub, 2018).

Agent orientation represents a higher-level abstraction that is more flexible than the
prior programming paradigms, such as object abstraction. The agent technology is going to be
the next significant breakthrough in software development and the new revolution in software
(Slhoub, 2018). The software agents and multi-agent systems (MAS) (Holgado-Terriza et al.,
2020) will be one of the landmark technologies in computer science that will bring extra
theoretical power, methods and techniques that will broaden the field of computer
applications (Ajitha et al., 2016).

Smart Python Agent Development Environment (SPADE) is a free MAS platform
written in Python (n.d.) under MIT license and based on instant messaging (XMPP) (Spade-
BDI, n.d.; Spade, n.d.; Pal et al., 2020; Palanca, 2018; SPADE – SPADE 3.3.0, n.d.;
Donancio et al., 2019). And since Python is the language widely used in most machine
learning framework (Lyu et al., 2020) as well as in web development, this will allow the
software (developed using the SPADE platform) to be easily integrated into a large number of
web applications, as well as to use the software in conjunction with a large number of
machine learning (ML) libraries provided by Python.

Some features: flexibility, agent model based on behaviors, web-based interface, use
any XMPP server, BDI support (Spade, n.d.; Pal et al., 2020; Palanca, 2018; SPADE –
SPADE 3.3.0, n.d.; GitHub - javipalanca/spade_bdi, n.d.; Palanca et al., 2022; Palanca et al.,
2023; Pérez, 2023). Behavior-based architectures are conceptually more capable, since they
remove some of the limitations of reactive systems (Palanca et al., 2022).

Five most commonly used SPADE behavior types were chosen for the experiment:
Cyclic, Periodic, One-Shot, Time-Out, The Finite State Machine (FSM) (Palanca, 2018;
Advanced Behaviours, n.d.; Palanca et al., 2020; The SPADE agent model, n.d.).

The SPADE technology was chosen for the MVP upgrade for a complex reason that
includes fundamental benefits (some of which are driven by Python):

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

53

1. An increase in the speed of script execution (described in the course of the current
study).

2. No need to increase the script execution time and memory limit, reducing the load on
the web server.

3. The possibility of interactive interaction with the agent (in this case, in the process of
updating prices), which allows a person to quickly make a decision in case of errors or
situations when the decision cannot be made by the agent.

4. Reduction of time and, as a result, ceteris paribus, financial costs due to the absence
of the need to develop and maintain a graphical user interface (GUI) for software agents,
compared with the development and support of such for web applications. Nevertheless, the
SPADE technology has a built-in GUI, which, if necessary, allows you to speed up interaction
with the agent and expand its functionality.

To implement the 3rd point, when executing the price updating algorithm (PUA; which
uses cost-based method (CBM) for goods in the amount of 47817 units) in PHP/Python
instead of an agent, for example, through cron, it is necessary to develop an alert functionality
that will be limited in capabilities compared to the potential of SPADE BDI. Also, in the case
of using PHP, GUI development will be required, however, the CLI mode UI for the SPADE
agent is implemented faster, providing the user with quick access as a separate, more distinct
system process (both visually and programmatically; compared to the web GUI). In the case
of using SPADE, the notification option may be needed only if a user needs to make a
decision remotely.

The following advantages also served as a reason for choosing this technology:
1. Potential for software development using Artificial Intelligence (AI) or Distributed

Artificial Intelligence systems (DAI; due to the use of Python and agent technology (agent-
oriented software engineering (AOSE) (Slhoub, 2018), the link for which is SPADE). It is
planned to apply in the next version of the software in the form of monitoring the prices of
competitors, allowing the use of the competitive-based method (Zelenko et al., Overview, 2023).

2. Ability to delegate user requirements to an agent (Jubilson et al., 2016), allowing the
agent to make decisions independently.

3. The ability to develop software at a higher level of abstraction, which is more
flexible than the prior programming paradigms (Slhoub, 2018).

4. Widespread use of its programming language (Python).
Software testing is defined as an activity to check whether the actual results match the

expected results and to ensure that the software system is defect free. Software testing also
helps to identify errors, gaps or missing requirements in contrary to the actual ones. In simple
terms, Software Testing means Verification of Application Under Test (AUT). Testing is
important because software bugs could be expensive or even dangerous. It can be either done
manually or using automated tools (Nordeen, 2020).

