
Strategies for implementing or strengthening  
the DevOps approach in organizations: Analysis and examples

Suggested Citation:Suggested Citation:
Fedoryshyn, B.  (2024). Strategies for implementing or strengthening the DevOps approach in organizations: Analysis and Fedoryshyn, B.  (2024). Strategies for implementing or strengthening the DevOps approach in organizations: Analysis and 
examples. examples. Bulletin of Cherkasy State Technological UniversityBulletin of Cherkasy State Technological University, 29(2),, 29(2), 57-69. doi: 57-69. doi:  10.62660/bcstu/2.2024.5710.62660/bcstu/2.2024.57..

*Corresponding author

Bohdan Fedoryshyn*

Master
Lviv Polytechnic National University
79000, 12 Stepan Bandera Str., Lviv, Ukraine
https://orcid.org/0009-0005-3779-0186

Copyright © The Author(s). This is an open access article distributed under the terms of the 
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

INTRODUCTION
In today’s digital environment, organizations are in-
creasingly adopting the DevOps approach to improve 
the efficiency of software development and operations 
management. DevOps, which combines development 
and operations practices, aims to shorten the develop-
ment cycle, improve software quality and simplify the 
introduction of new features. This approach allows or-
ganizations to respond quickly to market changes and 
ensure high performance and reliability of their sys-
tems. DevOps provides integration and orchestration 
of microservices, process automation, and continuous 

Abstract. The aim of the study was to analyse the implementation of DevOps in organizations, in particular, to 
assess the impact of process automation, CI/CD, monitoring and orchestration of microservices on the efficiency 
of development and management. A methodology was created that allows organizations to effectively implement 
and enhance the DevOps approach, achieving high results in software development and management. The study 
looked at cultural change and training strategies, including building a culture of collaboration between teams 
and developing skills in modern DevOps tools. Process automation, including test automation and integration and 
deployment, plays an important role in improving code quality and reducing development time. Infrastructure 
as code allows managing and automating infrastructure configuration, enabling rapid scaling of environments. 
The work has shown that performance monitoring and feedback are critical to detecting problems early and 
continuously improving the product. Microservices orchestration, in particular, with Kubernetes, automates 
the deployment and scaling of containerized applications, which is critical for modern architectures with high 
performance and availability requirements. Case studies of companies such as Netflix, Spotify, and Airbnb 
demonstrate the successful application of DevOps practices and technologies to achieve high availability, 
scalability, and reliability of infrastructures. The study results confirm that the implementation of DevOps leads to 
a significant increase in development efficiency, software quality, and optimization of infrastructure management 
costs. In addition, the introduction of cultural changes and increased collaboration between development and 
operations teams contributes to greater flexibility and speed of response to changing market conditions

Keywords: microservices orchestration; tools; test automation; CI/CD processes; development efficiency

monitoring. In particular, the automation of testing 
and build, integration and deployment (CI/CD) pro-
cesses allows for the rapid and efficient introduction 
of new features and updates. Infrastructure as a Code 
(IaC) simplifies infrastructure management by enabling 
rapid scaling and repeatable environments. Continuous 
performance monitoring and well-established feedback 
processes help to identify and resolve issues early on, 
as well as continuously improve the product.

This study focuses on identifying the most effec-
tive strategies for implementing and strengthening the 

UDC 004.7:658.512
DOI: 10.62660/bcstu/2.2024.57

BULLETIN of Cherkasy State Technological University

Journal homepage: https://bulletin-chstu.com.ua/en Vol. 29 No. 2. 2024

Article’s History: Received: 10.12.2023; Revised: 05.04.2024; Accepted: 27.05.2024.

https://orcid.org/0009-0005-3779-0186


Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

58

of organizations to adapt DevOps practices. S. Rafi et 
al. (2020) developed a model to assess the readiness 
of organizations to implement DevOps, which includ-
ed an assessment of infrastructure, processes, and 
cultural aspects.

M.S. Khan  et al.  (2022) identified the main chal-
lenges organizations face when integrating a DevOps 
culture, including resistance to change and commu-
nication issues between teams. It is necessary to con-
sider how to effectively manage cultural change and 
overcome resistance when implementing DevOps. A 
common problem is the difficulty of integrating new 
approaches such as DevSecOps and assessing the ma-
turity of DevOps processes in organizations. M.A.  Ak-
bar  et al.  (2022) described a decision-making frame-
work for the successful implementation of DevSecOps 
in software development organizations, which included 
methods for integrating security into DevOps processes. 
J. Radstaak (2019) developed a DevOps maturity model 
to assess the level of DevOps adoption in organizations, 
allowing organizations to measure and improve their 
DevOps processes. It is important to explore how to 
successfully integrate security into DevOps processes, 
including DevSecOps, as well as the management deci-
sions required to do so.

The aim of the study was to analyse the implemen-
tation of the DevOps approach in companies, in particu-
lar, to study the impact of process automation, contin-
uous integration and deployment (CI/CD), monitoring 
and orchestration of microservices on the efficiency of 
development and management. To achieve this goal, 
the following tasks were identified:

1. Analysing the cultural changes required for suc-
cessful DevOps implementation, including the impor-
tance of building a culture of collaboration between 
development and operations teams.

2. Studying modern DevOps tools and practices, such 
as CI/CD, containerization and test automation, with a 
focus on training and development of employee skills.

MATERIALS AND METHODS
The study of the theoretical foundations of DevOps, its 
components, such as CI/CD, test automation, contain-
erization, and infrastructure as code, allowed to form 
a knowledge base for further analysis. Successful case 
studies from real organizations were analysed to gain 
a practical understanding of DevOps implementation. 
Examples of companies such as Netflix, Spotify, and 
Airbnb that have implemented DevOps and achieved 
significant results in improving development processes 
and operations are considered. The necessary cultural 
changes for the successful implementation of DevOps 
were studied. The importance of creating a culture of 
collaboration between development and operations 
teams is assessed, which is critical to ensure effective 
information sharing and joint work on projects. An 
overview of modern DevOps tools and practices, such 

DevOps approach in organizations, taking into account 
numerous challenges such as cultural change, training 
and skills development, process automation, micro-
service orchestration, and monitoring and feedback. 
Implementing DevOps requires significant changes 
in the organization’s culture, a shift to a more open 
and collaborative approach between development and 
operations teams, and the adoption of new tools and 
methodologies such as CI/CD, containerization, test 
automation, and IaC. Automating processes, such as 
building, testing, and deploying code, is a resource-in-
tensive and complex process that requires significant 
investment in new technologies and tools. Manag-
ing microservices in complex architectures requires 
the use of orchestration systems such as Kubernetes, 
which also adds to the complexity. Monitoring perfor-
mance and receiving feedback is critical to detecting 
and fixing problems at an early stage. Analysing ex-
amples of DevOps implementations at companies such 
as Netflix, Spotify, and Airbnb helps to highlight best 
practices and methodologies that other organizations 
can apply to achieve success.

