
UDC 004.738.004.75
DOI: 10.62660/bcstu/1.2024.23

Performance optimisation techniques
for Conflict-free Replicated Data Types (CRDT)

Suggested Citation:Suggested Citation:
Rabeshko, Yu., & Turbal, Yu. (2024). Performance optimisation techniques for Conflict-free Replicated Data Types (CRDT). Rabeshko, Yu., & Turbal, Yu. (2024). Performance optimisation techniques for Conflict-free Replicated Data Types (CRDT). Bulletin Bulletin
of Cherkasy State Technological Universityof Cherkasy State Technological University,, 29(1), 10-23. doi:29(1), 10-23. doi: 10.62660/bcstu/1.2024.2310.62660/bcstu/1.2024.23..

*Corresponding author

Yurii Rabeshko*

Postgraduate Student
National University of Water Management and Nature Management
33000, 11 Soborna Str., Rivne, Ukraine
https://orcid.org/0009-0002-0763-7138
Yurii Turbal
Doctor of Technical Sciences, Professor
National University of Water Management and Nature Management
33000, 11 Soborna Str., Rivne, Ukraine
https://orcid.org/0000-0002-5727-5334

BULLETIN of Cherkasy State Technological University

Journal homepage: https://bulletin-chstu.com.ua/en

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Article’s History: Received: 07.12.2023; Revised: 14.02.2024; Accepted: 18.03.2024.

Vol. 29 No. 1. 2024

Abstract. The research relevance is determined by the need for distributed data handling optimisation that does
not cause conflicts during replication, since the introduction of such types of data leads to an increase in the need
for their optimisation and performance. The study aims to develop techniques to improve the efficiency of various
types of data with conflict-free replication. To achieve this goal, the methods of analysis and experimentation
were used. The study results demonstrate that the use of certain optimised methods of conflict-free data types in
replication leads to a significant improvement in efficiency and reduction of resource costs. The results show that
caching and precomputation, asynchronous synchronisation, and local processing are the most effective methods
for improving the efficiency of Conflict-free Replicated Data Types. It is established that the choice of a specific
method for improving the performance of Conflict-free Replicated Data Types should be justified and based
on a careful analysis of the requirements and characteristics of a particular distributed system. This takes into
account user needs, data criticality, edit frequency, etc. The research includes the development and optimisation
of synchronisation algorithms that significantly improve the performance of these types of data in distributed
systems. The work includes simple software implementations for detailed analysis and study of methods for
optimising the performance of data types in conflict-free replications. The introduction of distributed computing
has made it possible to optimise the processes of data replication and synchronisation, which helps to reduce
overheads and improve system performance. It is concluded that the study is of practical importance since the
use of optimised conflict-free data types with replication in real distributed systems can improve their efficiency
and reliability. The practical significance of the study lies in the possibility of applying optimised methods of data
types with conflict-free replication in real distributed systems, which will increase their performance and ensure
efficient operation under conditions of high load and limited resource potential

Keywords: ways to increase performance; data replication; distributed systems; synchronisation efficiency; data
synchronisation methods

10.62660/bcstu/1.2024.09

https://orcid.org/0009-0002-0763-7138
https://orcid.org/0000-0002-5727-5334

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 11

between replicas and their use in mobile collaborative
offline applications for text documents. The author
also developed a software application for creating and
editing text documents in a collaborative mode, and
analysed experimental data. N. Boliubash and M. Ol-
inyk (2023) investigated certain performance improve-
ment techniques for a progressive web application. To
optimise performance, they use analysis and synthesis
methods, methods for developing progressive web ap-
plications, and methods for optimising their perfor-
mance. B.O. Biletskyy (2019) discussed the main stag-
es of machine learning, including data collection and
storage, training, and evaluation. The study determined
that special CRDT data structures are essential in build-
ing NoSQL DBMSs (database management systems) to
solve the problems of parallel modification of shared
resources and always resolve inconsistencies.

Y. Kordiaka and O. Padko (2021) addressed the de-
velopment of collaborative software for editing text
documents in real-time, using conflict-free replicated
data types. This study describes in detail the imple-
mentation of CRDTs and their application to enable the
synchronisation and collaboration of users on shared
text documents in a networked environment. V. Rya-
bushkin (2020) implemented a system for automatic
conflict resolution in text using CRDT. The author em-
phasises that CRDT can be automatically replicated
in a parallel application without the need to manual-
ly resolve conflicts. V. Shynkarov (2023) reviewed the
main optimisation approaches and their applications.
The author describes linear programming methods for
solving optimisation problems and also considers non-
linear optimisation methods. In contrast to the above
studies, which focus on either conflict-free data types
or general optimisation methods, this study focuses on
methods for improving CRDT and their development.

The aims of the study were to develop approaches
to improving the performance of conflict-free replica-
tion data to reduce overheads and increase the speed
of data replication in a distributed system. Synchroni-
sation efficiency, scalability, and optimisation methods
development for various algorithms to improve per-
formance and reduce resource costs in systems using
CRDT were addressed.

LITERATURE REVIEW
The issue of distributed data optimisation and replica-
tion is relevant in the modern information society. The
growth of data volumes and distributed computing has
led to an increased demand for efficient methods to
ensure the availability, reliability and performance of
these systems. Previous studies on this topic point to
several key aspects that should be considered. These
include the importance of ensuring data integrity dur-
ing replication, minimising resource consumption when
synchronising replicas, and ensuring the high perfor-
mance of distributed systems.

INTRODUCTION
Modern information systems require superior perfor-
mance and reliability for the replication of large data
amounts and synchronisation across distributed sys-
tems. CRDTs (Conflict-free Replicated Data Types) are
known for said reliability, as they combine replication
and conflict resolution. They are abstract data struc-
tures that can be replicated and synchronised between
different nodes in a network without the need for cen-
tralised control. However, despite the potential benefits
of CRDTs, there are issues related to their performance
and scalability in real-world applications. It is these as-
pects that are of interest to researchers and developers,
as improving the performance and efficiency of CRDTs
can have a significant impact on distributed systems. In
this context, studying ways to improve the performance
of CRDTs becomes an urgent problem for researchers
and practitioners.

