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Abstract. The paper is devoted to the problem of nonlinear modeling of objects based on dynamic
neural networks. The aim of the work is to improve the accuracy of modeling dynamic objects with
significant nonlinearities using neural network models and to determine the scope of effective
application of these models. This aim is achieved using time-delay neural networks. To assess the
applicability of the proposed neural network models, the study considers simulation objects with two
types of nonlinearities: smooth and piecewise linear (saturation). The investigation of suggested models
accuracy in nonlinear dynamic object modeling involves two experiments: the study of the models'
scalability with different input signals; the study of their extrapolation capabilities. The results of both
experiments are compared with the modeling results using the compensatory method of deterministic
identification based on functional series. The results of the experiments reveal that the suggested neural
network models are not invariant concerning the input signal. However, when trained on a sufficient
amount of data generated from input signals of the same type as in the test data set, these models can
effectively represent the properties of nonlinear dynamic objects. The extrapolation properties of time-
delayed neural networks deteriorate as the input signal amplitudes exceed the range covered by the used
training set. The scientific novelty consists in determining a clear relationship between the types of input
signals, their amplitudes, and the accuracy of the proposed models. The practical significance of
investigation delineates the areas in which time-delay neural networks can be used to address the real-
world challenges associated with significantly non-linear objects; demonstrates the increase in accuracy
of identifying nonlinear objects compared to functional series models.

Keywords: identification, nonlinear objects, substantial nonlinearities, dynamic neural networks,
simulation modeling.
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Introduction

The development of technology and science makes it possible to ensure a qualitative increase
in the characteristics of modern objects and processes in various fields of activity. On the
other hand, this continuous process leads to the complexity of control objects, and tightening
of requirements for their functioning (Agresti, 2017; Schoukens, & Ljung, 2019).

Today, in practical applications, dynamic control objects, which are characterized by
significantly nonlinear properties are increasingly considered. Due to these characteristics,
objects can function in more complex modes that cannot be realized using linear or weak
nonlinear characteristics (Schoukens, & Ljung, 2019).

The most important from the point of view of practical use is the class of nonlinear
dynamic objects with unknown operational laws and an unknown structure of the "black box"
type (Rudin, & Radin, 2019). Such objects, as a rule, are characterized by a complete lack of a
priori information about both the operational laws of the object, which can be estimated by
methods of parametric identification, and its structure. For an external observer to study the
object, only the reaction of the object y(¢) (output signal) to the test impact x(¢) (input signal)
obtained as a result of the so-called "input-output" experiment is available (Rudin, & Radin,
2019; Todorovic, & Klan, 2006).

For successful interaction with such objects (solving control, management, and
diagnostic tasks), it is first of all necessary to provide their adequate mathematical support and
effective modeling tools. This leads to the use of nonparametric identification methods to
build integral nonparametric dynamic models of the control objects. Such models are able to
simultaneously take into account the nonlinear and dynamic properties of the object, which
ensures high accuracy of model identification (Pavlenko, & Pavlenko, 2023).

It is also known that for a wide class of nonlinear dynamic objects, the relationship
between the input x(¢) and the output signal y(¢) can be explicitly represented by the integral-
power series (Volterra series) (Pavlenko, & Pavlenko, 2023). However, Volterra series also
have a number of disadvantages that are significant for the above requirements for modern
mathematical software and modeling tools. Thus, Volterra series are more suitable for
modeling objects with weak smooth unambiguous nonlinearity. The presence of ambiguous or
piecewise continuous nonlinear characteristics makes the use of integral-power series
ineffective. In addition, the existing restrictions on the amplitudes of the input test signals also
prevent the use of such models in the identification of control objects.

An alternative approach to modeling nonlinear dynamic objects is the use of artificial
neural networks (NN) (Rao, & Reimherr, 2021; Liu ef al., A review, 2016). For a long time,
their spread was significantly constrained by the lack of effective algorithmic and
instrumental support, and the complexity of their interpretation (Fomin et al., 2023).
However, as a result of the progress of intelligent data processing technologies, today we can
observe a noticeable increase in interest in NN in the direction of structural and functional
identification of complex control object. At the same time, the models are mainly in the form
of nonlinear static dependencies ((Rao, & Reimherr, 2021; Liu et al., A review, 2016; Fomin
et al., 2023). Such models do not reflect all the properties of a real object, so they cannot
provide high identification accuracy.