During manual testing, there are a lot of problems faced by testers like it is very time
taking and consuming, no reusability, has no scripting feature, much human effort required,
and still major or minor bugs remain unexplored. Therefore to cover all types of errors and
bugs automation testing has introduced that explores all the issues exist in manual testing.
Automation testing is 70% faster than the manual testing, ensures consistency, saves cost,
improves accuracy, increases efficiency, et al. All automation testing tools test software in
less time, produce more reliable, repeatable and reusable final product (Abbas et al., 2017;
Nordeen, 2020).

Performance testing is defined as a type of software testing to ensure software
applications will perform well under their expected workload. It is also performed in order to

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

54

determine how fast system responds under a particular workload. The goal of this testing type
is not to find bugs, but to eliminate performance bottlenecks (Dilshan de Silva et al., 2023). It
is done to provide stakeholders with information about their application regarding speed,
stability and scalability (Nordeen, 2020; Mokhamd et al., 2023). And since these three
components were considered important in the development and maintenance of the MVP, this
type of testing was chosen for the experiment.

Performance testing is an important and necessary test process to ensure that there are
no problems with the performance of the product, such as: long download time, poor response
time and poor scalability. In addition, these types of testing activities help to identify
bottlenecks that interfere with the operation of the hardware-software platform of the product
resource and can lead to significant delays in performance and even to the failure or crash of
the resource as a whole (Ali et al., 2020).

The focus of the performance test: Scalability determines maximum user load the
software application can handle; Stability determines if the application is stable under varying
loads; Speed determines whether the application responds fast enough (Nordeen, 2020;
Mokhamd et al., 2023).

Methods used to implement performance testing are load and stress testing (they are
performance testing techniques). Load testing is necessary to know that a software solution
will perform under real-life loads (Nordeen, 2020; Mokhamd et al., 2023). It measures the
response of a system under various load conditions. This test helps determine how the
software behaves when multiple users are using the software at the same time. Load testing is
required to simulate concurrent usage. Stress uses virtual users who exceed the maximum
number until system/application downtime occurs and is typically used for a longer period of
time. It is needed to test stability and reliability of the system or it can be called as testing
system durability (Mokhamd et al., 2023). Both performance and therefore load testing are
categorized as non-functional testing (the technique which focuses on testing of a software
application for its non-functional requirements) (Nordeen, 2020).

In any case, exhaustive testing is not possible. Instead, an optimal amount of testing is
needed, based on the application’s risk assessment. The answer to the question “How to
determine the risk?” leads to the defect clustering principle (the application of the Pareto
principle) (Nordeen, 2020).

The layout and hardware/software list of the tested environment are shown in Figure 1
and in Table 1.

Figure 1. Testing environment network architecture layout (based on (Ali et al., 2020)

JMeter was chosen as the most suitable and effective performance (including load and
stress) testing tool based on competitive analysis results and comparison testing tools

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

55

(including those for web services) (Ali et al., 2020; Abbas et al., 2017; Dilshan de Silva et al.,
2023).

Table 1. Hardware/Software test environment
Required hardware/software Description/Type of hardware/software
1 Hardware Laptop: AMD Ryzen 5 4500U with Radeon Graphics,

2.38 GHz, RAM: 16.0 GB (13.9 GB usable), SSD 512 GB.
2 Operation System Microsoft Windows 10 Pro, Version 20H2 (OS Build

19042.1466), 64-bit.
3 An Instant Messaging (IM) server Openfire (XMPP) Server v4.7.4, build 51b9db9.
4 Execution environment language Java (JRE/JDK v1.8.0_202).
5 Agent Development Environment SPADE v3.2.3 (Palanca, 2023; SPADE, n.d.)
6 Agent Development Environment

programming language
Python v3.7.9.

7 Test scenario recording/execution
tools

Apache JMeter v5.5 (plugins: XMPP Protocol Support (bzm)
v1.5.1, 3 Basic Graphs v2.0, jp@gc - PerfMon Metrics
Collector v2.1, Dummy Sampler v0.4).

8 Server metrics fetching tool PerfMon Server Agent (JP@GC) v2.2.3.
9 Browser Mozilla Firefox v114.0.2 (64-bit).

The Apache JMeter™ application is open source software, a 100% pure Java
application that is considered an automated tool for testing performance, load and stress as
well, and along with BlazeMeter are considered sufficient automation tools to accelerate and
utilize performance-testing processes (Abbas et al., 2017; Dilshan de Silva et al., 2023;
Mokhamd et al., 2023; Ali et al., 2020; Apache JMeter, n.d.). And since load and stress
testing are methods used to implement performance testing, JMeter can be used to implement
all of them, as well as to perform Application Performance Monitoring (APM) refers to
managing the performance of a software application to ensure the expected level of service, as
measured by performance metrics and user experience monitoring. The APM solution aims to
detect and determine application performance issues before users are actually impacted by
them (Mokhamd et al., 2023).