With the rapid growth of data volumes and distrib-
uted systems in the modern world, conflict-free data
types of research are becoming increasingly relevant.
Implementing conflict-free data replication systems
requires a constant search for efficient synchronisa-
tion and optimisation methods, especially under heavy
loads. This topic becomes especially relevant due to the
need to ensure performance and reliability in distribut-
ed systems, where data access must be ensured even in
the absence of stable communication and in the face
of conflicts and failures. In addition, innovations in this
area can solve the current challenges of the modern
Internet of Things, streaming data processing, and im-
prove the reliability and performance of cloud services,
making this topic critical for the further development
of the information society. In general, the results of the
conflict-free CRDT data types of study can improve per-
formance and reduce resource costs when using CRDT
in distributed systems, which will be of great practical
importance in the modern information environment.

The research problem at this stage is becoming
more relevant and complex, as existing CRDT synchro-
nisation and replication methods demonstrate limi-
tations that seriously restrict their performance and
scalability. This necessitates the development of more
efficient and optimised synchronisation methods to en-
sure the reliability and stability of distributed systems.
In addition, the overheads associated with CRDT repli-
cation and synchronisation processes are coming to the
fore and are becoming important factors that can affect
the performance and speed of distributed applications.
Given that even small delays in the synchronisation
process can cause conflicts and loss of data compati-
bility, research in this area is becoming key to ensuring
the quality and reliability of distributed systems in the
modern information landscape.

Previous research on CRDT determined challenges
and limitations, but many aspects remain unexplored.
For instance, A. Lutsenko (2020) explored models of
conflict-free replicated data types to resolve conflicts

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

12

For instance, B. Portela et al. (2023) investigated the
use of CRDTs in distributed systems. The authors pro-
pose an approach to secure data in CRDTs using secure
multi-party computation (MPC). The results include ex-
tending formal models of CRDT security, proving the
security of such designs using MPC, and developing a
language and type system for creating secure CRDTs.

Yu. Mao et al. (2022) considered the possibility of
using the reversal of operations in CRDTs to achieve
strong final consistency (SEC) in distributed systems.
The authors defined the concept and design of reversi-
ble CRDTs that allow for the reversal of changes made.
They also proposed different reversal methods for
implementing reversal operations and discussed the
impact on system performance. D. Adas and R. Fried-
man (2021) discussed CRDT sketches for storing sta-
tistics about data flows and their application in distrib-
uted systems. The authors present CRDT algorithms for
implementing such sketches and analyse their perfor-
mance based on real-world tasks.

G. Zakhour et al. (2023) described the concept of
CRDTs that ensure the compatibility of replicated data
and the absence of conflicts between replicas, and pro-
pose a programming language Propel with a special
type of system for automatic verification of the algebra-
ic properties of CRDTs. They presented successful verifi-
cation of CRDT implementations and compared it with
other verification tools. N. Saquib et al. (2021) presented
CRDT employment to ensure strong determination of
replicated data in distributed systems. CRDTs allow for
resolving conflicts between replicas without addition-
al coordination and provide high data availability. The
study also discusses the importance of using CRDTs to
achieve strong condemnation and demonstrates their
effectiveness in realistic distributed system scenarios.

I. David and E. Syriani (2022) addressed the grow-
ing need for real-world collaborative modelling in
engineering and proposed a framework for this. The
framework is based on conflict-free replicated data
types that provide scalable and reliable replication
mechanisms. The authors demonstrate the benefits of
their framework through a model example and com-
pare it with other state-of-the-art modelling solutions.
M. Nicolas et al. (2022) investigated the use of CRDT
in distributed systems to ensure high availability. They
point out the problem of the growing size of identifi-
ers in CRDTs and propose a new CRDT sequence with
a renaming mechanism that reduces the overhead and
improves system performance over time. Experimental
results confirm the effectiveness of this mechanism.

D. Brahneborg et al. (2022) addressed distributed
CRDT systems with read and update operations without
synchronous network requests. However, most CRDTs
are based on atomic dispatch, which can be excessive
for independent CRDT objects. This study proposes a
replication protocol, CReDiT (CRDT enhanced with in-
telligence), which effectively exploits the switchability
of CRDTs and reduces the complexity and network load

compared to atomic broadcasting. CReDiT uses fewer
communication steps and is less sensitive to server
failures, ensuring efficient data replication. A. Tranquil-
lini (2022) proposed a method for structuring the state
of mobile applications using Redux and strongly typed
languages, which allows the use of CRDT to create a co-
herent state. This enables replicas to edit their state au-
tonomously and merge conflicts. The study also consid-
ers the use of a server as a communication channel and
analyses the impact of this architecture on the design
and optimisation of CRDTs. The analysis of the listed
studies indicates the relevance of the CRDT topic. How-
ever, the research also highlights the need for further
study of data types with conflict-free replication and
the creation of methods to optimise their performance.

MATERIALS AND METHODS
The research was conducted using the analysis and
experimentation methods. The analysis method was
used to address the theoretical aspects of CRDT em-
ployment in distributed systems. This method was
used to analyse studies of various authors on this
topic, the mathematical properties of CRDT, synchro-
nisation algorithms, and other theoretical foundations
that underlie data types with conflict-free replication.
The analysis is necessary for a deeper understanding
of theoretical concepts related to CRDTs and their pos-
sible applications in distributed systems. The analysis
of the mathematical properties of conflict-free data
types determined in detail the mathematical founda-
tions of CRDT, such as commutativity and associativity
of operations. The study of synchronisation algorithms
allowed to learn CRDT synchronisation algorithms, in-
cluding their mechanism for resolving conflicts and
ensuring data consistency. The analysis of possible
applications in distributed systems helped to identi-
fy possible areas of application of CRDT in distributed
systems and assess their potential impact on data in-
tegrity and performance.

The experimental method conducted as part of this
study included the implementation of data type-specif-
ic approaches using conflict-free replication methods
in distributed systems. During the experiment, actual
distributed systems were implemented that used CRDT
structures to ensure data integrity and avoid potential
conflicts between replicas. The results of the compar-
ative analysis of different CRDT implementations de-
termined the advantages and limitations of each ap-
proach. The VS Code development environment and the
JavaScript programming language were used to imple-
ment software solutions and conduct the experiment.
Furthermore, the Cross-Platform File Format Apps plat-
form was used to visualise the structural scheme of the
local processing method. An important element of the
study was the mathematical formula and task for the
caching and precomputation method, as well as a table
with the analysis and subsequent comparison of the
results for asynchronous synchronisation. This made it

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 13

possible to obtain objective information about the per-
formance and efficiency of the considered methods in
practical conditions.

