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INTRODUCTION

The magnetic�field uniformity (MFU) in the working volume, in which a reference specimen and sen�
sors are placed during measurements, is one of the factors that influence the measurement error in coer�
cimetry [1–5]. The required field�uniformity level can be provided via selection of the design parameters
of the magnetic system (MS) of a coercimeter (CR). However, the complex character of the dependence
of the magnetic�field distribution on the values of the MS parameters excludes the possibility of selecting
them by the trial�and�error method, because such an approach requires analysis of a large number of vari�
ants. This determines the necessity of using an optimal synthesis procedure with a reasonable variant�gen�
eration strategy in the solution of the considered problem. This strategy implies the wide application of
computer equipment for selecting the best variant. The analysis and evaluation of the MFU in the working
volume of the CR can be performed by its numerical simulation.

The problem of creating a uniform MF in the case of a CR with an open MS, in which systems of coils
with currents usually serve as field sources, can be solves by determining the currents in the coils at their
fixed geometrical parameters as a result of a linear synthesis [6], determining the dimensions and positions
of coils via synthesis in a nonlinear formulation [7], and the use of a structural synthesis [8], which allow
minimization of the number of coils used in the CR and selection of an optimal sequence for turning these
coils on.

For a CR with a partially closed MS, the synthesis problem is complicated by the fact that the config�
uration of the magnetic field in the working volume is determined not only by the topography of the mag�
netizing field of coils with currents, which operate as primary sources, but also by the shapes of ferromag�
netic elements (FEs) of the MS—the magnetic circuit and pole pieces that are included in a CR of a given
type, and by the magnetic characteristics of the materials from which the FEs are manufactured. In this
case, selecting the structural parameters of the MS with the FEs implies calculation of the magnetization
distribution in them for each of the considered sets of parameter values, thus requiring considerable com�
puting power. Therefore, within this approach to the synthesis, an algorithm for solving the analysis prob�
lem, which is harmonically matched to it, must be implemented.

In the first approximation, the magnetization distribution in the pole pieces can be considered con�
stant, thus allowing one to significantly simplify the problem of calculating the configuration of the mag�
netic field, which is produced by the pole pieces in the working volume [9–13], and selecting an optimal
shape of the pole pieces.

The selection of an optimization algorithm that is used to solve the synthesis problem is also a substan�
tial factor, because the goal functions that arise in this class of problems are generally of a multiextremum
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and ravine character. In [14], the synthesis problem was formulated as a problem of nonlinear program�
ming, and a large�step method for extremum seeking that allows finding of only a local solution was used.
In this case, difficulties in selecting the initial approximation arise, because it substantially determines the
found extremum. The method of equivalent turns as applied to the solution of this problem was developed
in [15]. However, the application of this approach is described only for an idealized case of a field depen�
dence of the magnetization of a ferromagnetic material, although, for the majority of actual MSs, the
magnetic characteristics are nonlinear and there is a substantial dependence of the magnetization distri�
bution on the magnetizing�field topography. In this study, the optimization problem was solved using clas�
sical steepest�descent methods, which also do not generally ensure finding a global solution. The problem
of synthesizing MSs of isochronous cyclotrons was considered in [16]. The direct problem was solved
using the finite�element method (FEM), which, despite its several advantages, has a number of shortcom�
ings. The main shortcoming is associated with the fact that when the FEM is used it is necessary to dis�
cretize a ferromagnetic body and the space surrounding it; this leads to an increase in the dimensionality
of the solved problem and implies introduction of artificial limitations of the calculated region. In addi�
tion, for new variants of the pole elements (PEs) of the electromagnet that are obtained during optimiza�
tion, repeated partitioning or a deformation of the existing grid of elements is required. Particular infor�
mation on the conditional�optimization method that is used was absent in [16].

At present, the sensitivity�analysis method has become widespread in designing magnetic systems. The
optimal shape of the surfaces of pole pieces described with Besier and B�splines is sought in [17]. In this
study, a combination of the sensitivity�analysis and steepest�descent methods was used to solve the syn�
thesis problem. Although this approach allows one to choose promising trends in changing the parameters
of the shape of the pole pieces, the use of the local optimization method does not guarantee the finding of
their best geometry.

