
UDC 004.421.22
DOI: 10.62660/2306-4412.4.2023.59-69

Deduplication of error reports in software malfunction:
Algorithms for comparing call stacks

Suggested Citation:Suggested Citation:
Pavlenko, S., & Kuliabko, P. (2023). Deduplication of error reports in software malfunction: Algorithms for comparing call stacks. Pavlenko, S., & Kuliabko, P. (2023). Deduplication of error reports in software malfunction: Algorithms for comparing call stacks.
Bulletin of Cherkasy State Technological University, Bulletin of Cherkasy State Technological University, 28(4),28(4), 59-69. doi: 59-69. doi: 10.62660/2306-4412.4.2023.59-6910.62660/2306-4412.4.2023.59-69..

*Corresponding author

Serhii Pavlenko*

Postgraduate Student
Taras Shevchenko National University of Kyiv
01033, 60 Volodymyrska Str., Kyiv, Ukraine
https://orcid.org/0000-0003-4095-3925
Petro Kuliabko
PhD in Physical and Mathematical Sciences, Associate Professor
Taras Shevchenko National University of Kyiv
01033, 60 Volodymyrska Str., Kyiv, Ukraine
https://orcid.org/0000-0001-5411-6592

BULLETIN of Cherkasy State Technological University

Journal homepage: https://bulletin-chstu.com.ua/en

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Article’s History: Received: 31.08.2023; Revised: 16.11.2023; Accepted: 18.12.2023.

Vol. 28 No. 4. 2023

Abstract. In the software industry, the standard recognises automatic fault monitoring systems as mandatory for
implementation. Considering the constant development of technologies and the high complexity of programmes,
the importance of optimising processes for detecting and eliminating errors becomes a relevant task due to
the need for reliability and stability of software. The purpose of this study is to conduct a detailed analysis of
existing deduplication algorithms for reports from automatic systems collecting information about software
failures. Among the algorithms considered were: the longest common subsequence method, Levenshtein
distance, deep learning methods, Siamese neural networks, and hidden Markov models. The results obtained
indicate a great potential for optimising processes of error detection and elimination in software. The developed
comprehensive approach to the analysis and detection of duplicates in call stacks in failure reports allows
for effectively addressing issues. The deep learning methods and hidden Markov models have demonstrated
their effectiveness and feasibility for real-world applications. Effective methods for comparing key parameters
of reports are identified, which contributes to the identification and grouping of recurring errors. The use of call
stack comparison algorithms has proven critical for accurately identifying similar error cases in products with
large audiences and high parallelism conditions. Siamese neural networks and the Scream Tracker 3 Module
algorithm are used to determine the similarity of call stacks, including the application of recurrent neural
networks (long short-term memory, bidirectional long short-term memory). Optimisation of report processing and
clustering particularly enhances the speed and efficiency of responding to new failure cases, allowing developers
to improve system stability and focus on high-priority issues. The study is useful for software developers, software
development companies, system administrators, research groups, algorithm and tool development companies,
cybersecurity professionals, and educational institutions

Keywords: automatic monitoring; fault detection systems; duplication removal; computer failures; analysis of
interacting context structures

https://orcid.org/0000-0003-4095-3925
https://orcid.org/0000-0001-5411-6592

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Deduplication of error reports in software malfunction...

60

study aimed to develop a technology for identifying
and classifying failures and vulnerabilities using sur-
veys and rules based on response analysis to improve
software security.

O.V. Shmatko and M.I. Myronenko (2018) discussed
a testing technology that automatically sorts error re-
ports in software. The uniqueness of this approach lies
in the development of a software system for monitoring
and detecting errors, which analyses error reports, au-
tomatically sorts them, and evaluates the reliability of
the software. The paper by O.G. Trofymenko et al. (2023)
emphasised that numerous risks accompany software
development, and to maintain competitiveness, tech-
nology companies must effectively manage these risks.
Software development projects are characterised by
fast-paced and numerous changes, and risk classifica-
tion helps to manage them effectively. Insufficient risk
classification can lead to unforeseen problems and
conflicts in risk management strategies, so adapted
classifications that consider the specifics of software
development and cybersecurity risks should be used.

The purpose of this study was to review existing
software systems for optimisation tasks and determine
their feasibility in the educational process, and to inves-
tigate systems that automatically collect data on soft-
ware malfunction cases. The originality of the study lies
in the examination of software for optimisation and jus-
tification of its application in educational processes. The
feasibility of using technologies for detecting software
vulnerabilities is generalised from the analysis of vari-
ous studies, but this problem lacks a complete solution,
namely due to the lack of generalised methods aimed
at avoiding complete software ageing, deterioration of
its performance, and increased failures, and insufficient
risk management in the software development process.

MATERIALS AND METHODS
The study used the methods of longest common sub-
sequence, Levenshtein, deep learning, Siamese neu-
ral networks and hidden Markov models. The longest
common subsequence method was one of the first to
be used to determine a similarity between call stack
fragments (Castelluccio et al., 2017). It allowed identi-
fying sequences of functions present in both call stacks,
regardless of their order. These algorithms can be used
to determine the degree of similarity of programme call
stacks, which is an important criterion for establishing
relationships between programmes, detecting anoma-
lies, and in other areas of software analysis.

The Levenshtein method was the next step as an
improvement over the longest common subsequence
method. Its logical use is due to the fact that the call
stack is an ordered set of frames, and is represented
as a sequence of insertion, replacement, and deletion
operations. The Levenshtein algorithm is modified to
account for the peculiarities of call stacks, in particu-
lar, the costs of operations are statistically determined
based on the training data set.

