
Comparative analysis of frameworks for mobile application
development: Native, hybrid, or cross-platform solutions

Suggested Citation:Suggested Citation:
Zarichuk, O. (2023). Comparative analysis of frameworks for mobile application development: Native, hybrid, or cross-platform Zarichuk, O. (2023). Comparative analysis of frameworks for mobile application development: Native, hybrid, or cross-platform
solutions. solutions. Bulletin of Cherkasy State Technological University, Bulletin of Cherkasy State Technological University, 28(4)28(4), 19-27. doi:, 19-27. doi: 10.62660/2306-4412.4.2023.19-2710.62660/2306-4412.4.2023.19-27..

*Corresponding author

Oleksii Zarichuk*

Computer and Information Systems Manager
LLC “Fides”
02000, 11a E. Sverstyuk Str., Kyiv, Ukraine
https://orcid.org/0009-0009-0771-8465

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

INTRODUCTION
In the modern information society, mobile application
development has become one of the most important
and relevant fields of software engineering. With each
passing year, the number of mobile devices increases,
along with the demand for high-quality and effective
applications. Choosing the right approach to mobile
application development is a critically important task
for developers and businesses. The issue under study
involves determining which type of framework for
mobile application development is the most effective

Abstract. In the modern digital world, mobile application development is a key area of information technology,
and choosing the optimal approach to their development is crucial for effective market implementation.
The purpose of this study is to conduct a comparative analysis of various frameworks for mobile application
development: native, hybrid, and cross-platform solutions. To achieve this purpose, methods of analysis, synthesis,
and comparison were used. Characteristics of different frameworks for mobile application development, including
their performance, cost, and access to device capabilities, were analysed. The study disclosed that native
frameworks are distinguished or their highest performance and the ability to provide a maximally native look and
functionality of the application. However, this approach has limitations as it requires separate development for
each platform, leading to increased time and resource costs. Hybrid solutions proved to be cost-effective, allowing
the use of a single codebase for creating applications for different platforms. This simplifies the development and
maintenance process. Nevertheless, hybrid applications may have limited performance due to the use of WebView
for interface display and restricted access to device capabilities. Cross-platform frameworks, on the other hand,
provide a balance between performance and resource efficiency. They allow using a single codebase for creating
applications for multiple platforms and can achieve satisfactory performance. However, they may have limited
access to certain device capabilities and application appearance. This study makes a new contribution to science
by providing a detailed comparative analysis of different approaches to mobile application development and the
frameworks used for their creation. The results obtained can be used to make informed decisions regarding the
choice of a framework for mobile application development

Keywords: Java; software development; performance; native look; codebase

and meets the needs of the modern software market.
This issue becomes increasingly relevant due to the
growing number of frameworks and approaches avail-
able to developers, expanding the spectrum of possi-
bilities for mobile applications.

In several studies, various aspects of mobile ap-
plication development have been analysed and com-
pared, including the choice between native and hybrid
approaches, defining best practises in cross-platform
development, and exploring methods for choosing the

UDC 004.45
DOI: 10.62660/2306-4412.4.2023.19-27

BULLETIN of Cherkasy State Technological University

Journal homepage: https://bulletin-chstu.com.ua/en Vol. 28 No. 4. 2023

Article’s History: Received: 29.08.2023; Revised: 03.11.2023; Accepted: 18.12.2023

https://orcid.org/0009-0009-0771-8465

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Comparative analysis of frameworks for mobile application development...

20

frameworks and tools for each approach were also
considered to provide objective information that
would help developers and organisations make in-
formed choices in mobile application development.

MATERIALS AND METHODS
This study conducted a comparative analysis of frame-
works for developing mobile applications using native,
hybrid, and cross-platform solutions. To achieve the
purpose, the following methods were used: analysis,
synthesis, and comparison. The use of these methods
contributed to clarifying the advantages and limita-
tions of each of the examined approaches in mobile
application development.

As part of the study, two main mobile platforms
were identified for analysis: Android and iOS, which
are leaders in the modern mobile device market. Three
main approaches to mobile application development
were considered during the analysis: native, hybrid, and
cross-platform. Specialised integrated development
environments (IDEs) were used for native application
investigation, such as Android Studio for Android and
Xcode for iOS. For the study of hybrid applications,
frameworks based on web technologies were used,
including Apache Cordova, Ionic, and React Native.
Cross-platform application frameworks such as Flut-
ter, Xamarin, and Appcelerator Titanium were reviewed.
One of the main criteria for selecting frameworks was
their popularity and relevance in the mobile applica-
tion development market.