The main challenge in this area is the difficulty of 
integrating DevOps into traditional organizations with 
established processes and structures, as well as the 
lack of knowledge and skills among staff. S.  Schüne-
mann  (2023) investigated the use of automated test 
pipelines in continuous software development. As a re-
sult, he described methods and tools for the effective 
implementation of automated tests in the continuous 
development process. S. Kornitskyi (2024) studied the 
processes of implementing a service quality manage-
ment system in accordance with ISO/IEC  20000 and 
described the benefits of standardization and its im-
pact on the quality of services in technology compa-
nies. The impact of DevOps on organizational culture, 
metrics effectiveness, tool integration, staff training, 
innovation processes, security, and adaptation for dif-
ferent sizes of organizations should be further studied. 
Another existing challenge is the difficulty of integrat-
ing new methodologies into existing processes and 
structures of the organization, as well as the lack of 
knowledge and skills among staff to effectively apply 
DevOps practices.

N. Govil  et al.  (2020) describe methods and ap-
proaches for implementing DevOps in web develop-
ment, including tools and practices that ensure the 
efficiency of web application development and main-
tenance. M. Muñoz & M.N. Rodríguez (2021) identified 
strategic approaches to DevOps implementation and 
provided examples of successful application of these 
strategies in organizations. Gaps that require further 
study include the impact of DevOps process auto-
mation on the quality of the final product and user 
experience. The problem in the field under study is 
the difficulty of transitioning to new methodologies 
and cultural changes, as well as the lack of readiness 



B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 59

as CI/CD, containerization and test automation, is pro-
vided. The importance of employee training in these 
areas is emphasized.

The study included a detailed examination of the 
use of automated tests and continuous integration 
and deployment (CI/CD) systems, which are critical to 
ensuring code quality and automating development 
and deployment processes. The methodology involves 
developing test scenarios that cover various aspects 
of the application’s functionality and performance, 
integrating tests with CI/CD processes to execute 
them every time a change is made to the code, and 
incorporating different types of testing, such as unit 
tests, integration tests, functional tests, and regres-
sion tests. IaC management tools such as Terraform, 
Ansible, and AWS CloudFormation are explored. This 
allows exploring how automating configurations and 
infrastructure management contributes to the rapid 
scalability and repeatability of environments. The 
overview includes an analysis of the functionality of 
each tool, as well as use cases for improving scalabil-
ity and infrastructure management.

The methods of continuous performance monitor-
ing and feedback are reviewed. This confirms the im-
portance of these processes for identifying and fixing 
problems at an early stage, as well as for continuous 
product improvement. The study analyses in detail 
the role of microservices orchestration in modern De-
vOps practices, with a particular focus on managing 
deployed services using Kubernetes. This is an impor-
tant aspect for ensuring the scalability and reliability 
of microservice architectures. The work also focus-
es on evaluating and comparing popular tools and 
platforms used to implement the DevOps approach, 
including Jenkins, Kubernetes, Docker, and IaC man-
agement systems. As part of the preliminary research, 
a comprehensive review of scientific publications, 
technical articles, reports, and documentation relat-
ed to these tools was conducted (Smart, 2011; Mor-
ris, 2020). The review included a study of architectural 
solutions, functionalities, limitations, and features of 
Jenkins, Kubernetes, Docker, and IaC in the context of 
DevOps, which allowed to assess in detail their impact 
on software development and deployment processes. 
The results of DevOps implementation, including in-
creased development speed, improved software qual-
ity, reduced infrastructure management costs, and the 
role of Kubernetes in ensuring high scalability and re-
liability, are evaluated.

RESULTS
Creating a culture of collaboration is one of the main 
strategies for successful DevOps implementation in 
organizations. It is critical for ensuring effective inter-
action between development and operations teams, 
reducing barriers between these groups and creating a 
unified working environment. The process of creating 

such a culture begins with the recognition of the need 
for constant information sharing and joint work on pro-
jects. In traditional approaches to software develop-
ment, development and operations teams often work 
in isolation, which can lead to delays in implement-
ing changes and unforeseen problems in the course 
of operation. DevOps seeks to break down the barriers 
between development and operations teams by inte-
grating both teams at all stages of software develop-
ment and deployment. To achieve this goal, DevOps 
implements several key initiatives:

1. Changing the way of thinking and approaches to 
work. DevOps focuses on changing the way we think 
and work, encouraging teams to work as a unit with 
a common goal of delivering new features and fixing 
bugs quickly and efficiently. This includes changes 
in communication, process organization and project 
management.

2.  Regular meetings and information exchange. 
DevOps ensures that information is shared regularly 
between teams through joint meetings, huddles, and 
shared communication platforms. This allows all pro-
ject participants to be aware of changes, problems, and 
needs that arise during development and operation.

3.  Implementation of common tools. The use of 
common tools for project management, monitoring and 
reporting is central to DevOps. This helps to improve 
process transparency and provides a single source of 
truth for all project participants.

4.  Cross-functional training. DevOps involves up-
skilling employees through training in new tools and 
methodologies used in both development and oper-
ations. This helps reduce dependence on specialized 
knowledge and promotes greater flexibility in work.

5. Management support. The leadership of organ-
izations plays an important role in DevOps by actively 
supporting initiatives and creating the conditions for 
successful change. This includes financial and moral 
support for teams working on DevOps implementation.

Fostering a culture of collaboration is critical 
to the success of DevOps adoption, as it allows or-
ganizations to respond to change more effectively, 
introduce new features faster, and improve software 
quality (Luz et al. , 2018). When teams work together, 
their ability to innovate and solve problems increases 
significantly, leading to the achievement of common 
goals and increased competitiveness of the organi-
zation. Training and skills development are critical to 
the successful implementation of DevOps in organi-
zations. Employees need to acquire in-depth knowl-
edge and skills in modern DevOps tools and practices, 
such as CI/CD, containerization, and test automation, 
to effectively implement these practices and ensure 
their successful operation. The learning and skill de-
velopment process includes an introduction to CI/CD 
tools such as Jenkins, GitLab CI/CD, CircleCI, or Travis 
CI, which automate the processes of building, testing, 



Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

60

and deploying software. Mastery of these tools helps 
to reduce the time of development and release of 
new versions of products, as well as ensure their high 
quality. In addition, knowledge of containerization and 
container management principles is critical for the  
development and implementation of microservices. 
Employees need to be able to work with containeri-
zation tools such as Docker and understand how to 
manage containers using orchestration systems such 
as Kubernetes. Containerization simplifies deploy-
ment processes, provides isolation of environments, 
and makes it easier to scale applications.

Test automation is another crucial aspect that 
helps ensure software quality at all stages of devel-
opment. Employees should be able to use automat-
ed testing tools such as Selenium, JUnit, or TestNG to 
create and execute test scripts. This helps to identify 
errors faster, reduce manual testing, and improve the 
overall quality of the product. In addition to techni-
cal skills, it is relevant to train employees in DevOps 
practices, which include building effective develop-
ment and deployment processes, configuration man-
agement, and performance monitoring and analysis. 
This requires knowledge of DevOps best practices and 
standards, such as IaC and DevOps Culture. DevOps 
technologies and practices are constantly evolving, so 
it’s important to ensure that employees are constantly 
trained and certified. This may include participation in 
trainings, webinars, and courses, as well as obtaining 
professional certifications that confirm knowledge and 
skills in the field of DevOps.

Implementing and maintaining training pro-
grammes for employees helps organizations ensure a 
high level of skill and readiness to work with modern 
DevOps tools and practices. This helps to improve the 
efficiency of development and deployment processes, 
increase software quality and reduce time to market. 
Active investment in employee skill development is 
critical to achieving success in DevOps implemen-
tation and provides a competitive advantage for the 
organization. Test automation is a critical component 
in DevOps implementation, as it allows effectively 
ensuring high-quality software at all stages of devel-
opment. Implementing automated tests helps reduce 
bugs, shorten development time, and improve overall 
software stability and reliability.

