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Abstract: A number of computer experiments have investigated the effectiveness in terms
of accuracy of the method for simultaneously determining the distributions of electrical
conductivity and magnetic permeability in the subsurface zone of planar conductive objects
when modeling the process of eddy-current measurement testing by surface probes. The
method is based on the use of surrogate optimization, which involves the use of a high-
performance neural network proxy-model of probe by means of a deep learning as part of
the target quadratic function. The surrogate model acts as a carrier and storage of a priori
information about the object and takes into account the influence of all the main factors
essential in the formation of the probe output signal. The problems of the surrogate model’s
cumbersomeness and mitigation of the “curse of dimensionality” effect are solved by
applying techniques for reducing the dimensionality of the design space based on the PCA
algorithm. We investigated options for compromise solutions regarding the dimensionality
of the PCA-space and the accuracy of obtaining the desired material properties profiles
by the optimization method. The results of modeling the inverse measurement problem
indicate a fairly high accuracy of profile reconstruction.

Keywords: material properties; eddy current measurements; surrogate optimization;
reduced order metamodel; a priori information; PCA space; deep neural networks

1. Introduction
Eddy current analysis of the microstructure of materials is an important tool in many

fields of science, engineering, and industry due to its unique properties and the ability to
analyze it in detail and detect deviations from the norm.

Magnetic permeability (MP) and electrical conductivity (EC) are highly structure-
sensitive parameters of a ferromagnetic material, and knowledge of their surface distri-
butions, i.e., profiles, allows us to track the transformations of its local-spatial physic-
mechanical properties, including hardness, plasticity, viscosity, strength, etc., as well as
its chemical and phase composition. In the original state, the material of the test objects
(TO) is homogeneous with unchanged electrophysical properties throughout the entire
volume. However, when it is subjected to certain physical or chemical influences, such
as thermochemical modification, vibration hardening of the surface, or others, changes in
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microstructure occur throughout its entire near-surface layer. These changes are continu-
ous along a certain zone of the material and provide significant useful information about
mechanical deformations of objects, redistribution of elastic stress concentration, quality of
technological operations of surface hardening, etc. Thus, the determination of the profiles
of electrophysical material properties provides new advanced capabilities for the effective
implementation of technological processes of testing, monitoring, and diagnosing critical
states of objects of various functions.

In this study, we consider a method for simultaneously establishing the profiles of
EC and MP, which is carried out by measurements with a surface eddy current probe
(ECP) with subsequent calculations using a surrogate optimization algorithm and reduced-
dimensional neural network metamodels. Thus, the problem of reconstructing the EC and
MP profiles based on direct measurements of signal amplitude and phase by a surface ECP
is, from a mathematical point of view, a multi-parameter inverse ill-posed problem.

1.1. Overview of Methods for Determining Profiles of Electrophysical Properties of Materials

Among the methods used to determine material property profiles, the most common
ones are the inversion method and the method based on optimization algorithms [1–3],
which minimize the difference between the results of calculations based on the mathemati-
cal model of field-material interaction and the measurement. However, such well-known
approaches and methods that involve the use of multi-frequency measurements [4–7], im-
proved probe constructions [8–10], compensation techniques [11], and the phenomenon of
invariance [12,13] are rarely used due to a number of disadvantages. Thus, the modification
of ECP constructions by incorporating additional coils complicates them. However, it pro-
vides further information about the measured electrophysical parameters, thus resulting in
an increase in computing resources for its processing. The method of multifrequency exci-
tation of eddy currents is characterized by the same disadvantages. It should also be noted
that information processing in both of these methods is performed at the measurement
stage, and this is a point for their implementation. Measuring techniques using compen-
sation and the phenomenon of invariance are also marked by a common disadvantage,
namely, the inability to measure both profiles of material properties simultaneously.

Despite significant advantages of optimization techniques in solving inverse problems
in various applications, as noted by researchers in their works [1–3], they are unable to solve
the problem of finding the profiles of EC and MP due to their high resource consumption,
since the optimization algorithm involves the repeated use of a complex mathematical
model of a direct problem with a significant number of desired variables, reaching hundreds
in the target function. The approach proposed by the authors in [14–16] with a combination
of optimization algorithms and physical multifrequency measurements of the ECP is rather
difficult to implement. It takes a lot of effort to implement tool measurement with a
complex schematic solution at swept-frequencies, proposed in [17–19]. The data-driven
methods noted in [20] have a low accuracy of reconstructing the EC profiles. The procedure
for reconstructing exclusively the distribution of ECs proposed in [21], which combines
iterative inversion and finite element modeling, is computationally intensive.

Given the significant advantages of optimization algorithms and the ability to min-
imize the high resource intensity of target functions with surrogate optimization tech-
niques [22–26], this method of reconstructing material property profiles has advantages
for any arbitrary form of test objects. Moreover, supposing the surrogate model is created
on the basis of neural networks and is a carrier of previously accumulated information on
TO [27], it provides much more information about the measurement test process.