The literature also describes neural network structures capable of modeling a class of
dynamic objects with nonlinear characteristics. However, their capabilities and areas of
effective application are not sufficiently studied. This class of objects is inherent in many
fields of activity (medicine, engineering, transportation, etc.) that is considered in this paper.

The aim of this paper is to improve the accuracy of modeling dynamic objects with
significant nonlinearities using neural network models and to determine the scope of effective
application of these models.

This goal is achieved by using dynamic nonlinear models in the form of time delay
neural networks.
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To study the area of effective application of the proposed models, the following tasks
have been set.

1. Investigation of the accuracy of modeling nonlinear objects with smooth nonlinearity.

2. Investigation of the accuracy of modeling nonlinear objects with piecewise linear
nonlinearity (saturation).

Literature review

Today, several methods are known for modeling nonlinear dynamic objects using NN (Wang
et al., 2009; Liu et al., 2021): Dynamic Neuro-SM (Zhu et al., 2016; Liu et al., An overview,
2016), Wiener-type DNN (Liu et al., 2022; Liu et al., A Wiener-type, 2020; Liu et al., 2017),
and time-delay neural networks (TDNN) (Sugiyama et al., 1991; Liu et al., A time delay,
2020; Stegmayer et al., 2004).

Dynamic Neuro-SM models are improved compared to the well-known static neuro-spatial
mapping models (Zhu et al., 2016; Liu et al., An overview, 2016), which aim to map a given
coarse model of an object to an accurate model. In Dynamic Neuro-SM models, neural networks
are used to automatically match and change an existing coarse model into an accurate model
through a learning process (Liu et al., An overview, 2016; Sen, 2021). Such models provide an
increase in accuracy compared to static neurospatial mapping models, but require some a priori
information about the laws of functioning of the object of study (Liu ef al., An overview, 2016).

Wiener-type DNNs are based on the principle of constructing a nonlinear Wiener dynamic
system, which consists of a simplified linear dynamic model followed by a nonlinear static model
(Liu et al., A Wiener-type, 2020; Liu et al., A Wiener-type, 2017). The dynamic characteristics
are mostly associated with the linear subsystem, while the nonlinear properties are contained only
in the static nonlinear subsystem, which is implemented as an NN (Liu et al., 2022; Liu ef al., A
Wiener-type, 2020; Liu ef al., A Wiener-type, 2017). Such a structure can significantly increase
the reliability of a dynamic neural model, but it has a complex (hybrid) structure, which imposes
additional requirements on network training algorithms and narrows the scope of the model.

Among these model variants, TDNN are the most common structure consisting of several
layers with direct signal propagation (Liu et al., A time delay, 2020; Stegmayer et al., 2004).
Such models are capable of learning from the input-output data of nonlinear dynamic objects
and have excellent convergence properties (Sen, 2021; Khandani and Mikhael, 2020), which are
advantages over the aforementioned Dynamic Neuro-SM and Wiener-type DNN methods.

Due to their simplicity and versatility in modeling nonlinear dynamic objects, TDNN
models are the most widely used.

The literature is quite full of studies of TDNN models for dynamic objects with weak
nonlinearity ((Liu et al., A time delay, 2020; Stegmayer et al., 2004; Khandani and Mikhael,
2020). It is worth noting a number of publications devoted to the interpretation of TDNN, in
particular, the establishment of an information link between these models and Volterra series
(Fomin et al., 2023; Stegmayer et al., 2004). However, studies of models of dynamic objects
with significant nonlinearity based on TDNN are not sufficiently reflected, which is a
problem for the use of such models in applied problems.

This work is aimed at filling the identified gap and focuses on the study of NN for
modeling dynamic objects with nonlinear characteristics, identifying the scope of their
effective application in solving applied problems of identifying objects with significantly
nonlinear characteristics.

Dynamic models based on neural networks with time delay

TDNN models are an effective tool for modeling nonlinear dynamic objects with continuous
characteristics. The most commonly used TDNN structure consists of three layers: input,
hidden, and output.
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There are many structures of neural networks: with several hidden layers, different
activation functions, and topologies. However, the use of these structures results in a more
complex expression for the output of the NN. This is a significant disadvantage compared to
three-layer TDNN for modeling nonlinear dynamic objects.