Thus, analysis and experimentation methods were
used to develop methods of local processing, caching
and pre-computation, and asynchronous synchronisa-
tion. Their advantages and disadvantages are described.
Programme operation containing a local copy of data as
an object and data update processing, a method of com-
bining local copies of data from other replicas, identical
updates, adding the result to the cache, checking the
result, calculating and storing the result in the cache,
simulating the calculation of a value by key, obtaining
calculated values for users, an asynchronous method
of applying an update from another replica, and asyn-
chronous replica merging is described. The task of im-
proving the performance of the online store and the
formula for the caching and pre-calculation method are
explained. Formula (1) illustrates how reducing data ac-
cess time affects the speed of query handling:

S = k / T_access, (1)

where S – query handling speed; T_access – data access
time; k – proportionality constant that determines the
amount of influence of access time on handling speed.

The main components of the structural diagram
were also shown, namely the internal structure of the
replica, the processes of local processing of changes
and saving the results, which include a local copy of the
data, a change log, making changes, local processing,
conflict resolution, and change results.

RESULTS
Conflict-free data types of performance improvement
methods in replication. Modern distributed systems re-
quire a reliable and efficient mechanism for synchro-
nising data between different replicas. CRDTs, which
provide conflict resolution and data integrity, are a
powerful solution for achieving these goals. However,
improving their performance and optimising them can
create new perspectives for distributed systems.

CRDT performance optimisation is relevant in the
context of distributed systems, where data consistency
and performance are crucial. The performance of data
types with conflict-free replication has certain advan-
tages and disadvantages. The advantages include en-
suring conflict resolution and data integrity, increasing
replication performance and speed, and reducing re-
source usage. In other words, optimisation techniques
can improve the CRDT conflict handling efficiency,
which ensures the reliability and integrity of replicat-
ed data. They are designed to reduce the overhead of
synchronising data between replicas, which leads to
improved system performance. Some methods are de-
signed to speed up the data replication process by re-
ducing transmission and processing time for updates.
Optimisation techniques can also reduce the memory

and computing resources required to store and syn-
chronise data. The disadvantages are the complexity of
implementation, the possibility of new problems, con-
text-specific dependencies, and the possibility of los-
ing some CRDT guarantees. Some optimisation meth-
ods may be difficult to implement, requiring additional
effort from developers. Optimisation may lead to new
problems or deteriorate other aspects of the system,
which requires careful analysis and testing. The effec-
tiveness of such methods may depend on the specific
use case and system characteristics. Optimisation it-
self may lead to the loss of some guarantees, such as
strong final consistency, which requires careful analy-
sis and balance.

The following methods can be used to optimise the
efficiency of data types with conflict-free replication:
“Local processing”, “Caching and precomputation” and
“Asynchronous synchronisation”. The Local Processing
method is one of the possible methods for improving
CRDT performance. It implies the ability to perform
most of the CRDT operations locally on each replica
without the need for direct network communication
with other replicas. The main idea is that replicas can
independently process and update their local copies
of data based on changes made by users, as long as
these changes do not conflict with other changes in
the system. This method reduces the amount of net-
work traffic, as not every operation needs to be sent to
other replicas immediately. This is especially helpful
when network resources are limited, or a large number
of replicas are present.

The Local Processing method involves performing
certain actions. First, each replica stores its local copy
of the data and keeps a log of changes. Next, users can
make changes to their local copies of the data, and the
replica tries to apply these changes to its local copy of
the data. If there are no conflicts between the changes,
they are accepted and stored locally. If a conflict occurs,
the replica tries to resolve it locally or queries other
replicas for a solution.

The advantages of the Local Processing method
are reduced network load, reduced communication
costs, and localisation. In other words, the method
significantly reduces the amount of network data ex-
change, which can improve system performance, espe-
cially in conditions of limited network resources. Few-
er data exchange means less network communication
costs, which can lead to savings in system maintenance
costs. Replicas can operate on a local copy of the data,
which keeps data access times low.

Disadvantages of the Local Processing method
are conflicts and, the complexity of algorithms. This
means that when conflicts arise between changes
on different replicas, additional synchronisation may
be required to resolve them. Algorithm development
that can resolve conflicts locally can be an important
and complex task (Fig. 1). While the program output is
shown in Figure 2.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

14

This code is an example of a CRDT implementation
and demonstrates how two replicas merge their data
without conflicts. Both replicas end up with the same

data after the merge. A diagram of the internal structure
of the replica and the processes for processing changes
locally can also be drawn (Fig. 3).

Figure 1. An example of a simple application of the Local Processing method
Source: compiled by the authors

class CRDT {
 constructor() {
 this.data = {}; // Local copy of data as an object
 }

 applyLocalUpdate(key, value) {
 // Local data refresh handling
 this.data[key] = value;
 }

 merge(otherCRDT) {
 // Local data copy merge method for other replicas
 for (const key in otherCRDT.data) {
 if (!(key in this.data)) {
 this.data[key] = otherCRDT.data[key];
 }
 }
 }

 getData() {
 return this.data;
 }
 }

 const replica1 = new CRDT();
 const replica2 = new CRDT();

 replica1.applyLocalUpdate(“user1”, “data1”);
 replica2.applyLocalUpdate(“user2”, “data2”);

 // Replica 1 and replica 2 have different updates
 console.log(“Replica 1 data:”, replica1.getData());
 console.log(“Replica 2 data:”, replica2.getData());

 // Replica merge
 replica1.merge(replica2);
 replica2.merge(replica1);

 // Now both replicas have both updates
 console.log(“Replica 1 data after merge:”, replica1.getData());
 console.log(“Replica 2 data after merge:”, replica2.getData());

Figure 2. Local processing method output
Source: compiled by the authors

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 15

The main components of this diagram include the
internal structure of the replica, the processes of pro-
cessing changes locally, and storing the results. With
the internal replica structure, each replica has its local
copy of the data, and the log records all changes that
are made to the local copy of the data. The processes
of processing changes locally contain certain stag-
es. When a user makes changes to their local copy of
data, these changes are first recorded in the change
log. Then the replica tries to apply these changes to
its local copy of the data directly. If there are conflicts
between changes, the replica tries to resolve them lo-
cally using conflict resolution algorithms. Saving the
results is done as follows: if the changes are success-
fully processed and conflicts are resolved, the results
are saved locally, and the local copy of the data is
updated. Local copies of data can also pre-calculate
the results of operations and store them for later use,
which helps to improve performance and reduce net-
work data exchange.