This study is aimed at the development of a method of optimal parametric synthesis of axially symmet�
ric MS of coercimeters on the basis of the algorithm of global multiagent optimization using the apparatus
of spatial integral equations, which allows accounting for nonlinear properties of ferromagnetic materials.

FORMULATION OF THE SYNTHESIS PROBLEM

The subject of investigation is a CR with an axially symmetric closed MS, which is used to test the mag�
netic properties of materials and is described in detail in [1–5]. The CR includes coils 5 (Fig. 1) and coils
for pulsed magnetization (not shown in the figure), whose main function is to bring a specimen to the sat�
uration magnetization. These coils are unnecessary for soft magnetic materials, while for hard magnetic
materials they are used only at the magnetization stage. Therefore, subsequently we consider an MS,
whose appearance with a specimen installed in it is shown in Fig. 1.

The solution of the synthesis problem reduces to a selection of the geometrical parameters of pole
pieces that are manufactured from a ferromagnetic material with nonlinear magnetic characteristics,
which provide a specified field distribution in the working volume Ω; thus, the inverse problem of magne�
tostatics is solved. In this case, each of the pole pieces is represented in the form of a set of cylindrical PEs,
whose radii and heights serve as the sought parameters. The number of pole elements is specified a priori.

Figure 2 illustrates the varied PE parameters and presents the geometrical dimensions, which remain
constant during the synthesis process for one of particular examples.
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Fig. 1. External view of a coercimeter with pole pieces: (1) tested object, (2) working volume, (3) pole pieces, (4) magnetic
circuit, (5) coils, and (6) Hall transducers.
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During the synthesis, the set of sought parameters is represented as a vector whose components are the
values of the heights hi and radii ρiN of the PEs:

X = (h1, h2, …, hN, ρ1, ρ2, …, ρN). (1)

The CR parameters are imposed by a number of design limitations, which are specified in the form of
a system of inequalities:

(2)

where hmin and hmax are the lowest and highest acceptable values of the PE heights, and Rmax is the maxi�
mum possible value of the pole�piece radius.

To estimate the MFU, a set of K test points is regularly positioned in the working volume. When the
field is analyzed, the maximum relative deviation of the values of the magnetic�field strengths at these
points from the value H0 at the center of the tested zone is calculated:

(3)

where Hk is the field strength at the kth test point, k = 

Because the coercimeter’s MS is axially symmetric, it is sufficient to analyze the field distribution only
in a quarter of the working�volume cross section (Fig. 2). Note that the working volume Ω must exceed
the volume occupied by the specimen that is studied in the CR. This is determined by the necessity of plac�
ing sensors in the region of a uniform field and allows a decrease in the error associated with an inaccuracy
in positioning the specimen in the device.

As the goal function, let us consider the functional

(4)

whose minimization ensures an increase in the degree of the MFU in the working volume. To solve the
global�optimization problem, it is promising to use comparatively new bionic evolutionary optimization
technologies, such as genetic algorithms (GAs) [18–20] and the multiagent optimization by a particle
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Fig. 2. Dimensions and parameters of the synthesized coercimeter with three pole elements.
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swarm (PSO) [21–23], which is based on the swarm intelligence paradigm. Each of these methods has its
advantages and flaws; therefore, this paper proposes a developed hybrid optimization technology by a par�
ticle swarm with evolutionary formation of the swarm composition as the optimization method. The com�
bined use of these methods makes it possible to increase both the possibility of finding the global solution
and the algorithm convergence rate.

One characteristic feature of the hybrid algorithm is a much smaller number of calculations of the goal
function than that when each algorithm is used independently. This is especially important when perform�
ing synthesis of an MS, which requires multiple solutions of a resource�intensive analysis problem.
Detailed information on the hybrid algorithm, verification, and analysis of its convergence for multidi�
mensional ravine and multiextremum goal functions are presented in [24], where all advantages of the
developed global�optimization method are demonstrated. Examples of the efficient use of the algorithm
are also presented in [25], where it was used to synthesize axially symmetric MSs of electromagnets with
a specified field distribution in the working zone in the case where the linear character of the dependence
between the magnetic�field strength and the ferromagnet magnetization was taken into account. Under
such assumptions, the field�synthesis problem was solved using the method of boundary integral equa�
tions.