INTRODUCTION
With the increasing complexity and volume of code in
modern software systems, the probability of errors oc-
curring during their operation is increasing. Even when
using secure software development methods, errors
can occur under inappropriate or unforeseen execution
conditions, and reproducing them during testing is not
always possible. This can have a negative impact on
users and increase costs for further software mainte-
nance. In particular, the growing importance of ensur-
ing the security and stability of programmes indicates
the importance of studying and optimising processes
for detecting and fixing errors. However, with a large
audience and complexity of programmes, there is a
problem of effectively managing the flow of error re-
ports coming from automatic monitoring systems. This
creates the need for the development and implementa-
tion of effective methods and tools for analysing, filter-
ing, and resolving these issues. Considering that mod-
ern software systems are used in various fields, from
enterprises and e-commerce to medicine and finance,
the stability and security of programmes are of great
importance to end users and the business environment
as a whole. Accurate resolution of this issue is a key as-
pect of ensuring the stability and efficiency of software
development.

G.R. Sinha et al. (2021) and D. Feng (2022) investi-
gated the issue of data deduplication. From the results
of their study, it can be learnt that data deduplication
is a data compression technology without loss that in-
volves removing redundant data. This process involves
removing duplicates, leaving only one physical copy
that other copies can refer to. This leads to reduced
storage costs and network bandwidth optimisation.
Data deduplication methods are used to reduce the
number of duplicates and repeated records. This tech-
nique improves the efficiency of data storage and usage
and contributes to optimising data transmission over
the network. Effective replacement of redundant frag-
ments is achieved by identifying unique fragments and
using the appropriate approach to removing duplicates.

V.S. Yakovyna and B.V. Uhrynovsky (2019) conduct-
ed an analysis of literary sources, which confirmed that
the ageing of software leads to deterioration of perfor-
mance and increased failures, negatively affecting its
reliability and user satisfaction. The authors identified
key characteristics of the phenomenon, such as effects,
factors, metrics, and classification of ageing factors. The
analysis of ageing modelling methods has shown that
the development of hybrid approaches, combining an-
alytical and measurement models, is a promising area
for further research in this area. D. Medzatyi et al. (2023)
emphasised that many software security approaches
are aimed at avoiding complete failures, but the iden-
tification and classification of individual failures and
vulnerabilities remains relevant. The literature review
indicated that existing methods are not always suitable
for classifying failures and vulnerabilities. Overall, this

S. Pavlenko &. P. Kuliabko

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 61

Deep learning has shown potential for use in de-
termining the similarity of call stacks in crash reports
(Ebrahimi et al., 2016). It effectively considers the con-
text of the frame in the call stack, which allows for a
more accurate determination of similarity between
them. One of the prospects of this approach is the abil-
ity to automatically extract key features, facilitating
efficient processing and measurement of similarity. In
addition, deep learning algorithms have shown robust-
ness to noise and data variability, providing accurate
measurements of similarity in diverse and unpredicta-
ble data sets.

Siamese neural networks have proven to be an ef-
fective approach to determining the similarity of call
stacks in crash reports using deep learning (Dang et
al., 2012). Using a Siamese architecture, the method
evaluated the similarity of stacks, considering their in-
ternal structure. Key elements include converting the
call stack into a vector form, using a recurrent neural
network to obtain a transformed vector representation,
and using a classifier to assess the similarity between
stacks. With the Siamese architecture, this method pro-
vided an effective assessment of call stack similarity,
with the major advantages being a smaller training
sample size and the ability to automatically extract key
features for more accurate comparison.

The hidden Markov model method was an approach
to detecting duplicates in crash reports (van Tonder et
al., 2018). This algorithm was based on the idea of cre-
ating a separate hidden Markov model for each cluster,
allowing for efficient determination of a specific stack
belonging to a particular cluster. Each stack was con-
sidered as a discrete sequence of states or function
calls, and the determination of the number of observed
and hidden states was done using unique frames of the
stacks in the cluster.

The general matrix H for the entire set of call
stacks is calculated using the formula (Castelluccio et
al., 2017) (1):

𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗−1 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗 − 𝑑𝑑𝑑𝑑
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗−1 − 𝑑𝑑𝑑𝑑

 , (1)

where H(i, j) – optimal value of the algorithm for the
i and j elements of the respective subsequences;
S(i, j) – value of comparing these elements; d – fixed
penalty for a missing or extra function.

To calculate the result of the comparison, it is nec-
essary to consider how important a given function P(f)
is (Castelluccio et al., 2017) (2):

𝑃𝑃𝑃𝑃1(𝑓𝑓𝑓𝑓) = 1− 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 . (2)

It is also necessary to consider the position of the
sought function ai in the stack, relative to the top, i.e.,
P(ai). The closer it is to the top, the higher the weight
(Castelluccio et al., 2017) (3):

𝑃𝑃𝑃𝑃2(𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) = 1− і
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓

 , (3)

where i – interval between ai – i-th frame of the stack
being compared to bj – j-th frame of the stack, which
is introduced in the next formula (Castelluccio et
al., 2017) (4):

P3(ai, bj)
 = e-|i-j|. (4)

The comparison function looks as follows (Castel-
luccio et al., 2017) (5):

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑃𝑃𝑃𝑃1(𝑓𝑓𝑓𝑓) ∗ 𝑃𝑃𝑃𝑃2(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖) ∗ 𝑃𝑃𝑃𝑃3�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ,𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗�, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑓𝑓
0,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 . (5)

The weight calculation of the function has the fol-
lowing form (Rosenberg & Moonen, 2018) (6, 7):

ω(fi)
 = lωα(fi)

*

 gωβγ(fi), (6)

where ω(fi) – weight of function fi; gωβγ(fi) – global
weight of function fi among all stacks accumulated
in the base; α, β, γ – coefficients for adjusting the
algorithm.

𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔𝛼𝛼𝛼𝛼(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) = 1
𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼

 , (7)

where i – frame number.
The calculation of the total weight is done us-

ing the TF – IDF ranking function (Rosenberg & Moo-
nen, 2018) (8):

𝑔𝑔𝑔𝑔𝜔𝜔𝜔𝜔𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) = 1
1+𝑒𝑒𝑒𝑒−𝑥𝑥𝑥𝑥

∗ (𝛽𝛽𝛽𝛽 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖)− 𝛾𝛾𝛾𝛾) , (8)

where TF(fi)
 = 1, IDF(fi) – inverse document frequency;

β, γ – parameters for tuning IDF(fi).
The calculation of the feature vector based on the

two obtained vectors is (Dang et al., 2012) (9):

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑣𝑣𝑣𝑣1,𝑣𝑣𝑣𝑣2) = (|𝑣𝑣𝑣𝑣1 − 𝑣𝑣𝑣𝑣2|, (𝑣𝑣𝑣𝑣1+𝑣𝑣𝑣𝑣2)
2

, 𝑣𝑣𝑣𝑣1 × 𝑣𝑣𝑣𝑣2) , (9)

where v1
 = biLSTM(C1), v2

 = biLSTM(C2), despite the fact
that C1,C2 are call stacks.