The Cache and Precompute method are another key
approach to optimising CRDT performance. It involves
the use of a mechanism for caching data and results
of operations on replicas. This method provides local
copy storage of certain data and results of operations
on replicas. Local data copies are used for quick access
to information without the need for network exchange.
It also involves the pre-calculation of some transac-
tion results that can be known in advance and stored
on the replicas. The Local Processing method also
involves specific procedures. Each replica maintains

its local copies of data and operation results. When
performing operations where the results can be
pre-calculated, the replica cheques whether it already
has the result of this operation. If the result is already
prepared, the replica uses it without operating again.
If the result is not known, the operation is performed,
and the result is stored in the cache for later use. The
advantages of this method are improved access time,
network communication savings, and localisation. This
method significantly reduces the time to access data
and transaction results, as most requests can be han-
dled locally. The reduction in network communication
leads to more efficient use of network resources. Rep-
licas can operate on local data and results, which im-
proves efficiency and reduces network load.

The disadvantages of the Cache and Precompu-
tation method include cache management, data rel-
evance, memory consumption, and precomputation.
Data management is required for the effective oper-
ation of this method, as a faulty cache of data and
results can lead to incorrect results or increased mem-
ory consumption. Keeping local copies of data can
lead to data out-of-date issues if other replicas have
changed the data, requiring additional synchronisa-
tion to keep the information up to date. Caching can
increase memory consumption on replicas, especial-
ly if the data or results of operations are voluminous.
Furthermore, not all operations can be pre-computed
in advance, and for some operations, this method may
not make sense (Fig. 4). While the program output is
shown in Figure 5.

Internal structure
of the replica

Process changes locally Saving the results

Local copy of data Making changes Results of the changes

– Data
– ...

– Change 1
– Change 2
– ...

– Data
– ...

Change log

– Change 1
– Change 2
– ...

Change log

– Change 1
– Change 2
– ...

– Results of the
operation
– ...

Conflict resolution

Local processing

Figure 3. Local processing method diagram
Source: compiled by the authors

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

16

class CRDTWithCaching {
 constructor() {
 this.data = {}; // Local copy of data as an object
 this.cache = {}; // Cache for storing pre-calculated results
 }

 applyLocalUpdate(key, value) {
 // Local data update processing
 this.data[key] = value;

 // Add the result to the cache
 this.cache[key] = value;
 }

 getFromCache(key) {
 // Check if the result is in the cache
 if (key in this.cache) {
 return this.cache[key];
 } else {
 // If the result is not in the cache, calculate it
 const result = this.computeValue(key);
 // Save the result to the cache
 this.cache[key] = result;
 return result;
 }
 }

 computeValue(key) {
 // Simulate calculating the value by key
 return `Computed value for ${key}`;
 }

 getData() {
 return this.data;
 }
 }

 const replica1 = new CRDTWithCaching();

 replica1.applyLocalUpdate(“user1”, “data1”);
 replica1.applyLocalUpdate(“user2”, “data2”);

 // Retrieving data from the cache
 console.log(“Data for user1:”, replica1.getFromCache(“user1”)); // Calculated value for user 1
 console.log(“Data for user2:”, replica1.getFromCache(“user2”)); // Calculated value for user 2

Figure 4. Implementation of a simple programme of the Cache and Precomputation method
Source: compiled by the authors

Figure 5. The result of the caching and pre-calculation method
Source: compiled by the authors

V. Gritsyuk et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 17

This Cache and Precomputation implementation is
a simple CRDT performance optimisation programme.
It provides storage and use of local copies of data to
improve access to it. The result of executing the code
outputs the merged data from the replicas that contain
the data for the users.

Certain formulae and tasks can also be used to
show how methods for optimising the efficiency of con-
flict-free data types in replications work. For example,
for the caching and precomputation method, a simple
formula that shows how reducing data access time can
affect the speed of query service (formula (1)) can be
used. Different formulae can be applied to this meth-
od: data access time, the ratio of access time reduction,
memory consumption, and other performance indicators.

Tasks can also be of different types, for example,
the task “Improve the performance of an online store
when loading the product page and calculating prices
with discounts”. First, an online store with many prod-
ucts and various discounts that can be applied to the
products, should be assumed. Users visit the product
page to view the assortment and prices. This task can
be approached from different angles: without caching
and with caching. In the first case, every time a user
opens the product page, the server must calculate pric-
es for each product, accounting for current discounts.
This may require database queries and many calcula-
tions. It can take a long time to load the page, espe-
cially if with a large assortment of products and many
users. In the second case, the first calculated prices for
products are stored in the cache on the server. When
the product page is loaded, the server cheques wheth-
er the cache contains relevant results for a given query
(for example, for a given user and their selected re-
gion). If the results are in the cache, the server returns
them to the client without calculating them. This ren-
ders the product page quickly and reduces the load on
the server and database.

Task results:
• the time it takes to load the product page from

the cache is reduced, no repeated calculations are re-
quired;

• the server processes fewer database queries and
saves computing resources;

• users get quick access to product prices, which
increases their satisfaction and increases conversion.

This approach helps improve the performance of
the online store and provides a positive user expe-
rience.

The asynchronous synchronisation method is
also a strategy for optimising CRDT performance. This
method increases concurrency and reduces latency
while synchronising data between replicas. It involves
allowing replicas to communicate and synchronise
data asynchronously, without explicitly waiting for
responses from other replicas. This improves system
performance in distributed environments and enables
faster data exchange.

This method operates as follows. Each replica
stores its local copy of data as an object. Replicas can
asynchronously merge their data with other replicas.
During the merge, replicas access the data of other
replicas and apply to their local data what they do not
already have. If the data is already local or known from
previous merges, the replica ignores it. Since the oper-
ation is asynchronous, replicas can continue operating
even if the join has not yet been completed.