In the above structure, the input layer of a TDNN includes M neurons, where M is the
memory length of the object model. The number of neurons M is chosen to best reflect the
dynamic properties of the object. The input layer receives the data x(¢,)=[x(¢,), x(¢..1), ... ,
X(tprr1 )], ta=nAt, n=1, 2, ...

The hidden layer includes K neurons with a nonlinear activation function. The number
of neurons K is chosen to best reflect the nonlinear properties of the object.

The TDNN output layer includes 1 neuron with a linear activation function. The signal
¥(t,) at the output layer at time #, depends on the values of the input signal x(z,) and is
determined by the expression (Giannini et al., 2007):

K M
(t,)=b, +SOZW1‘ S, [bi +zWi,A/‘x(tn—j)} (1
i=1 j=1

where by, b; are the biases of the neurons of the output and hidden layers, respectively; Sy, S;
are the activation functions of the neurons of the output and hidden layers, respectively; w;,
w;; are the weighting coefficients of the neurons of the output and hidden layers, respectively.

Fig. 1 shows the TDNN architecture as a three-layer feedforward network with M
inputs, a hidden layer with K neurons, and one output neuron. Such a model can be trained to
dynamic behavior with nonlinear characteristics based on input-output data.

x([u)
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x(ln-.‘\ﬁl)u
Figure 1. TDNN architecture as a three-layer network with direct signal propagation
Source: developed by the author on the basis of researches (Stegmayer et al., 2004; Giannini et al., 2007)

Setting up the experiment

A simulation model of a test object

The accuracy of TDNN models is studied using the example of a test object. The simulation
model of the test object with a first-order dynamic block and a nonlinear feedback block
(Fomin et al., 2023) is shown in Fig. 2.

x(7 (1
Input x(1) g - lu (1) »  Output
o+

— S &

Figure 2. Simulation model of the test nonlinear dynamic object
Source: developed by the author on the basis of research (Fomin ez al., 2023)
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The feedback block uses a nonlinear function as f{y). In this case, 2 types of nonlinearity
are considered.

1. For the case of smooth nonlinearity, it is polynomial: fi(y)=py’, where B is a
parameter (constant).

2. For the case of significant nonlinearity, a function with saturation:

5, y>p
L) =3k-ply|<p )

=S, y<-p
where s is the saturation level, p is the saturation start point, and k=s/p is the gain.
In order to study the accuracy of TDNN models of a test object with different types of

nonlinearity fi(y) (i=1,2), training x/*"(z,) and test x'(¢,) data sets are generated based on
an input/output experiment. To generate these data, test signals x(¢) in the form of pulse, step,
linear, and harmonic functions with different amplitudes a are fed to the input of the
simulation model.

When performing the input/output experiment with different types of nonlinearity, the
following parameters of the simulation model were adopted: a=2.64; for the case of smooth
nonlinearity, f=1.45; for the case of significant nonlinearity, s=0.7, p=0.7, k=1.

Modeling tools

The Keras library (keras.io) is used for the programmatic implementation of the neural
network. This is one of the most popular Python libraries for building small networks with
a sequential structure, where layers follow each other, with one input and one output layer.

To build a direct propagation network with Keras, you can use any number of
consecutive layers of predefined types: Input, Dense, and Activation. The library has a ready-
made set of loss functions and optimization algorithms that allow you to quickly train models
and avoid local minima.

A three-layer neural network was created using the Keras library. The input layer
consists of M neurons that are fed with the data x(z,). The hidden layer consists of K neurons.
The output layer consists of one neuron. The block diagram of the TDNN model created using
the Keras library is shown in Fig. 3.

Input input: | [(INone, 15)]
InputLayer | output: | [(INone, 15)]

Y
Input_layer input: | (None, 15)

Dense ‘ relu | output: | (None, 50)

Y
Hidden layer 2 | input: | (None, 50)

Dense ‘ relu | output: | (None, 50)

Y
Output_layer | input: | (None, 50)

Dense l relu | output: | (None, 1)

Figure 3. Block diagram of TDNN as a three-layer network with direct signal propagation

Notes: None in the dimension vectors of the input and output data of each layer means a variable number
of rows in the data.
Source: developed by the author on the basis of Keras library
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Defining TDNN parameters

To determine the best values of M and K in a given TDNN structure, a number of neural
networks with different numbers of neurons in the input and hidden layers are built.