It was originally designed for testing Web Applications but has since expanded to other
test functions (Apache JMeter, n.d.). JMeter integration with Agile and DevOps processes
improves tool utilization (Ali et al., 2020).

As a tool for collecting data on CPU/RAM (Central Processing Unit and Random
Access Memory) metrics, in addition to Apache JMeter, the PerfMon Server Agent software
agent was used (Table 1), sometimes called JP@GC Agent (where JP@GC means JMeter
Plugins at Google Code) (GitHub - undera/perfmon-agent, n.d.; Documentation: JMeter-
Plugins.org/wiki/PerfMon/, n.d.; Matam et al., 2017; Pohilko, n.d.). It is a server metrics
fetching agent for server performance monitoring, written in Java and based on SIGAR
(System Information Gatherer And Reporter (GitHub - hyperic/sigar, n.d.).

All tests were preceded by smoke testing (Nordeen, 2020). Objects, types, test tools and
their descriptions are provided in Table 2.

Based on 10 results of the price update function execution (Figure 2), using the Dummy
Sampler plugin (Documentation: JMeter-Plugins.org/wiki/DummySampler/, n.d.), the average
value 𝑡଴̅ = 104.46 was determined. Taking into account that the minimum required time for
this operation is more than 100 s, it was decided to collect data within this time interval
(always from the beginning of the update process; thus ensuring data normalization for their
subsequent analysis).

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

56

Table 2. Test plan for XMPP server testing
Testing object Testing type JMeter testing tool Description / Features
1 XMPP server Performance Dummy Sampler Difference between two conditions

(when the agent is running and not).
2 XMPP server Load OS Process Sampler

(JMeter - OS
Process Support)

While connecting a large number of
agents.

3 XMPP server Load bzm - XMPP
Sampler (XMPP
Protocol Support)

XMPP Connection.

4 XMPP server Performance/Load Dummy Sampler Load comparison on XMPP server
with different agent behaviors (outside
and during the price update process).

A comparison was made (according to the average values of the speed of the price

update process) between three variants of the architecture of the software being developed,
which differ in the location of the PUA: on the side of the web server with a call via cron (a
test run through the browser is shown in Figure 2); with the same location, but with a call
through the SPADE agent (Figures 3, 4; this architecture was used for most tests); PUA is
aggregated by the SPADE agent (Figure 5). The script execution speed in the second case is
approximately equal to that for the first one, which is natural, given the invariability of the
PUA location. This architecture option allows you to quickly incorporate SPADE technology
into a web project (approximately within 5 minutes). The script execution speed in the third
case is 𝑡ଵ̅ = 43.24.

Figure 2. Pricing update information message displayed
as a result of a request via the Mozilla Firefox web browser

Figure 3. Launching the agent

Figure 4. Successful price update by an agent through a request to an MVC controller
aggregating PUA

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

57

Figure 5. Successful price update by PUA aggregating agent

Let us substitute the average values of the indicators of the execution time of the price
update process 𝑡଴̅, 𝑡ଵ̅ displayed in Figures 3 and 5 into (1) (percentage decrease, % decrease) in
order to determine the efficiency. Thus, we determine ∆𝑀(%) = 58.61. An additional run of
the script outside the agent showed the same results, therefore, this growth rate is due to the
difference between the speed of executing PHP and Python code, and not the work of the agent.

∆𝑀(%) =
ெ೙షభିெ೙

ெ೙షభ
× 100%, (1)

where 𝑀 is mean, 𝑀௡ is nth sequence term (“final” value), 𝑀௡ିଵ is a previous term in sequence
(“initial” value), 𝑀௡ିଵ − 𝑀௡ is ∆𝑀 or decrease. (1) is based on (2) (percentage increase, %
increase) (Dueñas et al., 2021; Mahadevan et al., 2022) to determine growth and growth rate
(comparative performance indicator). In the case of a negative value of the denominator, it must
be taken modulo.

∆𝑀(%) =
ெ೙ିெ೙షభ

ெ೙షభ
× 100%, (2)

or (𝑀௡/𝑀௡ିଵ − 1) × 100%, where 𝑀௡ − 𝑀௡ିଵ is ∆𝑀 or increase. The test results are shown
in Figures 8, 9.

