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The paper proposes a method of simultaneous reconstruction of the electrical conductiv-
ity and magnetic permeability profiles of planar metal research objects based on the results 
of single measurements by eddy current probes using surrogate optimization techniques in a 
reduced compact subspace design and accumulating the full amount of the most important a 
priori information about the modes of electromagnetic objects. In addition to the information 
on the response of probe signals to changes in electrophysical parameters, a priori information 
includes the data on multifrequency sensing and changes in the lift-off between metal research 
objects and eddy current probes. All the main stages for the implementation of the method of 
solving the inverse problem are demonstrated, namely, creating a uniform computer quasi-
design of the experiment with improved 2D-projections based on LP-Sobol’s sequences; creat-
ing surrogate models on fully connected deep neural networks; reducing the dimensionality of 
the full design space using the principal components method of PCA; reconstructing profiles 
as a result of surrogate optimisation in a compact subspace. Numerical examples of the method 
are also presented in the paper.

Keywords: compact design subspace, eddy current measurements, planar metal research 
object, profiles of electrophysical parameters, surrogate optimisation. 
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1. INTRODUCTION

As a result of various physical factors 
acting on metal research objects (MRO), 
such as temperature, deformation, chemical, 
and other influences, a certain modification 
of the properties of their sub-surface zone is 
observed due to changes in the microstruc-
ture. This effect is widely used in engineer-
ing applications, such as diagnosing critical 
conditions of industrial equipment, tech-
nological operations for strengthening the 
surface of metal products, etc. Determina-
tion of the electrical conductivity (EC) and 
magnetic permeability (MP) distributions, 
which are structure-sensitive electrophysi-
cal parameters, at a shallow depth from the 
surface of metal products, i.e., EC and MP 
profiles, allows tracking the changes in the 
mechanical properties of the MROs on the 
basis of appropriate correlations. It is advis-
able to use non-destructive testing methods 
for this purpose, namely, the eddy current 
method. The method is based on the pro-
cess of the electromagnetic excitation field 
interaction with the controlled MRO when 
it penetrates into the depth and the subse-
quent registration of the total field due to 
the result of the mutual influence of the sec-
ondary field generated by eddy currents in 
the MRO and the primary field in the form 
of the induced EMF in the pick-up coil of 
the surface transformer probe. Thus, the 
simultaneous reconstruction of the electro-
physical parameter profiles based on eddy 
current measurements is an urgent problem 
that can be classified as an inverse problem 
and whose solution is of scientific interest 
with a given accuracy.

Parametric nonlinear optimisation, 
which consists in reconstruction of the EC 
and MP distributions by minimising the dis-
crepancies in a least-squared sense between 
the measured values of the probe EMF and 

the calculated theoretical values obtained 
by solving the direct problem, is the most 
common approach to solving the issue. 
The computational process depends on the 
complexity of the target function, since it 
requires a significant number of iterations 
of the direct solver. It becomes a substantial 
problem with a “heavy” computationally 
intensive forward direct model.

Methods of local, in particular the ones 
with gradients for extremum search, and 
global optimisation [1], [2], were used in the 
problems with the electrophysical param-
eter profiles. Their thorough review is given 
in [3]. Some applications of local optimisa-
tion methods are reported in [4], the pecu-
liarity of which is the use of forward and 
adjoint methods to calculate the Jacobian 
matrix. To improve the search capabili-
ties of local optimization methods, various 
modifications are used, for example, in [5], 
the Newton-Raphson method with regular-
ization and the use of an unmodified sensi-
tivity matrix is proposed to solve ill-posed 
and ill-conditioning problems, which makes 
it possible to eliminate the ill-conditioning 
of computation during the process of recon-
struction and to meet the requirements for 
calculation accuracy.

