
UDC 004.415.2:378
DOI: 10.62660/bcstu/3.2024.42

Using design patterns and typed languages in the development
of an adaptive model of personalised learning

Suggested Citation:Suggested Citation:
Fedorka, P. , Saibert, F. , & Buchuk, R. (2024). Using design patterns and typed languages in the development of an Fedorka, P. , Saibert, F. , & Buchuk, R. (2024). Using design patterns and typed languages in the development of an
adaptive model of personalised learning. adaptive model of personalised learning. Bulletin of Cherkasy State Technological UniversityBulletin of Cherkasy State Technological University, 29(3), 42-54. doi:, 29(3), 42-54. doi: 10.62660/10.62660/
bcstu/3.2024.42bcstu/3.2024.42..

*Corresponding author

Pavlo Fedorka*

Doctor of Philosophy, Associate Professor
Uzhhorod National University
88000, 3 Narodna Sq., Uzhhorod, Ukraine
https://orcid.org/0000-0002-9242-5588
Fedir Saibert
Master, Assistant
Uzhhorod National University
88000, 3 Narodna Sq., Uzhhorod, Ukraine
https://orcid.org/0009-0004-8081-4174
Roman Buchuk
PhD in Physical and Mathematical Sciences, Associate Professor
Uzhhorod National University
88000, 3 Narodna Sq., Uzhhorod, Ukraine
https://orcid.org/0009-0000-4199-5583

BULLETIN of Cherkasy State Technological University

Journal homepage: https://bulletin-chstu.com.ua/en

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Vol. 29 No. 3. 2024

Abstract. The purpose of this study was to determine the effectiveness of using design patterns and typed
programming languages, specifically TypeScript and C#, in building an adaptive model of personalised learning in
software engineering. The study examined the use of design patterns in the development of an adaptive model of
personalised learning, reviewed the use of TypeScript and C# in the creation of such a model, and compared these
typed programming languages and resources for software engineering education. The key findings of the study
showed that among the design patterns, Singleton, Factory, Strategy, and Observer are the most effective for
building an adaptive personalised learning model, as they increase the flexibility and adaptability of the system.
The developed software prototypes showed that the use of the TypeScript language ensures the reliability of the
adaptive system due to static typing and flexible interfaces, while the C# language with Generics and Language
Integrated Query (LINQ) capabilities contributes to effective data management and modular integration. The
comparative analysis revealed that C# is better suited for more complex systems with higher data management
requirements, while TypeScript provides fast integration and greater flexibility in front-end development. A
review of the available learning resources for both languages also revealed a greater variety for TypeScript,
which may facilitate faster learning for new users. The conclusions showed that the use of design patterns and
typed programming languages is an essential approach to creating personalised learning models that can adapt
to individual user needs and increase the effectiveness of software engineering education

Keywords: individualised education; differentiated learning; software architecture; object-oriented modelling;
customisable interfaces; data optimisation

Article’s History: Received 17.06.2024; Revised 10.09.2024; Accepted 21.10.2024

https://orcid.org/0000-0002-9242-5588
https://orcid.org/0009-0004-8081-4174
https://orcid.org/0009-0000-4199-5583

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 43

behaviour, clustering, and correlation analysis, a char-
acteristic model was built to adapt learning resources
to the level of knowledge, learning style, interactive
behaviour, and social learning of users. C. Halkiopoulos
& E. Gkintoni (2024) showed that artificial intelligence
(AI) contributes to the improvement of personalised
learning and adaptive assessment and recommended
the development of algorithms to reduce bias and fur-
ther research into the ethical aspects of AI in education.
T. Ball et al. (2019) presented Static TypeScript, which
is a subset of TypeScript and is designed to teach pro-
gramming on microcontrollers. The researchers pointed
out that Static TypeScript compiles to machine code in
a browser, making TypeScript an effective solution for
educational projects on small devices.

Moreover, C. Troussas et al. (2020) investigated
adaptive programming learning using C#, applying the
Revised Bloom Taxonomy learning theory. The findings
showed that the used approach considerably improves
student performance compared to systems without ad-
aptability. L. Chai et al. (2024) presented the Adaptive
Information Fusion personalised learning algorithm,
which helps to increase the model’s adaptability on
local data after each training cycle. The findings con-
firmed the effectiveness of Adaptive Information Fusion
in personalised learning systems with heterogeneous
data. C.T. Dumitru’s (2024) study pointed to the poten-
tial of adaptive learning systems in the context of high-
er education, emphasising their role in personalising
education through AI and data analytics. The findings
showed that such systems can greatly improve learning
outcomes and increase student satisfaction.

These studies focused on adaptive models of per-
sonalised learning rather than design patterns and
typed programming languages, as is the case in the
present study. Overall, the purpose of this study was to
determine the effectiveness of using design patterns
and typed programming languages to build an adaptive
learning system. The objectives included analysing the
use of design patterns to develop an adaptive person-
alised learning model, reviewing the TypeScript and C#
programming languages in the context of creating this
model, and comparing these languages and learning
resources for software engineers.

MATERIALS AND METHODS
The study was divided into three stages, which includ-
ed the analysis of an adaptive personalised learning
model based on design patterns and typed program-
ming languages TypeScript and C#. At the initial stage,
a thorough analysis of various design patterns was per-
formed to determine the most suitable ones for build-
ing an adaptive personalised learning model. The pat-
terns considered were Factory, Abstract Factory, Builder,
Prototype, Singleton, Adapter, Bridge, Composite, Deco-
rator, Facade, Flyweight, Proxy, Chain of Responsibility,
Command, Iterator, Mediator, Memento, Observer, State,

INTRODUCTION
A modern approach to personalised learning involves
adapting educational content to meet the individu-
al needs of users, making it a valuable component of
educational technology. Developing adaptive systems
requires not only a flexible architecture but also the
use of programming languages that support reliability
and scalability. For example, TypeScript allows imple-
menting strict type control in web applications, which
increases their reliability and scalability, especially in
large projects. C#, on the other hand, is a high-level pro-
gramming language that has powerful data processing
tools that enable efficient data management and opti-
misation of complex systems. The combination of these
features makes both languages suitable for developing
adaptive learning systems that can integrate and ana-
lyse learning content according to the needs of users.

Overall, adaptive learning systems face a series of
challenges that limit their effectiveness and flexibility
in personalising content. Specifically, the lack of stand-
ardised approaches to implementing the architecture
of such systems leads to major difficulties in ensur-
ing their scalability and modularity. The integration
of structured and efficient development approaches,
such as design patterns, is necessary to ensure great-
er stability and adaptability of the system to changing
user needs. However, many existing approaches focus
on general architectural solutions, without paying due
attention to concrete programming languages and the
ways in which their capabilities can affect the quality
of adaptive systems.