The result of the experiment as a function of the number of neurons in the input and
hidden layers is shown in Fig. 4. The root mean square error function mse from the Keras
library is used as a loss.
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Figure 4. Dependence of losses on the number of neurons

in the input and hidden layers
Source: developed by the author

The result of the experiment as a function of the learning time (epoch) and the number
of neurons in the input and hidden layers is shown in Fig. 5.

Epochs

140 (O @
N“’T’ber neun 180 180\\‘\\&6&0\
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Figure 5. Dependence of training time on the number of neurons

in the input and hidden layers
Source: developed by the author

As a result of comparing Figures 4 and 5, the values of the number of neurons in the
input and hidden layers of the TDNN M=175 and K=50, respectively, were chosen to ensure
the level of losses (loss < 1.0) set by the experimental conditions with an acceptable training
time (epochs < 40). The obtained TDNN was used to study the accuracy of models of
dynamic objects with smooth and significant nonlinearities.
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Study of models of dynamic objects with smooth and significant nonlinearities

To study the accuracy of modeling dynamic objects with smooth and significant nonlinearities
using TDNN models and determine the scope of their effective application, two experiments
were organized and conducted:

1. Study of the scalability of TDNN models to different input signals x(¢).

2. Study of extrapolation properties of TDNN models.

The results of both experiments are compared with the results of modeling using
deterministic identification methods, namely, integral-power series based on multivariate
weight functions.

The models y,(?) in the form of integral-power series based on multidimensional weight
functions are constructed for the test objects by the compensation method (Pavlenko, &
Pavlenko, 2023). Fig. 6 shows the y,(f) models obtained for test dynamic objects with smooth
fi(v) (Fig. 6a) and significant f5(y) (Fig. 6b) nonlinearities. The 1¥-order multivariate weight
function w;(#) and the diagonal cross section of the 2"_order multivariate weight function
wi(t,f) are also shown here, as well as the object responses y;(¢) and y,(¢) to the input signals
x1(¢) = ad(t) and x,(t) = 2ad(¢) (a = 0.5), which are used to identify the multivariate weight
functions.

—— Yyl
+ wl(t)
0.4 w2(t)
a (07 yv(t)
5 03
;;
s 0.2
B
=
© o1
0.0
-0.1 :
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time t, sec.
a
0.5
—— y2(t)
0.4 + wl(t)
w2(t)
N yv(t)
g 0.3
4
E_ 0.2
=
o
0.1
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time t, sec.

Figure 6. Models of y,(7) in the form of integral-power series
based on multidimensional weight functions obtained for test dynamic objects

Notes: a — smooth f;(y) nonlinearity, b — significant f;(y) nonlinearity.
Source: developed by the author
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Study of the scalability of TDNN models to different input signals.

train

The training dataset x;““(¢z,) is formed on the basis of pulse signals x(#) = ad(¢) of
different amplitudes (a € (0, 1]) at the input of the object and responses y(?) at its output.
The test dataset x(¢,) includes step x(f)=a®(f), linear x(f)=at, and harmonic

x(t)=asin(f) signals of different amplitudes (a € (0, 1]) at the input of the object and responses
¥(?) at its output.

The experiment is performed for objects with nonlinearities in the feedback block in the
form of a polynomial function f;(y), as well as a saturated function f>(y).

The TDNN model is built on the data of the training set x”*"(z,) . The scalability of the

obtained TDNN model to different input signals is studied on the data of the test set x/(¢,) .

The output of the TDNN model y,,(¢) is compared with the output of the simulation
model y(f) and the result of identifying y.(f) as an integral-power series based on
multidimensional weight functions (Pavlenko, & Pavlenko, 2023; Antipina ef al., 2023).

Experiment 1. We investigated the accuracy of modeling using TDNN and integral-
power models under the influence of input signals x(f) = ad(f) of different amplitudes
(a € (0, 1]). Fig. 7 shows a comparison of the output signals y,,(?), y,(?), and y(¢) obtained as a
result of the action of the signal x(#)=ad(?) (a=0.65) at the inputs of the TDNN model, the
integral-power series, and the simulation model of a nonlinear dynamic object, respectively.
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Figure 7. Comparison of the output signals y,,(f), y,(¢) and y(¢) obtained as a result
of the action of the signal x(7)=ad(¢) (a=0.65) at the inputs of the TDNN model,

integral power series and simulation model of a nonlinear dynamic object, respectively
Source: developed by the author

Experiment 1 demonstrates the comparable accuracy of modeling using TDNN and
integral-power models under the input signals x(#)=aod(z).