However, the use of global extremum 
search methods [6], which find the minimum 
of a multimodal target function of complex 
topography in hyperspace in a small number 
of iterations without strict requirements for 
the points of initial approximation, proves 
to be more promising for this purpose. The 
most famous representative of this class of 
algorithms is the bioinspired stochastic evo-
lutionary genetic GA. A significant number 
of algorithms of this class based on meta-
heuristics are also widely used in practice.

Surrogate optimisation is used for 
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cases of time-consuming target functions 
of optimisation algorithms, which are typi-
cal for the tasks of determining the EC and 
MP profiles, which consists in replacing of 
“heavy” functions with their high-perfor-
mance alternatives, namely surrogate mod-
els (meta-models) [7].

However, due to the “curse of dimen-
sionality”, the problem becomes more 
critical as the dimensionality of the design 
space increases, which is also true for pro-
file reconstruction tasks. The large dimen-
sionality of the space requires the creation 
of cumbersome meta-models and, as a 
result, large training samples. Reducing the 
requirements for the volume and quality of 
training samples is an effective and promis-
ing way to improve surrogate optimisation, 

since the number of points in the training 
set for creating a meta-model required to 
correctly sample the design space increases 
exponentially with the growth of its dimen-
sionality. In addition, a significant number 
of variables in the optimization algorithm 
negatively affects the accuracy of the extre-
mum search. Therefore, it makes sense to 
improve approaches to determining the 
EC and MP distributions based on modern 
efficient optimisation techniques, which 
allows solving both the problems of using 
resource-intensive for calculating the tar-
get functions and reducing the number of 
variables in search algorithms, and, accord-
ingly, improving the accuracy of solving 
extreme problems.

2. RESEARCH METHODOLOGY

The task of reconstructing the EC and 
MP profiles in the optimisation formulation 

is to minimise the following target function:

 (1)

where emes = Cmes + j·Dmes is the value of the EMF measured by the eddy current probe (ECP) 
in the algebraic form of writing a complex number with real Cmes and imaginary Dmes as its 
parts; emod = Gmod + j·Zmod is the theoretical value of the EMF calculated in accordance with 
the electrodynamic model, which is a mathematical formulation of the direct problem; σ, µ 
are the corresponding vectors of electrophysical parameters that determine the desired pro-
files; f is the frequency of the electromagnetic field excitation; z is the lift-off between the 
eddy current probe and the surface of the MRO.

The determination of the electrophysi-
cal parameter profiles involves the consid-
eration and use of the forward and inverse 
problems in combination. The Uzal-Cheng-
Dodd-Deeds electrodynamic model [8]–
[11] of the direct problem in the analytical 
form used in this research was created under 
the following assumptions: MROs are char-
acterised by infinite overall dimensions, the 
medium is assumed to be linear, homoge-

neous, and isotropic; the electromagnetic 
field is excited by an ECP generator coil 
with a sinusoidal current I varying with an 
angular frequency ω = 2·π·f; the ECP exci-
tation coil has a rectangular cross-section 
with finite dimensions, is characterised by 
a uniform current density across the cross-
section i0 and the number of turns W; the 
measuring coil has a number of turns wmes 
and an infinite small cross-section. Usually, 
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the sub-surface zone of the MRO to simu-
late the continuity of the electrophysical 
parameter profiles is assumed to be con-
ditionally multilayer. Each layer out of L 
possible is characterised by constant EC 
and MP parameters, i.e., a piecewise con-
stant approximation of the profiles occurs. 
The model, due to its matrix representation, 
allows for the introduction of an arbitrary 
number of conditional discretization lay-
ers for calculations, which makes it ver-
satile and rather convenient for numerical 
experiments. It appears to be essential for 

achieving acceptable modeling accuracy. 
It should be noted that the existing experi-
ence of its use by researchers indicates the 
necessity to discretize the sub-surface zone 
into several hundred conditional layers. The 
model piecewise constant representation of 
the profiles provides the ability to set any 
law of the EC and MP distribution, which 
allows the chosen model to consider vari-
ous variants of measurement cases. In the 
future, the electrodynamic model will be 
used in the modified form proposed by The-
odoulidis [12] and presented below: 