The study was based on an analysis of open sci-
entific literature that was available on the Internet.
Various works, studies, and publications that detailed
different approaches and frameworks for mobile ap-
plication development were used (Biørn-Hansen et
al., 2020; Zohud & Zein, 2021; Lachgar et al., 2022). This
literature provided the foundation for the analysis and
comparison of the selected approaches. The analysis
focused on several key aspects, including development
productivity, the quality and performance of created
applications, development cost, support for different
mobile platforms, extensibility, and other important
factors. For each of the examined approaches (native,
hybrid, and cross-platform solutions), their advantages
and limitations were identified and analysed, contribut-
ing to the creation of an objective comparative analysis.
The synthesis method involved gathering information
about each of the reviewed frameworks, including pro-
gramming languages used, development tools availa-
bility, platform support, application quality, extensibil-
ity, and other characteristics. This method provided a
comprehensive understanding of each approach.

Comparison was conducted by juxtaposing the ob-
tained results to determine the advantages and disad-
vantages of each approach. Factors considered in the
comparative analysis included development productiv-
ity, development cost, application quality and perfor-
mance, support for different mobile platforms, memory

optimal platform for cross-platform development. In
their study, H.O. Kozub and Yu.H. Kozub (2022) explored
the development of cross-platform mobile applica-
tions using Kotlin Multiplatform and Jetpack Compose
for different operating systems, including Android, Win-
dows, Linux, and macOS. They express the importance of
these tools and the potential for reducing development
time and preventing errors through their use. In addi-
tion, the authors emphasise the necessity of employ-
ing a declarative approach for creating user interfaces.

O. Karatanov et al. (2021) conducted a compara-
tive analysis of two important frameworks for modu-
lar testing in the Java programming language – JUnit
and TestNG. They identified the main functions and
advantages of both frameworks, noting that Test-
NG has more extensive functionality, making it more
flexible for complex projects. In the study by M. Singh
and G. Shobha (2021), the relevance of cross-platform
mobile application development was highlighted. Var-
ious frameworks for this purpose were discussed, and
a comparative analysis of their functionality was con-
ducted. The main conclusions of the study emphasise
the need for a well-founded framework choice based
on the specific project requirements, and there is no
universal framework for all situations.

In the paper by T. Zohud and S. Zein (2021), the au-
thors investigate the approaches of development teams
to cross-platform mobile application development.
They use qualitative research, including the case study
method, interviews, and group discussions, to gather
information from four software development compa-
nies in Palestine. The results of the study show that de-
veloper experience is a key factor in the development
process. The React Native framework is recognised as
promising and dominant. A. Kaczmarczyk et al. (2022)
considered a comparison between native and hybrid
mobile applications for the Android operating system,
with a focus on using BLE (Bluetooth Low Energy) and
Wi-Fi (Wireless Fidelity). It was noted that mobile ap-
plications are becoming increasingly popular in the
era of smartphones and tablets. The authors conduct-
ed a comparative analysis aimed at determining the
efficiency of data processing in both technologies. The
study by P. Lachgar et al. (2022) solves the problem of
developing cross-platform mobile applications due to
the growing popularity of mobile devices. The authors
propose a new framework for choosing the optimal
platform for cross-platform development, using mul-
ti-criteria decision-making methods such as the Analyt-
ic Hierarchy Process (AHP) and the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS).

After analysing studies in the field of mobile ap-
plication development, the need for research compar-
ing different frameworks, including native, hybrid, and
cross-platform solutions, was identified. The purpose
of the study was to analyse approaches to mobile ap-
plication development and compare them, considering
their limitations and advantages. The most popular

O. Zarichuk

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 21

consumption, extensibility, and other parameters. Based
on this comparative analysis, the strengths and weak-
nesses of each of the examined approaches to mobile
application development were identified. The choice of
analysis, synthesis, and comparison methods for this
research is justified by their ability to provide a compre-
hensive and objective analysis of different approaches
to mobile application development. The analysis meth-
od allowed for a deeper examination of each approach,
identifying its features, technical parameters, and other
characteristics. Synthesis combined the gathered in-
formation to create a comprehensive understanding of
each approach, which was useful for further compari-
son. Comparison identified the advantages and disad-
vantages of different approaches, considering various
aspects such as productivity, development cost, appli-
cation quality and performance, support for different
mobile platforms, and other factors.

RESULTS
Native frameworks for mobile development. Native
frameworks for mobile platforms are specially de-
signed tools that allow developers to create applica-
tions optimised for a specific platform or operating
system. These frameworks provide access to native ca-
pabilities and features of the platform, resulting in the
development of high-performance and efficient soft-
ware products. The key feature of these frameworks
is their focus on development for a specific platform,
such as iOS or Android. This means that developers
have the opportunity to fully leverage all the capa-
bilities of the given platform to create applications
that work optimally and reliably. Typically, for iOS, this
involves the Swift programming language and the
Xcode development tool, while for Android, it includes
the Kotlin or Java programming language and the An-
droid Studio development tool.