The test automation process begins with the cre-
ation of test scripts that define which aspects of the 
software should be tested. These can be unit tests to 
check individual code components, integration tests to 
check the interaction between components, or system 
tests to check the operation of the entire application. 
After defining the test scenarios, the next step is to use 
automation tools. Tools such as Selenium for web appli-
cations, JUnit or TestNG for Java applications, or NUnit 

for NET applications help automate test execution and 
reduce manual work. The integration of automated 
tests with continuous integration (CI) and continu-
ous deployment (CD) processes is an essential aspect. 
This allows running tests automatically every time it is 
necessary to make a change to the code, which helps 
to detect bugs at an early stage and ensures product 
stability. CI/CD tools such as Jenkins, GitLab CI/CD, or 
CircleCI are used to automate this process and ensure 
continuous testing (Singh, 2022).

After running automated tests, it is critical to col-
lect and analyse the test results. This allows identifying 
problems, getting information about application per-
formance, and defining areas for improvement. Metrics 
and reporting tools such as SonarQube or Allure help 
in visualizing test results and tracking trends. Regu-
larly updating test scenarios is essential as software 
is constantly evolving and changing. This ensures that 
tests remain relevant and effective by adapting them 
to new features and requirements. Test automation 
also reduces the need for manual testing, which can 
be time-consuming and error-prone. Automated tests 
are faster and less likely to make human errors, which 
increases the accuracy and efficiency of testing. Im-
plementing automated tests helps to identify defects 
faster, reduce testing time, and improve overall product 
quality, which is key to successful DevOps implementa-
tion and competitive advantage.

Implementation of continuous integration and 
deployment (CI/CD) systems is a key element of suc-
cessful DevOps implementation, as these systems au-
tomate the processes of building, testing, and deploy-
ing code, which significantly increases development 
efficiency and ensures high-quality software (Singh & 
Mansotra,  2021). Continuous Integration (CI) involves 
automatically building and testing code whenever 
changes are made to the repository. This allows de-
tecting defects in the early stages of development and 
reducing the likelihood of errors in the finished prod-
uct. CI systems, such as Jenkins, GitLab CI/CD, CircleCI, 
or Travis CI, automate these processes by ensuring that 
tests and builds are performed regularly and automati-
cally at each commit. This helps to identify and fix bugs 
faster, facilitates the integration of new features, and 
reduces development delays.

Continuous Deployment (CD) extends the CI con-
cept by automating the process of deploying code to 
a test or production environment. This ensures fast 
and reliable deployment of new software releases, 
reducing the time from development to deployment. 
CD systems automatically check the code, deploy it to 
test environments, and, if everything goes well, to the 
production environment. This allows quickly releasing 
new versions of the product and maintaining a high 
level of stability and quality (Fig. 1).



B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 61

IaC is an important component in the implemen-
tation of CI/CD. IaC automates infrastructure man-
agement by using configuration files to describe and 
manage environment components such as servers, net-
works, and databases. This provides greater flexibility 
and scalability, and ensures consistent environments 
for development, testing, and performance. By using 
IaC tools such as Terraform, Ansible, or AWS Cloud-
Formation, organizations can automatically build and 
manage infrastructure, which significantly reduces the 
likelihood of human error and increases the speed 
and accuracy of deployment. IaC also makes it easy to 
track changes to infrastructure, manage versions, and 
recover systems after a disaster. The integration of CI/
CD and IaC provides a continuous development and 
deployment process that automates key stages of the 
software lifecycle, reduces time to market, improves 
product quality, and provides flexibility in scaling and 
infrastructure management. This allows organizations 
to respond quickly to changes, reduce risks and achieve 
high performance in a competitive environment.

Infrastructure as code is a relevant practice in 
modern DevOps strategies that allows managing and 
automating the configuration and management of 
infrastructure through code (Ljunggren,  2023). This 
significantly increases the efficiency and flexibility of 
infrastructure deployment processes and provides a 

number of benefits. Infrastructure as code uses con-
figuration files or scripts written in specialized lan-
guages or formats, such as YAML Ain’t Markup Lan-
guage™ (YAML), JavaScript Object Notation (JSON), and 
HashiCorp Configuration Language (HCL), to describe 
and manage infrastructure resources. These files con-
tain all the instructions needed to create, configure, 
and manage server instances, networks, storage, and 
other infrastructure components.

One of the main benefits of IaC is the ability to 
scale infrastructure quickly. With IaC, organizations can 
quickly and efficiently scale resources up or down to 
meet business needs without having to manually con-
figure each component of the infrastructure. This is es-
pecially important in the face of dynamic and changing 
workloads, where the speed of scaling can affect the 
performance and availability of services. Infrastructure 
as code also ensures repeatability and reproducibil-
ity of environments. The code that describes the in-
frastructure can be saved in version control systems 
such as Git. This makes it easy to reproduce and re-
use infrastructure configurations in different environ-
ments, such as development, testing, and production. 
All changes to the infrastructure are documented and 
verifiable, making it easier to manage configurations 
and reduce the likelihood of errors.

Automating infrastructure management is also a 
key benefit of IaC. Instead of manually configuring and 
administering resources, organizations can automate 
the creation, configuration and updating of infrastruc-
ture. This helps to reduce administration costs, reduce 
the likelihood of human error, and ensure consistency 
across all environments. IaC supports the use of infra-
structure automation and management tools such as 
Terraform, Ansible, Puppet, or Chef. These tools allow 
describing one’s infrastructure as code and automat-
ing its deployment and management, which simplifies 
processes and provides high efficiency and control over 
one’s infrastructure. Performance monitoring is an es-
sential component of successful DevOps implementa-
tion (Azad, 2022). It allows constantly monitoring the 
state of the system, identifying and fixing problems at 
an early stage. Ongoing monitoring ensures a high level 
of software availability and reliability, which is critical 
to providing a positive user experience and supporting 
business processes. The main purpose of performance 
monitoring is to collect and analyse metrics, logs, and 
bug tracking. Metrics allow tracking key system per-
formance indicators, such as response time, CPU uti-
lization, memory usage, network speed, and other im-
portant parameters. Collecting and analysing this data 
allows detecting anomalies, overloads, or other issues 
that may affect system performance in a timely manner.

Metrics collection tools provide automated col-
lection and storage of system health data. They can 

Figure 1. Diagram of interaction  
between CI/CD components

Source: compiled by the author based on O. Kravchuk (2023)

Developer 

Push code 

Version control system 

CI/CD trigger 

CI/CD server 

Assembly 

Build server 

Testing 

Testing server 

Deployment 

Server production 

Monitoring 

Monitoring server 



Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

62

provide real-time monitoring and the ability to view 
graphs and charts illustrating system performance. 
Tools such as Prometheus, Grafana, Datadog, or New 
Relic allow collecting data from a variety of sources, in-
cluding services, applications, and infrastructure. Logs 
(log files) are another major part of monitoring, provid-
ing detailed information about events occurring in the 
system. Logs can contain records of errors, warnings, in-
formational messages, and details about the execution 
of requests. Analysing logs helps to identify problems, 
track their causes, and understand how the system re-
sponds to different conditions. Tools for working with 
logs, such as ELK Stack (Elasticsearch, Logstash, Kibana) 
or Splunk, allow centralizing, analysing and visualizing 
logs to identify and resolve problems faster.