Experiment 2. We investigated the accuracy of modeling using TDNN and integral-
power models under the influence of input signals x(¢£)=a®(?), x(f)=at and x(¢)=asin(t) of
different amplitudes (a € (0, 1]). In Fig. 8 shows a comparison of the output signals y,,(?),
(), and y(¢) obtained as a result of the action of the signals x(¢)=a®(?) (Fig. 8a), x(¢)=at
(Fig. 8b), and x(¢)=asin(t) (Fig. 8c), a=0.65, at the inputs of the TDNN model, the integral-
power series, and the simulation model of a nonlinear dynamic object, respectively.

The experiment demonstrates that the TDNN model is significantly inferior in accuracy
to the integral-power model under the influence of the input signals x(#)=a®(¢), x(¢)=at, and

x(f)=asin(f), which were not included in the training dataset x!“"(z,) .
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Figure 8. Comparison of the output signals y,,(), 1,(¢), and y(¢) obtained as a result
of the action of signals at the inputs of the TDNN model, the integral-power series,

and the simulation model of a nonlinear dynamic object, respectively

Notes: a — x(1)=a0(?); b — x(¢)=at, ¢ — x(¢)=asin(t), a=0.65

Source: developed by the author

The experiment shows that TDNN models are not invariant to the shape of the input
signal. A TDNN model can adequately reflect the properties of a dynamic object when trained

on a sufficient amount of data. The training dataset x/""(z,) should be formed on the basis of

input signals of different amplitudes of the same type as in the test dataset x*'(¢,). This is a
disadvantage of neural network models in comparison with models based on integral-power
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series based on multidimensional weight functions (Pavlenko, & Pavlenko, 2023; Antipina et
al., 2023; Mitrea et al., 2009; Meruelo et al., 2016).

Study of interpolation and extrapolation properties of TDNN models.

The training dataset x'*"(¢,) is formed on the basis of pulse x(f) = ad(f), step
x(t) = a®(¢), linear x(f) = at, and harmonic x(¢) = asin(¢) signals of different amplitudes
(a € (0, 1)) at the input of the object and responses y(¢) at its output.

The test dataset x*(¢z ) includes the same signals x(f) with different amplitudes
(a € (1, 2]) at the input of the object and responses y(¢) at its output.

The experiment is performed for objects with nonlinearities in the feedback block in the
form of a polynomial function fi(y), as well as a saturated function f,(y).

The TDNN model is built on the data of the training set x”*"(¢,). The study of the
extrapolation properties of the obtained TDNN model is performed on the data of the test set
X(,).

The output of the TDNN model y,,(¢) is compared with the output of the simulation
model y(f) and the result of identifying y,(¢f) as an integral-power series based on
multidimensional weight functions (Pavlenko, & Pavlenko, 2023; Antipina ef al., 2023).

Experiment 3. We investigated the accuracy of modeling using TDNN and integral-
power models under the influence of pulsed, stepped, linear, and harmonic input signals of
different amplitudes (a € [0.1, 0.2, ..., 1.0]). Fig. 9 shows a comparison of the output signals
vaun(t), 1(t), and y(¢) obtained as a result of the action of the signal x(¢#)=a®(¢) (a=0.7) at the
inputs of the TDNN model, the integral-power series, and the simulation model of a nonlinear
dynamic object, respectively.
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Figure 9. Comparison of the output signals y,,(?), y.(f) and y(¢) obtained as a result
of the action of the signal x(¢)=a®(¢) (a=0.7) at the inputs of the TDNN model,
integral power series and simulation model of a nonlinear dynamic object, respectively
Source: developed by the author

As a result of Experiment 3, we obtained the mean square error values for TDNN
models compared to integral-power series based on multivariate weighting functions for the
nonlinear functions fi(y) and f>(y), which are shown in Table 1.