Xcode is an integrated development environment
(IDE) designed for creating software for iOS and macOS
platforms. It is specifically tailored for programming
languages recommended by Apple, including C, C++,
Objective-C, Swift, Java, AppleScript, Python, and Ruby.
Xcode offers advanced capabilities and tools that fa-
cilitate the development process, including code refac-
toring features (Tkachuk & Bulakh, 2022). The modern
Swift programming language was developed by Apple
for iOS, macOS, watchOS, and tvOS platforms. It aims to
provide safety, performance, and code expressiveness,
offering a more convenient and efficient alternative to
the Objective-C language (Fojtik, 2019). Swift comes
integrated with the Xcode development environment
in the macOS operating system. This integration allows
developers to develop, test, and debug their Swift pro-
grammes in a unified environment. Xcode provides a
range of tools and features that ease the development
process, such as a visual interface builder, debugger,
and simulator for testing applications on various devic-
es (Ziyodullayevich et al., 2019).

The advantage of using Xcode and Swift to develop
iOS applications is the ability to use native features and
functions of Apple devices. Native development allows
creating applications optimised for specific iOS hard-
ware and software, resulting in improved performance
and user experience. However, it requires developers
to have knowledge of different programming languag-
es and development environments (Biørn-Hansen et
al., 2020). The primary programming languages for An-
droid application development include Java and Kotlin.
Java is a traditional programming language for Android,
while Kotlin is a modern alternative that provides effi-
ciency and convenience for developers. Android Studio
serves as an integrated development environment (IDE)
specifically designed for creating Android applications.
It supports both major programming languages, Java
and Kotlin, and provides developers with the necessary
tools for application development and debugging. In
addition, for scenarios requiring maximum performance,
the Native Development Kit (NDK) is available, allow-
ing developers to use native code, such as C and C++, in
their applications. The Android Software Development
Kit (SDK) offers tools and resources for application
development, testing, and documentation for Android.
It also includes emulators for testing applications on
various devices and Android versions (Sun et al., 2021).
All these components of the Android application de-
velopment infrastructure enable developers to create
efficient and reliable applications for different devices,
working at an optimal level of performance and utilis-
ing the powerful capabilities of the Android platform.

The development of native mobile applications
has several key features that distinguish it from other
development approaches. One of the main advantages
is the ability to harness the full potential of the un-
derlying operating system and device hardware. Native
applications have direct access to device-specific fea-
tures and APIs (application programming interfaces),
enabling developers to create optimised and produc-
tive applications. This level of control allows the de-
velopment of multifunctional and engaging user inter-
faces with smooth animations, fast responsiveness, and
access to advanced functionalities (Dittrich et al., 2023).
Another key feature of native application development
is the ability to follow specific design recommendations
for user interface components. Native applications can
provide a consistent user experience by adhering to de-
sign principles and templates of the target operating
system (Thamutharam et al., 2021). This ensures that
the application looks and feels like it is native to the
platform, improving user experience and satisfaction.

Native application development also offers better
integration with the device ecosystem. Developers can
easily access device capabilities such as the camera,
GPS, accelerometer, and push notifications (Raeesi et
al., 2022). This enables the creation of applications that
can fully utilise the device’s potential, providing features
like location-based services, augmented reality, and

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Comparative analysis of frameworks for mobile application development...

22

real-time functionality. In addition, compared to other
development approaches, native applications typically
offer better performance. Since they are built using na-
tive programming languages and tools, they can operate
more efficiently. However, native application develop-
ment also has limitations and challenges. One of the main
drawbacks is the need to develop separate codebases for
each target platform (Masaad Alsaid et al., 2021). This can
increase development time and costs. Moreover, updates
and bug fixes may require separate deployments for
each platform, leading to increased maintenance efforts.

Hybrid mobile app development frameworks. Hybrid
development of mobile applications allows developers
to create mobile applications using web development
technologies, such as HTML (Hybrid Mobile App De-
velopment Frameworks), CSS (Cascading Style Sheets),
and JavaScript. This method combines the advantages
of other approaches and offers a compromise between
native applications and web applications, allowing the
production of applications that simultaneously provide
high functionality for a specific platform and compati-
bility with different platforms (Wu et al., 2022).

One of the most popular tools for hybrid develop-
ment is Apache Cordova. It initialises a native application
using WebView, an embedded web browser. It acts as a
bridge between native code and application web com-
ponents, enabling developers to write business logic in
JavaScript and create user interfaces using HTML and
CSS. This approach allows the development of applica-
tions that can work on various platforms, including An-
droid and iOS, using a single codebase. Hybrid applica-
tion development frameworks provide a wide range of
features and capabilities to simplify the development
process. These frameworks often include components
and libraries that allow developers to create visual-
ly appealing and fast user interfaces (Singh & Shob-
ha, 2021). They also provide access to device features
and APIs through plugins, allowing developers to use
native functionality in their hybrid applications.

In addition to Apache Cordova, other popular hybrid
frameworks include Ionic (which uses Angular) and React
Native (based on React). Each of these frameworks has
its unique features and applications (Table 1), allowing
developers to choose the one that best suits their needs.

Table 1. Comparative characteristics of popular hybrid frameworks

Source: compiled by the author

Framework Description Programming language Main features

Apache Cordova Uses web technologies
to develop mobile applications. HTML, CSS, JavaScript Supports many plugins for

device functionality.