 
(2)

where: 
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А(rδ, zδ) is the azimuthal component of 
the vector potential, Wb/m; V(1) is a matrix 
containing elements V11, V21; T() is a matrix 
with elements T11(), T12(), T21(), T22(); µ0 = 
4·π·10-7 is the magnetic constant, H/m; µt 
is the relative magnetic permeability of the 
conditional layer t; J0(), J1(), Jm() are cylin-
drical Bessel functions of the first kind of 
zero, first, and m orders; rδ, zδ  are the coor-
dinates of the observation point P in the 
cylindrical coordinate system, m; (r2–r1) is 
the width of the cross-section of the ECP 
excitation coil, m; (z2–z1) is the height of the 
cross-section of the ECP excitation coil, m; 
Lc is the contour of the ECP measuring coil.

The authors created a program code that 
implements the electrodynamic model in the 
MathCAD 15 environment. It was verified 
by numerical calculations by the finite ele-
ment method for a three-layer MRO in the 
COMSOL Multiphysics environment using 
the AC/DC Module [13]. The maximum rel-
ative error in determining the vector poten-
tial was no more than 0.2 % in amplitude and 
0.5 % in phase. Also, additional testing was 

performed by comparing with the calcula-
tions based on analytical models obtained for 
one- and two-layer MROs [14], which dem-
onstrated significantly higher accuracy rates. 
Finally, we tested the experimental data 
presented in [15] for the magnetic induc-
tion vector in the centre and below the ECP 
excitation coil obtained by A. Philippe [16] 
and K. Kawashima [17], which proved the 
adequacy of the solution of the direct prob-
lem by the created software.

Using the electrodynamic model (2), 
the theoretical values of the ECP EMF are 
calculated, which are used in the target 
function (1). However, it leads to significant 
problems in the operation of the optimiza-
tion algorithm due to the significant time 
spent on even once calculating emod values. 
Therefore, in accordance with the idea of 
surrogate modelling, this model needs to 
be replaced by a computationally efficient 
alternative, namely, a meta-model that 
approximates the “exact” electrodynamic 
model with high accuracy. That is, formula 
(1) is transformed to form (3):

 (3)

where emetamod = Gmetamod + j·Zmetamod is the theoretical value of the EMF calculated using a 
neural network proxy-model (meta-model) for the electrodynamic model.

A deep fully connected neural network 
(DFCNN) serves as an approximator in 
these studies, which, due to its outstand-
ing generalization capability, is a modern 
universal tool for performing the relevant 
tasks. In addition to its high computa-
tional performance, the meta-model serves 
as a storage device for information about 
the MRO obtained by preliminary model-
ling in accordance with the created design 
of experiment (DOE) in various modes of 
eddy current measurements. An essential 
feature of this research is that the meta-
model takes into account all the factors 

that mostly affect the formation of the ECP 
output signal. These undoubtedly include 
the vectors σ and µ of the electrophysical 
parameters, and additional factors, in par-
ticular, the frequency of the electromagnetic 
excitation field frequency f and the lift-off 
z between the ECP and the MRO surface. 
Since the ECP output signal is characterised 
by certain values of amplitude and phase in 
the exponential form, it is necessary to use 
a complex-valued neural network, whose 
inputs are real numbers and whose output 
is complex. For simplicity, it is advisable to 
replace the complex-valued neural network 
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by splitting it into two real-valued ones 
with common inputs. It is useful to consider 
the outputs of each of the two networks as 
the real and imaginary parts of the EMF of 
the ECP, respectively, which eliminates the 
inconvenience of working with relatively 
small phase values. Given the complex and 
significantly nonlinear nature of depen-
dence (2), it is justified to use deep learning 
for neural networks.

