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Abstract. Information security and data protection are among the key aspects, which should be intensively 
developing in the 21st century. A conventional approach to cryptographic algorithms offers to apply matrices to 
represent information. However, more recent approaches deploy other data structures, including permutations, 
thus necessitating accordance between differing data structures to integrate different methods into a wholistic 
system of processing and transmitting information. This study aims to generate permutations, which serve 
as a key for factorial data coding according to a known key matrix. The paper presents two algorithms for 
transforming a square matrix into a permutation. An example of matrix transformation following each of the 
proposed algorithms is given. A software model was created and described to investigate the transformation 
of square matrices into permutations with the Matlab software product. The authors have considered the built-
in methods of statistical information processing in the Matlab program and their graphical representation by 
built-in functions, which are applied in the process of the software model. A matrix transformation has been 
performed according to the proposed algorithms. The paper investigates all possible combinations of a square 
matrix of order 2 with elements referring to the finite integer field modulo p = 17 and p = 23. According to each 
transforming algorithm, the results of a square matrix transforming into a permutation number are obtained 
in the lexicographic order. The statistical properties of the obtained results have been studied, and the most 
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unauthorised access and communication channel er-
rors. An advantage to non-separable factorial coding is 
that the cardinality of the key space is a function of M!, 
which, as M increases, grows faster than all polynomial 
and exponential functions of M.

On the other hand, a considerable number of cryp-
tographic transformations are implemented by matrix 
information representations. In particular, H. Huang et 
al.  (2022) analysed the imminent cryptographic sys-
tems based on tropical circular matrices. The results 
offer a new encryption algorithm with an open key 
based on the tropical circular matrices. This cryptosys-
tem is able to resist KU and RM attacks. A.R. Naseri et 
al. (2023) applied the class of square Fibonacci matrices 
(q + 1)×(q + 1) in cryptographic transformations, where 
q – an integer number. This type of cryptographic per-
mutations uses matrices as a key in their encryption 
algorithm. The approach simplified and enhanced the 
key exchange procedure. M. Maxrizal  (2022) proposes 
matrices with zero determinant as a key to implement 
three-pass data transmission protocols. A study by 
F. Al-Shaarani & A. Gutub (2022) demonstrates a cryp-
tographic key transmission algorithm through a matrix. 
Along with that, a matrix is employed to obtain stereo-
grams, which are additionally encrypted and transmit-
ted through an unsecured communication channel.

Compatible implementation of matrix data rep-
resentation, for cryptographic key agreement in par-
ticular, as well as for factorial coding of data to be 
transmitted through secure channels, requires trans-
forming the received matrix key into a permutation key. 
Consequently, a need arises to build and investigate 
algorithms of transforming matrices into permutations. 
Considering the fact that key lengths and information 
block lengths for matrix-based permutations and fac-
torial protocols do not coincide in the majority of cases, 
reflecting matrices into permutations is not bijective, 
being simultaneously surjective and injective instead 
(Maturin et al. , 2023).

The aim of this research was to agree permutation 
keys for factorial data coding based on the informa-
tional interaction of the key matrix known to the con-
versers. The main goal includes several objectives: 

• to develop algorithms to transform a matrix into 
a permutation;

•  to design and to analyse bar charts reflecting 
permutation frequency after enumerating every square 
matrix of the given order for each algorithm;

• to compare the bar charts obtained under various 
transformation parameters.

INTRODUCTION
Software is widely used in everyday life. Every second, 
millions of operations are performed globally, from 
ordinary requests to requests that require a high level 
of security and reliability of information transmission. 
These operations include managing bank accounts, 
electronic digital signatures for documents, automated 
technological processes, controlling unmanned aerial 
vehicles, providing secure communication channels for 
the Internet of Things (IoT), etc.

Rapid development of information technologies 
involves information security as well. In particular, 
Ye. Kaptiol & I. Horbenko  (2020) in their work used 
cloud computing with IBM quantum computers to 
investigate Grover’s algorithm, which is a necessary 
method to solve cryptology problems. S.  Joshi  et 
al.  (2023) discussed research on the ways quantum 
computing can break the RSA encryption algorithm 
in polynomial time, an operation that conventional 
computers are not able to perform because of pro-
cessing power limitations. P.  Li  et al.  (2024b) pro-
pose a scalable parallel circuit for ultrafast random 
bit generation at 100 terabits per second based on 
a single micro-ring resonator. In an investigation 
into Nvidia’s development, A. Lavdanskyi et al. (2023) 
demonstrates how software and hardware technolo-
gy of compute unified device architecture (CUDA) of 
graphics processors increases the performance of op-
erations on permutations. 

Based on the above, users have access to hardware 
with potent computing capabilities, which allows them 
to test the reliability of conventional encryption algo-
rithms. However, modern technology may be used to 
achieve malicious goals. When determining the cryp-
tographic stability of encryption algorithms, the break-
ing time is an important parameter. Passwords with a 
total length of 8 characters (including numbers, upper-
case letters, lowercase letters, and special characters) 
and encrypted with MD5 hash function require ap-
proximately one hour to be computed when using an 
RTX4090 graphics card. The cloud computing detailed 
in S. Rani et al. (2023) is able to reduce this time by a 
factor of 4. Factorial data coding according to the defi-
nition offered in V. Shvydkyi et al. (2021) is the process 
of transforming information for its protection based on 
the factorial numbering system. Non-separable facto-
rial data coding is the coding that uses π permutations 
of length M as signal carriers. The elements of the 
permutation are integer numbers limited by the range 
[0;  M  –  1]. This transformation enables implemen-
tation of integrated information protection against  

efficient algorithm for transforming matrices into permutations has been determined based on the distribution 
uniformity criterion for the generated permutation numbers. The study demonstrates that this algorithm can 
potentially be deployed in information exchange systems based on factorial data coding