For example, N. Pravorska & S. Hryha (2024) fo-
cused on the value of design patterns for effective mi-
croservice architecture. The researchers emphasised
the importance of such patterns as Circuit Breaker,
API (Application Programming Interface) Gateway, and
Saga, noting that they allow preserving the integrity of
the system in case of microservice failures. Q. Gou &
H. Poliakova (2024) examined personalised learning in
the digital learning environment, focusing on building
an adaptive model. They emphasised the significance
of systematicity, adaptability, and individual approach,
which are key to the development of personalised
learning models using digital resources. Furthermore,
O. Koshova et al. (2023) pointed out the advantages of
using TypeScript to develop a distance learning system,
noting its effectiveness in combination with the React
library to create an interactive learning environment.

M. Mirzaei & K. Meshgi (2023) showed how ma-
chine learning-based systems can provide personal-
ised learning by adapting to the level of knowledge,
interests, and needs of students. The developed Par-
tial and Synchronised Caption model uses automatic
analysis and processing of educational content, which
allows the system to adapt learning materials to each
user. P. Peng & W. Fu (2022) demonstrated methods for
recognising patterns of personalised adaptive learning
in online education. Based on the analysis of learning

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

44

Strategy, Template Method, and Visitor. Each pattern
was analysed for its ability to improve the flexibility,
adaptability, and scalability of the system. Among them,
the most suitable patterns for developing an adaptive
learning model were selected. On their basis, an archi-
tectural diagram of the model was built, which showed
examples of scenarios for the use of each pattern. Fur-
thermore, the relationships between Factory, Strategy,
Observer, and Singleton patterns were considered.

The second stage was to apply the typed program-
ming languages TypeScript and C# to implement the
adaptive elements of the learning model. The features
of the TypeScript language were reviewed, including its
static typing capabilities, interfaces, and support for the
object-oriented approach. Based on this, a simple soft-
ware prototype was created to demonstrate the use of
types and interfaces to improve system reliability. This
programme was written using the TS Playground online
compiler. The TypeScript program defined the Learning-
Module and User interfaces, the LearningSystem class,
and the getRecommendedModule method, which pro-
vided module recommendations based on the user’s
profile. On the other hand, the adaptive system appli-
cation was written in C#, using Generics and Language
Integrated Query (LINQ) capabilities to optimise data
management and facilitate access to modular compo-
nents. For this, the Online C# Compiler platform was
used. This programme implemented the ILearningMod-
ule interface and the LearningModule class, as well as
the LearningSystem class with the AddModule method,
which helped to dynamically add new modules to the
system, maintaining its adaptability.

At the final stage of the study, a comparative anal-
ysis of the TypeScript and C# programming languages
was performed in the context of their use for the de-
velopment of adaptive educational models. This analy-
sis included a comparison of the approaches to typing

in both programming languages, including strong and
weak typing, as well as static and dynamic type check-
ing. To demonstrate the capabilities of each language,
examples of using the Strategy and Singleton patterns
to adapt the training content were implemented. The
TypeScript example, which used the Strategy pattern,
included the AdaptationStrategy interface and the Ba-
sicAdaptation and AdvancedAdaptation classes, which
allowed creating various adaptation strategies and
choosing the right one for each user. An adaptive sys-
tem was implemented in C# using the Singleton pat-
tern for managing user data, which provided a single
access to user profile information in the system (Fen-
ton, 2018; Skeet, 2019). The study also compared the
learning resources available for both languages, such
as documentation, online courses, books, video tutori-
als, Integrated Development Environment (IDE), frame-
works, testing tools, and package managers.

RESULTS
Application of design patterns in the development of an
adaptive model of personalised learning. Design pat-
terns are proven solutions to common problems that
arise in the software development process. Their use
allows creating code that is more flexible, extensible,
and easy to maintain. In the context of adaptive learn-
ing systems, design patterns help to structure complex
systems, reducing their overall complexity, and increase
code repeatability by enabling the use of ready-made
solutions for common problems. These solutions also
improve code comprehension for other developers, as
familiar patterns make it easier to understand. Further-
more, patterns make the system more flexible, allowing
for easy changes and additions. The choice of particular
patterns for the adaptive learning model is based on
their functionality and ability to meet the system’s re-
quirements (Table 1).

Table 1. Design patterns description
Design pattern Description

Factory Creates objects through a method, allowing subclasses to determine which class to set

Abstract Factory Provides an interface for creating a group of related or dependent objects without specifying their
particular classes

Builder Separates the construction of a complex object from its representation, which allows creating multiple
representations of the object

Prototype Allows creating new objects by cloning existing prototype objects
Singleton Provides the creation of only one instance of a class with a global access point to it

Adapter Converts a class interface to another interface expected by the client, ensuring compatibility between
incompatible interfaces

Bridge Separates abstraction and implementation so that they can change independently of each other

Composite Allows processing individual objects and their compositions in the same way, creating a hierarchy of
objects

Decorator Dynamically adds new functionality to an object without changing its structure
Facade Provides a simplified interface to more interconnected classes or subsystems

Flyweight Optimises memory usage by sharing a common state between many small objects
Proxy Provides a surrogate or substitute for another object, controlling access to it

Chain of
Responsibility

Passes the request to a sequence of objects, where each object decides whether to process the request or
pass it on

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 45

Incorporating design patterns into an adaptive
learning model not only facilitates the development
process but also ensures high quality and reliability of
learning solutions, which is vital for success in the mod-
ern educational sphere. To develop an adaptive person-
alised learning model, the most effective patterns are
Factory, Strategy, Observer, and Singleton. For example,
the Singleton pattern provides class uniqueness and
global access to it, which is useful for presenting a
single user context where all information about their
progress, preferences, and settings is stored. The Fac-
tory pattern allows defining an interface for creating
objects, and subclasses can decide which particular in-
stance should be created. This is extremely convenient

for creating various types of learning materials (videos,
text assignments, tests) according to the user’s needs.
The Strategy pattern, in turn, allows forming a family
of algorithms, encapsulating each of them and making
them interchangeable. In the case of an adaptive learn-
ing system, this pattern can be used to implement var-
ious adaptation algorithms, such as recommendation
systems or content branching algorithms. The Observer
pattern provides a one-to-many dependency that al-
lows automatically updating all objects that depend on
one when it changes. This can be useful for updating
the user interface when their data or learning outcomes
change. Example scenarios for using these patterns
clearly demonstrate their expediency (Fig. 1).

Design pattern Description

Command Encapsulates a request as an object, enabling the parameterisation of clients with different requests and
providing the ability to cancel operations

Iterator Provides consistent access to collection items without revealing its internal structure
Mediator Defines an object that encapsulates the way objects interact, reducing dependencies between them
Memento Preserves and restores the previous state of the object without breaking its encapsulation
Observer Provides a mechanism for one object to notify others of changes in its state

State Allows an object to change its behaviour when its state changes, as if the object were changing its class

Strategy Defines a family of algorithms, encapsulates them, and allows changing the algorithm independently of
the client using it

Template
Method

Defines the skeleton of the algorithm in a superclass, allowing subclasses to define some steps of the
algorithm

Visitor Adds new operations to classes without changing their structure by moving the operation logic to a
separate object

Continued Table 1.