Let us substitute the CPU and RAM load indicators displayed in Figure 9 into (2) in
order to determine the increase and % increase. Results are shown in Table 3.

Table 3. Increase display for average CPU and RAM load (Figure 9)
 Metrics
Agent using features

CPU, % RAM, MB
𝑀 ∆𝑀 ∆𝑀(%) 𝑀 ∆𝑀 ∆𝑀(%)

Without using an agent 0.08 — — 287.32 — —
With using an agent 0.18 0.1 125 289.07 1.75 0.61
With using an agent while price update 0.19 0.01 5.56 290.6 1.53 0.53

Based on the values of ∆𝑀 and ∆𝑀(%) from Table 3, it is concluded that the use

of hardware resources (by the XMPP server during connection with the agent) is negligible in
terms of modern PC computing power.

To determine the effectiveness of SPADE in terms of hardware resource usage (HRU)
for user PC, the SPADE web interface was chosen as an object for comparison (Palanca et al.,
2020) (agent web UI (AWUI) (Palanca, 2017).

Figure 6. Detailed measurements of Firefox’s memory usage via “about:memory”

pecial page (about:memory, n.d.) for the SPADE web interface tab

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

58

Figure 7. System process firefox.exe (i.e., browser tab) with PID 10756

According to Figure 10, the mean for CPU used resources is 0.16%, for RAM is

98.21 MB. Since the server does not use the hardware resources of the user's PC, only the
resources used by the agent (CLI mode) were taken into account to determine the efficiency.
Substituting these values (as well as those for SPADE in CLI mode: CPU – 0.2%, RAM –
85.77 MB) into (1), we get the efficiency when the SPADE agent works in CLI mode
compared to AWUI: for CPU – (0.16 - 0.2) / 0.16 * 100% = -25%, for RAM – (98.21 - 85.77) /
98.21 * 100% = 12.67%. It is worth noting that AWUI was used for the example, which was
not loaded with script libraries. In the case of using a more complex GUI developed using
modern front-end frameworks, it is expected to increase the efficiency of using SPADE
agents in CLI mode compared to the web version of the UI.

The purpose of the next load test is to show the load on the XMPP server as it grows as
agents connect. An exhaustive description of the “bzm – XMPP Connection” plugin settings
can be obtained from the source (XMPP Load Testing, n.d.). The test results are shown in
Figure 11.

The purpose of this test is to display the difference between HRU for different types of
agent behavior; the task is to collect data on performance metrics for different behaviors of
the SPADE software agent using the OS Process Sampler plugin. The results are displayed in
Figures 12-14.

By ordering the average HRU values (Figure 14) and substituting them into (1), we
obtain the results presented in Table 4.

Table 4. Comparison of percentage decrease for agent behaviors
∆RAM (%) ∆CPU (%)

Out of the price update During price update Out of the price update During price update

Behavior
type

value Behavior
type

value Behavior
type

value Behavior
type

value

One shot - FSM - FSM - Cyclic -

FSM 0.40 One Shot 2.14 One Shot 10.26 One Shot 8.11

Timeout 2.18 Timeout 1.75 Cyclic 5.71 FSM 11.76

Periodic 1.05 Periodic 1.45 Periodic 21.21 Timeout 3.33

Cyclic 1.68 Cyclic 1.66 Timeout 15.38 Periodic 24.14

From Table 4, we can draw conclusions about the effectiveness of one agent's behavior

compared to another. For example, the FSM behavior is 0.4% (RAM) more efficient than One
Shot when the agent is running outside the price update process.

Stress testing of the launch and operation of the XMPP server, as well as a large number
of agents (with sending requests to the Open Server) was performed 8 times (with a duration
of 100 seconds for each iteration) with two settings - with a limit on the frequency

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

59

of launching agents (𝑓௟ = 1 Hz, where 𝑓 is the frequency, 𝑙 is the launch (abbreviated from
the “launch”)) and without it. The results are presented in Table 5 and Figures 15, 16.

Table 5. Stress test results
ID Number of launches Result

General Successful Failed

1 166 127 39 JMeter crash.
2 144 109 34
3 1265 137 1128
4 107 84 23
5 98 76 22
6 116 97 19 JMeter crash, XMPP server crash.
7 267 247 20 Stable performance of applications (with the ability

to save CPU/RAM load metrics). 8 98 95 3

During all tests, the Open Server remained in working condition (in order to save space
and due to the repetition of the result for 8 tests, this information was not indicated in the
table), which can be explained by the frequency of requests by each of the agents on the Open
Server – 𝑓௥ = 0.2 𝐻𝑧, where 𝑟 is a request (abbreviated from “request”), which is at least
5 times less than the frequency of agent launches (the values of the “General” column,
indicated in Table 5, divided by 100). In addition, the load on the XMPP server increases not
only at the moment the agent starts, but also during the processing of other processes (e.g.,
behavior). Testing Open Server is out of the scope of this work.

