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Abstract. In the software industry, the standard recognises automatic fault monitoring systems as mandatory for 
implementation. Considering the constant development of technologies and the high complexity of programmes, 
the importance of optimising processes for detecting and eliminating errors becomes a relevant task due to 
the need for reliability and stability of software. The purpose of this study is to conduct a detailed analysis of 
existing deduplication algorithms for reports from automatic systems collecting information about software 
failures. Among the algorithms considered were: the longest common subsequence method, Levenshtein 
distance, deep learning methods, Siamese neural networks, and hidden Markov models. The results obtained 
indicate a great potential for optimising processes of error detection and elimination in software. The developed 
comprehensive approach to the analysis and detection of duplicates in call stacks in failure reports allows 
for effectively addressing issues. The deep learning methods and hidden Markov models have demonstrated 
their effectiveness and feasibility for real-world applications. Effective methods for comparing key parameters 
of reports are identified, which contributes to the identification and grouping of recurring errors. The use of call 
stack comparison algorithms has proven critical for accurately identifying similar error cases in products with 
large audiences and high parallelism conditions. Siamese neural networks and the Scream Tracker 3 Module 
algorithm are used to determine the similarity of call stacks, including the application of recurrent neural 
networks (long short-term memory, bidirectional long short-term memory). Optimisation of report processing and 
clustering particularly enhances the speed and efficiency of responding to new failure cases, allowing developers 
to improve system stability and focus on high-priority issues. The study is useful for software developers, software 
development companies, system administrators, research groups, algorithm and tool development companies, 
cybersecurity professionals, and educational institutions
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study aimed to develop a technology for identifying 
and classifying failures and vulnerabilities using sur-
veys and rules based on response analysis to improve 
software security.

O.V. Shmatko and M.I. Myronenko (2018) discussed 
a testing technology that automatically sorts error re-
ports in software. The uniqueness of this approach lies 
in the development of a software system for monitoring 
and detecting errors, which analyses error reports, au-
tomatically sorts them, and evaluates the reliability of 
the software. The paper by O.G. Trofymenko et al. (2023) 
emphasised that numerous risks accompany software 
development, and to maintain competitiveness, tech-
nology companies must effectively manage these risks. 
Software development projects are characterised by 
fast-paced and numerous changes, and risk classifica-
tion helps to manage them effectively. Insufficient risk 
classification can lead to unforeseen problems and 
conflicts in risk management strategies, so adapted 
classifications that consider the specifics of software 
development and cybersecurity risks should be used.

The purpose of this study was to review existing 
software systems for optimisation tasks and determine 
their feasibility in the educational process, and to inves-
tigate systems that automatically collect data on soft-
ware malfunction cases. The originality of the study lies 
in the examination of software for optimisation and jus-
tification of its application in educational processes. The 
feasibility of using technologies for detecting software 
vulnerabilities is generalised from the analysis of vari-
ous studies, but this problem lacks a complete solution, 
namely due to the lack of generalised methods aimed 
at avoiding complete software ageing, deterioration of 
its performance, and increased failures, and insufficient 
risk management in the software development process.

MATERIALS AND METHODS
The study used the methods of longest common sub-
sequence, Levenshtein, deep learning, Siamese neu-
ral networks and hidden Markov models. The longest 
common subsequence method was one of the first to 
be used to determine a similarity between call stack 
fragments (Castelluccio et al., 2017). It allowed identi-
fying sequences of functions present in both call stacks, 
regardless of their order. These algorithms can be used 
to determine the degree of similarity of programme call 
stacks, which is an important criterion for establishing 
relationships between programmes, detecting anoma-
lies, and in other areas of software analysis.

The Levenshtein method was the next step as an 
improvement over the longest common subsequence 
method. Its logical use is due to the fact that the call 
stack is an ordered set of frames, and is represented 
as a sequence of insertion, replacement, and deletion 
operations. The Levenshtein algorithm is modified to 
account for the peculiarities of call stacks, in particu-
lar, the costs of operations are statistically determined 
based on the training data set.

INTRODUCTION
With the increasing complexity and volume of code in 
modern software systems, the probability of errors oc-
curring during their operation is increasing. Even when 
using secure software development methods, errors 
can occur under inappropriate or unforeseen execution 
conditions, and reproducing them during testing is not 
always possible. This can have a negative impact on 
users and increase costs for further software mainte-
nance. In particular, the growing importance of ensur-
ing the security and stability of programmes indicates 
the importance of studying and optimising processes 
for detecting and fixing errors. However, with a large 
audience and complexity of programmes, there is a 
problem of effectively managing the flow of error re-
ports coming from automatic monitoring systems. This 
creates the need for the development and implementa-
tion of effective methods and tools for analysing, filter-
ing, and resolving these issues. Considering that mod-
ern software systems are used in various fields, from 
enterprises and e-commerce to medicine and finance, 
the stability and security of programmes are of great 
importance to end users and the business environment 
as a whole. Accurate resolution of this issue is a key as-
pect of ensuring the stability and efficiency of software 
development.