Keywords: factorial data coding; data security; key agreement; statistics; uniform distribution 
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MATERIALS AND METHODS
According to the definition offered by W. Greub (1975), 
a square matrix is a matrix that has a number of rows 
equal to the number ofcolumns: i  =  j. In this case,  
A = (aij )n×n is a square matrix of order n. The elements of 
aij matrix are distributed within the 0 ≤ aij

 ≤ p – 1 range, 
where p – an integer number; i, j – the row and the col-
umn of the matrix, correspondently. In this research, it is 
proposed two algorithms to transform the A matrix into a 
permutation: 1) by representing A matrix in decimal and 
factorial notations; 2) by using auxiliary square matrices.

Permutation of the matrix A according to the first 
algorithm includes three steps.

1) Transforming matrix A into a decimal A10 value by 
the calculation noted as:

𝐴𝐴𝐴𝐴10 = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖−1)𝑛𝑛𝑛𝑛+𝑖𝑖𝑖𝑖−1𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 = 𝑎𝑎𝑎𝑎11 ⋅ 𝑝𝑝𝑝𝑝0 + 𝑎𝑎𝑎𝑎12 ⋅ 𝑝𝑝𝑝𝑝1+. . . +𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛

2−1  

𝐴𝐴𝐴𝐴10 = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖−1)𝑛𝑛𝑛𝑛+𝑖𝑖𝑖𝑖−1𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 = 𝑎𝑎𝑎𝑎11 ⋅ 𝑝𝑝𝑝𝑝0 + 𝑎𝑎𝑎𝑎12 ⋅ 𝑝𝑝𝑝𝑝1+. . . +𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛

2−1  .         (1)

2) Limiting the decimal equivalent A10 of matrix A 
to the range [0; M! – 1]:

A10
norm = | A10

 | M! .                          (2)

3) Transforming the decimal representation of the 
number A10

norm selected from the range [0; M! – 1] into 
the factorial number AF and permutation π of length M:

A10
norm → AF

 → π.                            (3)

Transformation (3) is simple and shall not be studied 
in this paper. The second algorithm to transform a matrix 
into a permutation is to be implemented in four steps.

1) Building auxiliary matrices Hk = (hij(k))(n×n), where 
(hij(k)) = |(k

 – 1) ⋅ n2
 + (i

 – 1) ⋅ n + j – 1| M , while 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑘𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛2� .
Thus, when M value exceeds n2, there are sev-

eral auxiliary matrices Hk. For example, if M = 8, n = 2, 
two auxiliary matrices will be necessary: 𝐻𝐻𝐻𝐻1 = �0 1

2 3� , 
𝐻𝐻𝐻𝐻2 = �4 5

6 7� .
If M = 9, n = 2, three auxiliary matrices are to be built: 

𝐻𝐻𝐻𝐻1 = �0 1
2 3� , 𝐻𝐻𝐻𝐻2 = �4 5

6 7� , 𝐻𝐻𝐻𝐻3 = �8 0
1 2� .

2)  Successive multiplication from the left of the 
matrix A by all auxiliary matrices Hk:

Bk =
 A ⋅ Hk

 = (bij
 (k)) 

(n×n).                     (4)

3)  Finding factorial coefficient al, 0 ≤  l ≤ M – 1, of 
number AF by calculation:

al
 = |bij

 (k)| (l+1),                                                 (5)

where values i, j, k, correspondent to the coefficient al, 
are selected so that l = hij

 (k). 
4) Converting factorial number AF into permutation 

π of length M:

AF → π.                                  (6)

To automate operations converting a decimal num-
ber into a permutation, the authors of this study have 
developed a transformation function int2perm(number, 
base_permut) in Matlab programming environment. 
The function accepts number, a number in decimal rep-
resentation to be transformed into a permutation, as 
input parameter. Parameter base_permut is a base per-
mutation presented as a vector (row). Figure 1 features 
the block diagram showing the function algorithm con-
verting a decimal number into a permutation.

Figure 1. Algorithm for transforming a number into a permutation (int2perm function)
Source: developed by the authors
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Throw an error, stop 
the conversion 

lnitialization of 
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length , ... ) 
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presentation 

Determination of element 
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Yes 
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End 

No 
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C A 

No 
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To conduct the research, Matlab software environ-
ment has been involved. The study applied program-
ming principles and product capabilities developed by 
D.J. Higham & N.J. Higham (2005) and D.T. Valentine & 
B.H.  Hahn  (2023). Two additional methods have been 
developed to represent the number in the factorial and 
decimal notations: int2fact() – which is a method of trans-
forming a number from decimal into factorial notation, 
and factint() – which is a method for reverse transfor-
mation of a number from factorial to decimal notation. 