Having removed the main noise at the end of the 3rd test (after about 230 agent
launches), in order to avoid excessive stretching of the plot along the Y axis and in order to
more clearly view the test results, we display the launch errors on a scatter plot (Figure 17).

The reason for the appearance of errors in the application is presumably due to the
consumption of RAM (XMPP server: 287.32 MB + 1.75 MB (for each agent); 85.77 MB
(for each SPADE agent in CLI mode)), despite the fact that 70 software agents can
occupy ≈6 -6.5 GB of RAM (provided that the agent and server are running on the same PC),
which is acceptable in terms of the environment under test and modern computing power in
general.

Based on the RAM load metric (Figure 16), namely the lack of indicators of hardware
resource consumption after the 47th second during the 7th test, we can conclude that XMPP
Server has crashed. Nevertheless, the application continued to successfully execute the
function of launching agents, despite the stop of data collection by CPU load metric at the 51st
second.

Results and discussion

In the course of this work, the following were carried out:
1. Data collection on XMPP server performance metrics in order to analyze and determine

the amount of hardware resources consumed over a certain time interval when
connecting SPADE software agents with different basic types of behavior, in different
amounts, as well as during the execution of their main function – price update.

2. Comparison (according to the average values of the speed of the price update process)
between the three variants of the architecture of the software being developed, which
differ in the location of the price updating algorithm (PUA).

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

60

3. Stress test of launching agents, on the basis of which a scatter diagram of launch errors
was built.
In the course of performing a qualitative and quantitative analysis of the data, it was

found that:
1. The percentage increase in the speed of the price update process using SPADE

compared to the web version was 58.61% (due to the use of Python).
2. The hardware resources used by SPADE are acceptable in terms of modern PC

computing power (on average for XMPP server: 0.08% of CPU and 287.32 MB of
RAM + 0.1% of CPU and 1.75 MB of RAM for each agent; 0.2% of CPU and
85.77 MB of RAM for each SPADE agent in CLI mode). Efficiency (in terms of HRU)
when running a SPADE agent in CLI mode compared to AWUI: for CPU – -25%, for
RAM – 12.67%.

3. Mean/min/max values, medians and modes are determined based on performance data for
different types of behavior of SPADE agents. Based on ascending averages, a percentage
increase is determined for RAM/CPU resource consumption during and outside of the
price update process. Based on these values, one can draw a conclusion about the
effectiveness of one type of agent behavior compared to another (in terms of HRU).

4. Most launch errors falls on the set of active software agents in the amount of ≈70-
240 units with the result in the form of hanging OS processes and with the subsequent
fall of the JMeter and XMPP server applications. The limited frequency (𝑓௟ = 1 𝐻𝑧) of
launching agents allows you to reduce the number of errors and application crashes.

5. The trend (steady upward) in Figure 11 differs significantly from that (partially
downward/absent) in Figure 16 when agents are sequentially launched with a difference
in frequency (𝑓௟ = 1 𝐻𝑧 for the first and 𝑓௟ = 0.31 𝐻𝑧 for the second case). Based on
the current and previous paragraphs, we can conclude that with a decrease in the value
of 𝑓௟, the stability of applications and the accuracy of the collected data increase.

6. Because of the use of SPADE and, as a result, the absence of the need to develop a GUI,
the time spent on developing a UI is reduced (hence the labor intensity; compared to
developing one for web applications).

Figure 8. Metrics of hardware resource usage by the XMPP server process
using JMeter Dummy Sampler

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

61

Figure 9. Mean, Median, Mode for the collected data
shown in Figure 8

Figure 10. CPU and RAM usage measurements for the PID 10756
(browser tab that hosts the SPADE web GUI)

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

62

Figure 11. CPU/RAM performance metric for 32 agents as a line graph (each 3.2 s)
with a steady upward trend in RAM consumption

as the number of SPADE agents connected
to the XMPP server increases

Figure 12. Line graphs for Comparison of HRU amount (CPU, RAM)

during the price update process and outside it
with different SPADE agent behaviors

(FSM, One Shot, Timeout, Cyclic, Periodic)