The stack as a discrete sequence of states or func-
tion calls (van Tonder et al., 2018) (10):

S = {f1, f2, …, fm}. (10)

The structure of the hidden Markov model is deter-
mined as follows (van Tonder et al., 2018) (11):

V = {v1, …, vM}, (11)

where M – number of observable states.
The set of observations is the set of hidden states

of the model (van Tonder et al., 2018) (12):

S = {s1, …, sN}, (12)

where N – number of hidden states.

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Deduplication of error reports in software malfunction...

62

RESULTS
Collection and analysis of error reports in software.
Modern information systems are rapidly increasing in
code volume and complexity, and most coding errors
and unforeseen conditions are not detected during
the testing phase. After software release, its further
maintenance requires significant resources to adapt to
new operating systems, fix critical errors, and expand
functionality. User reports are not efficient enough
due to objective limitations. Thus, automatic error re-
port collection is a necessary part of software develop-
ment, provided by systems that monitor programmes
for failures and send reports to the server when they
occur (Brodie et al., 2005). These reports include mem-
ory dumps, log files, configuration files, and other char-
acteristics of software operation, allowing for quicker
and more effective problem resolution, collecting data
about the software usage environment, measuring its
stability, and prioritising failures. The intensity of the
flow of error reports depends on the number of soft-
ware users and can reach millions per day. The task of
deduplicating reports arises from the large number of
duplicates and outdated reports. Accurate deduplica-
tion is essential for correct statistics and prioritisation
of failures and allowing engineers to use their time
more efficiently by eliminating the need to review re-
curring failures and control defect fixes.

Overall, a failure is defined as the inability of
software or its component to perform its functions

or meet defined criteria, such as speed or resource
usage. Meanwhile, a thread’s call stack represents a
data structure that contains information about the se-
quence of function calls made by a single execution
thread in a programme. The thread’s call stack stores
information about the current state of each function in
that thread, including the location of the programme
counter and the values of local variables (Bartz et
al., 2008). It can also contain information about the re-
turn point within the thread, allowing the programme
to correctly resume after the function completes. In a
programme with parallel execution, there may be mul-
tiple thread call stacks, each operating independently,
but in case of an error or failure, tracing the call stack
of that thread indicates the sequence of functions that
caused the problem. In addition, there is the concept
of a programme memory dump, which is a file that
captures the state of the programme’s memory at a
specific moment in time (Wrembel, 2022). It can in-
clude the entire memory area the programme uses at
that particular moment.

When it comes to existing algorithms for cluster-
ing crash reports, they can be divided into two catego-
ries depending on the information they use. In the first
group, algorithms use metadata about crashes, while in
the second group, they use the call stack of the thread
where the crash occurred. For a better understanding of
the crash report clustering processes, it is worth using
the schematic diagram presented in Figure 1.

Report an error

Log file

System status

Memory dump

Configuration

Pre-
processing Clustering

Figure 1. Schematic representation of the crash report clustering process
Source: compiled by the authors

Both approaches have their advantages and disad-
vantages. Among the disadvantages, the need to col-
lect memory dumps can be highlighted, which takes
time and increases the size of the report. Furthermore,
the large sizes of dumps and symbol files, their com-
plex restoration process, and possible impact on the
computational power of the user’s computer are dis-
advantages. On the other hand, the call stack provides

comprehensive information about the cause of the
crash and allows for additional investigation of the
programme’s state. In any case, both methods can be
used separately or in combination. A typical example
of a call stack for Linux systems can also be consid-
ered (Table 1). Frames 1 to 9 describe the programme’s
logic, while frames 10 and 11 represent system calls
for thread initialisation.

Frame Module Function signature Path to the source file

1 libxul.so mz::lrs::NativeCA::NotifySurfaceReady() RenderComposNative.cpp:291

2 libxul.so mz::lrs::NativeOGL::Unbind() RenderComposNative.cpp:558

Table 1. Example of a crash call stack in Mozilla

S. Pavlenko &. P. Kuliabko

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 63

Before any actions with the call stack, a very impor-
tant step is preprocessing, the main task of which is to
remove insignificant data from the stack. Preprocessing
may include actions such as partially removing frames
of recursive calls, identifying runtime and system mod-
ules, removing fault handling frames, marking frames
according to module versions, identifying insignificant
or “reliable” functions, and formulating a “dictionary” of
functions in the call stack. Another important criterion

is that the function where the crash occurred should
be identical. Nevertheless, identifying this function is
not always straightforward and may not be at the top
of the stack due to error handling, platform or runtime
code, or changes in the product’s version. In any case,
the further away a function is from the top of the stack,
the less likely it is to be relevant to the crash, and the
more times it may appear in the reports. For example,
thread initialisation functions (Fig. 2).

Notes: Frame 10 and frame 11 are standard functions, and their path to the source file is not important for this study.
Source: compiled by the authors

Frame Module Function signature Path to the source file

3 webrender.so webrender::Renderer::draw_frame renderer/mod.rs:4412

4 libxul.so nsThread::ProcessNextEvent(bool, bool*) threads/nsThread.cpp:1233

5 libxul.so MessageLoop::RunInternal() base/message_loop.cc:381

6 libxul.so MessageLoop::RunHandler() base/message_loop.cc:374

7 libxul.so nsThread::ThreadFunc(void*) threads/nsThread.cpp:391

8 libxul.so std::sys::unix::Thread::thread_start sys/unix/thread.rs:108

9 firefox-bin set_alt_start(PthreadCreateParams*) pthread_interposer.cpp:80

10 libc.so.6 start_thread

11 libc.so.6 clone3

Figure 2. Example of two call stacks that are compared
Source: compiled by the authors

Stack 1 Stack 2

Designation

Identical frames
Different frames
Missing frames

f2

f1

f3

f4

f5

f6

f7

f21

f11

f31

f41

f41

In addition to the function name, another impor-
tant aspect is parameters such as translation unit, im-
plementation location, and data types, which also af-
fect comparison and evaluation. There may be multiple
stacks that lead to a crash in the same function. Detect-
ing such groups of stacks is important for comprehen-
sive information and effective fault removal.