To construct the software model, the following ba-
sic variables were used:

• A – a square matrix;
• n – the order of matrix A;
• M –the permutation length; 
• pMax denotes the maximum values for the ele-

ments of the matrix A (a variable that allows verifying 
the aij

 ≤ p – 1 condition); 
•  Adec  – the current value of the decimal num-

ber obtained from matrix A by the first transformation 
algorithm (a variable containing the result of trans-
formation according to Equation (1) and presented in 
decimal notation);

• Bdec – the current value of the number obtained 
from matrix A according to the second transformation al-
gorithm (a variable containing the transformed result ac-
cording to Equation (5) and reduced to decimal notation);

• AdecCollection – the list of matrix values convert-
ed according to the first transformation algorithm (the 
variable is a one-dimensional array (vector), where each 
element is the result of stepwise transformations of the 
matrix A according to the first algorithm Adec);

• BdecCollection – the list of the matrix values con-
verted according to the second transformation algorithm 
(the variable is a one-dimensional array (vector), where 
each element is the result of stepwise transformations 
of the matrix A according to the second algorithm Bdec);

• aCollection – the list of obtained matrix A values 
(the variable is represented as a three-dimensional ar-
ray. Two dimensions define rows and columns, while the 
third dimension corresponds to the sequence number 
of each matrix generated within the range [1; pn2]).

The software model algorithm. The procedure for 
launching the software model includes the follo- 
wing steps:

1. Entering parameters: M, pMax, n.
2.  Calculating values: number M!, the number of 

possible matrix A variants, number of auxiliary matri-
ces to be processed according to the second transfor-
mation algorithm.

3. Enumerating all matrix A variants under the giv-
en conditions, transforming them according to the first 
and second algorithms.

4. Saving the obtained values.
As a result of the software model, statistical data 

were obtained to be further evaluated as an expansion 
of the *.mat workspace.

The block diagram of the algorithm described 
above can be represented as shown in Figure 2.

Figure 2. Software model algorithm
Source: developed by the authors

Begin 

lnitialization 
of initial data:  

pMax, M, n

Saving the results: 
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End 

A 
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and calculation 
according to the 
first algorithm 

All variations 
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Collecting statistical data and their validation. The 
Matlab software product stores the results of the ex-
periments as a workspace extension *.mat. This format 
saves all the variables produced by the software. By sav-
ing the program’s working space, it is possible to analyse 
the simulation results and access the arrays of variable 
values separately from the main algorithm of the model, 
i.e., to simulate the experiments and save the results 
separately for each of the experiments. To save the work-
space, Matlab program employs save(name) function 
where name – the file name. Thus, after starting the sim-
ulation program in two experiments, the workspace was 
saved for each simulation. Two files containing simula-
tion variables and their values have thus been obtained. 
Applying this procedure to save the workspace of the 
program variables, one can separate the software part 
of the simulation from additional calculations related 
to obtaining statistical parameters and to separate the 
experimental part from the results analysis (analytical 
part). In addition, this procedure optimises analysing the 
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results by creating a graphical interface, adds the pos-
sibility of extending the study by adding or diversifying 
the methods of statistical analysis applied to analyse 
the results. The software implementation of the model 
performs solely data generation, the analytical part is re-
sponsible for calculating statistical parameters, graphs, 
etc. Based on the defined list of variables present in the 
*.mat file, an additional program has been developed 
that calculates the statistical parameters of the obtained 
results. Figure 3 demonstrates the program algorithm.

Figure 3. Calculating statistical parameters
Source: developed by the authors

Figure 4. A code fragment to enter primary parameters
Source: developed by the authors

Figure 5. Generated and saved transformation results 
according to the first and second algorithms for p = 17, M = 8, n = 2

Source: developed by the authors

While implementing the algorithm, the built-in 
functions of Matlab were deployed: min – the minimum 
value in a numerical sample; max – the maximum value 
in a numerical sample; range – the range of values   in a 
numerical sample; num – sample size; mean – sample 
mean; median – the median of the sample values; stan-
dart deviation – standard deviation.

The set cardinality of matrix A equals to 174 = 83521 
for the first experiment and to 234 = 279841 for the sec-
ond experiment. The data arrays resulting from exper-
imental data are represented by sets of permutation 
numbers A10

norm for the first algorithm and the obtained 
combinations of the matrix A. The array of results saved 
for the second transformation algorithm contains per-
mutation numbers obtained by transforming the AF 
values from the factorial into decimal representation. 
Figures 5 and 6 contain fragments of the results for the 
first and second experiments. 

Matlab function datastats() can retrieve the listed 
values. The var() function will calculate the variance. 
The bar(x,y,*) method was to display bar graphs for ab-
solute frequency, where x – the vector of values along 
the Ox axis; y – vector of values along the Oy axis; * de-
notes additional settings (line thickness, colour, etc.). 
The plot(x,y,*) method was employed to display graphs 
of relative frequency.

RESULTS
Simulation of the described algorithms and methods 
for matrix transformation into permutation was per-
formed by conducting two experiments with the fol-
lowing input parameters:

1) p = 17, M = 8, n = 2;
2) p = 23, M = 8, n = 2.
A fragment of setting up the software implementa-

tion by entering the initial data for the first experiment 
is shown in Figure 4.

Loading simulation 
results 
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parameters of 
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transformation 
algorithm 
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of graphs and 
their display 

A 

End 

Calculation
of statistical

parameters of the
first transformation
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Begin 
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Variable AdecCollection contains the transformation 
results according to the first algorithm (A10

norm value). The 
variable BdecCollection contains the transformation results 
according to the second algorithm (decimal representa-
tion of the received permutation number AF ). The varia-
ble aCollection contains all the obtained A matrix values. 