Source: created by the authors

Singleton

User Context

- User ID (identification)
- Name
- Progress
- Preferences

Factory

Content Factory

- Create Material
- Video Lesson
- Text Task
- Quiz

Strategy

Adaptive Algorithm

- Adapt Content
- Recommendation Strategy
- Branching Strategy

Observer

User Interface

- Display Progress
- Show
Recommendations

Figure 1. Diagram of the relationships between different components
of the system and their functions in the context of adaptive learning

Source: created by the authors

The architecture diagram of the adaptive learning
model illustrates how these patterns function together
to optimise the learning process. Notably, the use of
design patterns considerably improves the architec-
ture of an adaptive learning model, making it more
flexible and adaptive to the needs of users. When im-
plementing these patterns, one should consider their
specific features in typing and structure. For example,
TypeScript, due to its static typing and flexible type
management capabilities, is an effective tool for creat-
ing reliable and adaptive code that facilitates dynamic
adaptation of learning content. C#, on the other hand,
provides more rigorous typing and a powerful infra-
structure to support complex structures and function-
al relationships in the system, which ensures a great

level of reliability but requires more precise adherence
to syntactic and type constructs.

Using typed languages TypeScript and C# to create
an adaptive model of personalised learning. TypeScript
is a powerful JavaScript-based programming language
that provides static typing. This means that developers
can define data types for variables, functions, and ob-
jects, which helps to prevent many types of errors at
the compilation stage. The key feature of TypeScript is
its static typing, which allows programmers to clearly
define data types. This results in fewer errors, improved
readability, better integration, and enhanced function-
ality. That is, static typing allows detecting errors at the
early stages of development, even before the code is
executed. Explicit data types make the code easier to

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

46

the course
};

// Creating the learning system
const learningSystem = new
LearningSystem(user);

// Adding modules to the system
learningSystem.addModule({ title:
“Introduction to TypeScript”, content:
“Learning about types”, level: 25 });
learningSystem.addModule({ title: “Advanced
TypeScript Usage”, content: “Diving into
interfaces”, level: 50 });
learningSystem.addModule({ title: “Modules
in TypeScript”, content: “Structuring code”,
level: 75 });

// Getting the recommended module
const recommendedModule = learningSystem.
getRecommendedModule();
if (recommendedModule) {
 console.log(`Recommended module for ${user.
name}: ${recommendedModule.title}`);
} else {
 console.log(“No available modules for
recommendation.”);
}

This programme demonstrates the use of Type-
Script to create a simple adaptive learning system that
recommends learning modules based on the user’s pro-
gress. It illustrates the benefits of typing in TypeScript
to ensure code is robust and readable. First, two inter-
faces are defined: LearningModule, which describes the
learning module, and User, which represents the user
and their data. Next, a LearningSystem class is created
that manages the modules and users, with methods for
adding modules and receiving recommendations based
on progress. When the programme starts, a user with
a certain progress is created, and modules of different
difficulty levels are added. When the recommendation
method is called, the system filters the modules, select-
ing those that match or are lower than the user’s pro-
gress level. The result of the programme is to display the
title of the recommended module for the user (Fig. 2).

read, as other developers can quickly understand what
data types are used. Furthermore, TypeScript integrates
well with existing JavaScript libraries, making it easy to
use existing solutions. This language supports modern
JavaScript features, including asynchronous functions
and result handling, making it suitable for creating
complex asynchronous systems. These features make
TypeScript a reliable choice for developing educational
systems where it is important to maintain strict code
quality and ensure reliability during the execution of
learning algorithms.

When developing an adaptive learning model in
TypeScript, it is essential to properly organise the code
structure and manage dependencies. Using interfaces
and classes, a clear definition of data types and their
interaction can be ensured. Below is a code sample to
illustrate the management of types and interfaces in
TypeScript:

// Define an interface for a learning module
interface LearningModule {
 title: string;
 content: string;
 level: number; // Difficulty level
}

// Define an interface for a user
interface User {
 id: number;
 name: string;
 progress: number; // Percentage of course
completion
}

// Class for the learning system
class LearningSystem {
 private modules: LearningModule[] = [];
 private user: User;

 constructor(user: User) {
 this.user = user;
 }

 // Method to add a module to the system
 addModule(module: LearningModule) {
 this.modules.push(module);
 }

 // Method to get a recommended module for
the user
 getRecommendedModule(): LearningModule |
null {
 const suitableModules = this.modules.
filter(module => module.level <= this.user.
progress);
 return suitableModules.length > 0 ?
suitableModules[suitableModules.length - 1]
: null;
 }
}

// Creating a user object
const user: User = {
 id: 1,
 name: “Sam”,
 progress: 50 // User has completed 50% of

Figure 2. Result of the programme in TypeScript
Source: created by the authors

Thus, the code demonstrates how typed program-
ming languages can be used to create adaptive learn-
ing systems that improve the quality of the learning
process by customising the learning content. After
reviewing the capabilities of TypeScript in creating
adaptive learning systems, it is worth looking at C# as
another powerful typed programming language that
has its specific features and benefits.

C# is a powerful programming language that pro-
vides typing capabilities for building robust and in-
teractive responsive learning systems. With features

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 47

such as Generics and LINQ, C# allows developers to
efficiently manage data and implement algorithms that
help personalise learning. When developing an adap-
tive learning model in C#, it is crucial to provide a clear
programme architecture that will enable convenient
management of various components of the learning
modules. For example, the use of Generics ensures type
safety when working with multiple data types, while
LINQ facilitates querying collections, which greatly
simplifies the processing of information about train-
ing modules and users. Below is a code sample that
demonstrates the implementation of an adaptive learn-
ing system in C#:

using System;
using System.Collections.Generic;
using System.Linq;

// Define an interface for a learning module
public interface ILearningModule
{
 string Title { get; }
 string Content { get; }
 int Level { get; } // Difficulty level
}

// Define a class for a learning module
public class LearningModule : ILearningModule
{
 public string Title { get; private set; }
 public string Content { get; private set; }
 public int Level { get; private set; }

 public LearningModule(string title, string
content, int level)
 {
 Title = title;
 Content = content;
 Level = level;
 }
}

// Define a class for a user
public class User
{
 public int Id { get; }
 public string Name { get; }
 public int Progress { get; } // Percentage
of course completion

 public User(int id, string name, int
progress)
 {
 Id = id;
 Name = name;
 Progress = progress;
 }
}