Obtaining an accurate meta-model 
largely depends on the size and quality of 
the training sample. These requirements 
can be met if a perfect DOE is used to cre-
ate it. To effectively implement the profile 
reconstruction method, the authors cre-
ated advanced computer uniform DOEs on 
quasi-Sobol’s sequences [18]. Low discrep-
ancy is their advantage over known designs 
[19]–[21], and most importantly, in two-
dimensional projections. It is these prop-
erties of the designs that ensure the accu-
racy of approximation of complex response 
hypersurfaces in cases where nothing is 
known a priori about their topographic 
features. One of the variants of such quasi-
DOEs was used in this research.

The minimisation of the target function 
(3) was performed by a hybrid multi-agent 
particle swarm optimisation algorithm with 
evolutionary formation of the swarm com-
position [22]–[25] with improved search 
capabilities. It is a global extremum search 
algorithm which is of stochastic nature and 
based on metaheuristics. Due to its sto-
chasticity, a series of algorithm runs were 
performed to improve the accuracy of the 
calculations, followed by averaging the 
results, i.e., the multi-start technique was 
used. However, the search for an extremum 
was not carried out in the full design hyper-
space, but in its compact subspace, which 
is characterised by a smaller dimensional-
ity while retaining almost all the proper-
ties of the full one without critical loss of 

information. Finding an extremum in the 
reduced dimension space makes it possible 
to take full advantage of the benefits of this 
approach, described earlier in the introduc-
tion. The transition from a multidimen-
sional space to a low-dimensional space 
was performed using the principal compo-
nent analysis (PCA) [26]. This is a classi-
cal statistical method designed to detect the 
so-called active new orthogonal basis in 
the full multidimensional space [27]–[29] 
based on linear transformations. The basis 
vectors were found by analysing the singu-
lar numbers obtained by the SVD decom-
position of the Gram matrix, determined for 
the data of the full design space. The larger 
the singular number, the more information 
is contained in the corresponding eigenvec-
tor of the Gram matrix, which is included as 
a component of the new basis. In this case, 
the components of the basis maximally pre-
serving information about the MRO were 
chosen. It allows controlling the choice of 
the dimension of the compact subspace by 
mens of balancing. The data concentrated in 
the full space were projected into the new 
basis, preserving the essential properties of 
their originals with the minimal loss. An 
important advantage of PCA is the ability 
to back-project the solution data into the 
original full space after optimisation in the 
reduced subspace, where the electrophysi-
cal parameters of distribution are obtained. 
It should also be noted that the creation of 
the meta-model in this case is carried out in 
a compact subspace, which has a positive 
effect on the cumbersomeness of its struc-
ture, i.e., reducing the number of neurons in 
the input and hidden layers, etc. In addition, 
the optimization algorithm operates with 
normalized values, as this condition is man-
datory for neural networks. All these factors 
together contribute to a higher accuracy of 
the solution.

It should also be noted that to verify 
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the solution of the inverse problem, it is not 
necessary to confirm it experimentally with 
the results of physical measurements. The 
validity of its solution can be established by 
conducting numerical experiments on test 
problems synthesised using solutions to a 

previously verified direct problem, which 
is currently the case. Moreover, the synthe-
sised variants of testing problems should be 
unique and not used at the previous stages 
of solving the inverse problem.

3. NUMERICAL MODELLING

According to the proposed methodol-
ogy, one of its stages involves the creation 
of a computer homogeneous DOE on quasi-
Sobol’s sequences, which has low discrep-
ancy rates both for the volumetric case and 
for two-dimensional projections.

In this research, the task of reconstruct-
ing the profiles of the EC and MP is car-
ried out using a meta-model taking into 

account four factors σ, µ, and f, z, so then 
a combination of LPτ-sequences ξ1, ξ6, ξ14, 
ξ17 is used to implement a multidimensional 
homogeneous quasi-plan.

Figure 1 shows this type of DOE with 
improved two-dimensional projections on a 
unit scale, the numerical values of the point 
coordinates of which are given in Table 1.