Algorithms for processing text information and
measuring similarity. Solving the task of comparing call
stacks is a relatively new topic that uses various adapt-
ed algorithms. Initial attempts were based on simple
string comparison algorithms, from straightforward se-
quence comparison to using regular expressions. Sub-
sequently, ranking-based algorithms were introduced,
which proved to be more flexible and accurate. In addi-
tion, attempts have been made to use graph similarity
algorithms. Overall, in recent years, there has been a

significant variety of algorithms, including those based
on machine learning methods.

There is an algorithm that uses a modified longest
common subsequence (LCS) method. However, its ap-
plication also requires using a variation of the Needle-
man-Wunsch algorithm, which allows any possible
gaps but does not allow frame replacements. Consider-
ing that the function where the failure occurred is most
likely to be at the top of the stack, it is recommended to
introduce a parameter that determines the position rel-
ative to the top. This algorithm uses dynamic program-
ming and calculates a common matrix for the entire set
of call stacks (Formula 1).

The next stage in improving the previous method is
the ReBucket algorithm. Its main principle is also based
on finding LCS, but it differs from the previous one in
the approach to the comparison function Si, j and the

Continued Table 1

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Deduplication of error reports in software malfunction...

64

absence of fixed penalties d. Its modification is known
as the position-dependant model (PDM). The key idea
is that functions located far from the top of the stack
should have less influence on the comparison result.
The algorithm allows adjusting the weight of the in-
fluence using respective parameters. The concept of
“Alignment Offset” is also introduced to account for
missing or extra functions.

To express the difference between two call stacks
as a number, an adapted Levenshtein distance algo-
rithm can also be used. Its use for this task is logical, as
the call stack is an ordered set of frames. The basis is
the classic Levenshtein distance calculation algorithm,
which uses only modifications of insertion, deletion,
and replacement. For the given stacks, transposition is
not considered since the order of frames is important.
The result of the Levenshtein distance calculation will
be the minimum number of modifications. The maxi-
mum length of the two stacks will be used to normalise
the obtained value so that the result is within 0 to 1.

Two essential modifications to the algorithm
should be mentioned. First, unlike the classical ver-
sion of the Levenshtein algorithm, where the cost of
deletion, replacement, and insertion operations is
considered the same, this cost should be determined
separately for each operation using a statistical mod-
el built on the training data. Second, in the case of
text processing, there is a constant set of characters,
while when working with call stacks, a frame is an an-
alogue of a character. The frame includes the module,
address, and function signature. These parameters are
also considered when determining operations with
corresponding costs. An example of a frame could look
like this: “Module: example_module; Function address:
0x12345678; Function signature: void example_func-
tion(int a, char b)”.

Methods of deep learning are widely used for ana-
lysing various data, which makes them potentially ef-
fective for determining the similarity of call stacks in
crash reports. Although these methods are actively
used for crash report deduplication tasks, their appli-
cation for measuring the similarity of call stacks is less
common. It is worth noting the promising prospects
of such an approach. For example, the ability to con-
sider the frame context. Deep learning can effectively
evaluate the relationships between different call stack
frames, which allows for more accurate determination
of similarity. An important criterion is the automatic
extraction of key features. Deep learning models can
automatically determine important features from data,
providing more efficient processing and consideration
of similarity. In addition, there is robustness to noise
and data variability. Deep learning algorithms demon-
strate greater robustness to noise and data variability,
allowing for precise similarity measurements even in
complex or unpredictable data sets (Yang et al., 2023).
It is worth using feature embedding, considering the
possibility of deriving semantic similarity between call

stack frames. Flexibility is also an important aspect, as
deep learning algorithms can be adapted to different
types of data, such as text, images, and sounds, making
them versatile for various applications.

Siamese neural networks, the S3M method, and
hidden Markov models. The Scream Tracker 3 Module
(S3M) can be considered as the first effective example
of using deep learning for calculating the similarity of
call stacks. In general, the Siamese architecture consists
of at least two identical convolutional neural networks
and an evaluation module. Here, identity means that
the networks have the same configuration and weight
coefficients. Convolutional networks receive call stacks
as input and return feature vectors, which are passed to
the evaluation module, which returns a number charac-
terising their similarity in the range from 0 to 1.

Classical neural networks are also used to solve
clustering tasks, but for this, predefined clusters and
a significant training sample are required. In the case
of Siamese neural networks, their task is to estimate
the similarity of data from a specific domain, so they
require a smaller training sample that should consid-
er the diversity of data with which the network will
work (Esteves et al., 2023). As for the S3M algorithm
itself, its first step is to convert the call stack into a
vector form. To do this, functions in frames are cropped
and tokenised. Cropping is used to minimise the size
of the token vocabulary, for example, module or class
names can be truncated. Minimising the vocabulary
helps improve comparison. Furthermore, having a vec-
tor representation of stacks, it is worth using recurrent
neural networks (RNN) to obtain a transformed vector
representation. Since this process requires substantial
resources, the obtained representation is stored in the
system, and for further comparisons, it is necessary to
compute only for the input call stack.

The next step is to use a classifier for the pair of
transformed call stack representations. Since these
stacks can be quite large, the algorithm uses an archi-
tecture called long short-term memory (LSTM) in the
RNN. This network iteratively works with data (tokens),
changing its internal state at each iteration and gen-
erating an output vector-result. This allows the RNN
to “remember” and consider the previous context, pro-
cessing each subsequent token. Generally, RNN and its
LSTM architecture were initially developed for working
with text but later found application in other areas.