SOLUTION OF THE PROBLEM OF ANALYZING THE FIELD IN THE MAGNETIC SYSTEM 
OF THE COERCIMETER

The nonlinear dependence of the magnetization on the field strength can be taken into account as a
result of the application of the apparatus of spatial integral equations (SIE), as was done in [26–29], which
are adapted to the case of axially symmetric MSs. The magnetic field created in the working volume of the
CR consists of two components: a field B' from magnetized ferromagnetic parts of the MS and a field B0

from external sources:

B = B' + B0. (5)

The field that is created by the coils with allowance for their rectangular cross section can be calculated
from the known numerical and analytical formulas [30]. In order to calculate the magnetic field created
by the FEs of the CR, the magnetization values in them must be determined. The distribution of the mag�
netization M in the FEs of the CR can be determined as a result of the solution of the SIE

(6)

where rPQ is the vector drawn from the source point P to the observation point Q, B(Q) is the magnetic
induction at the point Q, and B0(Q) is the magnetic induction of the external field that is produced by the
currents flowing in the coils. If the magnetic�circuit body consists of n arbitrary parts, Eq. (6) is written in
the form

 (7)

Using the known relationships of vector analysis and the curl theorem and introducing the designations
for the bulk and surface current densities j(P) = rotPM(P) and i(P) = –nP × M(P), respectively, integral
equation (7) can be transformed as follows:

 (8)

If only bodies with axial geometries that are partitioned into circular elements are considered (Fig. 3)
and it is assumed that the magnetization vector within each such element is constant: Mρ = const, Mz =
const, and Mϕ = 0, then the expression for rotPM(P) written in a cylindrical coordinate system clearly
shows that the bulk current density j = 0.
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Placing the observation point consecutively at the centers of the cross sections of the partition ele�
ments, let us write a discrete analogue of the integral equation

(9)

After the curl is calculated at points Qi, formula (9) takes the form

(10)
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Fig. 3. Discretization of the magnetic system of the coercimeter in to ring�shaped elements: A, B and C, D are the cross
sections of ring�shaped partition elements with different diameters.
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The integral in Eq. (10) is formally equal to the magnetic induction produced by thin coils with surface
current densities i(P). Therefore, writing it in the form of the sum of the integrals for each surface of par�
tition elements (Fig. 4), we obtain the formula

(11)

where  =  is the surface current flowing over the kth surface of the jth partition element.

The magnetization vector Mj can be expanded in terms of its components

Mj = Mρjeρ + Mzjez. (12)

Taking into account that

(13)

the following expressions are valid for the surface currents:

(14)

Therefore, integral Eq. (11) allows representation in the form

(15)

where the following designations are introduced:

(16)

The values of the terms on the right�hand sides of Eqs. (16) are numerically equal to the field strengths cre�
ated at a point Qi by the surface currents of unit density that flow over the corresponding lateral surfaces of a
circular partition element and the directions of which at each surface point are specified by the vector eϕ.

The components of the magnetic�field strength, which are created by a thin turn carrying a unit current
with a radius ρP and a coordinate zP, are determined from the formulas presented below [30]:

(17)

where K(k) and E(k) are full elliptic integrals of the first and second kinds. Then the integrals in expres�
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Introducing the operator of the inverse magnetic characteristics H = F–1(M) that allows calculation of
the magnetic�field strength in the FEs from their magnetization, we obtain for the magnetic�induction
vector

B = μ0(H + M) = μ0(F–1(M) + M). (19)

Thus, integral Eq. (10) can be replaced by the system of nonlinear algebraic equations

(20)

where H0i is the vector of the magnetic�field strength created by the coils at the center of the rectangular

cross section of the ith circular partition element, i = 

This system of equations can be written in the matrix form

F–1(M) + M = A ⋅ M + H0. (21)

Influence matrix A consists of blocks with a size of 2 × 2 in the form

(22)

such that

(23)