Fig. 1. Visualization of the projections of the experiment design on the LPτ-sequences ξ1, ξ6, ξ14, ξ17.

The total number of DOE points is equal 
to Nprofile = 8191, but for the convenience of 
visualising the DOE homogeneity, only a 

limited number of them, namely 256, are 
shown in the figure. A visual analysis of 
the quality of DOE’s 2D-projections using 
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Voronoi diagrams allows us to assess the 
degree of their homogeneity by the area of 
all formed segments. In addition, the homo-
geneity of the location of points in 2D-pro-
jections, even for such a small number of 
them, is also proved by the coordinate his-
tograms of their distribution. With the num-
ber of Nprofile points, the situation with filling 
the projection space is even better.

Scaling helps make the transition from 
a single hyperspace to a real factor space. 
Initially, before the microstructure changes 
in the sub-surface zone, the MRO is char-
acterised by the values of the EC σdeep and 
MP µdeep. When the MRO is exposed to any 
of the physical factors (temperature, defor-
mation, etc.), the values of the EC and MP 
change to the maximum on their surface, 
remaining unchanged at a certain depth of 
the sub-surface zone. The reconstruction of 
profiles is performed within some a priori 
defined limits of their changes relative to 
the original ones. We will assume that the 
limits were set within ± 15 % relative to the 
initial values of the EC and MP on the sur-
face of the MRO. If necessary, these limits 

can be adjusted.
Table 1 shows the numerical values 

of the electrophysical parameters µsurf and 
σsurf on the surface of the MRO at the DOE 
points in the real four-factor hyperspace. At 
the same time, point  1, which belongs to 
the primary profile, is characterised by the 
values of the EC σdeep = 2·106 S/m, σsurf = 
9.2·106 S/m, and for the MC - µdeep = 10, 
µsurf = 29.78. Then, taking into account 
these limits, the ranges of change in the EC 
parameters on the surface of the MRO will 
be 7.82·106 ≤ σsurf ≤ 10.1·106 S/m; and for 
the MP – 24.531≤ µsurf ≤35.028, with σdeep 
and µdeep being unchanged for any profile at 
the depth of the sub-surface zone.

In addition to the values of the elec-
trophysical parameters, the creation of the 
DOE requires knowledge of the range of 
changes in the frequency of the electromag-
netic excitation field 1 ≤ f ≤ 20 kHz, which 
is informative for observing the signal 
response at different depths of its penetra-
tion, and the lift-off between the ECP and 
the surface of the MRO, which is taken to 
be 0.5 ≤ z ≤ 2.5 mm.

Table 1. Experimental Design in Four-Factor Space

No 
point 

Design in unit hyperspace Design in real hyperspace

ξ1 ξ6 ξ14 ξ17
σsurf ·106, 

S/m µsurf f, kHz z, m

1 0.5 0.5 0.5 0.5 9.2 29.78 10.5 0.0015
2 0.25 0.75 0.75 0.25 9.89 27.155 15.25 0.001
3 0.75 0.25 0.25 0.75 8.51 32.405 5.75 0.002
4 0.125 0.125 0.125 0.875 8.165 25.8425 3.375 0.00225
5 0.625 0.625 0.625 0.375 9.545 31.0925 12.875 0.00125
… … … …
8188 0.249878 0.379761 0.497925 0.134644 8.868 27.1539 10.460 0.000769
8189 0.749878 0.879761 0.997925 0.634644 10.248 32.4039 19.960 0.001769
8190 0.499878 0.629761 0.747925 0.384644 9.558 29.7789 15.210 0.001269
8191 0.999878 0.129761 0.247925 0.884644 8.178 35.0289 5.710 0.002269

The laws of distribution of the EC 
“exponential” and the MP “Gaussian”, 
referring to the typical dependencies deter-
mined experimentally in [11], [30] were 

used as an example, for the model piece-
wise stable representation of profiles.