Experiment 3 demonstrates the comparable accuracy of modeling using TDNN and
integral-power models of the test object with smooth nonlinearity f1(y). However, when
identifying a test object with a significant nonlinearity f>(y), TDNN models significantly
outperform the integral-power models in terms of accuracy.
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Table 1. Mean square error of the test object modeling (a=0.7)

Type of . Input signal x(t). .
nonlincarity impulse ad(?) step a®(f) linear at harmonic asin(f)
yu(?) Yol () Yol () Yol () Yol
Polynomial 0,074 0,080 0.082 0.087 0.088 0.096 0.103 0.127
With saturation 0,152 0.121 0.167 0.133 0.209 0.139 0.264 0.184

Source: developed by the author

Experiment 4. We investigated the interpolation and extrapolation properties of models
using TDNN and integral-power models under the influence of pulsed, stepped, linear, and
harmonic input signals of different amplitudes:

- for the case of studying the interpolation properties of models a € [0.05, 0.15, ..., 0.95]);
- for the case of studying the extrapolation properties of models a € [1.05, 1.15, ..., 1.95]).

In Fig. 10 shows a comparison of the output signals y,,(?), y,(¢), and y(¢) obtained as a
result of the action of the signal x(f)=a®(?) at the inputs of the TDNN model, the integral-
power series, and the simulation model of a nonlinear dynamic object, respectively, for the
interpolation task at a = 0.65 (Fig. 10a) and the extrapolation task at a = 1.65 (Fig. 10b).
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Figure 10. Comparison of the output signals y,,(?), »,(?), and y(¢) obtained as a result
of the action of the signal x(£)=a®(¢) at the inputs of the TDNN model, the integral-power

series, and the simulation model of a nonlinear dynamic object, respectively

Notes: a — interpolation problem (a=0.65); b — extrapolation problem (a=1.65)
Source: developed by the author
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Experiment 4 demonstrates comparable modeling accuracy in the case of studying the
interpolation properties of TDNN and integral-power models.
The extrapolation properties of TDNN models deteriorated with increasing input signal

amplitudes beyond the range of input signal amplitudes of the training set x!“"(¢,). Thus,

using the input signal x(¢#)=1.650(¢), the accuracy of the TDNN model decreases by 25%.

At the same time, the accuracy of the model in the form of an integral-power series
based on multidimensional weight functions in the case of using a significantly nonlinear
function f,(y) is 30% lower than the TDNN model.

Thus, the area of effective application of TDNN models is the identification of objects
with significantly nonlinear characteristics.

Results and discussion

The obtained modeling results show that TDNN models are not invariant to the signal
received at the input of the object, which is a disadvantage of these models. However, TDNN
models can adequately reflect the properties of nonlinear dynamic objects when trained on a
sufficient amount of data generated from input signals of the same type as in the test data set.

The extrapolation properties of TDNN models will deteriorate with increasing input
signal amplitudes that go beyond the range of input signal amplitudes of the training set.

When identifying objects with significantly nonlinear properties, such as a saturation
function, TDNN models are 10-25% more accurate than integral-power series based on
multivariate weight functions.

Thus, the area of effective application of TDNN is the identification of objects with
significantly nonlinear properties.

Conclusions

The paper considers the approach to modeling of dynamic objects with essential nonlinearities
on the basis of time-delay neural networks. Experiments are organized and researches are
carried out to determine the accuracy of the proposed models and the area of effective
application of these models.

It is experimentally confirmed that the use of the proposed models for identification of
dynamic objects with essentially nonlinear characteristics allows to increase the accuracy of
the modeling process by 10-25% in comparison with the models based on deterministic
methods of identification, such as integral-power series. based on multidimensional weight
functions.