Ionic
A hybrid framework based on Angular.

Designed specifically for creating beautiful
and functional mobile applications

HTML, CSS, JavaScript
(with Angular)

Pre-built components and
tools for the user interface.

React Native
Allows using React to create mobile

applications with the appearance and
functionality of native applications.

JavaScript (with React)
Ability to reuse code

between platforms and high
performance.

One of the main advantages of hybrid development
is the ability to leverage existing skills and resources of
web developers. Developers proficient in web technolo-
gies can easily transition to hybrid development as they
can use their knowledge of HTML, CSS, and JavaScript.
This can lead to shortened development timelines and
reduced costs compared to developing separate native
applications for each platform. However, hybrid devel-
opment also has its limitations. Since hybrid applica-
tions rely on WebView for displaying the user interface,
they may not achieve the same level of performance as
native applications (Hu et al., 2023). In addition, using
plugins may be necessary to access certain device fea-
tures and APIs, introducing additional complexity and
potential compatibility issues. Overall, hybrid mobile
application development offers a compromise between
native and web applications. It allows developers to
create applications for different platforms using web
technologies while providing access to native device
features. Apache Cordova is a popular tool for hybrid
development, enabling the use of HTML, CSS, and Ja-

vaScript to create applications that can work on various
platforms. Although hybrid applications may not have
the same performance as native applications, they of-
fer advantages in terms of development efficiency and
cost-effectiveness.

Efficient Cross-Platform Software Development
Solutions. Cross-platform mobile application devel-
opment is a modern approach in the field of mobile
device software. It involves creating applications that
can run on different platforms, such as Android and iOS,
using a unified codebase and other shared resources.
Cross-platform development has gained popularity due
to its ability to effectively utilise shared code for cre-
ating applications on different platforms. This allows
developers to save time and resources by avoiding the
need to maintain separate code for each platform.

The main advantage of cross-platform develop-
ment is the reduction of costs for application develop-
ment and maintenance since shared code can be used
across all platforms. In addition, developers can use a
single programming language to create application

O. Zarichuk

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 23

functionality. Cross-platform frameworks like Flutter,
Xamarin, and others (Table 2) provide tools for de-
veloping mobile applications with appearances and

behaviours similar to native applications on each plat-
form (Martínez, 2019). This ensures high quality and
consistent functionality on different operating systems.

Framework Programming language Description

Flutter Dart A framework from Google for creating beautiful mobile applications with a
single code base and using its own rendering engine.

Xamarin C# A framework from Microsoft that allows developers to use the C# programming
language to create mobile applications for Android and iOS.

Appcelerator
Titanium JavaScript A framework that uses JavaScript to develop cross-platform mobile

applications and provides access to native features.

Table 2. Overview of popular cross-platform frameworks

Source: compiled by the author

Cross-platform frameworks for mobile applica-
tion development, while offering advantages such as
a unified codebase and reduced development costs,
also come with a set of drawbacks. Firstly, one of the
main drawbacks is the limited access to native func-
tions and platform APIs (Application Programming
Interface). Cross-platform frameworks attempt to ab-
stract the device’s functionality, but sometimes they
may not fully replicate all the capabilities available on
a specific platform. The second disadvantage is per-
formance and speed. Mobile applications developed
using cross-platform frameworks may run slower and
require more resources compared to native applica-
tions. In addition, delays in updates may lead to dif-
ficulties in utilising new features. Finally, cross-plat-

form frameworks may not be as well-adapted to the
specific look and behaviour of certain platforms,
which may necessitate additional customisation and
adaptation. Therefore, cross-platform frameworks,
while allowing for time and resource savings in mo-
bile application development, have limitations and
drawbacks that need to be considered when choosing
a development approach.

Comparison of the Effectiveness of Native, Hybrid,
and Cross-Platform Solutions. In the modern context of
mobile application development, choosing the optimal
approach is crucial. Developers face different capabil-
ities and limitations when choosing between native,
hybrid, and cross-platform solutions. Table 3 provides a
comparative analysis of these development approaches.

Table 3. Comparative analysis of native, hybrid, and cross-platform mobile application development solutions
Parameter Native applications Hybrid applications Cross-platform applications

Performance
and speed

High performance, optimised
speed using native

components and programming
languages (Java/Kotlin

for Android, Swift/Objective-C
for iOS).

Moderate performance and speed
due to using WebView for UI
display and some abstraction.

Moderate performance but can be
improved with specialised cross-

platform frameworks (e.g., Flutter).

Cost and
development

time

High costs and longer
development time due to the
need to create separate code

for each platform.

Lower costs and faster
development by using a single
codebase for both platforms.

Some applications may require
adjustments for a specific platform.

Lower costs and less time, but
development may take slightly longer

compared to hybrid solutions due
to choosing the right cross-platform

framework and team training.

Access
to device

capabilities

Full access to all device
capabilities and native APIs.