G.R. Sinha et al. (2021) and D. Feng (2022) investi-
gated the issue of data deduplication. From the results 
of their study, it can be learnt that data deduplication 
is a data compression technology without loss that in-
volves removing redundant data. This process involves 
removing duplicates, leaving only one physical copy 
that other copies can refer to. This leads to reduced 
storage costs and network bandwidth optimisation. 
Data deduplication methods are used to reduce the 
number of duplicates and repeated records. This tech-
nique improves the efficiency of data storage and usage 
and contributes to optimising data transmission over 
the network. Effective replacement of redundant frag-
ments is achieved by identifying unique fragments and 
using the appropriate approach to removing duplicates. 

V.S. Yakovyna and B.V. Uhrynovsky (2019) conduct-
ed an analysis of literary sources, which confirmed that 
the ageing of software leads to deterioration of perfor-
mance and increased failures, negatively affecting its 
reliability and user satisfaction. The authors identified 
key characteristics of the phenomenon, such as effects, 
factors, metrics, and classification of ageing factors. The 
analysis of ageing modelling methods has shown that 
the development of hybrid approaches, combining an-
alytical and measurement models, is a promising area 
for further research in this area. D. Medzatyi et al. (2023) 
emphasised that many software security approaches 
are aimed at avoiding complete failures, but the iden-
tification and classification of individual failures and 
vulnerabilities remains relevant. The literature review 
indicated that existing methods are not always suitable 
for classifying failures and vulnerabilities. Overall, this 
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Deep learning has shown potential for use in de-
termining the similarity of call stacks in crash reports 
(Ebrahimi et al., 2016). It effectively considers the con-
text of the frame in the call stack, which allows for a 
more accurate determination of similarity between 
them. One of the prospects of this approach is the abil-
ity to automatically extract key features, facilitating 
efficient processing and measurement of similarity. In 
addition, deep learning algorithms have shown robust-
ness to noise and data variability, providing accurate 
measurements of similarity in diverse and unpredicta-
ble data sets.

Siamese neural networks have proven to be an ef-
fective approach to determining the similarity of call 
stacks in crash reports using deep learning (Dang  et 
al.,  2012). Using a Siamese architecture, the method 
evaluated the similarity of stacks, considering their in-
ternal structure. Key elements include converting the 
call stack into a vector form, using a recurrent neural 
network to obtain a transformed vector representation, 
and using a classifier to assess the similarity between 
stacks. With the Siamese architecture, this method pro-
vided an effective assessment of call stack similarity, 
with the major advantages being a smaller training 
sample size and the ability to automatically extract key 
features for more accurate comparison.

The hidden Markov model method was an approach 
to detecting duplicates in crash reports (van Tonder et 
al., 2018). This algorithm was based on the idea of cre-
ating a separate hidden Markov model for each cluster, 
allowing for efficient determination of a specific stack 
belonging to a particular cluster. Each stack was con-
sidered as a discrete sequence of states or function 
calls, and the determination of the number of observed 
and hidden states was done using unique frames of the 
stacks in the cluster.

The general matrix H for the entire set of call 
stacks is calculated using the formula (Castelluccio et 
al., 2017) (1):

𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗−1 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗 − 𝑑𝑑𝑑𝑑
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗−1 − 𝑑𝑑𝑑𝑑

  ,                 (1)

where H(i, j) – optimal value of the algorithm for the 
i and j elements of the respective subsequences;  
S(i,  j) – value of comparing these elements; d – fixed 
penalty for a missing or extra function.

To calculate the result of the comparison, it is nec-
essary to consider how important a given function P(f) 
is (Castelluccio et al., 2017) (2):

𝑃𝑃𝑃𝑃1(𝑓𝑓𝑓𝑓) = 1− 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  .        (2)

It is also necessary to consider the position of the 
sought function ai in the stack, relative to the top, i.e., 
P(ai). The closer it is to the top, the higher the weight 
(Castelluccio et al., 2017) (3):

𝑃𝑃𝑃𝑃2(𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) = 1− і
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓

  ,            (3)

where i – interval between ai – i-th frame of the stack 
being compared to bj – j-th frame of the stack, which 
is introduced in the next formula (Castelluccio  et 
al., 2017) (4):

P3(ai, bj)
 = e-|i-j|.                            (4)

The comparison function looks as follows (Castel-
luccio et al., 2017) (5):

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑃𝑃𝑃𝑃1(𝑓𝑓𝑓𝑓) ∗ 𝑃𝑃𝑃𝑃2(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖) ∗ 𝑃𝑃𝑃𝑃3�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ,𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗�, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑓𝑓
0,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  . (5)

The weight calculation of the function has the fol-
lowing form (Rosenberg & Moonen, 2018) (6, 7):

ω(fi)
 = lωα(fi)

 
*

 gωβγ(fi),                      (6)

where ω(fi)  – weight of function fi; gωβγ(fi)  – global 
weight of function fi among all stacks accumulated  
in the base; α, β, γ  – coefficients for adjusting the  
algorithm.

𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔𝛼𝛼𝛼𝛼(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) = 1
𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼

  ,                            (7)

where i – frame number.
The calculation of the total weight is done us-

ing the TF – IDF ranking function (Rosenberg & Moo-
nen, 2018) (8):

𝑔𝑔𝑔𝑔𝜔𝜔𝜔𝜔𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) = 1
1+𝑒𝑒𝑒𝑒−𝑥𝑥𝑥𝑥

∗ (𝛽𝛽𝛽𝛽 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖)− 𝛾𝛾𝛾𝛾)  ,         (8)

where TF(fi)
 = 1, IDF(fi) – inverse document frequency;  

β, γ – parameters for tuning IDF(fi).
The calculation of the feature vector based on the 

two obtained vectors is (Dang et al., 2012) (9):

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑣𝑣𝑣𝑣1,𝑣𝑣𝑣𝑣2) = (|𝑣𝑣𝑣𝑣1 − 𝑣𝑣𝑣𝑣2|, (𝑣𝑣𝑣𝑣1+𝑣𝑣𝑣𝑣2)
2

, 𝑣𝑣𝑣𝑣1 × 𝑣𝑣𝑣𝑣2)  ,  (9)

where v1
 = biLSTM(C1), v2

 = biLSTM(C2), despite the fact 
that C1,C2 are call stacks.

The stack as a discrete sequence of states or func-
tion calls (van Tonder et al., 2018) (10):

S = {f1, f2, …, fm}.                        (10)

The structure of the hidden Markov model is deter-
mined as follows (van Tonder et al., 2018) (11):

V = {v1, …, vM},                         (11)

where M – number of observable states.
The set of observations is the set of hidden states 

of the model (van Tonder et al., 2018) (12):

S = {s1, …, sN},                           (12)

where N – number of hidden states.
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RESULTS
Collection and analysis of error reports in software. 
Modern information systems are rapidly increasing in 
code volume and complexity, and most coding errors 
and unforeseen conditions are not detected during 
the testing phase. After software release, its further 
maintenance requires significant resources to adapt to 
new operating systems, fix critical errors, and expand 
functionality. User reports are not efficient enough 
due to objective limitations. Thus, automatic error re-
port collection is a necessary part of software develop-
ment, provided by systems that monitor programmes 
for failures and send reports to the server when they 
occur (Brodie et al., 2005). These reports include mem-
ory dumps, log files, configuration files, and other char-
acteristics of software operation, allowing for quicker 
and more effective problem resolution, collecting data 
about the software usage environment, measuring its 
stability, and prioritising failures. The intensity of the 
flow of error reports depends on the number of soft-
ware users and can reach millions per day. The task of 
deduplicating reports arises from the large number of 
duplicates and outdated reports. Accurate deduplica-
tion is essential for correct statistics and prioritisation 
of failures and allowing engineers to use their time 
more efficiently by eliminating the need to review re-
curring failures and control defect fixes.

Overall, a failure is defined as the inability of 
software or its component to perform its functions 

or meet defined criteria, such as speed or resource 
usage. Meanwhile, a thread’s call stack represents a 
data structure that contains information about the se-
quence of function calls made by a single execution 
thread in a programme. The thread’s call stack stores 
information about the current state of each function in 
that thread, including the location of the programme 
counter and the values of local variables (Bartz  et 
al., 2008). It can also contain information about the re-
turn point within the thread, allowing the programme 
to correctly resume after the function completes. In a 
programme with parallel execution, there may be mul-
tiple thread call stacks, each operating independently, 
but in case of an error or failure, tracing the call stack 
of that thread indicates the sequence of functions that 
caused the problem. In addition, there is the concept 
of a programme memory dump, which is a file that 
captures the state of the programme’s memory at a 
specific moment in time (Wrembel,  2022). It can in-
clude the entire memory area the programme uses at 
that particular moment.

When it comes to existing algorithms for cluster-
ing crash reports, they can be divided into two catego-
ries depending on the information they use. In the first 
group, algorithms use metadata about crashes, while in 
the second group, they use the call stack of the thread 
where the crash occurred. For a better understanding of 
the crash report clustering processes, it is worth using 
the schematic diagram presented in Figure 1.