To describe the magnetic characteristic in subsequent calculations, it is convenient to use the formula
that provides the reversibility of the characteristic at a field value [29]:

M(H) = λM1(H) + (1 – λ)M2(H), (24)

where M1(H) is the equation of the magnetic characteristic that describes nonlinear magnetic properties
of the substance, M2(H) = χH, and λ is the introduced parameter that assumes values from the segment
[0, 1]. The value of χ is chosen so as to obtain the best approximation of a segment of the nonlinear mag�
netic characteristic by a linear dependence. The nonlinear magnetic characteristic is specified by the ana�
lytical expression [31]

(25)

After system of equations (21) is solved using the method of continuation with respect to the parameter
λ, the distribution of magnetizations in partition elements, whose values allow calculation of the magnetic
field in the working volume of the MS, can be found.

INFORMATION MODEL OF THE SYNTHESIS PROBLEM

Because the analysis problem is multiply solved during the synthesis procedure, it is especially impor�
tant that the field calculation take as short a time as possible. The calculation of the coefficients of the
influence matrix A and the solution of the obtained system of nonlinear equations, in which the number
of unknowns may be as high as tens of thousands, are the most critical operations with respect to their exe�
cution time. In order to promote the optimization process, a grid of N × Nz discrete ring�shaped elements
that covers the area of the potentially possible arrangement of MS elements is introduced on the ρOz
plane. Subsequently, when the on/off technology is applied to the grid elements, an optimal MS geometry
that ensures a specified field distribution in the working volume is chosen during synthesis (Fig. 3).

The vector of parameters X is then associated with a 2D bitmap of the MS, and 1 and 0 encode the pres�
ence of the corresponding ferromagnetic ring�shaped element of a discrete MS model and its absence,
respectively.

Determining the elements of the influence matrix for various mutual positions of grid elements helps
to avoid their repeated calculations at the synthesis stage for cases of MSs of different geometries. In a gen�
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eral case, to store the coefficients of the influence matrix A,  computer memory cells are required,
where Nρ and Nz are the numbers of partitions along the coordinate axes.

If the fact that the numerical values of the mutual�influence coefficients between pairs of partition ele�
ments are determined to within the sign by only three numbers (the radii of these rings and the magnitude
of the distance between them) is taken into account, the pairs of rings shifted relative to one another along
the axis of symmetry have equal influence coefficients. Thus, the ring�shaped partition element A has the
same influence on element B as that exerted by element C on D (Fig. 3). Accounting for the translational
symmetry described allows a decrease in the size of the memory that is required for storing the matrix A to

a value of  If the points in the tested region at which the magnetic�field distribution is analyzed
coincide with the centers of the elements of the introduced grid, the use of the coefficients of the influence
matrix makes it possible to substantially increase the field calculation rate without executing the direct
integration procedure.

To achieve high accuracy in calculating the field, it is necessary to use grids with a sufficiently small
step, thus leading to a substantial increase in the order of the solved system of nonlinear equations, which
is evaluated at ≈104. An effective method for solving such systems is the Newton–GMRES method com�
bined with the method of continuation with respect to the parameter λ, which is introduced into the prob�
lem according to formula (25). This method is based on the projection on Krylov subspaces [32, 33] and
allows one to solve systems with densely filled matrices. The specific features and substantial advantages
of this method are the absence of the necessity of forming an influence matrix in an explicit form, and
matrix–vector products with the participation of the matrix A are calculated implicitly by traversing dis�
crete elements of the grid in accordance with the bitmap content.

When solving systems of nonlinear equations, time resources can be significantly saved at the expense
of using the initial approximations obtained at the previous steps of the optimization algorithm for a MS
of similar geometry.