Limited access, requires the use of
plugins to access specific device

functions.

Average access; cross-platform
frameworks provide APIs for simplified
access to device capabilities but may

not always have a full range
of features.

Visual
appearance

Native appearance on each
platform, ensuring high-quality

and polished design.

Less native appearance; the
interface may be less attractive

and less aligned with the design
standards of each platform.

Typically less native appearance,
but the ability to use specialised
frameworks to enhance design.

Platform
support

Platform-specific
(Android and iOS).

Both platforms (Android and iOS)
from a single codebase.

Both platforms (Android and iOS)
from a single codebase.

Updates and
support

Separate for each platform,
separate updates and

maintenance.

Updates and maintenance from
a single codebase, but there may

be a need for updates for each OS
(Operating System) separately to
support new platform features.

Updates and maintenance from a
single codebase, the possibility of
additional work to support new

features.

Source: compiled by the author

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Comparative analysis of frameworks for mobile application development...

24

Native applications are characterised by high per-
formance and speed due to the use of native compo-
nents and programming languages for each platform
separately. For developing native applications on the
Android platform, programming languages such as
Java or Kotlin are used, while on the iOS platform,
Swift or Objective-C are utilised. This approach pro-
vides full access to all device capabilities and native
APIs, allowing the creation of applications with ex-
cellent performance and speed. However, it requires
more resources and development time due to the
need for separate code for each platform, leading to
increased costs and project duration. On the other
hand, hybrid applications allow cost and development
time reduction by using a single codebase for both
platforms. They often rely on web technologies such
as HTML, CSS, and JavaScript, simplifying develop-
ment for web-experienced developers. One popular
platform for hybrid development is Apache Cordova,
which initialises a native application using WebView,
an embedded web browser. Hybrid applications may
exhibit lower performance due to the use of WebView
and limited access to device capabilities. Plugins can
be used to access specific device functions, such as the
camera or geolocation.

Cross-platform applications combine the advan-
tages of both previous approaches, enabling the use
of a single codebase for both platforms. With the right
choice of a cross-platform framework, satisfactory
performance can be achieved. One such framework is
Flutter, developed by Google, which uses the Dart pro-
gramming language and its own engine for UI render-
ing. Another popular option is Xamarin, a framework
from Microsoft that allows the use of the C# program-
ming language. Cross-platform applications may also
use specialised frameworks to enhance the design and
appearance of applications. However, they may look
less native and have limited access to platform-spe-
cific features. The choice of a development approach
should be well-founded and depends on the specific
project needs, budget constraints, resources, and the
importance of performance, speed, and native applica-
tion appearance.

DISCUSSION
As a result of the study of three main approaches to
mobile application development, namely native, hybrid,
and cross-platform solutions, a detailed analysis of
each of these approaches was conducted, considering
the use of different frameworks. The overall analysis
of the findings indicates that the choice of a specific
approach to mobile application development should
be based on the specific requirements of the project,
budget constraints, and resources, as well as the impor-
tance of performance, speed, and the native look of the
application. Adequate evaluation of these factors be-
fore choosing an approach is a crucial stage in mobile
application development.

The study by S.R. Uplenchwar et al. (2022) focuses
on exploring Flutter as a cross-platform framework for
mobile app development, the Dart programming lan-
guage, and Firebase technology. The author notes that
the development of wireless technologies and mobile
devices has a significant impact on everyday life. Con-
sequently, many aspects of life become digital, and to
reduce manual work, more tasks are performed using
mobile applications. Flutter, as mentioned by the au-
thor, is a popular User Interface (UI) framework for mo-
bile application development from Google. It provides
a set of user interface elements such as sliders, buttons,
and text fields. Developers building mobile applica-
tions using Flutter use the Dart programming language.
The author also emphasises Firebase technology, which
provides tools for tracking analytics, app crash reports,
and conducting marketing experiments. This article ex-
plores the possibility of using Flutter, Dart, and Firebase
for mobile application development to reduce time and
resource costs and to ensure consistent functionality on
both Android and iOS platforms. The general conclusion
from the study by S.R. Uplenchwar et al. (2022), which
can be agreed upon, is that Flutter, Dart, and Firebase
are powerful tools for mobile application development.
Flutter allows the creation of beautiful and functional
applications with a single codebase for both platforms.
Dart is a programming language specifically designed
for working with mobile applications and has its pack-
age manager for convenient dependency management.
Firebase provides extensive capabilities for analysing
and enhancing applications. Together, these technolo-
gies can significantly simplify and improve the process
of mobile application development.