Within the specified boundary limits of 
changes in electrophysical parameters in the 
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real design space (Table 1), we calculated 
the EC and MP distributions for all DOE 
points, which corresponds to the number of 
profiles in the total sample Nprofile with a sam-
pling of the sub-surface zone D = 3·10-4 m 
by L = 60 conditional layers. For the sake of 
clarity, only some of the obtained profiles 
are shown in Fig. 2, along with a table that 

indicates their characteristic parameters.
For these variants of profiles and taking 

into account the frequency at which mea-
surements are made and the values of the 
lift-off between the ECP and the MRO, the 
output signals of the ECP were calculated 
using the electrodynamic model (2), which 
are given in Table 2.
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Fig. 2. MP and EC profiles in the sub-surface zone of the MRO for some of their cases.

Table 2. Training Set 8191×122 for Creating a Meta-model in the Full Factor Space

No profile Re(emod) Im(emod) f, Hz z, m
1 -2.618 -4.049 10500 0.0015
2 -3.344 -4.34 15250 0.001
3 -1.651 -3.074 5750 0.002
4 -1.082 -2.156 3375 0.00225
5 -3.021 -4.392 12875 0.00125
…
8188 -2.721 -3.575 10460.1 0.0007692
8189 -3.82 -6.145 19960.1 0.0017692
8190 -3.338 -4.77 15210.1 0.0012692
8191 -1.602 -3.195 5710.1 0.0022692

In this case, the dimension of the factor 
space is 122, which is significant. There-
fore, building a meta-model in such a space 
is not effective.

Therefore, the next stage of research 
is the transition to the reduced dimension-
ality space using the PCA method based 
on the SVD-decomposition of the Gram 
matrix created in the previous stage using 

the training set. The analysis of the obtained 
singular numbers allowed us to select 63 
most influential eigenvectors for which the 
eigenvalues are greater than 1. Thus, to train 
the DFCNN, we use a matrix of parameters 
in a low-dimensional factor space of size 
Nprofile × nred, where nred = 63 is the number of 
basis vectors g in the new space (Table 3). 
The total number of samples in the selec-
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tion was distributed in the following ratio: 
Ntraine = 4209 for training, NNN-test = 904 for 
testing, and NСV = 904 for cross-validation. 
The remaining 2177 samples were not used 

in training, but some of them were later 
used as synthesised data to check the reli-
ability of the solution to the inverse profile 
reconstruction problem.

Table 3. Training Set of 8191×63 for Creating a Meta-model in Low-dimensional Factor Space

No point g1 g2 … g62 g63

1 -34344006 -40876.45 … -0.2349043 0.0011182417

2 -36406779 469672.51 … 0.4565146 0.0013578367

3 -32281232 -551426.58 … 0.2288428 -0.00084519701

4 -31249845 -806701.24 … 0.2274442 0.00081916363

5 -35375392 214397.8 … 0.2335731 -0.00072947157

… … … …

8188 -33352224 -286351.94 … 0.6077515 -0.00050085944

8189 -37477772 734747.26 … 0.2040051 0.00094150458

8190 -35414998 224197.78 … 0.0311096 -0.0005216811

8191 -31289451 -796901.49 … -0.1805091 -0.00094330238

As mentioned in the previous section, 
further construction of meta-models is car-
ried out by means of deep learning neural 
networks, for which the outputs of each 
of the two networks are, respectively, the 
real and imaginary parts of the ECP EMF, 
and the inputs are the matrix of g-param-
eters. As a result, we obtained the deep 
networks Re-MLP-16-17-15-11-1 and Im-
MLP-16-17-16-11-1 with four hidden layers 

for the real and imaginary parts of the EMF, 
respectively. The validity of the obtained 
meta-models was assessed by: histograms 
of residuals (Figs. 3 a, 4 a); Normal P-Plot 
of residuals (Figs.  3 b, 4 b); scatter plots 
(Figs. 3 c, 4 c) and MAPEmetamod errors, % 
(Mean Absolute Percentage Error) sepa-
rately for training, cross-validation and test 
samples; Box-plots (Figs. 3 d, 4 d). 