// Class for the learning system
public class LearningSystem
{
 private List<ILearningModule> modules = new
List<ILearningModule>();
 private User user;

 public LearningSystem(User user)

 {
 this.user = user;
 }

 // Method to add a module to the system
 public void AddModule(ILearningModule
module)
 {
 modules.Add(module);
 }

 // Method to get a recommended module for
the user
 public ILearningModule GetRecommendedModule()
 {
 return modules.Where(module => module.Level
<= user.Progress).OrderByDescending(module
=> module.Level).FirstOrDefault();
 }
}

// Example usage
public class Program
{
 public static void Main()
 {
 // Creating a user object
 var user = new User(1, “Dean”, 50); // User
has completed 50% of the course

 // Creating the learning system
 var learningSystem = new LearningSystem(user);

 // Adding modules to the system
 learningSystem.AddModule(new
LearningModule(“Introduction to C#”,
“Learning the basics”, 25));
 learningSystem.AddModule(new
LearningModule(“Advanced C# Techniques”,
“Deep dive into generics”, 50));
 learningSystem.AddModule(new
LearningModule(“Design Patterns in C#”,
“Understanding common patterns”, 75));

 // Getting the recommended module
 var recommendedModule = learningSystem.
GetRecommendedModule();
 if (recommendedModule != null)
 {
 Console.WriteLine($”Recommended module for
{user.Name}: {recommendedModule.Title}”);
 }
 else
 {
 Console.WriteLine(“No available modules for
recommendation.”);
 }
 }
}

This example shows how typing can be used in C#
to create interfaces for training modules and users, as
well as implement methods for making recommenda-
tions based on user progress. First, the interfaces for
the training modules and the user class are defined.
Then, a learning system class is created that manages
the modules and users. After running the programme,
the system recommends modules that are at or below
the user’s progress level. The result of the programme

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

48

displays the title of the recommended module for the
user, which emphasises the personalisation of learning
in C# (Fig. 3).

needs of users. Notably, the use of design patterns and
typed languages TypeScript and C# in the development
of an adaptive model of personalised learning shows
that the integration of different patterns, such as Facto-
ry, Strategy, Observer, and Singleton, ensures high flex-
ibility and scalability of the system, enabling the edu-
cational content to be quickly tailored to the individual
needs of the user.

Comparative analysis of TypeScript and C# program-
ming languages and training resources for software engi-
neers. It is worth noting that TypeScript and C#, albeit
typed languages, use distinct models to ensure strict
control over the code (Table 2). This leads to differenc-
es in flexibility, reliability, and the amount of code that
developers can easily adapt to changing requirements.

Figure 3. Result of the programme in C#
Source: created by the authors

Thus, C# provides effective tools for developing
adaptive systems that improve the quality of the learn-
ing process by customising content according to the

Aspect TypeScript C#

Typing
Strong, static typing, support for structural typing,

which allows flexibility in interfaces

Strong, static typing, nominal typing ensures high

type rigour
Static type

validation

Executed when compiling, allows quick error

detection

Strict static checking during compilation, which

improves reliability
Flexibility High, with the ability to ignore some typing rules Lower flexibility, focused on strict type matching

Structuring

model

Simple modular approach, allows easy integration

with web technologies

More sophisticated object-oriented model with

properties, events, delegates
Interface

support

Supports interfaces and modules for code

decomposition

Support for interfaces and rich class model for deep

hierarchy

Usage

environment
Mostly used in web development

Used in both web and desktop applications

with strong support for OOP (object-oriented

programming)

Table 2. Comparison of approaches to typing and structuring code between TypeScript and C#

Source: created by the authors

That is, TypeScript typing is strong and static, which
allows detecting errors during compilation, while C#
typing is also static, but has greater strictness in type
adherence during development. In TypeScript, more
flexibility is possible due to structural typing, while C#
is focused on nominal typing, which increases code re-
liability but reduces flexibility in its adaptation.

Design patterns continue to be crucial tools for en-
suring the efficient structure and functionality of soft-
ware systems. When developing an adaptive person-
alised learning model, the choice between TypeScript
and C# becomes especially relevant, as both languages
have their specific features in the implementation of
such patterns as Singleton, Factory, Strategy, Observer,
etc. Therefore, it is essential to consider examples of
implementing these patterns in TypeScript and C#. For
instance, the Strategy pattern in TypeScript is well suit-
ed for an adaptive system because it enables an easy
change of algorithms to adapt the learning content de-
pending on the user’s needs. TypeScript with its struc-
tural typing provides a convenient way to implement
strategies for multiple types of adaptation. Below is an
example of implementing the Strategy pattern in Type-
Script to adapt learning content:

// Interface defining the adaptation strategy
interface AdaptationStrategy {
 adapt(content: string): string;
}

// Basic adaptation class
class BasicAdaptation implements
AdaptationStrategy {
 adapt(content: string): string {
 return `Basic adaptation: ${content}`;
 }
}

// Advanced adaptation class
class AdvancedAdaptation implements
AdaptationStrategy {
 adapt(content: string): string {
 return `Advanced adaptation: ${content}`;
 }
}

// LearningSystem class allowing for flexible
adaptation strategies
class LearningSystem {
 private strategy: AdaptationStrategy;

 constructor(strategy: AdaptationStrategy)
{
 this.strategy = strategy;

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 49

 }

 adaptContent(content: string): string {
 return this.strategy.adapt(content);
 }

 setStrategy(strategy: AdaptationStrategy)
{
 this.strategy = strategy;
 }
}

// Using the Strategy pattern:
const system = new LearningSystem(new
BasicAdaptation());
console.log(system.adaptContent(“Learning
material”)); // Basic adaptation: Learning
material
system.setStrategy (new
AdvancedAdaptation());
console.log(system.adaptContent(“Learning
material”)); // Advanced adaptation:
Learning material

In this example, the Strategy pattern allows chang-
ing the adaptation strategy depending on the condi-
tions, e.g., the student’s level of training. This makes the
system more flexible and dynamic, which is important
for personalised learning. As a result, the application
displays messages that demonstrate a variety of strate-
gies for adapting learning content (Fig. 4).

 private UserContext() {}

 public static UserContext Instance {
 get {
 lock (lockObj) {
 if (instance == null) {
 instance = new UserContext();
 }
 return instance;
 }
 }
 }

 public void SetUserData(UserData data) {
 userData = data;
 }

 public UserData GetUserData() {
 return userData;
 }
}

class Program {
 static void Main() {
 // Using Singleton:
 UserContext.Instance.SetUserData(new
UserData { Name = “Cas”, Progress = 85 });
 UserContext user = UserContext.Instance;

 // Output user data
 Console.WriteLine($”Name: {user.
GetUserData().Name}, Progress: {user.
GetUserData().Progress}”); // Name: Cas,
Progress: 85
 }
}

In this example, the programme, using the Single-
ton pattern for the UserContext class, allows storing
user data, which includes the name and progress. In
the Main method, the user’s data with their name and
progress is set using SetUserData. Next, both the user’s
name and progress are displayed, which demonstrates
that the programme provides access to all user infor-
mation through a single UserContext object (Fig. 5).