The classical LSTM architecture has a drawback in
that the network considers only tokens that are locat-
ed before the token with which it is currently working
at a specific time (Islam et al., 2021). However, in the
case of call stacks, frames fk+1...n located after the current
frame in the stack also have a significant impact. The
situation arises as follows: the direct order of frames
is important for the overall assessment of stack simi-
larity, and the reverse order is important for assessing
the impact of a specific frame on the entire call stack.
To consider this feature, a modification of LSTM called

S. Pavlenko &. P. Kuliabko

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 65

bidirectional LSTM (BiLSTM) should be used. In general,
this is simply two classical LSTMs, where one processes
the data in the forward direction, and the other in the
reverse. The result is obtained by concatenating the two
vector-results of these two LSTM networks.

The next step is to calculate a feature vector based
on the two obtained vectors (9), which should consider
the common and different aspects of the two vectors.
The final step is that the obtained result is processed by
a two-layer neural network with a rectified linear unit
activation function. Considering the system’s ability to
store computed feature vectors for already processed

stacks, the amortised time complexity of the algorithm
is equal to O(dh), where d and h represent the size of
the input and hidden layers of the two-layer neural
network that performs the final similarity estimation.
A drawback of this approach, like other deep learning
methods, is the need for a significant training sample.

Another interesting method is the hidden Mark-
ov model (HMM). Typically, HMM is widely used for
speech recognition, DNA sequence analysis, and text
processing, demonstrating impressive results in learn-
ing data sequences. An example of HMM is shown be-
low (Fig. 3).

Figure 3. Detecting duplicate crash reports using HMM
Source: N. Ebrahimi et al. (2016)

This algorithm is based on the idea of creating a
separate hidden Markov model for each cluster, which
allows determining which cluster the given stack be-
longs to. The stack can be represented as a discrete
sequence of states or function calls (10). To determine
the number of observable states (11), all unique frames
of stacks for all reports in the cluster should be found.
The number of hidden states (12) is determined by
the method of separate selection for each case with-
in N = [5, 10, 15, . . ., 50]. Other elements should also be
considered. For example, A is a matrix of transition
probabilities for a set of states S of size N × N. Besides,
B is a matrix of observation probability distribution of
size N × M. A value π = {πi} is the initial distribution. The
HMM model is denoted as λ = (A, B, π), where A repre-
sents the probability distribution of states and transi-
tions of the system in a Markov process. Training HMM
based on discrete observations O(O0, O2,

 . . ., OT-1) is the
maximisation of the probability P(O|λ) among the pa-
rameters A,B,π.. The mentioned model is built for all
clusters. One important feature of this algorithm is the
need for historical data. It is interesting to note that this
algorithm is an improvement of CrashAutomata, built
on the generation of finite automata.

DISCUSSION
It is worth considering other studies in this area for
a more detailed analysis of detecting duplicate error
reports in software and algorithms for comparing call
stacks. For example, R. Van Tonder et al. (2018) consid-
ered automated dynamic testing tools, including fuzzers

that generate a large number of erroneous or boundary
input data to provoke crashes. To reduce the number
of duplicate crash reports, they use various heuristics,
such as stack hashes, etc. However, after removing du-
plicates, there remains a substantial number of unique
crashes that may correspond to the same error (have a
common cause). The paper proposes a method of se-
mantic clustering of crashes, which uses programme
transformations to accurately group crashes. Instead
of fast but inaccurate heuristics, the method uses ap-
proximate bug fixes through minor modifications of the
programme’s source code based on patch patterns and
semantic feedback. This approach is suitable for gener-
al classes of bugs and outperforms built-in deduplica-
tion methods for next-generation fuzzers. Like in this
study, the aforementioned study addresses the issue
of deduplicating error reports. Nevertheless, this study
concerns deduplicating crash reports received from
users during normal usage, while in the other case, it
deals with general reports of system malfunctions and
their detection during testing stages. Furthermore, in
the former study, unlike this one, semantic clustering of
crashes is used. In this study, crash grouping is based on
the similarity of call stacks.

C.M. Rosenberg and L. Moonen (2018) focused on
the problem of grouping logs of software system op-
erations related to identical faults. They investigated
whether such an approach could be applied to logs of a
system operating in real conditions. They also evaluat-
ed the impact of dimensionality reduction and cluster
merging criteria on the quality of automatic clustering.

πl π l πl π l πl πl Stochastic Process

A l A l Al A l AlX 0 X 1 X2 X 3 X 4 X5 Stochastic Process

Bug Group (l) F0 F1 F2 F3 F4

Bl Bl Bl Bl Bl

F5

Bl Stochastic Process
Observations (O)

O0 O1 O2 O3 O4 O5

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Deduplication of error reports in software malfunction...

66

The authors used a method that replicates and extends
the work on clustering of system logs. They considered
the inclusion of dimensionality reduction methods and
three cluster merging criteria. The results showed that
fault detection in continuous deployment logs through
clustering is reasonable, and fault detection through
automatic clustering improves when dimensionality
reduction is applied, which increases its robustness to
different input data. The common aspects are the con-
sideration of clustering methods. However, the meth-
ods used to achieve the purpose differ in the studies
and they use different data to reach it.

Furthermore, S. Gupta and S. Gupta (2021) empha-
sised that defects are an integral part of software pro-
jects. In open-source projects, bug reports are stored
in open bug repositories. When a new report arrives, a
person called a “triager” analyses it before assigning
it to the responsible developer, trying to determine if
it is not a duplicate. The problem of duplicates com-
plicates the software maintenance process, and the
paper investigates the issue of detecting duplicate
defect reports. It also classifies and analyses existing
research on duplicate defect report detection, noting
the advantages, limitations, and defining key areas for
future investigation in this area. It can be concluded
that both studies analyse the problem of deduplicat-
ing crash and software defect reports. However, in
this study, algorithms are considered that allow auto-
mating the clustering of reports based on call stacks,
rather than descriptions, unlike the other study. In ad-
dition, this study not only focuses on detecting dupli-
cate error reports but also proposes various ways to
address this issue.