Fig. 3. Statistical assessment of the quality of the Re-MLP-16-17-15-11-1 meta-model: 
a – histogram of the residuals distribution; b – Normal P-Plot of the residuals; 

c – scatter plot; d – box plot.
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Fig. 4. Statistical assessment of the quality of the meta-model Im-MLP-16-17-16-11-1: a – histogram of the 
residuals distribution; b – Normal P-Plot; c – scatter plot; d – box plot.

A preliminary assessment of the ade-
quacy of the created meta-models was 
performed by testing the hypothesis of the 
normality of the distribution of residuals 
according to the criteria of skewness and 
kurtosis with an assessment of the reliabil-
ity of the obtained coefficients by Student’s 
t-test.

In addition, according to the numerical 
indicators of the coefficient of determina-
tion and Fisher’s F-ratio 

DR

total D
;

R

MSF MSνν = , 
where MSD is the mean square of the regres-
sion, MSR is the mean square of the residu-

als (vD  =  63, vR  = 6017-63-1 = 5953), the 
informativeness and adequacy of the cre-
ated meta-models (Table 4) were tested at 
the level of significance of 5 %.

Both of the created meta-models are 
adequate, since the calculated model val-
ues of the Fisher’s criterion for them sig-
nificantly exceed its critical value. The high 
informativeness of the created meta-models 
is also indicated by a significant coefficient 
of determination, which is significantly reli-
able according to Fisher’s criterion at the 
level of 5 %.

Table 4. The Verification of the Adequacy and Informativeness of Meta-models

Parameters
Meta-models

Re-MLP-16-17-15-11-1 Im-MLP-16-17-16-11-1

Adequacy with vD = 63, 
vR = 5953, α = 5 %

Informativeness R2= 0.9999; R2= 0.999999; 

The inverse problem was solved using 
a metaheuristic stochastic global optimisa-
tion algorithm, namely, a hybrid multia-
gent particle swarm optimisation algorithm 
with evolutionary formation of the swarm 
composition, the effectiveness of which 
has been proven in [31], [32]. To raise the 
accuracy of solutions, the multi-start tech-
nique was used in the research. Thirty-nine 
solutions were obtained by a series of starts 
of the optimisation algorithm, and inverse 
transformations were performed from the 

PCA space of the principal components to 
the primary space and the actual MP and 
EC profiles were obtained for four test mea-
surements of the EMF. 

The bounds within which the MAPE 
errors of the profiles in thirty-nine starts are 
obtained are given in Table 5, and Fig.  5 
shows the percentage distribution of these 
errors in the range from minimum to maxi-
mum for one Test 1 measurement as an 
example.

The reconstructed EC and MP profiles 



72

are finally obtained by averaging the profile 
variants for each test measurement. Table 6 
shows the values of the original and recon-

structed profiles and the MAPE, % error, 
for four test measurements.

Table 5. Ranges of Change in MAPE Error of Reconstruction of Profile Variants

Parameters
Measurements

Test 1 Test 2 Test 3 Test 4
Re(emes) -0.58 -1.094 -1.609 -2.557
Im(emes) -1.236 -2.045 -2.641 -3.827
f, Hz 1533.52 3205.9 5098.3 9599.4
z, mm 1.065 1.086 1.0446 1.0068

MAPEµ, %
min 0.154 0.324 0.138 0.235
max 9.255 8.483 8.874 6.75

MAPEσ, %
min 0.248 0.17 0.198 0.322
max 4.258 4.824 5.62 3.854

Table 6. Reconstructed MP and EC Profiles Based on the Results of Averaging

Parameters
Conditional layers

1 2 … 59 60

Test 1

µtest1 30.31168 30.22174 10.11804 10.09899
µrecon1 30.23665 30.14696 10.10688 10.08789
MAPEµ,% 0.178
σtest1×106, S/m 8.277112 7.956343 2.061894 2.044244
σrecon1×106, S/m 8.254753 7.934985 2.058932 2.041337
MAPEσ,% 0.204