Report an error

Log file

System status

Memory dump

Configuration

Pre- 
processing Clustering

Figure 1. Schematic representation of the crash report clustering process
Source: compiled by the authors

Both approaches have their advantages and disad-
vantages. Among the disadvantages, the need to col-
lect memory dumps can be highlighted, which takes 
time and increases the size of the report. Furthermore, 
the large sizes of dumps and symbol files, their com-
plex restoration process, and possible impact on the 
computational power of the user’s computer are dis-
advantages. On the other hand, the call stack provides 

comprehensive information about the cause of the 
crash and allows for additional investigation of the 
programme’s state. In any case, both methods can be 
used separately or in combination. A typical example 
of a call stack for Linux systems can also be consid-
ered (Table 1). Frames 1 to 9 describe the programme’s 
logic, while frames 10 and 11 represent system calls 
for thread initialisation.

Frame Module Function signature Path to the source file

1 libxul.so mz::lrs::NativeCA::NotifySurfaceReady() RenderComposNative.cpp:291

2 libxul.so mz::lrs::NativeOGL::Unbind() RenderComposNative.cpp:558

Table 1. Example of a crash call stack in Mozilla
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Before any actions with the call stack, a very impor-
tant step is preprocessing, the main task of which is to 
remove insignificant data from the stack. Preprocessing 
may include actions such as partially removing frames 
of recursive calls, identifying runtime and system mod-
ules, removing fault handling frames, marking frames 
according to module versions, identifying insignificant 
or “reliable” functions, and formulating a “dictionary” of 
functions in the call stack. Another important criterion 

is that the function where the crash occurred should 
be identical. Nevertheless, identifying this function is 
not always straightforward and may not be at the top 
of the stack due to error handling, platform or runtime 
code, or changes in the product’s version. In any case, 
the further away a function is from the top of the stack, 
the less likely it is to be relevant to the crash, and the 
more times it may appear in the reports. For example, 
thread initialisation functions (Fig. 2).

Notes: Frame 10 and frame 11 are standard functions, and their path to the source file is not important for this study.
Source: compiled by the authors

Frame Module Function signature Path to the source file

3 webrender.so webrender::Renderer::draw_frame renderer/mod.rs:4412

4 libxul.so nsThread::ProcessNextEvent(bool, bool*) threads/nsThread.cpp:1233

5 libxul.so MessageLoop::RunInternal() base/message_loop.cc:381

6 libxul.so MessageLoop::RunHandler() base/message_loop.cc:374

7 libxul.so nsThread::ThreadFunc(void*) threads/nsThread.cpp:391

8 libxul.so std::sys::unix::Thread::thread_start sys/unix/thread.rs:108

9 firefox-bin set_alt_start(PthreadCreateParams*) pthread_interposer.cpp:80

10 libc.so.6 start_thread

11 libc.so.6 clone3

Figure 2. Example of two call stacks that are compared
Source: compiled by the authors

Stack 1 Stack 2

Designation

Identical frames
Different frames
Missing frames

f2

f1

f3

f4

f5

f6

f7

f21

f11

f31

f41

f41

In addition to the function name, another impor-
tant aspect is parameters such as translation unit, im-
plementation location, and data types, which also af-
fect comparison and evaluation.  There may be multiple 
stacks that lead to a crash in the same function. Detect-
ing such groups of stacks is important for comprehen-
sive information and effective fault removal.

Algorithms for processing text information and 
measuring similarity. Solving the task of comparing call 
stacks is a relatively new topic that uses various adapt-
ed algorithms. Initial attempts were based on simple 
string comparison algorithms, from straightforward se-
quence comparison to using regular expressions. Sub-
sequently, ranking-based algorithms were introduced, 
which proved to be more flexible and accurate. In addi-
tion, attempts have been made to use graph similarity 
algorithms. Overall, in recent years, there has been a 

significant variety of algorithms, including those based 
on machine learning methods.

There is an algorithm that uses a modified longest 
common subsequence (LCS) method. However, its ap-
plication also requires using a variation of the Needle-
man-Wunsch algorithm, which allows any possible 
gaps but does not allow frame replacements. Consider-
ing that the function where the failure occurred is most 
likely to be at the top of the stack, it is recommended to 
introduce a parameter that determines the position rel-
ative to the top. This algorithm uses dynamic program-
ming and calculates a common matrix for the entire set 
of call stacks (Formula 1).

The next stage in improving the previous method is 
the ReBucket algorithm. Its main principle is also based 
on finding LCS, but it differs from the previous one in 
the approach to the comparison function Si, j and the 

Continued Table 1
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absence of fixed penalties d. Its modification is known 
as the position-dependant model (PDM). The key idea 
is that functions located far from the top of the stack 
should have less influence on the comparison result. 
The algorithm allows adjusting the weight of the in-
fluence using respective parameters. The concept of 
“Alignment Offset” is also introduced to account for 
missing or extra functions.