In the first experiment with input parameters p = 17, 
M = 8, n = 2, the following statistical results have been 
obtained for the transformation executed according to 
the first algorithm:

• the number of generated matrix A combinations, 
attribute num in the datastat() function: N = 83521;

•  the maximum value of the number ob-
tained in the result of transforming the matrix A: 
Nmax = M! – 1 = 40319;

• the minimum value of the number obtained in the 
result of transforming the matrix A: Nmin = 0;

•  the mean value in the generated sample: 
mean = 19514;

• the median values in the generated sample: me-
dian = 19439;

• the maximum number of permutation repetitions: 
repA1

max
 = 3;

• the minimum number of permutation repetitions: 
repA1

min
 = 2;

• A10
norm values from the range [0; 2880] repeat repA1

max 
times;

• A10
norm values from the range [2881; 40320] repeat 

repA1
min times;
• variance: DA1 =

 142498178.841;
• the maximum value of the relative frequency for a 

permutation to occur is: W A1
max

 = 3.5919 ⋅ 10-5;
• the minimum value of the relative frequency for a 

permutation to occur is: W A1
min

 = 2.3946 ⋅ 10-5.
Distribution of absolute frequencies Nj

 , 0 ≤j ≤ M! – 1 
of permutations with the number xj =  j in the lexico-
graphic order following the first transformation algo-
rithm is shown in Figure 7 as a bar graph. 

Figure 8 shows the graph of the relative frequency of 
occurrence of permutations according to the first trans-
formation algorithm is shown in. Ox axis contains the 
generated values of the permutation sequence numbers 
when matrix A is transformed by formula A10

norm, and Oy 
axis is the relative frequency of the generated number.

In the experiment with input parameters p = 17, 
M = 8, n = 2, the following statistical results were ob-
tained for the transformation according to the second 
algorithm:

• the number of generated combinations of the ma-
trix A, attribute num in the datastat() function: N = 83521;

• the maximum value of the number resulting from 
transforming the matrix A: Nmax = 40198;

• the minimum value of the number resulting from 
transforming the matrix A: Nmin = 0;

Figure 6. Generated and saved transformation results  
according to the first and second algorithms for p = 23, M = 8, n = 2

Source: developed by the authors

Figure 7. Distribution of absolute frequencies 
for a permutation to occur according to the first 
transformation algorithm based on the results  

of the first experiment
Source: developed by the authors
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Figure 8. Relative frequency for a permutation to occur 
according to the first transformation algorithm based 

on the results of the first experiment
Source: developed by the authors

•  the mean value in the generated sample: 
mean = 19995;

•  the median values in the generated sample:  
median = 20012;

•  the maximum repetition number of the gener-
ated numbers (sequence number of the permutation),  
rep B1

max
 = 52;

•  the minimum repetition number of the gener-
ated numbers (sequence number of the permutation),  
rep B1

min
 = 0;

• the number of ordinal number values of the per-
mutations that have the maximum number of repeti-
tions rep B1

max is 408;
• the number of ordinal number values of the per-

mutations that have the minimum number of repeti-
tions rep B1

min is 38159;
• variance: DB1 =

 136109307.2089;
• the maximum value of the relative frequency for a 

permutation to occur: W B1
max

 = 62.2597 ⋅ 10-5;
• the minimum value of the relative frequency for a 

permutation to occur: W B1
min

 = 35.9191 ⋅ 10-5.

In the experiment with input parameters p  =  23, 
M = 8, n = 2, the following statistical results were ob-
tained for the transformation executed according to the 
first algorithm:

•  the number of generated combinations of the 
matrix A, attribute num in the datastat() function: 
num = 279841;

• the maximum value of the number resulting from 
transforming the matrix A: max = M! – 1 = 40319;

• the minimum value of the number resulting from 
transforming the matrix A: min = 0;

•  the mean value in the generated sample: 
mean = 19996.957;

Figure 9. Distribution of the absolute frequencies for a 
permutation to occur according to  

the second transformation algorithm, based on the 
results of the first experiment

Source: developed by the authors

Figure 10. Relative frequency for a permutation 
to occur according to the second transformation 

algorithm, based on the results of the first experiment
Source: developed by the authors

Figure 9 shows a bar graph for distribution of the 
relative frequency Nj, 0

 ≤ j ≤ M! – 1 of permutations with 
number xj

 = j in the lexicographic order according to the 
first transformation algorithm. The graph describing 
the relative frequency of permutation occurrence ac-
cording to the first transformation algorithm is shown 
in Figure 10. Ox axis contains the generated values of 
the permutation sequence numbers when the matrix A 
is transformed by formula A10

norm, and Oy axis is the rela-
tive frequency of the generated number. 
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• the median values in the generated sample:
median = 19988;

• the maximum number of permutation repetitions:
repA1

max = 7;
• the minimum number of permutation repetitions:

repA1
min = 6;
• A10

norm values from the range [0;  37920] repeat
repA1

max times;
• A10

norm values from the range [37921; 40320] repeat
repA1

min times;
• variance: DA1 =

 133524637.447;
• the maximum value of the relative frequency for a

permutation to occur is: W A1
max = 2.5014 ⋅ 10-5;

• the minimum value of the relative frequency for a
permutation to occur is: W A1

min
 = 2.1441 ⋅ 10-5.