S. Mukhtar et al. (2023) argued that defect reports
can vary in granularity: some are exhaustive, while
others are quite brief. In such cases, duplicate defect
reports can be a useful resource for enriching defect
descriptions. Nevertheless, existing methods for sum-
marising descriptions mainly focus on individual de-
fect reports. In this paper, the authors explored the
summarisation of duplicate software defect reports to
obtain an informative summary, reducing redundant
phrases. They applied various text summarisation
methods to duplicate defect reports, comparing their
effectiveness and determining the best method. The
experimental results confirm that the extractive mul-
ti-document method is the most effective, providing
detailed summaries of duplicate defect reports. This
helps advance defect report summarisation tech-
niques based on unique information from duplicates.
Thus, both studies address the issue of duplicate crash
and software defect reports. However, this study ex-
amines clustering methods based on the similarity of
call stacks and failure metadata obtained automati-
cally, while the other study focuses on a multi-doc-
ument method based on defect reports. The idea of
complementing information based on duplicates is
also interesting.

S. Jahan and M.M. Rahman (2022) analysed a large
number of defect reports from three open-source sys-
tems, identified textually similar and distinct dupli-
cates, and evaluated the effectiveness of existing du-
plicate detection methods. The authors discovered that
existing methods perform poorly for textually distinct
duplicates, as they often miss important components,
leading to low efficiency. They also used domain-spe-
cific embeddings to improve the efficiency of tradition-
al duplicate detection methods. The results obtained
showed that such an approach of combining tradi-
tional methods with modern large language models
achieves new record results, highlighting the potential
of such a combination to improve software engineer-
ing tasks. The commonality in both studies lies in the
use of methods for detecting duplicate error reports.
Nonetheless, the difference lies in the approaches to
detecting these duplicates and the data used from the
reports for this purpose.

S. Qian et al. (2023) noted that a large number
of new software defects constantly arise, creating a
workload for those who fix them. Therefore, effective
defect deduplication is of great importance in soft-
ware development. This study begins with an exami-
nation of the available literature, including an analy-
sis of research trends, mathematical models, methods,
and widely used datasets. Further, the authors gener-
alised the overall process of using methods, analysing
them in terms of information obtained during execu-
tion and information taken from error reports. They
also provide a detailed review of the methods used
in relevant works. Ultimately, a detailed comparison
of practical findings obtained in different studies is
provided, based on indicators such as usage methods,
datasets, accuracy, and completeness, among others.
The main common aspect between the two studies is
that they both address deduplication of errors in soft-
ware. Both studies analyse different mathematical
models and methods. However, the metrics, results,
and the actual methods of detecting duplicates in the
studies differ.

T. Zhang et al. (2023) focused on duplicate bug re-
port detection (DBRD), which is a problem in science.
The researchers proposed various methods for more
accurate duplicate detection using both convention-
al and deep approaches. The study showed that deep
models are not always more effective, but conventional
methods are limited in that they do not capture the se-
mantics of error reports. To overcome these limitations,
they proposed using a large language model to en-
hance the conventional DBRD approach. This approach,
called Cupid, combines the best conventional method
with the ChatGPT (Generative Pre-trained Transformer)
large language model, which was used to extract im-
portant information from error reports. In experiments,
Cupid showed new best results, indicating the poten-
tial of combining large language models to improve
performance in software engineering tasks. The common

S. Pavlenko &. P. Kuliabko

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 67

aspects include obtaining methods for detecting dupli-
cate error reports. Nevertheless, unlike this study, the
other study uses large language models (specifically
ChatGPT) and has a specific approach to detecting du-
plicate reports. In addition, the authors’ approach is
based on defect reports, whereas this study uses auto-
matically generated crash reports.

Thus, like in this study, the above-mentioned
studies address the deduplication of crash and soft-
ware defect reports. They also share certain methods
for detecting such duplicates and clustering. However,
in each study, the detection of duplicate reports and
recommendations for their resolution have their own
features and differences.

CONCLUSIONS
Research on automatic detection and correction of er-
rors in software has proven to be important in the con-
text of the modern industry. This study examined the
achievement of this goal using methods such as Long-
est Common Subsequence, Levenshtein distance, deep
learning, Siamese neural networks, and hidden Markov
models. Each of the described algorithms has its ad-
vantages and disadvantages. LCS-based algorithms de-
termine the longest sequence of method calls present
in both call stacks, regardless of their order, and are
characterised by their simplicity and efficiency. Another
algorithm used in many approaches for measuring the
similarity of call stacks is Levenshtein distance. It cal-
culates the minimum number of insertions, deletions,
and substitutions required to transform one call stack
into another. Hidden Markov models are probabilistic
models that can be used to represent the sequence
of method calls in a call stack. Siamese neural net-
works have been applied to measure the similarity of
call stacks and have shown promising results. Using
deep learning approaches can help identify complex
dependencies between call stacks and provide more
accurate clustering results.

Overall, the results indicate a substantial increase
in interest in this issue, and the use of recent advances

in deep learning opens up promising ways to detect
and deduplicate errors. The developed comprehensive
approach to the analysis and detection of duplicate call
stacks considers the advantages and limitations of dif-
ferent methods, providing the opportunity to choose
the optimal approach for a specific task. Considering
the conclusions drawn during the study, several prac-
tical recommendations can be made for detecting and
correcting errors in software, and for further develop-
ment in this field. The methods and algorithms dis-
cussed highlight the importance of using a comprehen-
sive approach to error analysis. Given the effectiveness
of deep learning methods in measuring the similarity of
call stacks, further improvement of these methods and
their consideration in software lifecycle management
is recommended.