To express the difference between two call stacks 
as a number, an adapted Levenshtein distance algo-
rithm can also be used. Its use for this task is logical, as 
the call stack is an ordered set of frames. The basis is 
the classic Levenshtein distance calculation algorithm, 
which uses only modifications of insertion, deletion, 
and replacement. For the given stacks, transposition is 
not considered since the order of frames is important. 
The result of the Levenshtein distance calculation will 
be the minimum number of modifications. The maxi-
mum length of the two stacks will be used to normalise 
the obtained value so that the result is within 0 to 1.

Two essential modifications to the algorithm 
should be mentioned. First, unlike the classical ver-
sion of the Levenshtein algorithm, where the cost of 
deletion, replacement, and insertion operations is 
considered the same, this cost should be determined 
separately for each operation using a statistical mod-
el built on the training data. Second, in the case of 
text processing, there is a constant set of characters, 
while when working with call stacks, a frame is an an-
alogue of a character. The frame includes the module, 
address, and function signature. These parameters are 
also considered when determining operations with 
corresponding costs. An example of a frame could look 
like this: “Module: example_module; Function address: 
0x12345678; Function signature: void example_func-
tion(int a, char b)”.

Methods of deep learning are widely used for ana-
lysing various data, which makes them potentially ef-
fective for determining the similarity of call stacks in 
crash reports. Although these methods are actively 
used for crash report deduplication tasks, their appli-
cation for measuring the similarity of call stacks is less 
common. It is worth noting the promising prospects 
of such an approach. For example, the ability to con-
sider the frame context. Deep learning can effectively 
evaluate the relationships between different call stack 
frames, which allows for more accurate determination 
of similarity. An important criterion is the automatic 
extraction of key features. Deep learning models can 
automatically determine important features from data, 
providing more efficient processing and consideration 
of similarity. In addition, there is robustness to noise 
and data variability. Deep learning algorithms demon-
strate greater robustness to noise and data variability, 
allowing for precise similarity measurements even in 
complex or unpredictable data sets (Yang et al., 2023). 
It is worth using feature embedding, considering the 
possibility of deriving semantic similarity between call 

stack frames. Flexibility is also an important aspect, as 
deep learning algorithms can be adapted to different 
types of data, such as text, images, and sounds, making 
them versatile for various applications.

Siamese neural networks, the S3M method, and 
hidden Markov models. The Scream Tracker 3 Module 
(S3M) can be considered as the first effective example 
of using deep learning for calculating the similarity of 
call stacks. In general, the Siamese architecture consists 
of at least two identical convolutional neural networks 
and an evaluation module. Here, identity means that 
the networks have the same configuration and weight 
coefficients. Convolutional networks receive call stacks 
as input and return feature vectors, which are passed to 
the evaluation module, which returns a number charac-
terising their similarity in the range from 0 to 1.

Classical neural networks are also used to solve 
clustering tasks, but for this, predefined clusters and 
a significant training sample are required. In the case 
of Siamese neural networks, their task is to estimate 
the similarity of data from a specific domain, so they 
require a smaller training sample that should consid-
er the diversity of data with which the network will 
work (Esteves  et al.,  2023). As for the S3M algorithm 
itself, its first step is to convert the call stack into a 
vector form. To do this, functions in frames are cropped 
and tokenised. Cropping is used to minimise the size 
of the token vocabulary, for example, module or class 
names can be truncated. Minimising the vocabulary 
helps improve comparison. Furthermore, having a vec-
tor representation of stacks, it is worth using recurrent 
neural networks (RNN) to obtain a transformed vector 
representation. Since this process requires substantial 
resources, the obtained representation is stored in the 
system, and for further comparisons, it is necessary to 
compute only for the input call stack.

The next step is to use a classifier for the pair of 
transformed call stack representations. Since these 
stacks can be quite large, the algorithm uses an archi-
tecture called long short-term memory (LSTM) in the 
RNN. This network iteratively works with data (tokens), 
changing its internal state at each iteration and gen-
erating an output vector-result. This allows the RNN 
to “remember” and consider the previous context, pro-
cessing each subsequent token. Generally, RNN and its 
LSTM architecture were initially developed for working 
with text but later found application in other areas.

The classical LSTM architecture has a drawback in 
that the network considers only tokens that are locat-
ed before the token with which it is currently working 
at a specific time (Islam et al.,  2021). However, in the 
case of call stacks, frames fk+1...n located after the current 
frame  in the stack also have a significant impact. The 
situation arises as follows: the direct order of frames 
is important for the overall assessment of stack simi-
larity, and the reverse order is important for assessing 
the impact of a specific frame on the entire call stack. 
To consider this feature, a modification of LSTM called 
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bidirectional LSTM (BiLSTM) should be used. In general, 
this is simply two classical LSTMs, where one processes 
the data in the forward direction, and the other in the 
reverse. The result is obtained by concatenating the two 
vector-results of these two LSTM networks.