Figure 11 contains a bar graph for distribution of 
the absolute frequencies Nj, 0

 ≤ j ≤ M! – 1 of permuta-
tions with number xj = j in the lexicographic order ac-
cording to the first transformation algorithm. The graph 
illustrating the relative frequency for permutations to 
occur according to the first transformation algorithm is 
demonstrated in Figure 12. Ox axis contains the gener-
ated values of the permutation sequence numbers when 
the matrix A is transformed by formula A10

norm, and Oy 
axis is the relative frequency of the generated number. 
In the experiment with input parameters p = 23, M = 8, 
n = 2, the following statistical results were obtained for 
the transformation according to the second algorithm:

• the number of generated combinations of the
matrix A, attribute num in the datastat() function: 
num = 279841;

• the maximum value of the number resulting from
transforming the matrix A: max = 40198;

• the minimum value of the number resulting from
transforming the matrix A: min = 0;

• the mean value in the generated sample:
mean = 20072.2193;

• the median values in the generated sample:
median = 20162;

• the maximum repetition number of the gener-
ated numbers (sequence number of the permutation),  
rep B1

max
 = 230;

• the minimum repetition number of the gener-
ated numbers (sequence number of the permutation),  
rep B1

min
 = 0;

• the number of ordinal number values of the per-
mutations that have the maximum number of repeti-
tions rep B1

max is 64;
• the number of ordinal number values of the per-

mutations that have the minimum number of repeti-
tions rep B1

min is 37679;
• variance: DB1 =

 1335421877.799;
• the maximum value of the relative frequency for a

permutation to occur: W B1
max = 82.1895 ⋅ 10-5;

Figure 11. Absolute frequency for a permutation to 
occur according to the first transformation algorithm, 

based on the results of the second experiment 
Source: developed by the authors

• the minimum value of the relative frequency for a
permutation to occur: W B1

min
 = 28.5877 ⋅ 10-5.

Figure 13 contains the bar graph showing the dis-
tribution of the absolute frequency Nj, 0

 ≤ j ≤ M! – 1 of 
permutations with number xj = j in the lexicographic or-
der following the first transformation algorithm.

The graph illustrating the relative frequency for 
permutations to occur according to the second trans-
formation algorithm is shown in Figure 14. Ox axis 
contains the generated values of the permutation se-
quence numbers when the matrix A is transformed by 
formula A10

norm, and Oy axis is the relative frequency of 
the generated number. 

Figure 12. Relative frequency for a permutation to 
occur according to the first transformation algorithm, 

based on the results of the second experiment 
Source: developed by the authors
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The statistical results for the first and second ex-
periments are shown in Table 1.
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Figure 13. Absolute frequency of permutation 
occurrence according to the second transformation 

algorithm, based the results of the second experiment 
Source: developed by the authors

Figure 14. Relative frequency of permutation 
occurrence according to the second transformation 

(results of the second experiment)
Source: developed by the authors

Table 1. Experimental statistical results
Parameter Experiment 1 Experiment 2

Input conditions for the experiment p = 17, n = 2, M = 8 p = 23, n = 2, M = 8

Matrix transformation algorithm I II I II

The volume of the generated sample, 83521 83521 279841 279841

Nmax 40319 40198 40319 40198

Nmin 0 0 0 0

Variance, D 142498178.84 136109307.21 133524637.45 13542187.80

Relative frequency, Wmax 3.5919 ⋅ 10-5 62.2597 ⋅ 10-5 2.50142 ⋅ 10-5 82.1895 ⋅ 10-5

Relative frequency, Wmin 2.3946 ⋅ 10-5 35.9191 ⋅ 10-5 2.1440 ⋅ 10-5 28.5877 ⋅ 10-5

Number of repetitions repmax 3 52 7 230

Number of repetitions repmin 2 0 6 0

The sample median 19439 20012 19988 20162

The sample mean 19514 19995 19996.96 20072.22

Source: developed by the authors

Transformation of the matrix A by the first algorithm 
generated the maximum repetitions of the permutation 
numbers in the lexicographic order repA1

max
 = 3 in the first 

experiment and repA2
max =  7 in the second experiment. 

The minimum number of the generated permutation 
repetitions is: repA1

min =  2 in the first experiment and  
repA2

min = 6 in the second experiment. 
The result of transformations with auxiliary matri-

ces (the second algorithm) is the maximum number of 
repeated permutation numbers rep B1

max
 = 52 in the first 

experiment and rep B2
max = 230 in the second experiment. 

The minimum number of repeated permutation num-
bers is rep B1

min
 = 0 in the first experiment and rep B2

min
 = 0 in 

the second experiment.
The variance value of the obtained permutation 

numbers in the first experiment and matrix processing 

according to the first algorithm is DA1 =
 142498178.841. 

The variance value in the first experiment and the 
processing algorithm with auxiliary matrices is 
DB1 =

 136109307.2089. The obtained relations DA1 >
 DB1 

indicate that random variable values in the first algo-
rithm have larger deviations from the distribution cen-
tre, which is a prerequisite for more uniform distribution 
over a set of possible values. The bar graph featuring 
the absolute distribution of the matrix transformation 
according to the second algorithm (Fig. 13) shows zeros, 
which means that the corresponding permutation num-
ber has not been generated in the sample.

To test the null hypothesis H0 that the received 
samples of permutation numbers in the lexicograph-
ic order correspond to a uniform distribution over the 
segment [0; M! – 1], the χ2 Pearson test was applied. 
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H. Chernoff & E.L. Lehmann (1954) argue that the re-
sulting sample must be grouped into classes to cor-
rectly apply the χ2 criterion. H.B. Mann & A. Wald (1942) 
found that the optimal r = r (N, α) number of grouping 
classes (data grouping intervals) based on the sample 
size N and the significance level α for the χ2 criterion is 
defined by the equation:

𝑟𝑟𝑟𝑟(𝑁𝑁𝑁𝑁,𝛼𝛼𝛼𝛼) = 2 ⋅ 21.2 ⋅ � 𝑁𝑁𝑁𝑁−1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚0;1;𝛼𝛼𝛼𝛼

�
0.4

  ,             (7)

where Norm0;1;α – the upper limit of the standard normal 
distribution Norm0;1.