Error tracking involves monitoring and logging er-
rors that occur in a system. Error tracking tools such 
as Sentry, Rollbar, or Raygun help to automatically de-
tect and report errors, including their nature, frequency, 
and impact on the system. This allows developers to 
respond quickly to issues by providing detailed reports 
and context for resolution. By continuously monitoring 
performance, organizations can detect problems early, 
reduce time to resolution, and improve overall system 
stability and efficiency. Monitoring also provides crucial 
feedback on the state of the system, enabling informed 
decisions to be made about further development and 
optimization of the software and infrastructure.

Feedback is a critical element for continuous prod-
uct improvement and ensuring that a product meets 
the needs of users. Establishing user feedback pro-
cesses and automated systems allows organizations to 
make improvements based on real-world data and user 
experience. The first aspect is collecting feedback from 
users. It is relevant to establish effective channels for 
collecting feedback, such as online surveys, feedback 
forms, user forums, or functionality to send feedback 
directly from the application or website interface. Pro-
viding a convenient and easy way for users to provide 
feedback allows getting a variety of perspectives and 
identify potential problems or areas for improvement. 
The second aspect is the use of data analytics. Ana-
lysing feedback data helps to identify trends, common 
problems, and user preferences. Data analytics tools, 
such as Google Analytics, Mixpanel, or Amplitude, allow 
collecting and processing data on user interaction with 
the product (Mykhalchenko & Tytarenko, 2023). This in-
cludes information about the frequency of use, session 
duration, failure points, and other metrics that help to 
understand how the product is used and where there 
may be problems. The third aspect is integration with 
automated systems. Automated systems can provide 
an additional layer of feedback through performance, 
log and error monitoring. Performance monitoring tools 
such as Datadog or New Relic can provide information 
about anomalies or issues that users may not be able 
to detect directly. Integrating these systems can auto-
matically generate reports and alerts about potential 

problems, making it easier to identify and fix errors. 
The fourth aspect is continuous product improvement. 
Feedback from users and automated systems should 
be used to regularly update and improve the product. 
This may include releasing new versions, fixing iden-
tified defects, optimizing functionality, and improving 
the interface. A continuous improvement cycle allows 
adapting the product to the changing needs and pref-
erences of users, ensuring its competitiveness in the 
market. The last but not the least aspect is interaction 
with development teams. Establishing a feedback pro-
cess also includes effective communication between 
development and support teams. Feedback should be 
systematically passed on to developers for analysis and 
implementation of changes. Regular meetings where 
feedback is discussed, and next steps are planned foster 
better interaction between teams and ensure focus on 
improving the product. Successfully establishing feed-
back processes allows organizations to adapt to user 
and market needs, ensuring continuous improvement in 
product quality and user satisfaction. It also helps build 
trust and loyalty among users, which is critical to the 
long-term success of a product.

Microservices orchestration is an important part of 
the modern DevOps approach, as it allows for efficient 
management of deployed services in a complex archi-
tecture (Waseem et al.,  2020). The growing popularity 
of microservice architecture, which breaks down large 
monolithic applications into small, independent servic-
es, has led to the need for tools that help coordinate 
and manage these services. Microservice orchestration 
automates the deployment, scaling, and management of 
containers, which increases the flexibility and efficien-
cy of software development and operation. One of the 
key tools for orchestrating microservices is Kubernetes, 
which provides powerful capabilities for the automated 
management of containerized applications. Kubernetes 
allows automatically deploying, scaling, and managing 
containers, providing load balancing, disaster recovery, 
and simplified configuration management. Thanks to its 
powerful features, Kubernetes is becoming the de facto 
standard for microservice orchestration in many organi-
zations. Microservice orchestration includes several key 
aspects. Firstly, it is the automation of deployment. With 
the help of orchestration tools, it is possible to auto-
matically deploy new versions of services in different 
environments, from test to production, which ensures 
fast and secure implementation of changes. This reduc-
es human error and speeds up the deployment process, 
which is critical in today’s dynamic environments. The 
second crucial aspect is scaling. Microservice orchestra-
tors allow automatically scaling services depending on 
the load. For example, Kubernetes can automatically add 
or remove container instances based on current resource 
requirements, which allows for efficiently using availa-
ble resources and ensuring high system performance 
even during peak loads. Configuration management is 
another critical aspect of microservice orchestration. 



B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 63

Orchestration tools allow centrally managing the con-
figuration of services, which simplifies the upgrade 
process and reduces the likelihood of configuration er-
rors. It also allows quickly implementing changes and 
adapting services to new requirements.

In addition, microservice orchestration provides 
disaster recovery. Orchestration tools such as Kuber-
netes can automatically restart failed containers and 
move services to other nodes in the event of hardware 
failures, ensuring high reliability and availability of the 
system. Monitoring and logging are also important as-
pects of microservice orchestration. Orchestration tools 
are often integrated with monitoring and logging sys-
tems such as Prometheus and ELK Stack, which allows 
for centralized collection and analysis of data on the 
status and performance of services. This helps to identi-
fy problems in time and make informed decisions to re-
solve them. Kubernetes is a powerful container orches-
tration system designed to automate the deployment, 
scaling, and management of containerized applications 
(Zhou et al., 2021). It provides centralized management 
of large container clusters, making it an indispen-
sable tool for modern IT infrastructures. Kubernetes 
has a wide range of functionalities that provide high 
availability, automatic disaster recovery, load balanc-
ing, and automatic container scaling. High availability 
is achieved by automatically distributing the load be-
tween different nodes, which ensures the uninterrupted 
operation of applications even in the event of a failure 
of individual components. Automatic disaster recovery 

includes automatic restart of containers in the event of 
a malfunction, as well as the ability to move containers 
to other nodes in the event of hardware problems. Load 
balancing ensures an even distribution of requests be-
tween containers, which increases system performance 
and stability. Automatic scaling allows dynamically 
adding or removing containers depending on the cur-
rent resource requirements, which ensures efficient use 
of resources and high system performance.

Kubernetes integrates with CI/CD processes to 
automate the deployment of new versions of applica-
tions, providing version and environment control. Inte-
gration with CI/CD tools such as Jenkins, GitLab CI/CD, 
CircleCI, or Travis CI allows automatically deploying 
code updates to different environments, which speeds 
up the development and deployment process. Kuber-
netes also supports the IaC concept, which allows 
describing infrastructure configurations as code and 
automatically applying them across different environ-
ments. This ensures high repeatability and consistency 
of configurations, reduces the likelihood of errors and 
simplifies infrastructure management. Kubernetes also 
supports high availability configurations, which allows 
applications to remain available even in the event of 
a node failure. In addition, Kubernetes fits well with 
the microservices architectural style. With Kubernetes, 
each microservice can be deployed as a separate con-
tainer in a module, which enables independent scal-
ing, management, and rapid development of microser-
vice-based applications (Fig. 2).