A study by N. Varghese and N. Medina-Medi-
na (2021) aimed to develop a new methodology for
mobile application development, referred to as “Agile
Beeswax.” The authors argue for the necessity of such
a methodology due to the specificities of mobile ap-
plication development and the requirements for rapid
response to changes in this field. The key elements of
the Agile Beeswax methodology include an incremen-
tal and iterative approach to development, consisting
of two main iteration cycles (sprints): the incremental
design cycle and the incremental development cycle.
These two cycles are connected by a bridge. The Ag-
ile Beeswax methodology is divided into six phases,
including strategy and idea, user experience design,
user interface design, design to development, hand-
over and technical decisions, development and de-
ployment, and monitoring. The authors indicate that
one of the main advantages of their methodology is
that it is designed to encompass both academic and
business-oriented perspectives, aiming to unite these
two communities. The findings show that the Agile
Beeswax methodology is focused on addressing spe-
cific problems and challenges that arise in the process
of mobile application development. It combines Agile
and Scrum practises, engineering technical practises,

O. Zarichuk

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 25

and operational practises to achieve greater efficiency
in this field. The authors emphasise the importance
of responding quickly to changes in the market and
acknowledge that Agile methodologies are the best
approach for mobile application development, as they
allow for faster changes and improved product quality.
It can be agreed that the Agile Beeswax methodology
represents an interesting approach to mobile appli-
cation development that can be beneficial for both
the academic and business-oriented communities, ad-
dressing specific problems associated with this type
of development.

As a result of the study, it was established that
each mobile application development method has its
advantages and limitations. Native applications pro-
vide high performance and a native look but require
more resources and development time. Hybrid applica-
tions save time and costs but may have limited access
to device functions. Cross-platform applications com-
bine the benefits of both approaches, but the choice
of the right framework is crucial. The study by S.R. Up-
lenchwar et al. (2022) underscores the importance of
selecting the right cross-platform framework, such as
Flutter, for creating applications with a single codebase.
Dart and Firebase also play a significant role in easing
the development process. The study by H.A. Alrabaiah
and N. Medina-Medina (2021) proposes the Agile Bees-
wax methodology for mobile application development,
uniting the best practises of Agile and Scrum. This
methodology is aimed at improving mobile application
development and can be beneficial for both academic
and business-oriented communities. The choice of ap-
proach and tools for mobile application development
should be based on the specific needs of the project,
limitations, and important aspects of productivity and
application appearance. The discussed methodologies
and frameworks can be useful in achieving the goals
of mobile application development. In particular, the
choice between native, hybrid, and cross-platform ap-
plications should be determined by considering the
project’s needs for performance, access to device ca-
pabilities, and constraints on budget and resources.
Research shows that for better mobile application de-
velopment, it is important to consider the individual re-
quirements and specificity of the project, as well as use
appropriate methodologies and tools.

CONCLUSIONS
In the study, various approaches to the development of
mobile applications were considered, such as native,
hybrid, and cross-platform solutions. Native applications,

developed for a specific platform, provide the high-
est performance and access to device capabilities
but require considerable effort and resources. Hybrid
applications reduce costs and time by using a shared
codebase but may have limited access to device func-
tions. Cross-platform applications, combining the ad-
vantages of both approaches, can be effective with
the right choice of a framework. Different frameworks
for mobile application development were analysed in
the study, including Flutter, Xamarin, Apache Cordo-
va, React Native, and Ionic. Each has its own features
and advantages. Flutter, developed by Google, allows
creating high-quality interface and performance appli-
cations with a single codebase. Xamarin by Microsoft
uses the C# programming language and integrates with
the Microsoft ecosystem. Apache Cordova is based on
web technologies and initialises a native application
through WebView. React Native from Facebook enables
creating applications with a native look and fast cod-
ing using React and JavaScript. Ionic uses HTML, CSS,
and JavaScript for hybrid development with the option
to use Angular. The results of the study show that the
choice of a framework should be based on the specific
project requirements, considering performance, budget,
and resources. Each framework has its advantages and
limitations, and it is essential to consider them in the
context of a particular project.

Recommendations include selecting the develop-
ment approach for a mobile application based on spe-
cific project requirements, financial constraints, and re-
sources. It is crucial to evaluate the performance, speed,
and native appearance of the application correctly to
achieve successful results in mobile application devel-
opment. The obtained results can be useful for mobile
application developers and organisations planning to
create mobile applications, helping them choose the
optimal approach and frameworks for development.
Further research can focus on a detailed analysis and
comparison of different cross-platform frameworks for
mobile application development, exploring the impact
of the development approach choice on the quality
and performance of applications, and developing new
methodologies and tools to optimise the mobile appli-
cation development process, considering current tech-
nological and business needs.

ACKNOWLEDGEMENTS
None.

CONFLICT OF INTEREST
None.

REFERENCES
[1] Alrabaiah, H.A., & Medina-Medina, N. (2021). Agile beeswax: Mobile app development process and empirical

study in real environment. Sustainability, 13(4), article number 1909. doi: 10.3390/su13041909.
[2] Biørn-Hansen, A., Rieger, C., Grønli, T.M., Majchrzak, T.A., & Ghinea, G. (2020). An empirical investigation of

performance overhead in cross-platform mobile development frameworks. Empirical Software Engineering, 25,
2997-3040. doi: 10.1007/s10664-020-09827-6.

https://www.mdpi.com/2071-1050/13/4/1909
https://link.springer.com/article/10.1007/s10664-020-09827-6

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Comparative analysis of frameworks for mobile application development...