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

63

Figure 13. Line graphs for comparing the amount of consumption
of hardware resources (CPU, RAM) for different SPADE agent behaviors

(FSM, One Shot, Timeout, Cyclic, Periodic) during
and outside the price update process

Figure 14. Bar graph: Mean, Median, Mode for different SPADE agent behavior
(FSM, One Shot, Timeout, Cyclic, Periodic)

metrics during and outside the price update process

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

64

Figure 15. Eight tests for launch errors

Figure 16. CPU and RAM metrics for 7th and 8th tests

Figure 17. Scatter plot of launch errors

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

65

Conclusions

During this study, performance testing of SPADE software agents was carried out (including
load and stress testing). As a result of the analysis of the collected data, the performance gain
(in terms of hardware resource consumption) was determined for different types of behavior
and different interfaces (command line interface (CLI) and agent web user interface (AWUI)).
The efficiency in the speed of execution of the price update algorithm for SPADE
technologies was also determined (compared to the web).

For the first time introduced the utilization of the Smart Python Agent Development
Environment (SPADE) in combination with a cost-based method (CBM) for retail price
actualization in the absence of data. To the best of our knowledge, this is the first instance
where SPADE agents and CBM are integrated to address pricing challenges like that.

The integration of SPADE and CBM agents into the pricing process is of practical
importance for retailers, opening up opportunities for the study and development of new tools
with a view to their subsequent application in solving specific problems.

Further development was found by the approach of combining SPADE agents and CBM
in dropshipping. This approach can be modified to explore other pricing methods (e.g.,
customer value-based method, competitive-based method), respond to market dynamics (e.g.,
adjusting prices depending on market conditions), include additional factors (such as market
demand, production costs, and competitor prices) to make intelligent decisions and adapt to
changing market conditions in real time.

Acknowledgements

None.

Conflict of Interest

None.

References

Abbas, R., Sultan, Z., & Bhatti, S.N. (2017). Comparative study of load testing tools: Apache
JMeter, HP LoadRunner, Microsoft Visual Studio (TFS), Siege. In International Conference
on Communication Technologies (ComTech) (pp. 39-44). Rawalpindi, Pakistan.
doi: 10.1109/COMTECH.2017.8065747.
about:memory – Firefox Source Docs documentation. Retrieved from https://firefox-source-
docs.mozilla.org/performance/memory/about_colon_memory.html.
Advanced Behaviours – SPADE 3.3.0 documentation. Retrieved from https://spade-
mas.readthedocs.io/en/latest/behaviours.html.
Ajitha, S., Mithun, G., & Kumar, T.V.S. (2016). Optimal travel management using software
agent. In International Conference on Circuits, Controls, Communications and Computing
(I4C). Bangalore, India, 1-4. doi: 10.1109/CIMCA.2016.8053289.
Ali, S., & Chernenko, A. (2020). Performance Testing – Microsoft Dynamics 365 Finance and
Operations For sales order creation web service by deploying Blazemeter and JMeter, LAP
LAMBERT Academic Publishing, July 2020, 56 p. ISBN: 978-620-2-67341-9. Retrieved from
https://www.researchgate.net/publication/343334368_Book_Title_Performance_Testing_-
_Microsoft_Dynamics_365_Finance_and_Operations_For_sales_order_creation_web_service
_by_deploying_Blazemeter_and_JMeter.
Apache JMeter. Retrieved from https://jmeter.apache.org.