Figure 2. Microservice architecture in Kubernetes
Source: Yu. Vatsyk (2024)

Frontend Microservices

Backend Microservices

Other Microservices

User Management    User UI (Website)
User UI Pod

Product Catalog   Shopping Cart   Order Processing   Payment Gateway

Database(s)    Object Storage   Metrics Engine   Logging Engine

Implementing DevOps is a complex process that 
requires changes in an organization’s culture, the  

introduction of new tools and practices, and continuous 
monitoring and improvement of processes. However, 



Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

64

the efforts invested in this transformation can signif-
icantly increase an organization’s efficiency and com-
petitiveness in the market. Netflix was one of the first 
large companies to implement Kubernetes to manage 
its microservices. Orchestrating microservices with Ku-
bernetes allows Netflix to automate the deployment, 
scaling, and management of applications running in 
containers. This is critical for a company that serves 
more than 200 million users worldwide. Thanks to Ku-
bernetes, Netflix can dynamically scale its services de-
pending on the load, for example, when releasing new 
episodes of popular shows when the number of viewers 
increases dramatically. Kubernetes also allows for au-
tomated deployment of new versions of applications, 
minimizing the risks associated with human error and 
ensuring high service reliability.

Netflix has implemented continuous integration 
(CI) to ensure that changes to the code created by mul-
tiple development teams are integrated quickly and 
reliably. CI systems automatically test new changes, al-
lowing potential problems to be identified early in the 
development process. This approach helps to minimize 
the time between writing code and deploying it to the 
production environment. Continuous deployment  (CD) 
allows Netflix to automate the process of releasing new 
versions of applications, which significantly reduces the 
time to market for new features and updates. It also 
provides the ability to respond quickly to user feedback 
and quickly fix bugs or add new features. Netflix pays 
considerable attention to monitoring the performance 
of its services and collecting feedback from users. The 
company uses its own Atlas platform to collect perfor-
mance metrics, which allows it to accurately assess the 
status of each service in real time. This includes moni-
toring indicators such as response time, number of er-
rors, and other critical parameters that affect the user 
experience. Netflix has also developed Eureka, a service 
management system that allows managing the availa-
bility and scaling of microservices. Monitoring tools al-
low quickly identifying and fixing problems, ensuring un-
interrupted service operation even during peak periods.

One of the key aspects of successful DevOps im-
plementation at Netflix is cultural and organizational 
change. The company is creating cross-functional teams 
that bring together developers and operations special-
ists. This approach helps to improve communication and 
collaboration between different teams, which is critical 
for quick and effective implementation of changes. In 
addition, Netflix gives its teams a lot of autonomy in 
decision-making, which allows them to quickly adapt 
to changes and innovate without bureaucratic delays. 
This approach allows the company to remain a leader 
in the streaming services market, ensuring a high speed 
of development of new features and stability of work. 
In this way, Netflix demonstrates the effective use of 
DevOps tools and practices to manage complex infra-
structure, which allows it to maintain a high quality of 
user experience and remain competitive in the market.

Spotify uses Kubernetes as its primary microservic-
es orchestration tool, enabling it to efficiently manage 
the thousands of containers that power the many fea-
tures on the platform. Spotify’s microservice architec-
ture separates the various functional components of 
the platform into separate services that can be inde-
pendently deployed, scaled and maintained. This gives 
Spotify the ability to quickly adapt to changes in load, 
for example, during the release of new albums or signif-
icant events in the music world, when the number of ac-
tive users can increase dramatically. Using Kubernetes 
also allows Spotify to automate the management of its 
microservices, ensuring that services are reliable and 
highly available even in the event of system failures. 

Spotify actively integrates continuous integration 
(CI) and continuous deployment (CD) practices, which 
are key elements of DevOps at the company. CI process-
es automate the testing and integration of new code 
changes, which ensures that potential problems are 
quickly identified and resolved at the earliest stages of 
development. This helps to minimize the risks associ-
ated with releasing new versions and ensures platform 
stability. Continuous Deployment (CD) automates the 
process of releasing new features and updates, ena-
bling Spotify to deliver new features to users quickly. 
For example, new features or updates can be released 
multiple times a day without interrupting the user ex-
perience. Performance monitoring and feedback gath-
ering are an integral part of DevOps at Spotify. The 
company uses powerful monitoring tools such as Pro-
metheus and Grafana to collect detailed metrics about 
system performance in real time. Prometheus collects 
and stores metrics that are used to identify potential is-
sues and analyse performance, while Grafana provides 
visualization of this data, enabling teams to make quick 
decisions about optimizing and scaling resources. This 
is especially important for Spotify, which serves millions 
of users worldwide, and every delay or performance hit 
can have a significant impact on the user experience.

One of the key cultural changes that Spotify has 
implemented to support DevOps is the creation of 
cross-functional teams known as “Squads”. These teams 
work autonomously and are responsible for specific as-
pects of the product. Each “Squad” is made up of de-
velopers, testers, DevOps engineers, and other special-
ists who work together to achieve common goals. This 
structure allows Spotify to quickly adapt to changes 
and respond quickly to market needs. In addition, Spo-
tify has implemented a “Tribe” structure, which brings 
together several “Squads” working on broader areas 
of product development. This organizational structure 
promotes effective collaboration between different 
teams, ensuring consistency of action and high speed of 
project implementation. By implementing these prac-
tices and technologies, Spotify has been able to achieve 
a high level of performance and reliability of its plat-
form, while maintaining flexibility in the development 
and implementation of new features. This has allowed 



B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 65

the company to become one of the leaders in the audio 
streaming market and maintain a high quality of ser-
vice for its users.

Airbnb actively uses Kubernetes to manage its mi-
croservices’ infrastructure. Kubernetes allows Airbnb to 
automate the deployment, scaling, and management 
of containers, which ensures high availability and sta-
bility of services even during peak loads. For example, 
during high seasons, such as holidays or major events, 
when the number of users increases dramatically, Ku-
bernetes automatically scales resources to handle the 
increased load. This allows Airbnb to keep the service 
running smoothly, minimizing downtime and disrup-
tions. Using Kubernetes also simplifies infrastructure 
management, as it allows for rapid deployment and 
upgrades of individual components without impacting 
other parts of the system.

Airbnb actively integrates continuous integration 
(CI) and continuous deployment (CD) practices as an in-
tegral part of their DevOps approach. CI/CD automates 
the processes of building, testing, and deploying code, 
which can significantly reduce the time from develop-
ment to deployment of new features or fixes. For exam-
ple, new features or bug fixes can be released several 
times a day, allowing a company to respond quickly 
to changing user needs or vulnerability patches. This 
also reduces the risk of human error and improves the 
quality of the final product. To ensure high performance 
and stability of its services, Airbnb actively uses tools 
to monitor and manage feedback. Prometheus collects 
and stores metrics about system performance, allow-
ing DevOps teams to identify potential problems at an 
early stage. Using Grafana to visualize this data helps 
to make quick and accurate decisions about optimizing 
and scaling resources. For example, if the system detects 
an increase in latency in responding to requests, teams 
can respond quickly by adjusting configurations or add-
ing resources to address the issue. This allows Airbnb 
to maintain a high quality of user experience, which is 
critical for a company with millions of users worldwide.

The implementation of DevOps at Airbnb also in-
cludes important cultural and organizational changes. 
The company is creating cross-functional teams that 
bring together developers, DevOps engineers, testers, 
and other specialists responsible for different aspects 
of the product. These teams work autonomously, which 
allows them to quickly adapt to changes and implement 
innovations. In addition, this structure promotes clos-
er cooperation between development and operations 
teams, which improves communication and coherence. 
For example, the team responsible for a particular micro-
service can quickly make changes or introduce new fea-
tures without waiting for other teams to make decisions.