26

[3] Dittrich, F., Albrecht, U.V., Scherer, J., Becker, S.L., Landgraeber, S., Back, D.A., Fessmann, K., ... Klietz, M.L. (2023).
Development of open backend structures for health care professionals to improve participation in app
developments: Pilot usability study of a medical app. JMIR Formative Research, 7, article number е42224.
doi: 10.2196/42224.

[4] Fojtik, R. (2019). Swift a new programming language for development and education. In T. Antipova & Á. Rocha
(Eds.), Digital Science 2019 (vol. 1114; pp. 284-295). Cham: Springer. doi: 10.1007/978-3-030-37737-3_26.

[5] Hu, J., Wei, L., Liu, Y., & Cheung, S.C. (2023). ωTest: Webview-oriented testing for android applications. In
ISSTA 2023: Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and analysis
(pp. 992-1004). New York: Association for Computing Machinery. doi: 10.1145/3597926.3598112.

[6] Kaczmarczyk, A., Zając, P., & Zabierowski, W. (2022). Performance comparison of native and hybrid android
mobile applications based on sensor data-driven applications based on Bluetooth low energy (BLE) and Wi-Fi
communication architecture. Energies, 15(13), article number 4574. doi: 10.3390/en15134574.

[7] Karatanov, O., Yena, M., Bova, Y., & Ustymenko, O. (2021). Comparison of popular test frameworks JUnit and
TestNG. Young Scientist, 5(93), 164-170. doi: 10.32839/2304-5809/2021-5-93-31.

[8] Kozub, Н., & Kozub, Yu. (2022). Declarative method for creating multiplatform applications. Bulletin of the
Eastern Ukrainian National University named after Volodymyr Dahl, 5(275), 10-15. doi: 10.33216/1998-7927-
2022-275-5-10-15.

[9] Lachgar, M., Hanine, M., Benouda, H., & Ommane, Y. (2022). Decision framework for cross-platform mobile
development frameworks using an integrated multi-criteria decision-making methodology. International
Journal of Mobile Computing and Multimedia Communications, 13(1), 1-22. doi: 10.4018/ijmcmc.297928.

[10] Martínez, M. (2019). Two datasets of questions and answers for studying the development of cross-platform
mobile applications using Xamarin framework. In 2019 IEEE/ACM 6th international conference on mobile
software engineering and systems (MOBILESoft) (pp. 162-173). Piscataway: Institute of Electrical and Electronics
Engineers. doi: 10.1109/mobilesoft.2019.00032.

[11] Masaad Alsaid, M.A.M., Ahmed, T.M., Sadeeq, J., Khan, F.Q., Mohammad, & Khattak, A.U. (2021). A comparative
analysis of mobile application development approaches: Mobile application development approaches.
Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 58(1), 35-45.
doi: 10.53560/PPASA(58-1)717.

[12] Raeesi, A., Khajouei, R., & Ahmadian, L. (2022). Evaluating and rating HIV/AIDS mobile apps using the
feature-based application rating method and mobile app rating scale. BMC Medical Informatics and Decision
Making, 22, article number 281. doi: 10.1186/s12911-022-02029-8.

[13] Singh, M., & Shobha, G. (2021). Comparative analysis of hybrid mobile app development frameworks.
International Journal of Soft Computing and Engineering, 10(6), 21-26. doi: 10.35940/ijsce.f3518.0710621.

[14] Sun, C., Ma, Y., Zeng, D., Tan, G., Ma, S., & Wu, Y. (2021). μDep: Mutation-based dependency generation for
precise taint analysis on android native code. In IEEE transactions on dependable and secure computing,
20(2), 1461-1475. Piscataway: Institute of Electrical and Electronics Engineers. doi: 10.1109/TDSC.2022.3155693.

[15] Thamutharam, Y.N., Mustafa, M.B.P., Musthafa, F.N., & Tajudeen, F.P. (2021). Usability features to improve
mobile apps acceptance among the senior citizens in Malaysia. ASM Science Journal, 16. doi: 10.32802/
asmscj.2021.686.

[16] Tkachuk, A., & Bulakh, B. (2022). Research of possibilities of default refactoring actions in swift language.
Technology Audit and Production Reserves, 5(2(67)), 6-10. doi: 10.15587/2706-5448.2022.266061.

[17] Uplenchwar, S.R., Denge, U.S., Bajoriya, A.S., & Bachwani, S.A. (2022). Review on detail information about
flutter cross platform. International Journal for Research in Applied Science and Engineering Technology, 10(1),
1016-1022. doi: 10.22214/ijraset.2022.39977.