Figure 4. Result of the TypeScript programme
for the Strategy pattern

Source: created by the authors

In turn, the Singleton pattern is well suited for C#
in the context of an adaptive learning model, as it al-
lows having only one instance of a certain object in the
system, e.g., storing current user data or system set-
tings. This is especially convenient in C#, where Sin-
gleton is implemented with extra protection against
multithreading. Below is an example of implementing
the Singleton pattern in C# to manage the user context
in an adaptive learning system:

using System;

public class UserData {
 public string Name { get; set; }
 public int Progress { get; set; }
}

public class UserContext {
 private static UserContext instance;
 private static readonly object lockObj =
new object();
 private UserData userData;

Figure 5. Result of the C# programme
for the Singleton pattern

Source: created by the authors

Apart from reviewing the TypeScript and C# pat-
tern implementations, attention should be paid to the
learning resources and support for developing adaptive
learning solutions in these languages. Such resources
play a key role in facilitating the integration of patterns
into learning models, as they provide developers with
the necessary knowledge and tools to use program-
ming languages effectively. Overall, there is a plethora
of learning materials available for TypeScript and C#.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

50

They include online courses, textbooks, documenta-
tion, video tutorials, and self-study resources (Table 3).

Furthermore, development environments and tools are
of great value for creating adaptive learning solutions.

Resource type TypeScript C#

Official documentation TypeScript Documentation C# Documentation

Online courses Udemy: Learn TypeScript Udemy: C# Basics for Beginners

Books “Pro TypeScript” (Fenton, 2018) “C# in Depth” (Skeet, 2019)

Video lessons YouTube: TypeScript Tutorials YouTube: C# Tutorials

IDE Visual Studio Code Visual Studio

Testing tools Jasmine, Mocha NUnit, xUnit

Package managers npm (Node Package Manager) NuGet

Frameworks Angular, React ASP.NET (Active Server Pages.Net),
Xamarin

Table 3. Examples of learning resources related to TypeScript and C#

Source: created by the authors

Among the available learning materials and tools,
the official documentation for TypeScript and C# is
particularly important. They provide the most updated
information about the programming languages, includ-
ing new features, practical examples, and best practice
guidelines. Books are also valuable resources. They of-
fer a deep dive into topics related to the features and
capabilities of the languages. YouTube video tutorials
on TypeScript and C# can also be a useful addition, as
they provide a visualisation of the learning process and
help students to understand the material better.

In terms of tools and platforms, Visual Studio Code
for TypeScript and Visual Studio for C# are the best
development environments available. Both IDEs offer
a user-friendly interface and powerful features that
facilitate efficient software development. Frameworks
such as Angular for TypeScript and ASP.NET for C# open
new horizons for building web applications, which is
critical in the context of responsive learning solutions.
Furthermore, testing tools such as Jasmine and Mocha
for TypeScript and NUnit and xUnit for C# ensure high
quality code. They allow detecting errors at early stages
of development, which is essential for maintaining the
stability and reliability of learning systems. All these re-
sources and tools contribute to the effective implemen-
tation of design patterns in adaptive learning models,
which makes learning more personalised and effective.

Thus, the study found that the use of design pat-
terns together with the typed programming languages
TypeScript and C# considerably increases the effec-
tiveness of adaptive models for personalised learning.
The implementation of patterns such as Strategy and
Singleton demonstrates their ability to flexibly manage
learning content and user data, which ensures individ-
ualisation of the learning process. Available learning
resources, tools, and powerful development environ-
ments, such as Visual Studio Code and Visual Studio, fa-
cilitate the effective implementation of these patterns,
which makes learning more adaptive, personalised, and
focused on the needs of each student.

DISCUSSION
This study found that the use of Singleton, Strategy,
Observer, and Factory patterns in combination with
TypeScript and C# allows creating adaptive and in-
dividualised training models that increase the flex-
ibility and reliability of the system. M. Tanweer &
A. Ismail (2024) examined the use of generative AI to
create individualised learning experiences that allow
adapting the learning materials to the needs of each
student. This approach is in line with the findings of
the current study, where the use of Singleton and Strat-
egy patterns helped to personalise content for the user.
W. Uriawan et al. (2024) used TypeScript to develop a
web-based platform for learning programming, which
ensures the reliability and scalability of the system. This
study confirmed the effectiveness of using TypeScript,
as in the present study, where this language contributes
to the flexibility of the system through its static typing
and support for dynamic interfaces. This makes it easy
to adapt the learning content to the individual needs
of users. At the same time, S. Wang (2023) showed in
his study on e-learning software development in C#
that content adaptation can improve learning effec-
tiveness, which is consistent with the findings of the
current study on the effectiveness of C# for creating
stable adaptive systems. Thus, the study complements
the findings of S. Wang (2023), confirming the effective-
ness of C# in the development of personalised learning
platforms focused on supporting individual user needs.

On the other hand, S.S. Khowaja et al. (2020) high-
lighted the value of crowdsourcing to optimise the
choice of design patterns, which is consistent with the
current study, where the use of such patterns increas-
es the flexibility of the adaptive system. Thus, the cur-
rent study corroborated the findings of S.S. Khowaja et
al. (2020) by showing that the integration of Singleton
and Strategy patterns also contributes to the personal-
isation of content for the user, which enhances the ef-
fectiveness of the adaptive model. S. Huang et al. (2024)
developed a recommendation system that considers

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 51

users’ interests in real time, which is consistent with the
findings of the current study on increasing individualis-
ation through the Strategy and Observer patterns. Thus,
the present study confirmed the findings of S. Huang et
al. (2024) by demonstrating the effectiveness of using
patterns to adapt content to the user’s needs in dynam-
ic learning environments.

The findings of A. Blažić et al. (2024) demonstrat-
ed a learning model that integrates AI to individualise
learning, which confirms the value of an adaptive ap-
proach in learning systems. This correlates with the cur-
rent study, which focused on increasing the flexibility
and adaptability of the system through design patterns,
which ensures a personalised approach to the needs of
each user. Furthermore, M. Rahman et al. (2023) investi-
gated the automated detection of design patterns that
improve the efficiency of object-oriented systems. This
is in line with the current approach, where the use of
design patterns facilitates the structured adaptation of
learning materials. In other words, the findings of both
studies confirm the effectiveness of patterns in improv-
ing the efficiency and flexibility of adaptive systems.