Later, it was established that without significant loss 
of the criterion’s length, the r (N, α) value can be halved, 
and for large N select the following (Turchyn, 2014):

𝑟𝑟𝑟𝑟(𝑁𝑁𝑁𝑁,𝛼𝛼𝛼𝛼) = 2 ⋅ 20.2 ⋅ � 𝑁𝑁𝑁𝑁−1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚0;1;𝛼𝛼𝛼𝛼

�
0.4

  .             (8)

For α = 0.05, Norm0;1;0.05
 = 1.645. The following is an 

analysis of the results of experiment 1 for the first ma-
trix transformation algorithm. For N =83521 and α = 0.05, 
the value r (83521,0.05) ≈ 175.18. Therefore, the number 
of grouping intervals is r = 175. The length of the group-
ing interval is 𝐻𝐻𝐻𝐻 = 40319

175 ≈ 230.3943 . The value of the 
interval width is taken as H = 230.395. Then xi

* = H ⋅  i, 
0 ≤ i ≤ r. νi denotes absolute frequencies of grouping inter-
vals: 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 = ∑ 𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

∗ <𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗≤𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
∗   , 0 ≤ i ≤ r, аnd 𝜈𝜈𝜈𝜈1 = ∑ 𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥0∗≤𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗≤𝑥𝑥𝑥𝑥1∗   , 

Nj is absolute frequency of xj value in the i-th grouping 
interval. If the degree of freedom m of the χ2

m distribu-
tion acquires large values, then by virtue of the central 
limit theorem, this distribution approaches the normal 
one with parameters a = m and σ2 = 2m:

χ2
m (x) ≈ Normm;2m(x) for m > 30.               (9)

Since 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚;2𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚0;1 �
𝑥𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚
√2𝑚𝑚𝑚𝑚� , the equation 

for the upper α-limit of the distribution is Normm;2m(x): 
1 − 𝛼𝛼𝛼𝛼 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚;2𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚0;1 �

𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼−𝑚𝑚𝑚𝑚
√2𝑚𝑚𝑚𝑚

� = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚0;1(𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼)  Norm0;1(ta). 

Then 𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼−𝑚𝑚𝑚𝑚
√2𝑚𝑚𝑚𝑚

= 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼   or:

𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼 = 𝑚𝑚𝑚𝑚 + 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼√2𝑚𝑚𝑚𝑚  .                      (10)

The Pearson test statistics for a uniform distribution 
has degrees of freedom m = r – 1. If χ2

a;m is the upper α-limit 
of χ2  distribution with m degrees of freedom, the H0 hy-
potheses regarding the continuous uniform distribution 
of the sample is accepted at the level of significance α if:

𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.
2 = ∑ (𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)2

𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖=1 < 𝜒𝜒𝜒𝜒𝛼𝛼𝛼𝛼;𝑚𝑚𝑚𝑚

2   ,            (11)

where pi – theoretical relative occurrence frequency of the 
investigated random variable in the i-th grouping interval.

Worth noting that
1)  𝑝𝑝𝑝𝑝1 = 𝑃𝑃𝑃𝑃(0 ≤ 𝑋𝑋𝑋𝑋 ≤ 𝑥𝑥𝑥𝑥1∗) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1∗ < 𝑋𝑋𝑋𝑋 ≤ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖1∗ ) = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 1

𝑟𝑟𝑟𝑟
  , 

2 ≤  i ≤ r. For N = 83521 and α = 0.05, the value 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 1
175

  , 
1 ≤ i ≤ 175;

2) for each i, 1 ≤ i ≤ 175 value,  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 83521 ⋅ 1
175 ≫ 10  

has been performed;
3)  by virtue of relations (9), (10) and (11), χ2

observ. =  

𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.
2 = ∑ �𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖−

𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟�

2

𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟

𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑜𝑜𝑜𝑜

𝑁𝑁𝑁𝑁
∑ �𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 −

𝑁𝑁𝑁𝑁
𝑜𝑜𝑜𝑜�
2

𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖𝑖𝑖 < 𝜒𝜒𝜒𝜒𝛼𝛼𝛼𝛼;𝑜𝑜𝑜𝑜−𝑖

2 ≈ 𝑟𝑟𝑟𝑟 − 1 + 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼√2√𝑟𝑟𝑟𝑟 − 1 

holds. Thus, the verification rule is: 

∑ �𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 −
𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟
�
2

𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖=1 < 𝑁𝑁𝑁𝑁

𝑟𝑟𝑟𝑟
�𝑟𝑟𝑟𝑟 − 1 + 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼√2√𝑟𝑟𝑟𝑟 − 1�  .    (12)

For N = 83521, α = 0.05, tα
 = 1.645, r = 175 hypothesis 

H0 about uniform distribution of the permutation num-
bers in the segment [0; 40319] is conditionally accepted:

∑ (𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 − 477.26)2175
𝑖𝑖𝑖𝑖=1 < 97689.54  .          (13)

Substituting the absolute frequencies νi ob-
tained from experiment 1 for the first matrix trans-
formation algorithm into (13) results in the value 
∑ (𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 − 477.26)2175
𝑖𝑖𝑖𝑖=1 = 603773.91  , which significantly 

exceeds the permissible value 97689.54. Table 2 demon-
strates the results of applying the Pearson test as Equa-
tion (12) for the results of experiments from Table 1.