VERIFICATION OF THE INFORMATION MODEL OF THE ANALYSIS PROBLEM

The developed field�analysis algorithm with the use of SIEs was verified for the case with a known ana�
lytical solution, viz., an infinite ferromagnetic plate with linear magnetic properties, which is placed in a
uniform MF with a strength H0 that is perpendicular to the plate surface. For this purpose, the infinite
plate was replaced by a thin disk (Fig. 5) of thick h = 5 mm and radius r = 100 mm. The strength of the
external field was assumed to be H0 = 1 kA/m, the magnetic permeability μ = 100, and the disk was par�
titioned with the same step of 1 mm along the ρ and z axes. The analytical dependence that allows deter�
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Fig. 5. Partition of (a) a thin disk and (a) a sphere into ring elements; (c) magnetization distribution in the disk.
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mination of the field strength inside the plate H = H0/μ can be obtained from the boundary conditions for
the normal component of the magnetic�induction vector.

Comparison of the results of the analytical and numerical solutions has shown that the error in deter�
mining the magnetic�field strength is within 2.1%. As the disk radius further increases to r = 500 mm, the
calculation error is 0.45%, thus indicating the fulfillment of the condition  = H. In this case, the

field calculated at the center of the plate has a strength Hcal = 10.045 A/m.

It is known that an infinite ferromagnetic plate is magnetized under the same conditions uniformly
even at nonlinear characteristics of its material. Because a disk is an approximate model of an infinite
plate, let us evaluate the MFU only in a portion that is located quite close to the disk center. Model cal�
culations were performed for a disk geometry coinciding with the previous linear case but with allowance
for nonlinear properties of the material in accordance with dependence (25) and the parameters taken
from [31]. A numerical experiment revealed that, in the region restricted by the testing radius equal to one
third of the disk radius, the magnetization nonuniformity is within 0.2%. As the testing radius increases,
a trend toward a uniformity disturbance is observed, which is due to the influence of the disk edges.

In addition, the magnetic�field strengths inside Hint and outside Hext the disk, which simulates the infi�
nite plate, were calculated. Hext was calculated at the point that was positioned on the z axis at a distance
of 5 mm from the disk surface. Figure 6 shows the results of calculating these parameters in a nonlinear
case at different disk partitioning steps. The curves show that the computational process is stable and con�
vergent and a step discreteness of 0.5 mm is sufficient for obtaining reliable strength values of the deter�
mined field.

The analysis of the magnetization of a sphere with a radius R = 20 mm by a uniform field H0 = 1kA/m
also serves as a test of the numerical�simulation correctness; in this case, the sphere magnetization must
be uniform.

It is considered that the sphere is manufactured from a material with nonlinear magnetic characteris�
tics. Ring�shaped elements with a rectangular cross section were used as partition elements of the sphere,
thus making it possible to describe its geometry only approximately. The uniformity was evaluated only
within the sphere volume with a testing radius r = 15 mm. The partition step was 0.1 mm. The results of
the numerical simulation show that the magnetization uniformity is at a level of 1.3%. Because the ring
elements with different radii have different volumes and the magnetization within each of them is consid�
ered constant, it is also of interest to find the averaged magnetization uniformity of the sphere over its
entire volume, which was evaluated using the formula

where Mi is the magnetization in the ith ring, M0 is the magnetization at the center of the sphere, n is the
number of ring�shaped elements, Vi is the volume of the ith ring element, and V is total volume of the
sphere represented by the totality of the partition elements. Calculations showed that the volume�averaged
magnetization uniformity is 2.8% and the magnetic�field strength at the center of the sphere is 33.5 A/m.

Hcal
r ∞→
lim

ΔM

Mi M0– Vi

i 1=

n

∑
M0 V

������������������������������100%,=

(b)(a)

11.854

11.853

11.852

11.851
0.250.501.002.505.00

Hint, A/m

Partition step, mm

1024.3

1024.0

1023.7

1024.4
0.250.501.002.505.00

Hint, A/m

Fig. 6. Results of field calculations on the axis (a) inside and (b) outside the disk for a nonlinear case.
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EXAMPLES OF THE SYNTHESIS OF MAGNETIC SYSTEMS OF COERCIMETERS

Let us consider as an example the synthesis of a coercimeter’s MS using the developed method. In this
case, the dimensions presented in Fig. 2 were used for the MS. The current density in the coils was chosen
equal to j = 2 A/mm2. The values of the PE parameters were varied within the limits hmin = 20 mm, hmax =
45 mm, Rmax = 35 mm. In order to evaluate the magnetic�field uniformity in the working volume Ω, 150
test points were chosen with a step of 1 mm along the ρ and z axes. The volume occupied by the MS was
regularly partitioned into ring�shaped element with a step of 1 mm. The total number of partitions of the
MS was ~7000.