H. Zhang et al. (2024) applied the Adaptive Ensem-
ble C-learning method to improve the performance of
systems with real agents, which illustrated the possibil-
ity of adapting learning systems for concrete tasks. This
is also in line with the current study, where the use of
design patterns helped to adapt learning content to the
needs of users, increasing the flexibility and personal-
isation of the learning process. S. Wang et al. (2024)
discussed the use of simulations in learning using C#,
which confirms the choice of C# in the current study to
ensure stability and integration with learning content.
In this study, C# was used to develop adaptive learn-
ing systems, particularly for efficient data management
and high performance through the support of Generics
and LINQ capabilities. This enables a more comprehen-
sive adaptation of content and integration with a vari-
ety of design patterns than in the study by S. Wang et
al. (2024), which allows for more flexible and scalable
learning systems.

Moreover, H. Washizaki et al. (2022) showed that
design patterns can help integrate machine learning
into adaptive learning systems. This is in line with
the results of the present study, where such patterns
contribute to the adaptability of the model. Therefore,
the findings of the current study partially confirm the
conclusions of H. Washizaki et al. (2022), as they also
showed that the use of design patterns greatly im-
proves the adaptability of learning systems. The find-
ings of A.O. Dagunduro et al. (2024) emphasised that
adaptive learning models promote educational equity,
which is also a significant aspect of the current study,
which demonstrated the individualisation of learning
materials. The difference between the approach in this
study is the emphasis on the use of design patterns
that enable flexible adaptation of content to meet
the particular needs of each student, which increases

learning efficiency and promotes a personalised ap-
proach to each user.

M.K. Chong (2021) developed a TypeScript-based
group project platform, which proved to be effective
in ensuring interactivity and flexibility. Analogously, in
the current study, TypeScript was chosen for its ability
to create robust and responsive web platforms capa-
ble of rapid integration and adaptation. Although both
studies employed comparable technologies, the current
study also considered complementary aspects of con-
tent adaptation and architectural flexibility. M.E. Attia
& M.A. Arteimi (2021) used fuzzy logic in Moodle to in-
dividualise learning, which supports the findings of the
current study on the value of adapting learning content
to the needs of the user. The authors’ fuzzy logic ap-
proach enabled the creation of flexible and adaptive
systems, which is consistent with the use of design pat-
terns in the current study to improve the flexibility and
scalability of adaptive learning platforms.

S. Latif et al. (2022) developed an approach to au-
tomate the detection of design patterns using machine
learning, which is consistent with the current approach
to using patterns to structure an adaptive system. Their
study with automated pattern detection allows signifi-
cantly simplifying the system adaptation process to new
conditions and user requirements. In the current study,
the use of design patterns also contributed to the flex-
ibility and adaptability of the system, but with an add-
ed emphasis on personalising learning content, which
extends the capabilities of the approaches proposed in
other studies. F. Gnadlinger et al. (2023) proposed a sys-
tem for optimising the management of object-oriented
applications based on design patterns, which confirms
the current findings on a structured approach to the
development of personalised learning models. In both
cases, patterns increase flexibility, reduce system com-
plexity, and enable a more efficient customisation to
meet specific user requirements.

D.M. Arya et al. (2024) showed adaptive learning
models, which emphasises the importance of integrat-
ing AI to individualise learning content. This confirms
the results of the present study, where the use of tech-
nology to adapt learning materials can increase the
effectiveness of learning, considering the needs of stu-
dents. The common aspects of both studies were the use
of C# and TypeScript programming languages. Howev-
er, in the current study, these languages were applied
with a focus on their ability to create adaptive systems,
particularly through the use of typed languages to en-
sure the reliability, scalability, and flexibility of learning
platforms. As in the present study, K. Chen et al. (2024)
addressed design patterns such as Singleton, Factory,
Observer, and Strategy, as they facilitate effective model
management, deployment strategies, and team collabo-
ration. These patterns are also instrumental in creating
adaptive and scalable systems, which is in line with the
findings of the current study on their role in increasing
the flexibility and personalisation of learning platforms.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

52

Additionally, R. Xu et al. (2024) confirmed that adap-
tive models are key to the development of effective
learning systems, which supports the findings of the
current study on the effectiveness of using patterns to
adapt learning content. Furthermore, the emphasis of
the cited study on the use of design patterns to inte-
grate machine learning is consistent with the approach
of the current study to use such patterns to increase the
flexibility and adaptability of learning systems. A. Er-
Rafyg et al. (2024) theorised the significance of empow-
ering adaptive platforms to support a personalised ap-
proach, which is consistent with the current study where
design patterns improved content adaptation. The con-
cept of individualising learning through platform adap-
tation offered by A. Er-Rafyg et al. (2024) confirmed the
effectiveness of using design patterns to provide a per-
sonalised user experience in the current adaptive system.

Overall, the analysis of related studies supported the
significance of using design patterns and typed program-
ming languages to build adaptive learning models. Stud-
ies point to the key role of patterns such as Singleton,
Factory, Strategy, and Observer in increasing the flexibil-
ity, adaptability, and efficiency of systems. The use of pro-
gramming languages such as C# and TypeScript allows
for high reliability, scalability, and integration with learn-
ing content, which ensures that learning is customised
to the needs of users. Overall, the present study com-
plemented these findings by proposing novel approach-
es to content adaptation and management of learn-
ing systems using proven methods and technologies.

CONCLUSIONS
The study confirmed the effectiveness of using design
patterns and typed programming languages to cre-
ate adaptive learning models. Based on the analysis
of design patterns, namely Singleton, Factory, Strate-
gy, and Observer, it was found that their use increases
the flexibility, adaptability, and scalability of learning
systems. The use of C# and TypeScript programming
languages ensures the reliability and stability of adap-
tive platforms, enabling effective integration of learn-
ing content and adaptation strategies. As a result, the

developed software prototypes have demonstrated an
increase in the effectiveness of personalised learning
using these technologies, which allows accommodat-
ing individual student needs and dynamically adapting
content to various user requirements.

The obtained findings suggest that the tools and
methods proposed in this study contribute to a major im-
provement in the adaptability of learning models. They
allow maintaining high learning efficiency by increas-
ing the degree of personalisation and providing flexible
customisation for diverse types of users. The use of de-
sign patterns, particularly to guide adaptive strategies,
enables more sustainable and flexible learning systems
that can be easily expanded or modified to meet new
requirements. The findings also showed that typed pro-
gramming languages are effective in integrating differ-
ent components and ensuring their stable operation.

Limitations of the study include the fact that it con-
sidered in detail the use of a limited number of design
patterns and programming languages to build adaptive
systems. Furthermore, while the findings demonstrat-
ed improvements in the adaptability and effectiveness
of learning platforms, some aspects of the interaction
between various design patterns or programming lan-
guages were not explored, which could affect other as-
pects of system adaptability.