Table 2. Results of testing the hypothesis about the uniform distribution of permutations

Parameter Experiment 1 Experiment 2
Matrix transformation algorithm I II I II

Number of intervals r 175 284

Interval width H 230.395 141.969

Value ∑ �𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 −
𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟
�
2𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖=1   603773.91 1973127.91 317923.08 350321441

Critical value 𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟
�𝑟𝑟𝑟𝑟 − 1 + 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼√2√𝑟𝑟𝑟𝑟 − 1�  97689.54 317418.32

As has been proved here, none of the obtained 
permutation distributions corresponds to the uniform 
distribution according to χ2 Pearson’s test. However, 
with increasing 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛2

𝑀𝑀𝑀𝑀!
 ratio, such discrepancy disappears 

for the first matrix transformation algorithm. On the 
contrary, the second matrix transformation algorithm 
requires additional research to improve its statisti- 
cal properties.

Source: developed by the authors
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DISCUSSION
If the computing power of the computer system is suf-
ficient, additional hardware is inexpedient. However, 
storing and transmitting the matrix for key generation 
becomes an issue. In this case, it is possible to select a 
complex approach to the organization of a secure sys-
tem. Transmitting a matrix through an open, unprotect-
ed communication channel between two conversers is 
possible by taking the following steps:

• a square matrix is generated in accordance with 
the requirements of the cryptosystem;

• the transformation of the matrix into a permuta-
tion is performed through successive steps described in 
“materials and methods”; 

• an exchange protocol using permutations is im-
plemented. 

Factorial coding ensures implementing protec-
tive functions against unauthorised access, as well as 
detecting and correcting errors. However, the issue of 
matching the common key permutations persists. To 
solve this issue, this study proposes an approach based 
on matrices. The advantages of matrix calculations 
when solving cryptography problems include:

• complexity of analysis: matrix operations (espe-
cially matrix inversions) complicate analysing and break-
ing cryptographic systems, increasing their security;

•  flexibility and efficiency: matrix methods allow 
efficient encoding and decoding of large data arrays;

•  increased resistance to quantum attacks: some 
matrix cryptographic schemes (for example, lat-
tice-based) are resistant to quantum computer attacks, 
which enhances their prospects for future use.

Matrix operations, such as multiplication or inver-
sion of large matrices, are computationally complex. 
This may lead to a significant increase in processing 
time and resource consumption, especially in cases 
with large matrix sizes. Note that transforming a matrix 
according to the first algorithm through representing 
matrix A in decimal and factorial notations requires sig-
nificant computer system resources. In particular, a way 
to achieve a uniform distribution is to increase the 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛

2

𝑀𝑀𝑀𝑀!
  

ratio, which, as a result, is able to increase the amount 
of time required for calculations. However, this flaw can 
be insignificant if part of the calculations is distributed 
and transferred to the hardware component of the in-
formation exchange system. One of the examples of re-
alising this approach is offered in a study by M. Issad et 
al. (2020). The authors proposed to transfer encrypting 
and decrypting server’s algorithms to a programmable 
gate array (FPGA). Another work by S.  Sheikhpour  et 
al. (2021) proposes two schemes based on a combina-
tion of hardware and time reservation: a novel hard-
ware reservation for the cyclic AES function and time 
reservation for the AES key extension module hardware.

Another limitation of matrices may be related to 
the high memory volume requirements by information 
processing tools, since processing matrices requires  

significant amounts of memory, especially large di-
mensional matrices or a significant quantity of matrix 
operations. This may be problematic for resource-con-
strained devices, such as embedded devices and es-
pecially mobile devices. Thus, applications of the pro-
posed approaches in low-resource cryptography should 
be investigated in more detail. Key management proce-
dures can also be complicated. In case of matrix cryp-
tosystems, matrices are the keys. Managing these keys 
(generation, storage, transmission) is more complex 
compared to traditional encryption algorithms, such as 
Advanced Encryption Standard (AES) (National Institute 
for Standards and Technology,  2001), where keys are 
scalar values. In addition, encryption and decryption 
algorithm offered by Z.Y. Karatas et al. (2019) involves 
finding an inverse matrix, which is a complicated com-
putational task. Cryptosystems using lattice-based en-
cryption have a similar property (Li et al., 2024a).

Regarding the issue of cryptographic stability, ma-
trix cryptosystems can be stable. For example, a study 
by H. Huang et al. (2022) emphasises that, based on the 
results of the research, an algorithm based on ring trop-
ical matrices can be considered as a new post-quantum 
cryptosystem. However, the specific properties of matri-
ces used for decryption can increase efficiency of cer-
tain cryptographic analysis methods, for example, at-
tacks based on the matrix structure. An important stage 
in investigating cryptographic stability of matrix cryp-
tosystems is hence analysing vulnerabilities to attacks 
performed through specialised methods, for example, 
lattice-based analysis or other algebraic methods.

In addition to the above, matrix cryptosystems may 
be vulnerable to linear dependencies between matrix 
elements. This can degrade the system stability and in-
crease its chances of being hacked. To combat linear 
dependencies between elements, various approaches 
are used, which can be attributed to: nonlinear trans-
formations (in AES and DES cryptosystems, s-blocks 
are deployed that perform bit transformations), which 
as a result reduce linear dependencies between input 
and output elements; another approach to reduce lin-
ear dependencies is to pad with redundant data or use 
longer keys to increase the key space; use of algebraic 
transformations using matrices with high entropy; add-
ing randomness during key generation. An example is a 
study by M. Gafsi et al. (2020).