The advantages of the asynchronous synchroni-
sation method include increased parallelism, reduced
latency, and performance. That is, replicas can interact
and synchronise data in parallel, which allows for bet-
ter use of the system’s computing resources. The ab-
sence of blocking synchronisation reduces waiting time
during data exchange and operations. The method al-
lows the system to maintain stable performance even
during intensive data exchange and heavy workloads.

“Asynchronous synchronisation” has the following
disadvantages: the complexity of implementation, the
possibility of conflicts, and task specificity. Developing
asynchronous synchronisation can be complex and re-
quires careful management of conflicts and the order
in which operations are performed. Asynchronous syn-
chronisation can lead to conflicts that require addition-
al processing and resolution. Moreover, not all types of
data and operations can be effectively synchronised
asynchronously, and for some tasks, other methods may
be more appropriate (Fig. 6). While the program output
is shown in Figure 7.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

18

This code illustrates the principle of asynchro-
nous data synchronisation between CRDT replicas. It
shows the process of asynchronous data merging of
replicas and outputs the result of this synchronisa-

tion. There are two options for different approaches
to data synchronisation to compare the main charac-
teristics of the asynchronous synchronisation meth-
od (Table 1).

class CRDT {
 constructor() {
 this.data = {}; // Local copy of data as an object
 }

 applyLocalUpdate(key, value) {
 // Local data update processing
 this.data[key] = value;
 }

 async mergeAsync(otherCRDT) {
 // Asynchronous method for merging local copies of other replica data
 for (const key in otherCRDT.data) {
 if (!(key in this.data)) {
 await this.applyRemoteUpdate(key, otherCRDT.data[key]);
 }
 }
 }

 async applyRemoteUpdate(key, value) {
 // Asynchronous method for applying updates from another replica
 if (!(key in this.data)) {
 this.data[key] = value;
 }
 }

 getData() {
 return this.data;
 }
 }

 const replica1 = new CRDT();
 const replica2 = new CRDT();

 replica1.applyLocalUpdate(“user1”, “data1”);
 replica2.applyLocalUpdate(“user2”, “data2”);

 // Asynchronous replica merging
 (async () => {
 await replica1.mergeAsync(replica2);
 await replica2.mergeAsync(replica1);

 // Both replicas have both updates
 console.log(“Replica 1 data after merge:”, replica1.getData());
 console.log(“Replica 2 data after merge:”, replica2.getData());
 })();

Figure 6. An example of a simple application of the asynchronous synchronisation method
Source: compiled by the authors

Figure 7. Asynchronous synchronisation method result
Source: compiled by the authors

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 19

Thus, the table presents a comparison of the two
options for data synchronisation in the asynchronous
synchronisation method and highlights their main
characteristics, advantages and disadvantages. Using
the table helped to visualise the difference between
the two approaches to data synchronisation and help
to understand their impact on the system. Thus, each of
the CRDT types of performance improvement methods
has its advantages and disadvantages, and the choice
of a particular method will depend on the needs and
requirements of a particular distributed system. The
study results demonstrate the importance of the con-
text and project requirements when selecting a method
to ensure data integrity and improve performance in a
distributed system.

DISCUSSION
Y. Zhang et al. (2023) discussed the importance and
complexity of developing conflict-free replicated data
types to ensure the efficient operation of distributed
systems. The researchers pointed out the need for for-
mal specification and verification of CRDT design, as
well as systematic testing of the implementation. The
authors proposed the MET (Model Evaluation Tools)
framework, which combines model checking at the
design level and exploratory testing at the CRDT im-
plementation level. This approach detects errors and
improves the reliability of CRDTs in distributed systems.
The common aspects between the present study and
the aforementioned one are that both consider the
use of conflict-free replicated data types. However, this
study uses programmes written in C++ in the VS Code
environment for methods to improve CRDT perfor-
mance. Moreover, Y. Zhang et al. (2023) focused on the
design and testing of conflict-free data types using the
MET framework.

N. Saquib et al. (2022) investigated extensions to
CRDT data types that enable their use in distributed
systems such as the Internet of Things (IoT), even in the
face of resource constraints and diversity. The methods
are designed to ensure robustness and strong replica

Characteristic Variant 1 Variant 2

Core idea Asynchronous exchange without interruptions. Interrupting change exchange with interruption
of other replicas

Approach principle
Replicas maintain local data and a change log.

Changes made on one replica are asynchronously
sent to other replicas

Replicas maintain local data and a change log.
Changes made on one replica are sent to other

replicas with interruption
Conflict resolution Conflicts are resolved asynchronously Conflicts are resolved by locking

Advantages Increased concurrency and performance, reduced
network load, and localisation

Ensure data is up-to-date, and reduce the risk of
conflicts

Disadvantages
Possible conflicts that need to be resolved,

the complexity of developing synchronisation
mechanisms

Blocked flows and expectations, possible
conflicts, less concurrency

Table 1. Comparison of different data synchronisation approaches

Source: compiled by the authors

consistency and to avoid the limitations of standard
CRDTs. The authors studied various conflict-free data
types in replicas and found that their methods allow
for increased performance of operations compared to
conventional CRDTs for the workloads considered. The
common aspect of the studies is the investigation of
CRDT performance optimisation techniques. However,
N. Saquib et al. (2022) used IoT to achieve this goal, where-
as the study did not have specific distributed systems.

Yu. Ou and J. Zhou (2023) highlighted that CRDTs
are a popular approach for group editing in applica-
tions, but they have the problem of inefficient data
fetching. To solve this problem, the paper proposes a
new data fetching algorithm, Relative Distance Skip List
(RDSL), which is an efficient and stable solution. RDSL
uses a probabilistic structure of identifiers based on
the relative distances between CRDT nodes. This algo-
rithm improves the efficiency of CRDT by providing fast
access to data. Both studies develop certain approach-
es to improve the efficiency of CRDT types. However,
to implement this improvement, the study proposed
methods of local processing, caching and precompu-
tation, and asynchronous synchronisation. Yu. Ou and
J. Zhou (2023) proposed an RDSL algorithm.