Recommendations for further research include ex-
panding the analysis of design patterns for adaptive
learning systems, including the use of the latest AI
techniques to automate content adaptation. Further-
more, it is advisable to explore other types of typed
programming languages that may have advantages in
the context of adaptive systems. It is also vital to inves-
tigate the effect of integration with other educational
platforms, which allows creating more versatile solu-
tions for diverse learning contexts.

ACKNOWLEDGEMENTS
None.

CONFLICT OF INTEREST
None.

REFERENCES
[1] Arya, D.M., Guo, J.L.C., & Robillard, M.P. (2024). Properties and styles of software technology tutorials. IEEE

Transactions on Software Engineering, 50(2), 159-172. doi: 10.1109/TSE.2023.3332568.
[2] Attia, M.E., & Arteimi, M.A. (2021). Adaptive e-learning system using fuzzy logic. Al Academia Journal for Basic

and Applied Sciences (AJBAS), 3(3).
[3] Ball, T., de Halleux, P., & Moskal, M. (2019). Static typescript: An implementation of a static compiler for

the typescript language. In Proceedings of the 16th ACM SIGPLAN international conference on managed
programming languages and runtimes (pp. 105-116). New York: Association for Computing Machinery.
doi: 10.1145/3357390.3361032.

[4] Blažić, A., et al. (2024). Development of the adaptive learning concept at CARNET. In Proceedings of the 15th
international conference on e-learning. Belgrade: Belgrade Metropolitan University.

[5] Chai, L., Yu, W., & Zhou, N. (2024). Personalized federated learning with adaptive information fusion. The
Journal of Supercomputing. doi: 10.21203/rs.3.rs-4598644/v1.

[6] Chen, K., et al. (2024). Deep learning and machine learning: Advancing big data analytics and management
with design patterns. arXiv (Cornell University). doi: 10.48550/arXiv.2410.03795.

https://doi.org/10.1109/TSE.2023.3332568
https://ajbas.academy.edu.ly/en/j/issue-articles/461/download
https://doi.org/10.1145/3357390.3361032
https://elearning.metropolitan.ac.rs/agenda/
https://doi.org/10.21203/rs.3.rs-4598644/v1
https://doi.org/10.48550/arXiv.2410.03795

P. Fedorka et al.

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024 53

[7] Chong, M.K. (2021). E-learning platform for collaborative coding assignments. (Doctoral dissertation, Universiti
Tunku Abdul Rahman, Kampar, Malaysia).

[8] Dagunduro, A.O., Chikwe, C.F., Ajuwon, O.A., & Ediae, A.A. (2024). Adaptive learning models for diverse
classrooms: Enhancing educational equity. International Journal of Applied Research in Social Sciences, 6(9),
2228-2240. doi: 10.51594/ijarss.v6i9.1588.

[9] Dumitru, C.T. (2024). Future of learning: Adaptive learning systems based on language generative models in
higher education. In S. Tripat & J. Rosak-Szyrocka (Eds.), Impact of artificial intelligence on society (pp. 33-44).
New York: Chapman and Hall. doi: 10.1201/9781032644509-3.

[10] Er-Rafyg, A., Zankadi, H., & Idrissi, A. (2024). AI in adaptive learning: Challenges and opportunities. In A. Idrissi
(Ed.), Modern artificial intelligence and data science (pp. 329-342). Cham: Springer. doi: 10.1007/978-3-031-
65038-3_26.

[11] Fenton, S. (2018). Pro TypeScript: Application-scale JavaScript development. Basingstoke: Apress. doi: 10.1007/978-
1-4842-3249-1.

[12] Gnadlinger, F., Selmanagic, A., Simbeck, K., & Kriglstein, S. (2023). Adapting is difficult! Introducing a generic
adaptive learning framework for learner modeling and task recommendation based on dynamic Bayesian
networks. In Proceedings of the 15th international conference on computer supported education (pp. 272-280).
Prague: SciTePress. doi: 10.5220/0011964700003470.

[13] Gou, Q., & Poliakova, H. (2024). Measurement of personalized learning of students in the digital educational
environment of the institution of higher education on a qualimetric basis. Adaptive Management: Theory and
Practice, Series Pedagogics, 18(35). doi: 10.33296/2707-0255-18(35)-19.

[14] Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in e-learning: Personalized learning and adaptive
assessment through cognitive neuropsychology – a systematic analysis. Electronics, 13(18), article number
3762. doi: 10.3390/electronics13183762.

[15] Huang, S., Yang, H., Yao, Y., Lin, X., & Tu, Y. (2024). Deep adaptive interest network: Personalized recommendation
with context-aware learning. arXiv (Cornell University). doi: 10.48550/arXiv.2409.02425.

[16] Khowaja, S.S., et al. (2020). Crowdsourced machine learning based recommender for software design patterns.
International Journal of Computer, 36(1), 34-52.

[17] Koshova, O., Chernenko, O., Chilikina, T., & Komar, I. (2023). Peculiarities of web applications developing for the
distance learning system using the react library. Systems and Technologies, 65(1), 20-31. doi: 10.32782/2521-
6643-2023.1-65.3.

[18] Latif, S., Qureshi, M.M., & Mehmmod, M. (2022). Detection and recognition of software design patterns based
on machine learning techniques: A big step towards software design re-usability. In D.N.A. Jawawi, I.S. Bajwa
& R. Kazmi (Eds.), Engineering software for modern challenges (pp. 3-15). Cham: Springer. doi: 10.1007/978-3-
031-19968-4_1.

[19] Mirzaei, M., & Meshgi, K. (2023). The use of machine learning in developing learner-adaptive tools for second
language acquisition. In CALL for all languages – EUROCALL 2023 short papers (pp. 272-277). Reykjavik: University
of Iceland. doi: 10.4995/EuroCALL2023.2023.16996.

[20] Peng, P., & Fu, W. (2022). A pattern recognition method of personalized adaptive learning in online education.
Mobile Networks and Applications, 27(3), 1186-1198. doi: 10.1007/s11036-022-01942-6.

[21] Pravorska, N., & Hryha, S. (2024). Methods for implementing microservice architectures: Advantages and
disadvantages, implementation and testing in the development of software applications. Herald of Khmelnytskyi
National University. Technical Sciences, 335(3(1)), 404-408. doi: 10.31891/2307-5732-2024-335-3-55.

[22] Rahman, M., Hossain Chy, S., & Saha, S. (2023). A systematic review on software design patterns in today’s
perspective. In Proceedings of the 11th international conference on serious games and applications for health
(pp. 1-8). Athens: IEEE. doi: 10.1109/SeGAH57547.2023.10253758.

[23] Skeet, J. (2019). C# in depth. London: Manning.
[24] Tanweer, M., & Ismail, A. (2024). Generative AI in curriculum development: A framework for adaptive, customized,

and personalized learning. In Z. Fields (Ed.), Impacts of generative AI on creativity in higher education (pp. 197-
230). New York: IGI Global Scientific Publishing. doi: 10.4018/979-8-3693-2418-9.ch008.