[18] Wu, C., Pérez-Álvarez, J.M., Mos, A., & Carroll, J.M. (2022). Codeless app development: Evaluating a cloud-native
domain-specific functions approach. In Proceedings of the 56th annual Hawaii international conference on system
sciences, HICSS 2023 (pp. 6904-6913). Washington: IEEE Computer Society. doi: 10.48550/arxiv.2210.01647.

[19] Ziyodullayevich, A.Q., Babakulovich, Z.R., Bakhodirovna, M.Z., Bekmurodovich, S.A., & Akif-ogli, M.R. (2019).
Efficient and convenient application to determine the functions and analysis of the reliability of the device.
International Journal of Innovative Technology and Exploring Engineering, 9(2), 1804-1809. doi: 10.35940/ijitee.
b7323.129219.

[20] Zohud, T., & Zein, S. (2021). Cross-platform mobile app development in industry: A multiple case-study.
International Journal of Computing, 20(1), 46-54. doi: 10.47839/ijc.20.1.2091.

https://formative.jmir.org/2023/1/e42224
https://link.springer.com/chapter/10.1007/978-3-030-37737-3_26
https://dl.acm.org/doi/10.1145/3597926.3598112
https://www.mdpi.com/1996-1073/15/13/4574
https://molodyivchenyi.ua/index.php/journal/article/view/603/586
https://journals.snu.edu.ua/index.php/VisnikSNU/article/view/577/557
https://journals.snu.edu.ua/index.php/VisnikSNU/article/view/577/557
https://www.igi-global.com/gateway/article/297928
https://www.researchgate.net/publication/354199009_A_Comparative_Analysis_of_Mobile_Application_Development_Approaches
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-022-02029-8
https://www.ijsce.org/wp-content/uploads/papers/v10i6/F35180710621.pdf
https://ieeexplore.ieee.org/document/9726808
https://www.akademisains.gov.my/asmsj/article/usability-features-to-improve-mobile-apps-acceptance-among-the-senior-citizens-in-malaysia/
https://www.akademisains.gov.my/asmsj/article/usability-features-to-improve-mobile-apps-acceptance-among-the-senior-citizens-in-malaysia/
https://journals.uran.ua/tarp/article/view/266061
https://www.ijraset.com/best-journal/detail-information-about-flutter-cross-platform
https://pure.psu.edu/en/publications/codeless-app-development-evaluating-a-cloud-native-domain-specifi
https://www.ijitee.org/wp-content/uploads/papers/v9i2/B7323129219.pdf
https://www.ijitee.org/wp-content/uploads/papers/v9i2/B7323129219.pdf
https://computingonline.net/computing/article/view/2091

O. Zarichuk

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 27

Порівняльний аналіз фреймворків для розробки мобільних програм:
рідні, гібридні чи крос-платформні рішення

Олексій Геннадійович Зарічук
Менеджер комп’ютерних та інформаційних систем
ТОВ «Фідес»
02000, вул. Є. Сверстюка, 11а, м. Київ, Україна
https://orcid.org/0009-0009-0771-8465

Анотація. У сучасному цифровому світі розробка мобільних додатків є ключовою галуззю інформаційних
технологій, а вибір оптимального підходу до їх розробки має вирішальне значення для ефективного
впровадження на ринку. Метою цієї наукової роботи було проведення порівняльного аналізу різних фреймворків
для розробки мобільних додатків: рідних, гібридних і крос-платформних рішень. Для досягнення поставленої
мети були використані методи аналізу, синтезу та порівняння. Були проаналізовані характеристики різних
фреймворків для розробки мобільних додатків, включаючи їх продуктивність, вартість та доступ до пристроєвих
можливостей. Під час проведення дослідження встановлено, що рідні фреймворки вирізняються найвищою
продуктивністю та можливістю забезпечити максимально нативний вигляд та функціональність додатку. Однак
цей підхід має свої обмеження, оскільки вимагає окремої розробки для кожної платформи, що призводить до
збільшення витрат часу та ресурсів. Гібридні рішення виявилися економічно вигідними, оскільки вони дозволяють
використовувати єдину кодову базу для створення додатків для різних платформ. Це спрощує процес розробки
та підтримки. Однак гібридні додатки можуть мати обмежену продуктивність через використання WebView для
відображення інтерфейсу та обмежений доступ до пристроєвих можливостей. Крос-платформні фреймворки,
у свою чергу, забезпечують баланс між продуктивністю та ефективністю витрат ресурсів. Вони дозволяють
використовувати одну кодову базу для створення додатків для кількох платформ і при цьому можуть досягати
задовільної продуктивності. Однак вони можуть мати обмежений доступ до деяких пристроєвих можливостей
та вигляду додатку. Це дослідження робить новий внесок у науку шляхом детального порівняльного аналізу
різних підходів до розробки мобільних додатків і фреймворків, які використовуються для їх створення. Отримані
результати можна використовувати для прийняття інформованих рішень щодо вибору фреймворку для розробки
мобільного додатку

Ключові слова: Java; розробка програмного забезпечення; продуктивність; нативний вигляд; кодова база

https://orcid.org/0009-0009-0771-8465