The next step is to calculate a feature vector based 
on the two obtained vectors (9), which should consider 
the common and different aspects of the two vectors. 
The final step is that the obtained result is processed by 
a two-layer neural network with a rectified linear unit 
activation function. Considering the system’s ability to 
store computed feature vectors for already processed 

stacks, the amortised time complexity of the algorithm 
is equal to O(dh), where d and h represent the size of 
the input and hidden layers of the two-layer neural 
network that performs the final similarity estimation. 
A drawback of this approach, like other deep learning 
methods, is the need for a significant training sample.

Another interesting method is the hidden Mark-
ov model (HMM). Typically, HMM is widely used for 
speech recognition, DNA sequence analysis, and text 
processing, demonstrating impressive results in learn-
ing data sequences. An example of HMM is shown be-
low (Fig. 3).

Figure 3. Detecting duplicate crash reports using HMM
Source: N. Ebrahimi et al. (2016)

This algorithm is based on the idea of creating a 
separate hidden Markov model for each cluster, which 
allows determining which cluster the given stack be-
longs to. The stack can be represented as a discrete 
sequence of states or function calls (10). To determine 
the number of observable states (11), all unique frames 
of stacks for all reports in the cluster should be found. 
The number of hidden states (12) is determined by 
the method of separate selection for each case with-
in N = [5, 10, 15, . . ., 50]. Other elements should also be 
considered. For example, A is a matrix of transition 
probabilities for a set of states S of size N × N. Besides, 
B is a matrix of observation probability distribution of 
size N × M. A value π = {πi} is the initial distribution. The 
HMM model is denoted as λ = (A, B, π), where A repre-
sents the probability distribution of states and transi-
tions of the system in a Markov process. Training HMM 
based on discrete observations O(O0, O2,

 . . ., OT-1) is the 
maximisation of the probability P(O|λ) among the pa-
rameters A,B,π.. The mentioned model is built for all 
clusters. One important feature of this algorithm is the 
need for historical data. It is interesting to note that this 
algorithm is an improvement of CrashAutomata, built 
on the generation of finite automata.

DISCUSSION
It is worth considering other studies in this area for 
a more detailed analysis of detecting duplicate error 
reports in software and algorithms for comparing call 
stacks. For example, R. Van Tonder et al. (2018) consid-
ered automated dynamic testing tools, including fuzzers 

that generate a large number of erroneous or boundary 
input data to provoke crashes. To reduce the number 
of duplicate crash reports, they use various heuristics, 
such as stack hashes, etc. However, after removing du-
plicates, there remains a substantial number of unique 
crashes that may correspond to the same error (have a 
common cause). The paper proposes a method of se-
mantic clustering of crashes, which uses programme 
transformations to accurately group crashes. Instead 
of fast but inaccurate heuristics, the method uses ap-
proximate bug fixes through minor modifications of the 
programme’s source code based on patch patterns and 
semantic feedback. This approach is suitable for gener-
al classes of bugs and outperforms built-in deduplica-
tion methods for next-generation fuzzers. Like in this 
study, the aforementioned study addresses the issue 
of deduplicating error reports. Nevertheless, this study 
concerns deduplicating crash reports received from 
users during normal usage, while in the other case, it 
deals with general reports of system malfunctions and 
their detection during testing stages. Furthermore, in 
the former study, unlike this one, semantic clustering of 
crashes is used. In this study, crash grouping is based on 
the similarity of call stacks.

C.M. Rosenberg and L. Moonen (2018) focused on 
the problem of grouping logs of software system op-
erations related to identical faults. They investigated 
whether such an approach could be applied to logs of a 
system operating in real conditions. They also evaluat-
ed the impact of dimensionality reduction and cluster 
merging criteria on the quality of automatic clustering. 

πl π l       πl π l        πl πl Stochastic   Process

A l A l Al A l AlX 0 X 1 X2 X 3 X 4 X5 Stochastic   Process

Bug Group (l) F0 F1 F2 F3 F4

Bl Bl Bl Bl Bl

F5

Bl Stochastic   Process
Observations (O)

O0 O1 O2 O3 O4 O5
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The authors used a method that replicates and extends 
the work on clustering of system logs. They considered 
the inclusion of dimensionality reduction methods and 
three cluster merging criteria. The results showed that 
fault detection in continuous deployment logs through 
clustering is reasonable, and fault detection through 
automatic clustering improves when dimensionality 
reduction is applied, which increases its robustness to 
different input data. The common aspects are the con-
sideration of clustering methods. However, the meth-
ods used to achieve the purpose differ in the studies 
and they use different data to reach it.