Sh. Laddad et al. (2022a) highlighted the challeng-
es in developing reliable distributed applications and
proposed the use of CRDT as a promising approach to
achieve coordination in distributed systems. The au-
thors emphasised the limitations of CRDT in providing
secure observations of data state. They proposed the
extension of conflict-free data types in replications with
a query model based on monotonicity from the CALM
(Consistency as Logical Monotonicity) theorem to pro-
vide more guarantees and secure interaction with the
replicated state of applications. This study creates new
possibilities for improving the reliability and efficien-
cy of CRDT in distributed systems. Both studies share
the idea of using conflict-free data types in replication
in distributed systems, considering their advantages
and disadvantages, as well as the possibility of making
CRDT more efficient. However, Sh. Laddad et al. (2022a)

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

20

used the CALM theorem, while the present study con-
tains certain tasks and formulae, but no theorems.

F. Guidec et al. (2021) considered the use of con-
flict-free replicated data types in opportunistic net-
works (OppNets), where information is transmitted
through temporary radio contacts between mobile
nodes. A delta-state-based algorithm for synchronising
CRDT replicas in OppNets is proposed, and experimen-
tal results confirm the effectiveness of this algorithm,
especially when working with container CRDTs. This
approach exploits CRDT functionality to withstand
asynchronous communication and can find practical
application in distributed networks with unpredictable
connections between nodes. This study, similar to the
work of F. Guidec et al. (2021), focused on conflict-free
data types in replications and does some experiments
on the effectiveness of CRDT. However, the aforemen-
tioned paper used the OppNets network, and this paper
considers CRDT in different distributed systems without
being tied to a specific network.

S.E. Brynjulfsen (2023) addressed replicated con-
flict-free data type efficiency optimisation using an
SQLite database. CRDTs enable data replication without
the need for coordination and provide certain guaran-
tees regarding data consistency. However, there are per-
formance issues due to the use of triggers in SynQLite,
which leads to slower performance compared to SQLite.
The study proposes various approaches to improve the
performance of CRDT types and identifies a solution that
significantly improves their performance. The common
aspects between the two papers are the optimisation
of CRDT performance and the practical implementation
of these types. However, this article uses different C++
programmes, while the study by S.E. Brynjulfsen (2023)
used an SQLite database.

S. Rostad (2020) investigated distributed CRDTs
that guarantee strong end-to-end logic (SEL) and have
important properties such as switchability and idempo-
tency. The authors have considered delta CRDTs, which
are state-based, and state-based CRDTs, where their in-
stances are synchronised by sending their state to each
other. The paper explores existing types of CRDTs and
proposes new designs, including the “Causal Length
Set” (CLSet), a simple and efficient delta state-based
CRDT, and the “Multiple Value Map” (MVMap), a CRDT
designed with user-friendliness in mind. Both articles
discuss the effectiveness of CRDTs. However, the article
by S. Rostad (2020) uses CLSet and MVMap designs for
this purpose. The present study did not address the de-
signs but rather used methods for the performance of
distributed data types.

G. Litt et al. (2022) considered the possibility of
applying CRDT to multi-text data with formatting that
allows editing and sharing of data without the need
for coordination. The authors created a model for pre-
serving user intent in multi-text editing and developed
a CRDT algorithm that satisfies this model. The basic
idea of the algorithm is to store formatting next to the

text and output the final formatted text from these
areas in a deterministic way. The algorithm has been
prototyped, validated by testing, and integrated into
the editor’s interface, and its properties of preserving
correctness and user intent have been proven. G. Litt et
al. (2022) focused on conflict-free data types in replica-
tions and their testing, as well as on the convenience of
CRDT for users. However, this paper developed methods
for optimising CRDT types, and another paper devel-
oped a CRDT algorithm for preserving user intentions
in multi-text editing.

Sh. Laddad et al. (2022b) explored the types of
CRDTs, which are a powerful tool for creating distribut-
ed systems without the need for coordination. However,
the researchers emphasised that their proper design is
a challenge. This study introduces Katara, a system that
automatically generates validated CRDTs from consist-
ent implementations of data types. It provides a simpli-
fied and reliable way to create CRDTs that can be use-
ful for developers of distributed systems. Both studies
focus on CRDTs, but Sh. Laddad et al. (2022) used the
Katara system to create CRDTs. This article did not use
specific systems but studied CRDTs in general.

J. Bauwens and E. Gonzalez Boix (2020) addressed
CRDTs, which are special data types designed for high-
ly available systems and guarantee a certain level of
consistency. However, the implementation of CRDTs re-
quires keeping track of additional metadata, which can
be inefficient at scale. The authors analysed the meta-
data problem in CRDT and proposed a new optimisation
strategy that helps to reduce the memory overhead. They
also proposed a solution to improve the responsiveness
of CRDTs built on robust causal language. The results of
the study show that this approach can significantly ease
metadata management compared to existing methods.
Both studies considered approaches to optimise con-
flict-free replicated data types. However, unlike this arti-
cle, the study by J. Bauwens and E. Gonzalez Boix (2020)
focused on the introduction of metadata in CRDT. This ar-
ticle discusses the use of CRDT with different data types.

This study uses a specific programming language, ta-
bles, flowcharts and formulae. However, unlike previous
research, it is not limited to specific frameworks, systems,
algorithms, theorems, networks, databases, or designs.
This makes it more versatile and easier to use. Never-
theless, both this study and all the articles listed above
make an important contribution to the development of
CRDTs and their application in distributed systems. They
provide a variety of approaches to solving problems and
improving the functionality of CRDTs, which extends
their practical use in modern applications and systems.

CONCLUSIONS
This research aimed to improve conflict-free replicat-
ed data types, which are key components in distributed
systems. A wide range of aspects related to these data
types were covered, and the goal was to develop new
methods to ensure their efficiency and applicability.

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 21

The study analysed various aspects of CRDTs, including
their theoretical basis, synchronisation mechanisms,
and potential challenges associated with their applica-
tion in real-world distributed systems. The possibilities
of improving the performance of CRDTs were investi-
gated using analysis and experimentation methods. To
implement the study, simple programmes were written
and various examples, a table, a formula, and a block
diagram were used. The C++ language and VS Code
environment were used for the programmes, and the
Cross-Platform File Format Apps platform was used for
the block diagram.