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

66

Dilshan de Silva et al. (2023). Evaluating the effectiveness of different software testing
frameworks on software quality. PREPRINT (V. 1). doi: 10.21203/rs.3.rs-2928368/v1.
Documentation: JMeter-Plugins.org. Retrieved from https://jmeter-plugins.org/wiki/
PerfMon/.
Documentation: JMeter-Plugins.org. Retrieved from https://jmeter-plugins.org/wiki/
DummySampler/.
Donancio, H., Casals, A., & Brandão, A.A. (2019). Exposing agents as web services: A case
study using JADE and SPADE. Retrieved from https://gsigma.ufsc.br/wesaac2019/paper/
WESAAC_2019_paper_22.pdf.
Dueñas, J.A. et al. (2021). Magnetic influence on water evaporation rate: An empirical triadic
model. Journal of Magnetism and Magnetic Materials, 539, 168377. ISSN 0304-8853.
doi: 10.1016/j.jmmm.2021.168377.
GitHub - hyperic/sigar: System Information Gatherer and Reporter. Retrieved from
https://github.com/hyperic/sigar.
GitHub - javipalanca/spade_bdi: Plugin for SPADE 3 MAS platform to implement BDI
Agents. Retrieved from https://github.com/javipalanca/spade_bdi.
GitHub - undera/perfmon-agent: Server metrics fetching agent, based on SIGAR. Retrieved
from https://github.com/undera/perfmon-agent.
Graffius, S.M. (2023). Leverage the Power of the Minimum Viable Product (MVP), Retrieved
from https://doi.org/10.13140/RG.2.2.24064.20486.
Holgado-Terriza, J.A., Pico-Valencia, P., & Garach-Hinojosa, A. (2020). A gateway for
enabling uniform communication among inter-platform JADE agents, IOS Press, Intelligent
Environments, 28, 82-91. doi: 10.3233/AISE200027.
Jubilson, A.E. et al. (2016). Revolution in e-commerce by the usage of software agents.
International Journal of Advanced Computing and Electronics Technology (IJACET), 3(5).
Retrieved from https://troindia.in/journal/ijacet/vol3iss5/16-19.pdf.
Lyu, G., Fazlirad, A., & Brennan, R.W. (2020). Multi-agent modeling of cyber-physical
systems for IEC 61499 based distributed automation. Procedia Manufacturing, 51, 1200-
1206, ISSN 2351-9789. doi: 10.1016/j.promfg.2020.10.168.
Mahadevan, R. et al. (2022). Payday loans – blessing or growth suppressor? Machine
learning analysis. General Economics (econ.GN), Machine Learning (cs.LG).
doi: 10.48550/arXiv.2205.15320.
Matam, S., & Jain, J. (2017). JMeter plugins. In Pro Apache JMeter (pp. 211-219). Apress,
Berkeley, CA. doi: 10.1007/978-1-4842-2961-3_9.
Mokhamd, H., Arief, G., & Yoan, I. (2023). Analysis of application performance testing using
load testing and stress testing methods in API service. Journal of Sisfotek Global, 13(1),
28-34. doi: 10.38101/sisfotek.v13i1.2656.
Nordeen, A. (2020). Learn Software Testing in 24 Hours: Definitive Guide to Learn Software
Testing for Beginners, N.p., Guru99, 291 p.
Pal, C.-V. et al. (2020). A review of platforms for the development of agent systems.
Multiagent Systems (cs.MA), 40 p. doi: 10.48550/arXiv.2007.08961.
Palanca, J. (2017). SPADE: Agents based on XMPP. Retrieved from
https://www.slideshare.net/JavierPalanca/spade-agents-based-on-xmpp-82102493.
Palanca, J. (2018). SPADE Documentation – spade.mas.pdf, v3.0.0, Aug. 17. Retrieved from
https://buildmedia.readthedocs.org/media/pdf/spade-mas/feature-3.0/spade-mas.pdf.
Palanca, J. (2023). Spade Documentation, v. 3.3.0, Jun. 13. Retrieved from https://spade-
mas.readthedocs.io/_/downloads/en/latest/pdf/.