Furthermore, S. Gupta and S. Gupta (2021) empha-
sised that defects are an integral part of software pro-
jects. In open-source projects, bug reports are stored 
in open bug repositories. When a new report arrives, a 
person called a “triager” analyses it before assigning 
it to the responsible developer, trying to determine if 
it is not a duplicate. The problem of duplicates com-
plicates the software maintenance process, and the 
paper investigates the issue of detecting duplicate 
defect reports. It also classifies and analyses existing 
research on duplicate defect report detection, noting 
the advantages, limitations, and defining key areas for 
future investigation in this area. It can be concluded 
that both studies analyse the problem of deduplicat-
ing crash and software defect reports. However, in 
this study, algorithms are considered that allow auto-
mating the clustering of reports based on call stacks, 
rather than descriptions, unlike the other study. In ad-
dition, this study not only focuses on detecting dupli-
cate error reports but also proposes various ways to 
address this issue.

S. Mukhtar et al. (2023) argued that defect reports 
can vary in granularity: some are exhaustive, while 
others are quite brief. In such cases, duplicate defect 
reports can be a useful resource for enriching defect 
descriptions. Nevertheless, existing methods for sum-
marising descriptions mainly focus on individual de-
fect reports. In this paper, the authors explored the 
summarisation of duplicate software defect reports to 
obtain an informative summary, reducing redundant 
phrases. They applied various text summarisation 
methods to duplicate defect reports, comparing their 
effectiveness and determining the best method. The 
experimental results confirm that the extractive mul-
ti-document method is the most effective, providing 
detailed summaries of duplicate defect reports. This 
helps advance defect report summarisation tech-
niques based on unique information from duplicates. 
Thus, both studies address the issue of duplicate crash 
and software defect reports. However, this study ex-
amines clustering methods based on the similarity of 
call stacks and failure metadata obtained automati-
cally, while the other study focuses on a multi-doc-
ument method based on defect reports. The idea of 
complementing information based on duplicates is 
also interesting.

S. Jahan and M.M. Rahman (2022) analysed a large 
number of defect reports from three open-source sys-
tems, identified textually similar and distinct dupli-
cates, and evaluated the effectiveness of existing du-
plicate detection methods. The authors discovered that 
existing methods perform poorly for textually distinct 
duplicates, as they often miss important components, 
leading to low efficiency. They also used domain-spe-
cific embeddings to improve the efficiency of tradition-
al duplicate detection methods. The results obtained 
showed that such an approach of combining tradi-
tional methods with modern large language models 
achieves new record results, highlighting the potential 
of such a combination to improve software engineer-
ing tasks. The commonality in both studies lies in the 
use of methods for detecting duplicate error reports. 
Nonetheless, the difference lies in the approaches to 
detecting these duplicates and the data used from the 
reports for this purpose.

S.  Qian  et al.  (2023) noted that a large number 
of new software defects constantly arise, creating a 
workload for those who fix them. Therefore, effective 
defect deduplication is of great importance in soft-
ware development. This study begins with an exami-
nation of the available literature, including an analy-
sis of research trends, mathematical models, methods, 
and widely used datasets. Further, the authors gener-
alised the overall process of using methods, analysing 
them in terms of information obtained during execu-
tion and information taken from error reports. They 
also provide a detailed review of the methods used 
in relevant works. Ultimately, a detailed comparison 
of practical findings obtained in different studies is 
provided, based on indicators such as usage methods, 
datasets, accuracy, and completeness, among others. 
The main common aspect between the two studies is 
that they both address deduplication of errors in soft-
ware. Both studies analyse different mathematical 
models and methods. However, the metrics, results, 
and the actual methods of detecting duplicates in the 
studies differ.

T. Zhang et al. (2023) focused on duplicate bug re-
port detection (DBRD), which is a problem in science. 
The researchers proposed various methods for more 
accurate duplicate detection using both convention-
al and deep approaches. The study showed that deep 
models are not always more effective, but conventional 
methods are limited in that they do not capture the se-
mantics of error reports. To overcome these limitations, 
they proposed using a large language model to en-
hance the conventional DBRD approach. This approach, 
called Cupid, combines the best conventional method 
with the ChatGPT (Generative Pre-trained Transformer) 
large language model, which was used to extract im-
portant information from error reports. In experiments, 
Cupid showed new best results, indicating the poten-
tial of combining large language models to improve  
performance in software engineering tasks. The common  
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aspects include obtaining methods for detecting dupli-
cate error reports. Nevertheless, unlike this study, the 
other study uses large language models (specifically 
ChatGPT) and has a specific approach to detecting du-
plicate reports. In addition, the authors’ approach is 
based on defect reports, whereas this study uses auto-
matically generated crash reports.

Thus, like in this study, the above-mentioned 
studies address the deduplication of crash and soft-
ware defect reports. They also share certain methods 
for detecting such duplicates and clustering. However, 
in each study, the detection of duplicate reports and 
recommendations for their resolution have their own 
features and differences.