To optimise the efficiency of CRDT, local process-
ing, caching and pre-computation, as well as asyn-
chronous synchronisation, are deemed most effec-
tive. The study results show that the local processing
method improves system performance by reducing
network load and reducing network communication
costs, as well as providing low data access time. By
using the caching and precomputation method, it is
possible to reduce data access time, reduce network
communication, and increase overall network effi-
ciency. The asynchronous synchronisation method
makes better use of the system’s computing resourc-
es, reduces the waiting time during data exchange,
and maintains stable performance even under heavy
load. The results also confirm that these methods sig-
nificantly improve performance and reduce resource
consumption. However, each of the methods for im-

proving CRDT performance has not only advantages
but also limitations, and the choice of a particular
method should be determined by the requirements
and needs of a particular distributed system. Based
on the results of the study, it is possible to conclude
that CRDTs have great potential in improving the
consistency and performance of distributed systems.
However, they also require additional research and
optimisation to be used in practise.

Based on this study, several recommendations can
be made for further research and development in the
field of conflict-free replicated data types. For exam-
ple, further research could include the development of
new applications of CRDTs in different industries. De-
velopers can continue to research methods to improve
the performance of these data types. They should also
create more powerful tools for implementing CRDTs
and testing their performance and reliability. Future
research should focus on security and privacy issues
when using CRDTs. In summary, the results of this study
indicate the importance and prospects of using CRDTs
in distributed systems and provide specific methods to
improve their performance and efficiency.

ACKNOWLEDGEMENTS
None.

CONFLICT OF INTEREST
None.

REFERENCES
[1] Adas, D., & Friedman, R. (2021). Sliding window CRDT sketches. In 2021 40th international symposium on reliable

distributed systems (SRDS) (pp. 288-298). Chicago: IEEE. doi: 10.1109/SRDS53918.2021.00036.
[2] Bauwens, J., & Gonzalez Boix, E. (2020). From causality to stability: Understanding and reducing meta-data in

CRDTs. In MPLR ‘20: Proceedings of the 17 th international conference on managed programming languages and
runtimes (pp. 3-14). New York: Association for Computing Machinery. doi: 10.1145/3426182.3426183.

[3] Biletskyy, B.O. (2019). Horizontal and vertical scalability of machine learning methods. Problems in Programming,
2, 69-80. doi: 10.15407/pp2019.02.069.

[4] Boliubash, N., & Olinyk, M. (2023). Methods for increasing the performance of the library’s progressive web
application based om the RAIL model. Information Technology and Society, 1(7), 13-20. doi: 10.32689/maup.
it.2023.1.2.

[5] Brahneborg, D., Afzal, W., & Mubeen, S. (2022). Resilient conflict-free replicated data types without atomic
broadcast. In Proceedings of the 17th international conference on software technologies ICSOFT (pp. 516-523).
Lisbon: SciTePress. doi: 10.5220/0011314500003266.

[6] Brynjulfsen, S.E. (2023). Improving the performance of a Conflict-Free Replicated Relational Database System.
Tromsø: Arctic University of Norway.

[7] David, I., & Syriani, E. (2023). Real-time collaborative multi-level modeling by conflict-free replicated data
types. Software and Systems Modeling, 22, 1131-1150. doi: 10.1007/s10270-022-01054-5.

[8] Guidec, F., Mahéo, Y., & Noûs, C. (2021). Delta-state-based synchronization of CRDTs in opportunistic networks.
In 2021 IEEE 46th conference on local computer networks (LCN) (pp. 335-338). Edmond: IEEE. doi: 10.1109/
LCN52139.2021.9524978.

[9] Kordiaka, Y., & Padko, O. (2021). A collaborative diagram editor. In Thesis statements of the V international
scientific and practical conference “Mechatronic systems: Innovation and engineering” (pp. 230-231). Kyiv: Kyiv
National University of Technology and Design.

[10] Laddad, Sh., Power, C., Milano, M., Cheung, A., Crooks, N., & Hellerstein, J.M. (2022a). Keep CALM and CRDT on.
Proceedings of the VLDB Endowment, 16(4), 856-863. doi: 10.14778/3574245.3574268.

[11] Laddad, Sh., Power, C., Milano, M., Cheung, A., & Hellerstein, J.M. (2022b). Katara: Synthesizing CRDTs with
verified lifting. Proceedings of the ACM on Programming Languages, 6(OOPSLA2), 1349-1377. doi: 10.1145/3563336.

https://doi.org/10.1109/SRDS53918.2021.00036
https://doi.org/10.1145/3426182.3426183
https://doi.org/10.15407/pp2019.02.069
https://doi.org/10.32689/maup.it.2023.1.2
https://doi.org/10.32689/maup.it.2023.1.2
https://doi.org/10.5220/0011314500003266
https://munin.uit.no/handle/10037/30445
https://doi.org/10.1007/s10270-022-01054-5
https://doi.org/10.1109/LCN52139.2021.9524978
https://doi.org/10.1109/LCN52139.2021.9524978
https://er.knutd.edu.ua/bitstream/123456789/19371/1/MSIE_2021_P230-231.pdf
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.1145/3563336

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024

Performance optimisation techniques...

22

[12] Litt, G., Lim, S., Kleppmann, M., & van Hardenberg, P. (2022). Peritext: A CRDT for collaborative rich text editing.
Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2), article number 531. doi: 10.1145/3555644.

[13] Lutsenko, A. (2020). Experimental study of structures of conflict-free replicated data types in collaborative offline
applications. Kharkiv: Zhukovsky National Aerospace University “Kharkiv Aviation Institute”.

[14] Mao, Yu., Liu, Z., & Jacobsen, H.A. (2022). Reversible conflict-free replicated data types. In Middleware ‘22:
Proceedings of the 23rd ACM/IFIP international middleware conference (pp. 295-307). New York: Association for
Computing Machinery. doi: 10.1145/3528535.3565252.

[15] Nicolas, M., Oster, G., & Perrin, O. (2022). Efficient renaming in sequence CRDTs. IEEE Transactions on Parallel
and Distributed Systems, 33(12), 3870-3885. doi: 10.1109/TPDS.2022.3172570.