Test 2

µtest2 34.63338 34.52431 10.14316 10.12005
µrecon2 34.76038 34.65093 10.18557 10.16238
MAPEµ,% 0.391
σtest2×106, S/m 7.782724 7.486066 2.034691 2.018368
σrecon2×106, S/m 7.759168 7.464006 2.040130 2.023889
MAPEσ,% 0.157

Test 3

µtest3 30.96801 30.87516 10.12185 10.10219
µrecon3 30.89312 30.80050 10.0945 10.07488
MAPEµ,% 0.256
σtest3×106, S/m 7.890392 7.588483 2.040615 2.024003
σrecon3×106, S/m 7.858705 7.558117 2.034522 2.017983
MAPEσ,% 0.347

Test 4

µtest4 30.9439 30.85115 10.12171 10.10207
µrecon4 30.80823 30.71591 10.083898 10.064342
MAPEµ,% 0.405
σtest4×106, S/m 7.574084 7.287602 2.023211 2.007448
σrecon4×106, S/m 7.564644 7.278311 2.016711 2.000954
MAPEσ,% 0.228
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Fig. 5. MAPE error distribution diagrams of reconstructed profile variants for Test 1 measurement: a – for 
magnetic permeability; b – for electrical conductivity.

4. DISCUSSION AND CONCLUSION

Studies similar in methodology were 
performed with a limited number of influ-
ential factors in the meta-models taken into 
account a priori. Thus, in the first case, only 
two factors were taken into account, namely 
µ and σ; and in the second case, three fac-
tors µ, σ, f were taken into account, i.e., 
the multi-frequency mode of ECP opera-
tion was considered. In all cases, numerical 
experiments were performed according to 
an identical scheme.

The MAPE error of the results of pro-
file identification taking into account only 
two factors in the active compact space was 
0.352 % for the MP profiles and 0.96 % 
for the EC profiles. When more factors 
µ, σ, f are taken into account in the meta-
model, the following results of profile iden-
tification are obtained for the best case: 
for MP – 0.275 % and for EC – 0.354 %. 
A decrease in profile reconstruction errors 
was observed compared to studies where 
only two factors were taken into account 
in the meta-models. Model calculations of 
the reconstruction of the electrophysical 
parameters of planar MRO’s in the presence 
of a priori information on µ, σ, f, z based 
on the results of direct measurements of the 
EMF amplitude and phase, which are pre-

sented in Table 6, give, in the best case, the 
MAPE errors for the MP profile – 0.178 %, 
and for the EC – 0.157 %.

A comparative analysis of the accuracy 
of the above numerical modelling experi-
ments shows that there is a tendency to 
improve the results of determining the pro-
files with an increase in the amount of a pri-
ori information about the MRO contained in 
the meta-models. The best results are dem-
onstrated when the meta-model contains 
complete information on the most influen-
tial factors. It is interesting to note that even 
with some loss of information caused by the 
reduction of the design space during opti-
mization, the previously mentioned trend is 
observed. It is also important to be able to 
control information losses when reducing 
the space by making compromise decisions 
regarding the balance between the size of 
the space and the accuracy of the prob-
lem, which becomes an additional effective 
means of performing modelling studies to 
improve the results.

Thus, the studies have convincingly 
demonstrated the advantages of the pro-
posed method for reconstructing the elec-
trophysical parameter profiles of planar 
MRO’s based on the results of one-time 
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measurements by eddy current probes using 
surrogate optimisation techniques and 
accumulating the full volume of the most 

important a priori information on the modes 
of electromagnetic research of objects.
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