CONCLUSIONS
Research on automatic detection and correction of er-
rors in software has proven to be important in the con-
text of the modern industry. This study examined the 
achievement of this goal using methods such as Long-
est Common Subsequence, Levenshtein distance, deep 
learning, Siamese neural networks, and hidden Markov 
models. Each of the described algorithms has its ad-
vantages and disadvantages. LCS-based algorithms de-
termine the longest sequence of method calls present 
in both call stacks, regardless of their order, and are 
characterised by their simplicity and efficiency. Another 
algorithm used in many approaches for measuring the 
similarity of call stacks is Levenshtein distance. It cal-
culates the minimum number of insertions, deletions, 
and substitutions required to transform one call stack 
into another. Hidden Markov models are probabilistic 
models that can be used to represent the sequence 
of method calls in a call stack. Siamese neural net-
works have been applied to measure the similarity of 
call stacks and have shown promising results. Using 
deep learning approaches can help identify complex 
dependencies between call stacks and provide more 
accurate clustering results.

Overall, the results indicate a substantial increase 
in interest in this issue, and the use of recent advances 

in deep learning opens up promising ways to detect 
and deduplicate errors. The developed comprehensive 
approach to the analysis and detection of duplicate call 
stacks considers the advantages and limitations of dif-
ferent methods, providing the opportunity to choose 
the optimal approach for a specific task. Considering 
the conclusions drawn during the study, several prac-
tical recommendations can be made for detecting and 
correcting errors in software, and for further develop-
ment in this field. The methods and algorithms dis-
cussed highlight the importance of using a comprehen-
sive approach to error analysis. Given the effectiveness 
of deep learning methods in measuring the similarity of 
call stacks, further improvement of these methods and 
their consideration in software lifecycle management 
is recommended.

It is recommended to develop universal algo-
rithms that accurately identify similar error cases in 
runtime conditions on different operating systems 
and contribute to further optimisation of crash report 
processing. In addition, exploring the possibilities of 
using hybrid clustering models that combine stack-
based approaches and metadata is recommended. 
This can help accommodate changes in implementa-
tion between different versions of the software. Deep 
learning methods are promising in terms of their abil-
ity to learn during use, which will allow the system to 
adapt to a specific product. Among the further research 
areas, the following can be highlighted: development 
of methods to ensure confidentiality and integration 
of deduplication into security systems; examination 
of algorithms that consider the specifics of different 
types of programmes and their calls; creation of ef-
fective filters to identify critical errors and filter out 
irrelevant or duplicate reports, etc.
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Анотація. В індустрії системи автоматичного моніторингу збоїв у програмному забезпеченні визнані 
обов’язковим для впровадження стандартом. Враховуючи постійний розвиток технологій і високу складність 
програм, важливість оптимізації процесів виявлення та усунення помилок стає актуальним завданням 
завдяки потребі у надійності та стабільності програмного забезпечення. Мета даного дослідження полягає 
в детальному аналізі існуючих алгоритмів дедублікації звітів систем автоматичного збору інформації про 
збої у роботі програмного забезпечення. Серед розглянутих алгоритмів, були наступні: метод найдовшої 
спiльної пiдпослiдовності, відстань Левенштейна, методи глибинного навчання, сіамські нейронні мережі та 
метод прихованих марковських моделей. Отримані результати свідчать про великий потенціал оптимізації 
процесів виявлення та усунення помилок в програмному забезпеченні. Розроблений комплексний підхід до 
аналізу та виявлення дублікатів стеків викликів у звітах про збої дозволяє ефективно вирішувати проблеми. 
Використані методи глибинного навчання та прихованих марковських моделей проявили свою ефективність та 
можливість використання в реальних умовах. Зазначено ефективні способи порівняння ключових параметрів 
звітів, що сприяє ідентифікації та групуванню повторюваних помилок. Використання алгоритмів порівняння 
стеків викликів виявилося критичним для точного виявлення схожих випадків помилок у продуктах з великою 
аудиторією та умовами високої паралельності. Сіамські нейронні мережі та алгоритм Scream Tracker 3 Module 
використовуються для визначення подібності стеків викликів, зокрема, застосовуються рекурентні нейронні 
мережі (long short-term memory, bidirectional long short-term memory). Оптимізація обробки та кластеризації 
звітів значно підвищує швидкість та ефективність реагування на нові випадки збоїв, дозволяючи розробникам 
удосконалити стабільність системи та зосередитися на проблемах високого пріоритету. Дослідження корисне 
для розробників програмного забезпечення, компаній з розробки ПЗ, системних адміністраторів, дослідницьких 
груп, компаній з розробки алгоритмів та інструментів, фахівців у галузі кібербезпеки, а також освітніх установ

Ключові слова: автоматичний моніторинг; системи виявлення недоліків; усунення повторів; комп’ютерні збої; 
аналіз структури взаємодіючих контекстів
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