It is recommended to develop universal algo-
rithms that accurately identify similar error cases in
runtime conditions on different operating systems
and contribute to further optimisation of crash report
processing. In addition, exploring the possibilities of
using hybrid clustering models that combine stack-
based approaches and metadata is recommended.
This can help accommodate changes in implementa-
tion between different versions of the software. Deep
learning methods are promising in terms of their abil-
ity to learn during use, which will allow the system to
adapt to a specific product. Among the further research
areas, the following can be highlighted: development
of methods to ensure confidentiality and integration
of deduplication into security systems; examination
of algorithms that consider the specifics of different
types of programmes and their calls; creation of ef-
fective filters to identify critical errors and filter out
irrelevant or duplicate reports, etc.

ACKNOWLEDGEMENTS
None.

CONFLICT OF INTEREST
None.

REFERENCES
[1] Bartz, K. , Stokes, J.W., Platt, J.C. , Kivett, R. , Grant, D., Calinoiu, S. , & Loihle, G. (2008). Finding similar failures

using callstack similarity. In Proceedings of the third conference on tackling computer systems problems with
machine learning techniques (Sysml’08). Berkeley: USENIX Association. doi: 10.5555/1855895.1855896.

[2] Brodie, M., Ma, S., Lohman, G., Mignet, L., Wilding, M., Champlin, J. , & Sohn, P. (2005). Quickly finding known
software problems via automated symptom matching. In Second international conference on autonomic
computing (ICAC’05) (pp. 101-110). Seattle: Institute of Electrical and Electronics Engineers. doi: 10.1109/
ICAC.2005.49.

[3] Castelluccio, M. , Sansone, C. , Verdoliva, L. , & Poggi, G. (2017). Automatically analyzing groups
of crashes for finding correlations. In ESEC/FSE 2017: Proceedings of the 2017 11th joint meeting on
foundations of software engineering (pp. 717-726). New York: Association for Computing Machinery.
doi: 10.1145/3106237.3106306.

[4] Dang, Y. , Wu, R. , Zhang, H. , Zhang, D. , & Nobel, P. (2012). ReBucket: A method for clustering duplicate
crash reports based on call stack similarity. In 2012 34th international conference on software engineering
(ICSE) (pp. 1084-1093). Zurich: Institute of Electrical and Electronics Engineers. doi: 10.1109/
ICSE.2012.6227111.

https://dl.acm.org/doi/10.5555/1855895.1855896
https://doi.org/10.1109/ICAC.2005.49
https://doi.org/10.1109/ICAC.2005.49
https://doi.org/10.1145/3106237.3106306
https://doi.org/10.1109/ICSE.2012.6227111
https://doi.org/10.1109/ICSE.2012.6227111

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023

Deduplication of error reports in software malfunction...

68

[5] Ebrahimi, N., Islam, S., Hamou-Lhadj, A., & Hamdaqa, M. (2016). An effective method for detecting duplicate
crash reports using crash traces and hidden Markov models. In CASCON ‘16: Proceedings of the 26th annual
international conference on computer science and software engineering (pp. 75-84). Riverton: IBM Corp.
doi: 10.5555/3049877.3049885.

[6] Esteves, J., Costa, R., Zhou, Y., & Almeida, A. (2023). An exploratory analysis of methods for real-time data
deduplication in streaming processes. In DEBS ‘23: Proceedings of the 17th ACM international conference
on distributed and event-based systems (pp. 91-102). New York: Association for Computing Machinery.
doi: 10.1145/3583678.3596898.

[7] Feng, D. (2022). Data deduplication for high performance storage system. Singapore: Springer. doi: 10.1007/978-
981-19-0112-6_2.

[8] Gupta, S., & Gupta, S. (2021). A systematic study of duplicate bug report detection. International Journal of
Advanced Computer Science and Applications, 12(1), 578-589. doi: 10.14569/IJACSA.2021.0120167.

[9] Islam, S., Hamou-Lhadj, A., Koochekian Sabor, K., Hamdaqa, M., & Cai, H. (2021). EnHMM: On the use of ensemble
HMMs and stack traces to predict the reassignment of bug report fields. In 2021 IEEE international conference
on software analysis, evolution and reengineering (SANER) (pp. 411-421). Honolulu: Institute of Electrical and
Electronics Engineers. doi: 10.1109/SANER50967.2021.00045.

[10] Jahan, S., & Rahman, M.M. (2022). Towards understanding the impacts of textual dissimilarity on duplicate bug
report detection. In 2023 IEEE international conference on software analysis, evolution and reengineering (SANER)
(pp. 25-36). Taipa: Institute of Electrical and Electronics Engineers. doi: 10.1109/SANER56733.2023.00013.

[11] Medzatyi, D., Voichur, Yu., & Voichur, О. (2023). Technology of identification and classification of software failures
and vulnerabilities. Measuring and Computing Devices in Technological Processes, 1, 53-57. doi: 10.31891/2219-
9365-2023-73-1-8.

[12] Mukhtar, S., Primadani, C.C., Lee, S., & Jung, P. (2023). A comparison of summarization methods for duplicate
software bug reports. Electronics, 12(16), article number 3456. doi: 10.3390/electronics12163456.

[13] Qian, C., Zhang, M., Nie, Y., Lu, S., & Cao, H. (2023). A survey on bug deduplication and triage methods from
multiple points of view. Applied Sciences, 13(15), article number 8788. doi: 10.3390/app13158788.

[14] Rosenberg, C.M., & Moonen, L. (2018). Improving problem identification via automated log clustering
using dimensionality reduction. In ESEM ‘18: Proceedings of the 12th ACM/IEEE international symposium on
empirical software engineering and measurement (pp. 1-10). New York: Association for Computing Machinery.
doi: 10.1145/3239235.3239248.

[15] Shmatko, O.V., & Myronenko, M.I. (2018). Information technology of depending of errors software. Scientific
Works of Kharkiv National Air Force University, 2(56), 120-125. doi: 10.30748/zhups.2018.56.17.

[16] Sinha, G.R., Thwel, T.Th., Mohdiwale, S., & Shrivastava, D.P. (2021). Introduction to data deduplication approaches.
In T.Th. Thwel & G.R. Sinha (Eds.), Data deduplication approaches. Concepts, strategies, and challenges (pp. 1-15).
Cambridge, Massachusetts: Academic Press. doi: 10.1016/C2020-0-00104-0.