Airbnb actively uses the IaC approach to automate 
infrastructure management and configuration. Thanks 
to IaC, Airbnb can easily create and manage infrastruc-
ture resources such as servers, network settings, and da-
tabases using software code. This significantly reduces 

the risks associated with human error and ensures 
repeatable and standardized environments. In addi-
tion, automating these processes allows the company 
to quickly scale its resources in response to growing 
needs, which is especially relevant during peak times. 
By adopting these practices and technologies, Airbnb 
has been able to significantly improve the efficiency 
and reliability of its services, ensuring uninterrupted 
operation even during high loads. These innovations 
have allowed the company not only to maintain a high 
quality of user experience, but also to quickly adapt to 
changes in the market, remaining one of the leaders in 
the rental and hospitality industry.

Thus, Kubernetes is a key tool for orchestrating 
microservices in the context of DevOps. Its functional-
ities provide automation, high availability, scalability, 
and integration with CI/CD processes, which allows or-
ganizations to effectively manage their containerized 
applications and ensure high performance and relia-
bility of their services. Analysing the above examples, 
several important conclusions can be drawn. Firstly, the 
implementation of Kubernetes for microservices or-
chestration is a key component of a successful DevOps 
implementation. It allows automating many aspects of 
infrastructure management, ensuring high availability, 
reliability, and scalability of services. Secondly, inte-
gration with CI/CD processes is critical to ensure the 
continuous release of new features and updates, which 
allows companies to respond quickly to changes in 
the market and user needs. Third, real-life examples of 
DevOps implementation at companies such as Netflix, 
Spotify, and Airbnb demonstrate that the successful use 
of this methodology can significantly improve devel-
opment efficiency, and software quality, and optimize 
infrastructure management costs. They confirm that 
the correct implementation of DevOps tools and prac-
tices can lead to significant improvements in software 
development and management. These examples also 
highlight the importance of cultural change in organ-
izations, including building a culture of collaboration 
between development and operations teams. Investing 
in employee training in new DevOps tools and practices 
is critical to success. Continuously monitoring system 
performance and receiving feedback allows quickly 
identifying and fixing problems, which contributes to 
continuous product improvement.

DISCUSSION
This study has examined in detail the implementation 
and strengthening of the DevOps approach in organi-
zations, which is a complex and multifaceted process 
that requires a comprehensive approach and a deep 
understanding of both technical and cultural aspects. 
One of the most important components of a success-
ful DevOps implementation is a cultural change in the 
organization. Fostering a culture of collaboration be-
tween development and operations teams is critical 
to ensuring effective information sharing and project 



Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

66

collaboration. This includes creating an environment 
where each team member feels responsible for the end 
result, not just their own narrow area of work. This envi-
ronment encourages more open discussion of problems 
and faster resolution. Employees should be trained in 
modern DevOps tools and practices, such as CI/CD, con-
tainerization, and test automation. For example, Con-
tinuous Integration and Continuous Deployment (CI/
CD) are fundamental DevOps practices that ensure that 
new versions of software are constantly updated and 
released. This reduces the time to release new features 
and improvements, increasing the speed and flexibility 
of the organization to respond to market needs.

Similar conclusions were reached by J.  Díaz  et 
al. (2021), who explored the reasons why many compa-
nies are implementing a DevOps culture in their organ-
izations. They noted that DevOps allows organizations 
to become more agile in their development processes. 
This means that companies can quickly respond to mar-
ket changes and user requirements by adapting their 
products and services to new conditions. DevOps helps 
to accelerate development and deployment cycles, 
which allows new features and updates to be brought 
to market faster. Process automation is one of the key 
components of DevOps, as it allows achieving high ef-
ficiency and quality of software development. One of 
the main advantages of automation is the ability to de-
tect errors at the early stages of development. This is 
achieved through the use of automated tests that can 
quickly identify defects in the code. This allows devel-
opment teams to fix bugs quickly, reducing overall fix 
costs and minimizing the risk of serious problems lat-
er in the development process. Continuous integration 
and deployment (CI/CD) systems are an integral part of 
DevOps process automation. They automate the com-
pilation, testing, and deployment of code, which sig-
nificantly reduces the time between writing code and 
deploying it to a production environment. Thanks to 
CI/CD automation, teams can release new product ver-
sions more frequently, allowing them to respond more 
quickly to changing market and user requirements. The 
continuity of the development and deployment pro-
cesses also ensures more stable and reliable software 
performance, as each change is put through standard-
ized and automated testing procedures.

Studies in the same direction were conducted by 
I. Karamitsos et al. (2020), who investigated the appli-
cation of DevOps practices in the context of contin-
uous automation of machine learning processes. The 
authors found that the integration of DevOps practices 
into machine learning (ML) can significantly improve 
the efficiency of developing and deploying machine 
learning models. S.M.  Mohammad  (2018) studied the 
optimization of DevOps automation in the context of 
cloud applications, identifying several crucial aspects 
that affect the effectiveness of DevOps implementa-
tion in cloud environments. He focused on the use of 
automated tools for managing cloud resources, such 

as automatic scaling, configuration management, and 
application deployment.

Continuously monitoring system performance and 
receiving feedback is an integral part of DevOps and 
has a significant impact on software quality and stabil-
ity. Using metrics, logs, and bug tracking tools allows 
quickly determining and fixing problems at an early 
stage, which helps maintain a high level of system per-
formance. Monitoring provides continuous control over 
aspects such as response time, resource utilization, and 
overall system health, enabling responding quickly 
to potential issues. Analysing event logs and tracking 
errors using tools such as Sentry or Rollbar provides 
detailed information about the causes of faults and 
anomalies, which is important for their prompt resolu-
tion. Establishing processes for receiving feedback from 
users is also critical for continuous product improve-
ment. Automated systems for collecting and analysing 
feedback help to identify systemic issues and trends, 
which ensures faster response to user needs and con-
tinuous product improvement, which is the basis of suc-
cessful DevOps practice.

L. Giamattei  et al.  (2024) reached a similar con-
clusion in their paper on monitoring tools for DevOps 
and microservices. They emphasized that effective 
monitoring is critical to ensure the stability and per-
formance of systems in a DevOps environment. The 
authors highlighted the importance of using tools that 
allow not only tracking system performance, but also 
analysing data to detect anomalies and potential prob-
lems in a timely manner.

Microservices orchestration is critical for success-
ful DevOps implementation, and Kubernetes is one of 
the key tools in this process. Kubernetes automates the 
deployment, scaling, and management of container-
ized applications, ensuring high availability and reli-
ability of the system. Thanks to automatic scaling, the 
system can adapt to changing workloads, ensuring ef-
ficient use of resources and maintaining performance. 
Load balancing between containers avoids overload-
ing of individual components, which ensures stable 
operation of applications. Kubernetes also provides 
automatic disaster recovery, which is critical for main-
taining business continuity. Thanks to these features, 
Kubernetes facilitates the efficient management of 
large container clusters, which ensures the scalability 
and reliability of microservice architectures.

Similar conclusions were reached by S. Baškarada et 
al. (2018), who analysed the practical possibilities and 
challenges of implementing this architecture in their 
work on microservices’ architecture in the context of 
modern IT systems. They emphasized that although the 
microservice architecture provides flexibility and scala-
bility, its implementation will require careful orchestra-
tion and management planning to ensure the efficient 
functioning of the system. C.  Bühler  (2021), studying 
microservices in the context of DevOps, pointed out the 
importance of integrating orchestration tools such as 



B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 67

Kubernetes to automate management tasks and ensure 
continuous application deployment. He noted that Ku-
bernetes makes it easy to manage deployed microser-
vices, which significantly increases the reliability and 
scalability of applications within the DevOps approach.