Вісник Черкаського державного технологічного університету 3/2023

Bulletin of Cherkasy State Technological University

© E. V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

67

Palanca, J. et al. (2022). A flexible agent architecture in SPADE. In Advances in Practical
Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS
Collection: 20th International Conference (pp. 320-331), 13616. doi: 10.1007/978-3-031-
18192-4_26.
Palanca, J. et al. (2023). Flexible agent architecture: Mixing reactive and deliberative
behaviors in SPADE. Electronics, 12(3), 659. doi: 10.3390/electronics12030659.
Palanca, J., Terrasa, A., Julian, V., & Carrascosa, C. (2020). SPADE 3: Supporting
the new generation of multi-agent systems. IEEE Access, 8, 182537-182549.
doi: 10.1109/ACCESS.2020.3027357.
Pérez, S.F. (2023). Spade-BDI Documentation. Release 0.3.0, Jun 13. Retrieved from
https://spade-bdi.readthedocs.io/_/downloads/en/latest/pdf/.
Pohilko, A., JMeter Plugins - More Powerful Load Testing with JMeter Plugins. Retrieved
from https://www.methodsandtools.com/tools/jmeterplugins.php.
Python. (n.d.).Retrieved from https://www.python.org.
Slhoub, Kh.A.M. (2018). Standardizing the Requirements Specification of Multi-Agent
Systems. Florida Institute of Technology, 143. Retrieved from https://repository.lib.fit.edu/
bitstream/handle/11141/2608/SLHOUB-DISSERTATION-2018.pdf.
SPADE – SPADE 3.3.0 documentation. (n.d.). Retrieved from https://spade-mas.readthedocs.io/
en/develop/readme.html.
SPADE. (n.d.). Retrieved from https://pypi.org/project/spade/.
Spade-BDI – Spade-BDI 0.3.0 documentation. (n.d.). Retrieved from https://spade-
bdi.readthedocs.io/en/latest/readme.html.
The SPADE Agent Model – SPADE 3.3.0 Documentation. Retrieved from https://spade-
mas.readthedocs.io/en/latest/model.html.
Umbreen, J., Mirza, M.Z., Ahmad, Y., & Naseem, A. (2022). Assessing the role of minimum
viable products in digital startups. In IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM) (pp. 1073-1077). Kuala Lumpur,
Malaysia. doi: 10.1109/IEEM55944.2022.9989653.
XMPP Load Testing - The Ultimate Guide. Retrieved from https://www.blazemeter.com/
blog/xmpp-testing.
Zelenko, E. (2022). Determining the correlation between datasets for calculation of the retail
price when using software agents. Management of Development of Complex Systems, 50,
102-105. doi: 10.32347/2412-9933.2022.50.102-105.
Zelenko, E., & Kataieva, Y. (2023). Overview of methods and software for pricing.
In Sworld-Us Conference Proceedings (pp. 23-27), 1(usc17-01). doi: 10.30888/2709-
2267.2023-17-01-023.
Zelenko, E., & Kataieva, Ye.Yu. (2023). Classification and synthesis of the main
dropshipping disadvantages to eliminate them using software agents. Electronic Modeling,
45(2), 115-122. doi: 10.15407/emodel.45.02.115.

ISSN 2306-4412 (Print), ISSN 2306-4455 (CD-ROM), ISSN 2708-6070 (Online)

© E.V. Zelenko, Yev. Yu. Kataieva, 2023
DOI: 10.24025/2306-4412.3.2023.286553

68

ПРОГРАМНІ АГЕНТИ SPADE
ТА ЇХ ВПЛИВ НА АПАРАТНІ РЕСУРСИ

Е. В. Зеленько

Аспірант
Черкаський державний технологічний університет

б-р Шевченка, 460, м. Черкаси, 18006, Україна
https://orcid.org/0000-0002-9939-3830

Є. Ю. Катаєва
Канд. техн. наук, доцент

Черкаський державний технологічний університет
б-р Шевченка, 460, м. Черкаси, 18006, Україна

Slovak University of Technology in Bratislava
Vazovova 5, 812 43 Bratislava 1, Slovak Republic

https://orcid.org/0000-0002-9668-4739

Анотація. Усуваючи недоліки оновлення цін при великій кількості товарів в інтернет-магазині,
нами було знайдено рішення в застосуванні Smart Python Agent Development Environment
(SPADE). У статті представлено процес збору даних про показники продуктивності SPADE та
Openfire Server з метою визначення та аналізу споживання системних ресурсів при підключенні
програмних агентів з різними типами поведінки, у різній кількості, а також під час взаємодії з
веб-додатком.
У цій роботі як інструмент для збору даних та тестування продуктивності (зокрема
навантажувального та стресового тестування) використано JMeter. Використано кількісні та
якісні методи аналізу даних. При обробці зібраних значень показників використання апаратних
ресурсів, виявлення зв’язків і закономірностей між показниками використано методи
математичної статистики. Для порівняння поведінки програмного агента SPADE, визначення
ефективності одного над іншим, а також з метою визначення ефективності використання
інтерфейсу агента в режимі командного рядка порівняно з веб-аналогом у вигляді графічного
інтерфейсу користувача (в аспекті продуктивності) використано формули для розрахунку
темпу приросту.
Під час дослідження визначено: перевагу SPADE у швидкості виконання програмного коду;
різницю в продуктивності між поведінкою агента, а також між режимом веб-інтерфейсу
користувача агента (AWUI) і режимом інтерфейсу командного рядка (CLI); особливості
використання режиму CLI агента для інтерактивної взаємодії користувача з додатком з метою
швидкого виправлення помилок, що виникають під час взаємодії агента з веб-додатком.
Інтеграція агентів SPADE у процес ціноутворення має практичне значення для компаній у
роздрібній торгівлі, відкриваючи можливості для вивчення та розробки нових інструментів для
подальшого застосування у вирішенні специфічних проблем.

Ключові слова: XMPP, Python, behavior, web, JMeter, CPU, RAM.

Дата надходження: 29.08.2023
Прийнято: 12.09.2023