Note that matrix cryptosystems work with data 
blocks of fixed size, which can impede processing mes-
sages that are not a multiple of the block size and re-
quire additional mechanisms to overcome the barrier 
(such as adding placeholders). The existing methods of 
adding placeholders include PKCS No. 5/7, ANSI X.923, 
ISO/IEC 9797-1, bit padding, filling the message con-
tent to the required block size with bytes of zeros. Cryp-
tosystems applying these techniques are AES, which 
often use PKCS #7, or DES, which may use PKCS #5 or 
ANSI  X.923. However, implementing the mentioned 
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mechanism in the cryptosystem reduces its stabili-
ty because of possible attacks targeted at this aspect, 
for instance, a boomerang type attack proposed back 
in 1998 (Bleichenbacher Attack Explained,  2019) and 
its improved algorithm (Kelesidis, 2022). In the second 
algorithm for converting a matrix into a permutation 
proposed in this paper, a mechanism for solving the 
backfill problem is introduced for the value of the per-
mutation length M, which is greater than the number 
of elements of the matrix. Nonetheless, considering the 
possible identified risks, it is necessary to provide for a 
flexible encryption mechanism that would not depend 
on the length of the incoming message in the future.

Matrix fields are a powerful tool in cryptography, 
offering efficient and robust methods for protecting 
information. Involving matrices in cryptographic algo-
rithms assists in constructing complex and reliable en-
cryption systems that satisfy modern security require-
ments under the condition of choosing the appropriate 
algorithms, matrix sizes and protection methods. None-
theless, high computational complexity can be attribut-
ed to the potential disadvantages of using matrices in 
cryptographic information exchange systems; high re-
quirements for the volume of memory used; complexity 
of key management; vulnerability to certain types of 
attacks; message length and block size.

CONCLUSIONS
This study attempted to integrate methods of matching 
matrix key elements with factorial data coding, which 
relies on permutations to transfer information. For this 
purpose, a software model for transforming the square 
matrix A into the permutation π was developed and 
implemented. Two matrix transformation algorithms 
have been considered and tested: by representing the 
matrix  A in decimal and factorial notations and by us-
ing auxiliary square matrices. The first transformation 
algorithm involves step-by-step transformation of ma-
trix elements into coefficients of positional (decimal 
and factorial) notations. The second transformation 
algorithm involves successive multiplication from the 

left of the matrix A by all auxiliary matrices followed by 
generating factorial coefficients from the elements of 
the product matrices.

Analysis of existing cryptosystems built on matri-
ces has revealed both advantages and disadvantages 
in applying matrix transformations to generate key el-
ements of factorial coding. The study has also deter-
mined new vectors of developing and improving matrix 
transformations in systems with factorial data coding 
as a tool for key agreement. A potential weak point 
to implement an attack on a cryptographic system is 
encryption, which takes place in blocks of a fixed size. 
Despite the above-mentioned shortcomings, combina-
tions of matrix cryptographic systems and factorial data 
coding can be effective and safe, provided they are used 
correctly, and possible risks are taken into account. Se-
lecting appropriate algorithms, matrix sizes, and pro-
tection methods, as well as algorithms for converting 
matrices into permutations, can help minimise these 
flaws and ensure reliable information security. 

Two experiments have been conducted for differ-
ent dimensions of Zp finite field of matrix elements: 
p = 17 and p = 23. Histograms of permutation distribu-
tions at the output of the simulated model have been 
constructed. The results of the study indicate that the 
transformation algorithm that involves representing 
the matrix A in decimal and factorial notations for 
large 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛

2

𝑀𝑀𝑀𝑀!
 has proved that this method can achieve a 

uniform distribution of possible permutations and can 
be used as a means of generating keys in systems with 
factorial coding. The second transformation algorithm 
with auxiliary matrices does not ensure a uniform dis-
tribution of the generated permutations and hence re-
quires further research.
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Анотація. Одним із важливих аспектів, які необхідно розвивати у 21 столітті, є безпека та захист інформації. Для 
криптографічних алгоритмів розповсюдженим підходом є використання матричного представлення інформації. 
Разом з тим, нові підходи можуть використовувати інші структури даних, в тому числі перестановки. Це викликає 
необхідність узгодження структур даних для інтеграції різних методів у одній системі обробки та передавання 
інформації. Метою роботи є формування перестановок, що є ключем для факторіального кодування даних, 
за відомою ключовою матрицею. У роботі представлено два алгоритми перетворення квадратної матриці в 
перестановку. Наведено приклад перетворення матриці за кожним з запропонованих алгоритмів. Створено та 
описано програмну модель для дослідження перетворення квадратних матриць у перестановки з використанням 
програмного продукту Matlab. Розглянуто вбудовані методи обробки статистичної інформації в програмі Matlab 
та графічного їх відображення за допомогою вбудованих функцій, які використані в процесі роботи програмної 
моделі. Виконано перетворення матриці за запропонованими алгоритмами. Досліджено всі можливі комбінації 
квадратної матриці порядку 2 з елементами, що належать скінченному полю цілих чисел за модулем p = 17 та 
p = 23. За кожним алгоритмом перетворення отримано результати перетворення квадратної матриці у номер 
перестановки в лексикографічному порядку їх слідування. Досліджено статистичні властивості отриманих 
результатів, визначено найбільш ефективний алгоритм перетворення матриць у перестановки за критерієм 
рівномірності розподілу отриманих номерів перестановок. Показано, що цей алгоритм має перспективу 
використання в системах обміну інформації з використанням факторіального кодування даних

Ключові слова: факторіальне кодування даних; захист інформації; узгодження ключів; статистика; рівномірний 
розподіл
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