Thus, the area of effective application of models in the form of time-delay neural
networks has been established. It is modeling of dynamic objects with significant
nonlinearities, where traditional identification methods don’t provide sufficient modeling
accuracy.
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AHotanisi. PoOorta mnpucesueHa mnpoOieMi HENIHIMHOTO MOZAETIOBaHHA OO0 €KTIB Ha OCHOBI
MUHAMIYHAX HEHPOHHUX Mepek. MeToro poOOTH € IMiIBHUINEHHS TOYHOCTI MOJCTIOBAHHS JMHAMITHIX
00’€KTiB 31 3HAYHMMHU HENIHIMHOCTSAMH 3a JOIOMOIOI0 HEHpOMEpPEKEBUX MOJeNell Ta BH3HAYECHHS
obmacTi e(eKTHBHOTO 3aCTOCYBaHHsS IUX Mojened. L[s MeTa J0CATaeThCs MUITXOM 3aCTOCYBaHHS
HENIHIMHNX AWHAMIYHUX MOJEJEeH Yy BUINIAAI HEHPOHHMX MEpEeX 13 4YacoBOK 3aTpuMKoro. s
JOCIIKEHHST 007acTi ¢(peKTUBHOTO 3aCTOCYBaHHs 3allPOIIOHOBAHHUX HEHPOMEPEIKEBUX MOJCICH
pO3TISAAAIOTECST TECTOBI 00 €KTH 3 HETIHIMHOCTSIMH JIBOX THIIIB: TJAJKOI Ta KYCKOBO-TiHIHHOIO
(macuueHHsiM). s mOCHIDKEHHS TOYHOCTI HEMPOHHMX MEpEX 13 YacoBOIO 3aTPUMKOIO IpHU
MOJICITIOBAaHHI HETHIMHUX ITWHAMIYHAX OO €KTIB MPOBEACHO IBa CKCICPUMCHTH: TOCIHIKEHHS
MacIITadOBaHOCTI MOJENCH 10 pI3HMX BXIiJHUX CHUTHAJIB; JOCTIDKCHHS CKCTPAIOJSIIHHIX
BJIACTUBOCTEH Mozenei. PesynpTatei 000X EKCIEPHMEHTIB TIOPIBHIOIOTBCS 3 pe3yJbTaTaMu
MOJEIIIOBAHHS 32 JOMOMOTOI0 KOMIIEHCAIHHOTO METONy IEeTepPMiHOBAaHOI ineHTUdIKail y BUIIIAIL
(YHKI[IOHABHUX PSIIB HAa OCHOBI 0araTOBUMIpHMX BaroBux QyHkuid. OTpumaHi pe3ynbTaTH
MOJICTFOBAHHS CBiJ4aTh, IO 3alPOIIOHOBaHI HEHpOMEpEekeBi MOJNENI HE € IHBapiaHTHUMH IIOJO
BXigHOTO cuTHay. OmHak I MOAEN MOXYTh aIeKBAaTHO BiZOOpa’kaTd BIIACTUBOCTI HENIHIMHHX
JUHAMIYHUX 00’€KTIB B pa3i HaBYAaHHSA Ha JOCTATHbOMY 0OCs31 MaHMX, 10 (OPMYETHCS HA OCHOBI
BXIIHUX CHTHAJIB TOTO X THILY, IO i y TeCTOBOMY Habopi maHux. ExcTpanomsuiiiHi BIacTUBOCTI
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HEHPOHHMX MEPEK 13 YacOBOIO 3aTPUMKOIO TMOTIPIIYIOTBCS 31 30UIBIIEHHAM aMIUNTYX BXiTHHX
CUTHAJIB, IO BHUXOIATh 3a MEXI Jiama3oHy aMIDITYJA BXiJHUX CHUTHATIB HaBYAJIBHOI BHUOIpKH.
HaykoBa HOBH3HAa poOOTH TMOJIITaE y BH3HAYCHHI 3aJIKHOCTI MK THIIAMH CHTHAJIIB Ta iX
aMIUTITy/IaM{, [0 JIFOTh Ha BXOJiI MOJIENi, 1 TOYHICTIO 3alponoHOBaHUX Mojenel. [IpakTudna
KOPHCTh POOOTH IOJIATa€ y BU3HAYCHHI 00JacTi ePEeKTHMBHOIO 3aCTOCYBaHHS HEHPOHHHMX MEpPEX 13
YacoBOIO 3aTPUMKOIO TIiJl Yac PO3B’sI3yBaHHsS NPUKIATHUX 3aj1ad ineHTu¢ikanii 00’eKTiB 31 3HAYHO
HEMHIMHAMU ~ XapaKTEePUCTHKAMH; IIABMIICHHI TOYHOCTI imeHTUikamii HeTiHIHHUX 00’ €KTiB
NOPIBHSIHO 3 MOJENSIMH Y BUTJISAL (PYHKIIOHAJIBHUX PAOIB HAa OCHOBI 0araTOBUMIpHHX BaroBUX
(OYHKITH.

Karw4oBi ciaoBa: igeHTHdiKamis, HETiHIHHI 00’ €KTH, CYTTEBI HENMIHIHHOCTI, TUHAMIYHI HEHPOHHI
MEpEexKi, iMiTaliiHe MOJICITFOBAHHS.
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