[17] Trofymenko, O.G., Loginova, N.I., Teslenko, P.O., Savielieva, O.S., & Poliakov, V.M. (2023). Classification of
software project risks. Visnyk of Kherson National Technical University, 3(86), 119-128. doi: 10.35546/kntu2078-
4481.2023.3.15.

[18] van Tonder, R., Kotheimer, J., & Le Goues, C. (2018). Semantic crash bucketing. In ASE ‘18: Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering (pp. 612-622). New York: Association for
Computing Machinery. doi: 10.1145/3238147.3238200.

[19] Wrembel, R. (2022). Data integration, cleaning, and deduplication: Research versus industrial projects. In
E. Pardede, P.D. Haghighi, I. Khalil & G. Kotsis (Eds.), Proceedings of the 24th international conference “Information
integration and web intelligence” (pp. 3-17). Cham: Springer. doi: 10.1007/978-3-031-21047-1_1.

[20] Yakovyna, V.S., & Uhrynovskyi, B.V. (2019). Software aging in the context of its reliability: A systematic review.
Scientific Bulletin of UNFU, 29(5), 123-128. doi: 10.15421/40290525.

[21] Yang, C., Chen, J., Fan, X., Jiang, J., & Sun, J. (2023). Silent compiler bug de-duplication via three-dimensional
analysis. In ISSTA 2023: Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and
analysis (pp. 677-689). New York: Association for Computing Machinery. doi: 10.1145/3597926.3598087.

[22] Zhang, T., Irsan, I.C., Thung, F., & Lo, D. (2023). Cupid: Leveraging ChatGPT for more accurate duplicate bug
report detection. Cornell University, 37(4), article number 1. doi: 10.48550/arXiv.2308.10022.

https://dl.acm.org/doi/10.5555/3049877.3049885
https://doi.org/10.1145/3583678.3596898
https://doi.org/10.1007/978-981-19-0112-6_2
https://doi.org/10.1007/978-981-19-0112-6_2
https://dx.doi.org/10.14569/IJACSA.2021.0120167
https://doi.org/10.1109/SANER50967.2021.00045
https://doi.org/10.1109/SANER56733.2023.00013
https://doi.org/10.31891/2219-9365-2023-73-1-8
https://doi.org/10.31891/2219-9365-2023-73-1-8
https://doi.org/10.3390/electronics12163456
https://doi.org/10.3390/app13158788
https://doi.org/10.1145/3239235.3239248
https://doi.org/10.30748/zhups.2018.56.17
https://doi.org/10.1016/C2020-0-00104-0
https://doi.org/10.35546/kntu2078-4481.2023.3.15
https://doi.org/10.35546/kntu2078-4481.2023.3.15
https://doi.org/10.1145/3238147.3238200
https://doi.org/10.1007/978-3-031-21047-1_1
https://doi.org/10.15421/40290525
https://doi.org/10.1145/3597926.3598087
https://arxiv.org/pdf/2308.10022.pdf

S. Pavlenko &. P. Kuliabko

Bulletin of Cherkasy State Technological University, Vol. 28, No. 4, 2023 69

Дедублiкацiя звiтiв про помилки в роботi програмного забезпечення:
алгоритми порiвняння стекiв викликiв

Сергій Васильович Павленко
Аспірант
Київський національний університет імені Тараса Шевченка
01033, вул. Володимирська, 60, м. Київ, Україна
https://orcid.org/0000-0003-4095-3925
Петро Петрович Кулябко
Кандидат фізико-математичних наук, доцент
Київський національний університет імені Тараса Шевченка
01033, вул. Володимирська, 60, м. Київ, Україна
https://orcid.org/0000-0001-5411-6592

Анотація. В індустрії системи автоматичного моніторингу збоїв у програмному забезпеченні визнані
обов’язковим для впровадження стандартом. Враховуючи постійний розвиток технологій і високу складність
програм, важливість оптимізації процесів виявлення та усунення помилок стає актуальним завданням
завдяки потребі у надійності та стабільності програмного забезпечення. Мета даного дослідження полягає
в детальному аналізі існуючих алгоритмів дедублікації звітів систем автоматичного збору інформації про
збої у роботі програмного забезпечення. Серед розглянутих алгоритмів, були наступні: метод найдовшої
спiльної пiдпослiдовності, відстань Левенштейна, методи глибинного навчання, сіамські нейронні мережі та
метод прихованих марковських моделей. Отримані результати свідчать про великий потенціал оптимізації
процесів виявлення та усунення помилок в програмному забезпеченні. Розроблений комплексний підхід до
аналізу та виявлення дублікатів стеків викликів у звітах про збої дозволяє ефективно вирішувати проблеми.
Використані методи глибинного навчання та прихованих марковських моделей проявили свою ефективність та
можливість використання в реальних умовах. Зазначено ефективні способи порівняння ключових параметрів
звітів, що сприяє ідентифікації та групуванню повторюваних помилок. Використання алгоритмів порівняння
стеків викликів виявилося критичним для точного виявлення схожих випадків помилок у продуктах з великою
аудиторією та умовами високої паралельності. Сіамські нейронні мережі та алгоритм Scream Tracker 3 Module
використовуються для визначення подібності стеків викликів, зокрема, застосовуються рекурентні нейронні
мережі (long short-term memory, bidirectional long short-term memory). Оптимізація обробки та кластеризації
звітів значно підвищує швидкість та ефективність реагування на нові випадки збоїв, дозволяючи розробникам
удосконалити стабільність системи та зосередитися на проблемах високого пріоритету. Дослідження корисне
для розробників програмного забезпечення, компаній з розробки ПЗ, системних адміністраторів, дослідницьких
груп, компаній з розробки алгоритмів та інструментів, фахівців у галузі кібербезпеки, а також освітніх установ

Ключові слова: автоматичний моніторинг; системи виявлення недоліків; усунення повторів; комп’ютерні збої;
аналіз структури взаємодіючих контекстів

https://orcid.org/0000-0003-4095-3925
https://orcid.org/0000-0001-5411-6592