The pair of coils used in the MS in the absence of a FE creates in the working volume a magnetic field
with a strength H0 = 4096 A/m and uniformities Δρ = 18.7% and Δz = 37.5% for the radial and axial com�
ponents, respectively. When flat cylindrical pole pieces are used in the CR, the best MFU results are
attained when the poles are maximally close to the working volume, thus ensuring a field uniformity of
Δρ = 1.46% and Δz = 5.31% and a field H0 = 33?373.5 A/m at the center of the working volume.

After performing an optimal synthesis for the first model example, the optimal parameters of the CR
pole pieces that are listed in the table, at which the field strength is 21?345.4 A/m and the uniformities are
Δρ = 0.25% and Δz = 0.47%, were found.

Since the CR operation implies a change in the current in the coils, it is of interest to investigate the
magnetic�field strength and the degree of its uniformity in the working volume as functions of the current
density. Figure 7 illustrates the dependences H(j) and Δρ, z for the first model example (point B). The anal�
ysis of the plots in Fig. 7b has shown that the MFU of the CR depends on the current density in the coils.
Considering the question related to the provision of a specified degree of field uniformity with account for
such a dependence is of independent interest and requires further investigation beyond the subject of this
study. Presumably, taking this dependence into account during synthesis will require the formulation of
the goal function as a multicriterion function.

The second example of synthesis was performed at a current density of j = 1.5 A/mm2 (point A), with
the other conditions being the same. The objective of this numerical experiment was a fundamental test
of the possibility of achieving a sufficient degree of field uniformity at other current densities. The values
of the optimal parameters that were found are presented in the table; they provide a field strength of

Optimal parameters of synthesized magnetic systems

PE number
Model example 1 Model example 2

ρ, mm h, mm ρ, mm h, mm

1 16 33 1 25

2 29 42 28 25

3 35 22 34 20
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Fig. 7. Dependences of the magnetic field (a) strength and (b) uniformity in the working volume on the current density
in the coils for model example 1.
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20600.9 A/m in the working volume and uniformities Δρ = 0.31% and Δz = 0.37% for the radial and axial
components of the magnetic�field strength.

Figure 8 shows the uniformity isolines for the synthesized forms of pole pieces and Fig. 9 shows a 3D
CAD model of one of the synthesized poles that corresponds to the model example 2.

CONCLUSIONS

(1) The proposed synthesis method, in which the SIE apparatus, the global algorithm of the optimiza�
tion by a particle swarm with evolutionary formation of the swarm composition, the on/off technology,
the Newton–GMRES method for solving systems of high�order nonlinear equations, the method of con�
tinuation with respect to a parameter, and the accounting for the translational symmetry are simulta�
neously harmonically combined, allows efficient synthesis of axially symmetric magnetic systems of coer�
cimeters with a specified field configuration.

(2) An informational model for the analysis of the magnetic�field strength distribution in axially sym�
metric MSs, which consist of field sources in the form of coils and FEs with nonlinear magnetic charac�
teristics, was developed on the basis of the SIE method.

(3) Numerical experiments on the synthesis of coercimeters in the considered model examples made
it possible to provide magnetic�field uniformity in the working volume at a level of 0.3%.

(b)(a)

1%

0.1%
0.2%
0.3%
0.4%
0.5%

0.1%

1%

0.1%
0.2%
0.3%
0.4%
0.5%

0.1%
0.2%

Fig. 8. Isolines of the field uniformity in the coercimeter working volume for model examples (a) 1 and (b) 2.

C

PE1

PE2

PE3

Fig. 9. 3D CAD model of a pole piece of the coercimeter’s magnetic system: (C) coil and (PE) pole elements.
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(4) The developed method allows synthesizing of MSs with nonuniform fields with large gradients for
coercimeters based on the ponderomotive testing method.
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