Real-life examples of DevOps implementation in 
companies such as Netflix and Amazon clearly demon-
strate the effectiveness of this methodology. Netflix 
actively uses DevOps to achieve high availability and 
scalability of its services. The company uses Kubernetes 
to manage containers and automate the deployment of 
microservices. This allows it to provide continuous ac-
cess to services even in the event of heavy loads, down-
loads, or failures. Amazon is also a prime example of 
successful DevOps implementation. The company uses 
test and deployment automation to increase the speed 
and quality of development. In addition, Amazon uses 
microservice orchestration to increase the reliability 
of its infrastructure, which allows it to manage huge 
amounts of data and complex system architectures 
without interruption. Both of these examples confirm 
that DevOps can significantly improve productivity and 
efficiency in large organizations. V. Sharma et al. (2024) 
focused on improving software automation through 
DevOps adoption. They noted that DevOps integration 
provides effective automation of processes, including 
testing, deployment, and monitoring, which is critical 
to reducing development time and improving prod-
uct quality. Overall, the findings show that successful-
ly implementing or strengthening a DevOps approach 
in organizations requires a comprehensive approach 
that encompasses both technical and cultural aspects.

CONCLUSIONS
The study found that successful implementation of De-
vOps requires profound cultural changes in an organ-
ization, including the formation of a culture of collab-
oration between development and operations teams. 
This ensures effective information sharing and joint 
work on projects, which contributes to overall produc-
tivity. Investing in employee training in new DevOps 
tools and practices, such as CI/CD, containerization, 
and test automation, is critical to success. They allow 
increasing the efficiency and speed of development, as 
well as adapting to technological changes.

The work showed that test automation and the 
implementation of continuous integration and deploy-
ment (CI/CD) systems are key to ensuring high code 
quality and reducing the time to release new product 
versions. This allows quickly identifying and eliminat-
ing errors, reducing the cost of fixing them and speed-
ing up the development process. Continuous moni-
toring of system performance and receiving feedback 
from users contribute to the continuing improvement 
of the product. The use of tools for collecting metrics 
and tracking bugs is essential to maintain the high 
quality and reliability of the product. Orchestrating 
microservices using tools such as Kubernetes ensures 
scalability and reliability. Kubernetes automates the 
deployment, scaling, and management of container-
ized applications, which contributes to the high availa-
bility and reliability of microservice architectures. Prac-
tical examples from companies such as Netflix, Spotify, 
and Airbnb confirm that DevOps implementation sig-
nificantly increases the efficiency of software develop-
ment and management. These examples demonstrate 
that the successful use of DevOps tools and practices 
can significantly improve software quality, optimize in-
frastructure management costs, and ensure the rapid 
and continuous release of new features.

Prospects for further research include analysing 
the impact of new technologies, such as artificial in-
telligence and machine learning, on DevOps process-
es, including their use for automation, forecasting and 
improving code quality. The study of the integration 
of DevOps practices with cloud platforms and servic-
es, including the impact of cloud environments on the 
efficiency and scalability of DevOps processes. The 
study’s limitations stem from the insufficient tech-
nical characteristics and capabilities of the DevOps 
tools and practices under study, which may affect the 
overall assessment of their effectiveness, as certain 
aspects of technologies or tools may not be fully rep-
resented in the analysis.

ACKNOWLEDGEMENTS
None.

CONFLICT OF INTEREST
None.

REFERENCES
[1] Akbar, M.A., Smolander, K., Mahmood, S., & Alsanad, A.  (2022). Toward successful DevSecOps in software 

development organizations: A decision-making framework. Information and Software Technology, 147, article 
number 106894. doi: 10.1016/j.infsof.2022.106894.

[2] Azad, N.  (2022). Understanding DevOps critical success factors and organizational practices. In IWSiB ‘22: 
Proceedings of the 5th international workshop on software-intensive business: Towards sustainable software 
business (pp. 83-90). New York: Association for Computing Machinery. doi: 10.1145/3524614.3528627.

[3] Baškarada, S., Nguyen, V., & Koronios, A.  (2018). Architecting microservices: Practical opportunities and 
challenges. Journal of Computer Information Systems, 60(5), 428-436. doi: 10.1080/08874417.2018.1520056.

[4] Bühler, C.  (2021). Microservices in a DevOps context. (Thesis, OST Eastern Switzerland University of Applied 
Sciences, Rapperswil-Jona, Switzerland).

https://doi.org/10.1016/j.infsof.2022.106894
https://doi.org/10.1145/3524614.3528627
https://doi.org/10.1080/08874417.2018.1520056
https://eprints.ost.ch/id/eprint/936


Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024

Strategies for implementing or strengthening...

68

[5] Díaz, J., López-Fernández, D., Pérez, J., & González-Prieto, Á.  (2021). Why are many businesses instilling a 
DevOps culture into their organization? Empirical Software Engineering, 26(2), article number 25. doi: 10.1007/
s10664-020-09919-3.

[6] Giamattei, L., et al. (2024). Monitoring tools for DevOps and microservices: A systematic grey literature review. 
Journal of Systems and Software, 208, article number 111906. doi: 10.1016/j.jss.2023.111906.

[7] Govil, N., Saurakhia, M., Agnihotri, P., Shukla, S., & Agarwal, S.  (2020). Analyzing the behaviour of applying 
agile methodologies & DevOps culture in e-commerce web application. In 2020 4th international conference 
on trends in electronics and informatics (ICOEI) (48184) (pp. 899-902). Tirunelveli: Institute of Electrical and 
Electronics Engineers. doi: 10.1109/ICOEI48184.2020.9142895.

[8] Karamitsos, I., Albarhami, S., & Apostolopoulos, C. (2020). Applying DevOps practices of continuous automation 
for machine learning. Information, 11(7), article number 363. doi: 10.3390/info11070363.

[9] Khan, M.S., Khan, A.W., Khan, F., Khan, M.A., & Whangbo, T.K.  (2022). Critical challenges to adopt DevOps 
culture in software organizations: A systematic review. IEEE Access, 10, 14339-143349. doi:  10.1109/
ACCESS.2022.3145970.

[10] Kornitskyi, S.  (2024). Implementation of a service quality management system in technology companies based 
on international standards ISO/IEC 20000. (Master’s thesis, Kharkiv National University of Radio Electronics, 
Kharkiv, Ukraine).

[11] Kravchuk, О.  (2023). CI/CD implementation model for optimizing IT project management. Measuring and 
Computing Devices in Technological Processes, 3, 73-82. doi: 10.31891/2219-9365-2023-75-8.

[12] Ljunggren, D.  (2023). DevOps: Assessing the factors influencing the adoption of infrastructure as code, and the 
selection of infrastructure as code tools: A case study with Atlas Copco. (Master’s thesis, KTH Royal Institute of 
Technology, Stockholm, Sweden).

[13] Luz, W.P., Pinto, G., & Bonifácio, R. (2018). Building a collaborative culture: A grounded theory of well succeeded 
devops adoption in practice. In ESEM ‘18: Proceedings of the 12th ACM/IEEE international symposium on empirical 
software engineering and measurement (article number 6). New York: Association for Computing Machinery. 
doi: 10.1145/3239235.3240299.