[16] Ou, Yu., & Zhou, J. (2023). RDSL: An efficient retrieval algorithm for group editing CRDT. Research Square, 1,
1-18. doi: 10.21203/rs.3.rs-3316287/v1.

[17] Portela, B., Pacheco, H., Jorge, P., & Pontes, R. (2023). General-purpose secure conflict-free replicated data
types. In 2023 IEEE 36th computer security foundations symposium (CSF) (pp. 521-536). Dubrovnik: IEEE Computer
Society. doi: 10.1109/CSF57540.2023.00030.

[18] Rostad, S. (2020). Towards improved support for conflict-free replicated data types. Tromsø: UiT The Arctic
University of Norway.

[19] Ryabushkin, V. (2020). Automatic conflict resolution in the text. Kyiv: National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”.

[20] Saquib, N., Krintz, C., & Wolski, R. (2021). Log-structured conflict-free replicated data types: UCSB Technical
Report 2021-01. Santa Barbara: UCSB Computer Science.

[21] Saquib, N., Krintz, C., & Wolski, R. (2022). Log-based CRDT for edge applications. In 2022 IEEE international
conference on cloud engineering (IC2E) (pp. 126-137). Pacific Grove: IEEE. doi: 10.1109/IC2E55432.2022.00021.

[22] Shynkarov, V. (2023). Optimisation methods. Kyiv: National Aviation University.
[23] Tranquillini, A. (2022). Handling of mobile applications state using Conflict-Free Replicated Data Types. Stockholm:

KTH Royal Institute of Technology.
[24] Zakhour, G., Weisenburger, P., & Salvaneschi, G. (2023). Type-checking CRDT convergence. Proceedings of the

ACM on Programming Languages, 7(PLDI), 1365-1388. doi: 10.1145/3591276.
[25] Zhang, Y., Huang, Y., Wei, H., & Ma, X. (2023). Model-checking-driven explorative testing of CRDT designs

and implementations. Journal of Software: Evolution and Process, 36(4), article number e2555. doi: 10.1002/
smr.2555.

https://doi.org/10.1145/3555644
https://dspace.library.khai.edu/xmlui/bitstream/handle/123456789/969/Lutsenko.pdf
https://dspace.library.khai.edu/xmlui/bitstream/handle/123456789/969/Lutsenko.pdf
https://doi.org/10.1145/3528535.3565252
https://doi.org/10.1109/TPDS.2022.3172570
https://doi.org/10.21203/rs.3.rs-3316287/v1
https://www.computer.org/csdl/proceedings-article/csf/2023/219200a457/1On91iIF3VK
https://munin.uit.no/bitstream/handle/10037/19387/thesis.pdf?sequence=2&isAllowed=y
https://ela.kpi.ua/bitstream/123456789/34522/1/Riabushkin_bakalavr.pdf
https://cs.ucsb.edu/sites/default/files/documents/paper_9.pdf
https://cs.ucsb.edu/sites/default/files/documents/paper_9.pdf
https://cs.ucsb.edu/sites/default/files/documents/paper_9.pdf
https://doi.org/10.1109/IC2E55432.2022.00021
https://www.researchgate.net/publication/374259405_Metodi_optimizacii
https://www.diva-portal.org/smash/get/diva2:1709127/FULLTEXT02.pdf
https://doi.org/10.1145/3591276
https://www.x-mol.net/paper/article/1636567018598100992
https://www.x-mol.net/paper/article/1636567018598100992

Yu. Rabeshko & Yu. Turbal

Bulletin of Cherkasy State Technological University, Vol. 29, No. 1, 2024 23

Методи оптимізації продуктивності
Conflict-free Replicated Data Types (CRDT)

Юрій Рабешко
Аспірант
Національний університет водного господарства та природокористування
33000, вул. Соборна, 11, м. Рівне, Україна
https://orcid.org/0009-0002-0763-7138
Юрій Турбал
Доктор технічних наук, професор
Національний університет водного господарства та природокористування
33000, вул. Соборна, 11, м. Рівне, Україна
https://orcid.org/0000-0002-5727-5334

Анотація. Актуальність досліджуваної проблеми полягає у необхідності оптимізації роботи з розподіленими
даними, що не викликають конфліктів при реплікації, оскільки введення таких типів даних призводить до
збільшення потреби у їхній оптимізації та підвищенні продуктивності. Метою дослідження є розробка способів
підвищення ефективності різних типів даних з реплікацією без конфліктів. Для досягнення мети були використані
методи аналізу та експерименту. Результати дослідження демонструють, що застосування певних оптимізованих
способів безконфліктних типів даних у реплікаціях призводить до значного покращення ефективності та
зниження ресурсних витрат. За результатами було визначено, що методи кешування і попереднього обчислення,
асинхроної синхронізації та локальної обробки є найефективнішими для покращення ефективності Conflict-
free Replicated Data Types. Встановлено, що вибір конкретного методу для покращення продуктивності
Conflict-free Replicated Data Types має бути обгрунтованим і здійснюватися на основі уважного аналізу вимог
та характеристик конкретної розподіленої системи. Це враховує потреби користувачів, ступінь критичності
даних, частоту редагування тощо. Дослідження включає розроблення та оптимізацію алгоритмів синхронізації,
що значно підвищує продуктивність таких типів даних у розподілених системах. У роботі є прості програмні
реалізації для детального аналізу та вивчення методів оптимізації продуктивності типів даних у реплікаціях
без конфліктів. Впровадження розподіленого обчислення дозволило оптимізувати процеси реплікації та
синхронізації даних, що сприяє зниженню накладних витрат та підвищенню швидкодії систем. Зроблено
висновок про практичну важливість дослідження, оскільки використання оптимізованих безконфліктних типів
даних з реплікацією у реальних розподілених системах може покращити їхню ефективність та надійність.
Практичне значення дослідження полягає в можливості застосування оптимізованих методів типів даних з
безконфліктною реплікацією у реальних розподілених системах, що дозволить підвищити їхню продуктивність
та забезпечити ефективну роботу в умовах великої навантаженості та обмеженого ресурсного потенціалу

Ключові слова: способи збільшення результативності; реплікація даних; розподілені системи; ефективність
синхронізації; методи синхронізації даних

https://orcid.org/0009-0002-0763-7138
https://orcid.org/0000-0002-5727-5334