[25] Troussas, C., Krouska, A., & Sgouropoulou, C. (2020). A novel teaching strategy through adaptive learning
activities for computer programming. IEEE Transactions on Education, 64(2), 103-109. doi: 10.1109/
TE.2020.3012744.

[26] Uriawan, W., Putra, R.D., Siregar, R.I., Gunawan, S.N., Adriansyah, S., & Nurrohman, W. (2024). BrainNest:
Implementation of TypeScript and MERN stack to improve scalability of interactive and personalized e-learning.
Preprints. doi: 10.20944/preprints202407.0051.v1.

[27] Wang, S. (2023). Developing and implementing effective e-learning software for mechanics: A study of FET
and C#. In Proceedings of the 5th international workshop on artificial intelligence and education (pp. 125-130).
Tokyo: IEEE. doi: 10.1109/WAIE60568.2023.00030.

http://eprints.utar.edu.my/4088/
https://doi.org/10.51594/ijarss.v6i9.1588
https://doi.org/10.1201/9781032644509-3
https://doi.org/10.1007/978-3-031-65038-3_26
https://doi.org/10.1007/978-3-031-65038-3_26
https://doi.org/10.1007/978-1-4842-3249-1
https://doi.org/10.1007/978-1-4842-3249-1
https://doi.org/10.5220/0011964700003470
https://doi.org/10.33296/2707-0255-18(35)-19
https://doi.org/10.3390/electronics13183762
https://doi.org/10.48550/arXiv.2409.02425
https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1541
https://doi.org/10.32782/2521-6643-2023.1-65.3
https://doi.org/10.32782/2521-6643-2023.1-65.3
https://doi.org/10.1007/978-3-031-19968-4_1
https://doi.org/10.1007/978-3-031-19968-4_1
https://doi.org/10.4995/EuroCALL2023.2023.16996
https://doi.org/10.1007/s11036-022-01942-6
https://doi.org/10.31891/2307-5732-2024-335-3-55
https://doi.org/10.1109/SeGAH57547.2023.10253758
https://www.manning.com/books/c-sharp-in-depth-fourth-edition
https://doi.org/10.4018/979-8-3693-2418-9.ch008
https://doi.org/10.1109/TE.2020.3012744
https://doi.org/10.1109/TE.2020.3012744
https://doi.org/10.20944/preprints202407.0051.v1
https://doi.org/10.1109/WAIE60568.2023.00030

Bulletin of Cherkasy State Technological University, Vol. 29, No. 3, 2024

Using design patterns and typed languages...

54

Використання патернів проектування та типізованих мов
при розробці адаптивної моделі персоналізованого навчання

Павло Федорка
Доктор філософії, доцент
Ужгородський національний університет
88000, пл. Народна, 3, м. Ужгород, Україна
https://orcid.org/0000-0002-9242-5588
Федір Сайберт
Магістр, асистент
Ужгородський національний університет
88000, пл. Народна, 3, м. Ужгород, Україна
https://orcid.org/0009-0004-8081-4174
Роман Бучук
Кандидат фізико-математичних наук, доцент
Ужгородський національний університет
88000, пл. Народна, 3, м. Ужгород, Україна
https://orcid.org/0009-0000-4199-5583

Анотація. Мета роботи полягала у визначенні ефективності застосування шаблонів проєктування та типізованих
мов програмування, зокрема TypeScript і C#, у побудові адаптивної моделі персоналізованого навчання у
сфері програмної інженерії. Під час дослідження було розглянуто використання шаблонів проєктування при
розробці адаптивної моделі персоналізованого навчання, проведено огляд та використання мов TypeScript
та C# у створенні такої моделі, а також порівняно дані типізовані мови програмування та ресурси для
навчання у програмній інженерії. Основні результати дослідження показали, що серед шаблонів проєктування
найефективнішими для побудови адаптивної моделі персоналізованого навчання є Singleton, Factory, Strategy
та Observer, оскільки вони підвищують гнучкість і адаптивність системи. Розроблені програмні прототипи
продемонстрували, що використання мови TypeScript забезпечує надійність адаптивної системи завдяки
статичній типізації та гнучким інтерфейсам, а мова C# з можливостями Generics та Language Integrated Query
(LINQ) сприяє ефективному управлінню даними та модульною інтеграцією. У порівняльному аналізі виявлено,
що мова C# краще підходить для складніших систем з високими вимогами до управління даними, тоді як
TypeScript забезпечує швидку інтеграцію й більшу гнучкість у розробці фронтенду. Також проведений огляд
доступних навчальних ресурсів для обох мов виявив більшу різноманітність для TypeScript, що може сприяти
швидшому освоєнню для нових користувачів. Висновки свідчать, що застосування шаблонів проєктування та
типізованих мов програмування є важливим підходом до створення персоналізованих навчальних моделей,
що здатні адаптуватися до індивідуальних потреб користувача та підвищувати ефективність навчання у
програмній інженерії

Ключові слова: індивідуалізована освіта; диференційоване навчання; програмна архітектура; об’єктно-
орієнтоване моделювання; налаштовувані інтерфейси; оптимізація даних

[28] Wang, S., Mao, X., & Zhang, Y. (2024). Development of e-learning software for aluminum alloy bending
experiment based on simulation technology. In Proceedings of the 5th international conference on computer
science, engineering, and education (pp. 39-44). Shanghai: IEEE. doi: 10.1109/CSEE63195.2024.00016.

[29] Washizaki, H., Khomh, F., Guéhéneuc, Y.-G., Takeuchi, H., Natori, N., Doi, T., & Okuda, S. (2022). Software-
engineering design patterns for machine learning applications. Computer, 55(3), 30-39. doi: 10.1109/
MC.2021.3137227.

[30] Xu, R., Zhang, L., & Chollathanrattanapong, J. (2024). A study of the adaptability of adaptive learning systems
to individualized educational strategies. Applied Mathematics and Nonlinear Sciences, 9(1). doi: 10.2478/amns-
2024-2737.

[31] Zhang, H., Lin, Y., Shen, S., Han, S., & Lv, K. (2024). Enhancing off-policy constrained reinforcement learning
through adaptive ensemble C estimation. Proceedings of the AAAI Conference on Artificial Intelligence, 38(19),
21770-21778. doi: 10.1609/aaai.v38i19.30177.

https://orcid.org/0000-0002-9242-5588
https://orcid.org/0009-0004-8081-4174
https://orcid.org/0009-0000-4199-5583
https://doi.org/10.1109/CSEE63195.2024.00016
https://doi.org/10.1109/MC.2021.3137227
https://doi.org/10.1109/MC.2021.3137227
https://doi.org/10.2478/amns-2024-2737
https://doi.org/10.2478/amns-2024-2737
https://doi.org/10.1609/aaai.v38i19.30177