[14] Mohammad, S.M.  (2018). Streamlining DevOps automation for Cloud applications. International Journal of 
Creative Research Thoughts (IJCRT), 6(4), 955-959.

[15] Morris, K. (2020). Infrastructure as code: Dynamic systems for the cloud age. Sebastopol: O’Reilly Media, Inc.
[16] Muñoz, M., & Rodríguez, M.N. (2021). A guidance to implement or reinforce a DevOps approach in organizations: 

A case study. Journal of Software Evolution and Process, 36(3), article number e2342. doi: 10.1002/smr.2342.
[17] Mуkhalchenko, H., & Tytarenko, M. (2023). Data analytics and personalized marketing strategies in e-commerce 

platforms. Futurity Economics & Law, 3(3), 115-139. doi: 10.57125/FEL.2023.09.25.07.
[18] Radstaak, J. (2019). Developing a DevOps maturity model: A validated model to evaluate the maturity of DevOps in 

organizations. (Master’s essay, University of Twente, Enschede, the Netherlands).
[19] Rafi, S., Yu, W., Akbar, M.A., Mahmood, S., Alsanad, A., & Gumaei, A.  (2020). Readiness model for DevOps 

implementation in software organizations. Journal of Software Evolution and Process, 33(4), article number e2323. 
doi: 10.1002/smr.2323.

[20] Schünemann, C. (2023). Automating the build and test process of a regulated software project using continuous 
delivery pipelines. (Bachelor’s thesis, Technical University Ingolstadt of Applied Sciences, Ingolstadt, Germany).

[21] Sharma, V., Shrivastava, V., Pandey, A., & Gupta, P. (2024). A basic introduction to DevOps. International Journal 
of Research Publication and Reviews, 5(3), 725-731.

[22] Singh, A., & Mansotra, V.  (2021). A comparison on continuous integration and continuous deployment (CI/
CD) on cloud based on various deployment and testing strategies. International Journal for Research in Applied 
Science and Engineering Technology, 9(6), 4968-4977. doi: 10.22214/ijraset.2021.36038.

[23] Singh, V. (2022). Developing a CI/CD pipeline with GitLab. (Bachelor’s thesis, Turku University of Applied Sciences, 
Turku, Finland).

[24] Smart, J.F. (2011). Jenkins: The definitive guide. Sebastopol: O’Reilly Media, Inc.
[25] Vatsyk, Yu. (2024). Research and analysis of the relevance of Kubernetes in the modern IT market. (Master’s thesis, 

King Danylo University, Ivano-Frankivsk, Ukraine).
[26] Waseem, M., Liang, P., & Shahin, M.  (2020). A systematic mapping study on microservices architecture in 

DevOps. Journal of Systems and Software, 170, article number 110798. doi: 10.1016/j.jss.2020.110798.
[27] Zhou, N., Georgiou, Y., Pospieszny, M., Zhong, L., Zhou, H., Niethammer, C., Pejak, B., Marko, O., & Hoppe, 

D.  (2021). Container orchestration on HPC systems through Kubernetes. Journal of Cloud Computing,  10(1), 
article number 16. doi: 10.1186/s13677-021-00231-z.

https://doi.org/10.1007/s10664-020-09919-3
https://doi.org/10.1007/s10664-020-09919-3
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1109/ICOEI48184.2020.9142895
https://doi.org/10.3390/info11070363
https://doi.org/10.1109/ACCESS.2022.3145970
https://doi.org/10.1109/ACCESS.2022.3145970
https://openarchive.nure.ua/handle/document/25582
https://openarchive.nure.ua/handle/document/25582
https://doi.org/10.31891/2219-9365-2023-75-8
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1792965&dswid=4515
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1792965&dswid=4515
https://doi.org/10.1145/3239235.3240299
https://ijcrt.org/papers/IJCRT1133443.pdf
https://dl.ebooksworld.ir/books/Infrastructure.as.Code.2nd.Edition.Kief.Morris.OReilly.9781098114671.EBooksWorld.ir.pdf
https://doi.org/10.1002/smr.2342
https://doi.org/10.57125/FEL.2023.09.25.07
https://purl.utwente.nl/essays/77808
https://purl.utwente.nl/essays/77808
https://doi.org/10.1002/smr.2323
https://opus4.kobv.de/opus4-haw/files/3635/I001341198Thesis.pdf
https://opus4.kobv.de/opus4-haw/files/3635/I001341198Thesis.pdf
https://ijrpr.com/uploads/V5ISSUE3/IJRPR23361.pdf
https://doi.org/10.22214/ijraset.2021.36038
https://urn.fi/URN:NBN:fi:amk-2022121328325
https://www.bogotobogo.com/DevOps/Jenkins/images/Intro_install/jenkins-the-definitive-guide.pdf
http://repository.ukd.edu.ua/xmlui/handle/123456789/538
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1186/s13677-021-00231-z


B. Fedoryshy

Bulletin of Cherkasy State Technological University, Vol. 29, No. 2, 2024 69

Стратегії впровадження або посилення підходу DevOps в організаціях:  
аналіз та приклади

Богдан Федоришин
Магістр
Національний університет «Львівська політехніка»
79000, вул. Степана Бандери, 12, м. Львів, Україна
https://orcid.org/0009-0005-3779-0186

Анотація. Мета роботи полягала в аналізі впровадження DevOps в організаціях, зокрема в оцінці впливу 
автоматизації процесів, CI/CD, моніторингу та оркестрації мікросервісів на ефективність розробки та управління. 
Було створено методологію, яка дозволяє організаціям ефективно впроваджувати та посилювати підхід 
DevOps, досягаючи високих результатів у розвитку і управлінні програмним забезпеченням. У дослідженні 
було розглянуто стратегії культурної зміни та навчання, що включають формування культури співпраці між 
командами та розвиток навичок у сучасних інструментах DevOps. Автоматизація процесів, зокрема автоматизація 
тестування та інтеграція та розгортання, відіграє важливу роль у підвищенні якості коду і зменшенні часу 
розробки. Інфраструктура як код дозволяє управляти та автоматизувати конфігурацію інфраструктури, 
забезпечуючи швидке масштабування середовищ. Робота виявила, що моніторинг продуктивності та зворотний 
зв’язок є критичними для виявлення проблем на ранніх етапах і постійного вдосконалення продукту. Оркестрація 
мікросервісів, зокрема за допомогою Kubernetes, забезпечує автоматизацію розгортання і масштабування 
контейнеризованих додатків, що критично важливо для сучасних архітектур з високими вимогами до 
продуктивності та доступності. Приклади з практики таких компаній, як Netflix, Spotify і Airbnb, демонструють 
успішне застосування DevOps практик і технологій для досягнення високої доступності, масштабованості та 
надійності інфраструктур. Результати дослідження підтверджують, що впровадження DevOps веде до значного 
підвищення ефективності розробки, покращення якості програмного забезпечення та оптимізації витрат на 
управління інфраструктурою. Крім того, впровадження культурних змін і підвищення рівня співпраці між 
командами розробки та операцій сприяє більшій гнучкості та швидкості реагування на зміни ринкових умов

Ключові слова: оркестрація мікросервісів; інструменти; автоматизація тестування; CI/CD процеси; ефективність 
розробки

https://orcid.org/0009-0005-3779-0186