It is necessary to note the possibility of using both local [14,28] and global optimization
methods [2,3,29] for this task, detailing optimization techniques. The application of the



Electronics 2025, 14, 212 3 of 22

modified Newton–Raphson local search method, presented in [28] and improved for
solving incorrectly stated and ill-posed problems using regularization and an unmodified
sensitivity matrix, provides an acceptable calculation accuracy. However, the use of global
optimization search methods [30], to find the minimum of a complex target function in a
multidimensional space without special requirements for the points of initial approximation
is more promising for this purpose. The most famous representatives of this class of
algorithms are the stochastic evolutionary genetic algorithm GA and algorithms based on
metaheuristics. Since the number of variables to be searched, i.e., the dimensionality of the
factor space, is significant for profile recon reconstruction problems, the use of optimization
algorithms is problematic due to the “curse of dimensionality”.

Therefore, taking the above-mentioned into account, it is advisable to apply improved
approaches based on modern effective optimization techniques, in particular, surrogate
modeling techniques using reduced-dimensional metamodels, to determine the distribu-
tions of material properties. It is a key to a simultaneous solution of both the problem of
calculating resource-intensive target functions and reducing the number of variables in
optimization algorithms, which significantly decreases the error of solving the problem.

1.2. Overview of Search Space Reduction Methods

A number of recent studies on the simultaneous solution of both of these problems are
aimed at using search algorithms for optimization in a low-dimensional compact space,
which allows the dimensionality of the problem to be reduced by choosing a combination
of variables or the main directions of the new basis, in which the bulk of the variation
in the data of the full factor space is concentrated [31]. Reducing the cumbersomeness
of high-dimensional surrogate models, significantly mitigating the effect of the “curse
of dimensionality” in optimization algorithms is provided by Dimensionality Reduction
Techniques (DRTs). In addition to these advantages, surrogate models, due to their ap-
proximation nature, also have the ability to accumulate a priori information about the TO
obtained at the stage of their creation.

An experimental study of certain DRTs was performed and its results were published
in [32], where the methods of Principal Component Analysis (PCA), Kernel Principal
Component Analysis (KPCA), Autoencoders (AEs), and Variational Autoencoders (VAEs)
were considered. The results demonstrated the advantage of AEs and the PCA method
primarily by the criterion of modeling accuracy. However, the use of AEs causes significant
difficulties in performing the inverse transformation after optimization when returning to
the original factor space.

Articles [33,34] discussed the possibility of using the Uniform Manifold Approxima-
tion and Projection (UMAP) algorithm and its variants as a type of DRT performing a
nonlinear reduction in the dimensionality of the search space. It should be noted that the
inverse transformation of the obtained optimal solution from a low-dimensional space to
the original high-dimensional space after applying the UMAP dimensionality reduction
method is complex and almost always approximate. Unlike linear dimensionality reduc-
tion methods, such as PCA, UMAP applies nonlinear transformations, which makes it
not always possible to accurately recover the desired variables in high-dimensional space.
Therefore, taking into account all the advantages and disadvantages of the known DRTs,
PCA seems to be promising for overcoming the problems of high dimensionality in the
context of using surrogate optimization to determine the profiles of material properties of
the TO.

Thus, the object of the study of this publication is the process of simultaneous determi-
nation of the profiles of material properties of the test objects by the eddy current method.
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The subject of the study is the method of simultaneous determination of subsurface
profiles of electrophysical parameters of metal objects by the eddy current method with a
priori accumulation of information in surrogate models of reduced dimensionality.

The aim of this research is to study the effectiveness of the proposed method of joint
simultaneous determination of electrical conductivity and magnetic permeability profiles
in the subsurface zone of planar test objects using surrogate optimization techniques in the
reduced dimension PCA-space and accumulation of a priori information in the surrogate
model about all the main factors that form the signal of the surface eddy-current probe
when varying the dimension of the compact space.

The article is structured as follows: introduction, three chapters, and conclusions. The
introduction focuses on the relevance of the problem under study, analyzes modern meth-
ods for determining the profiles of electrophysical properties of materials and methods
for reducing the dimensionality of the search space, and states the object, subject, and
purpose of the research. The second section describes the main methodological aspects of
the research and presents a surrogate optimization formulation of the inverse measurement
problem. The third section presents the results of numerical experiments with the analysis
of their accuracy. The conclusions include the discussion of the research results and the
analysis of their effectiveness. Thus, determining the efficiency of the method of simulta-
neous identification of the electrophysical properties of materials in reduced dimensional
spaces using eddy current measurements is the main contribution of the present study.

The innovation of the article lies in the study of the conditions for achieving a reason-
able compromise between the accuracy of determining the near-surface distributions of the
electrophysical material properties and the dimensionality of PCA-reduced order surrogate
models, which determines, in turn, the accuracy of approximation of the electrodynamic
model and the accuracy of finding the global optimum, and which are used in the method
of simultaneous identification of profiles proposed by the authors with the accumulation
of a priori information in neural network proxy models about the factors influencing the
surface ECP signal.

2. Materials and Methods
In the modeling, we assume that the TOs have infinite geometric dimensions, and the

TO medium is supposed to be linear, homogeneous, and isotropic. The determination of the
EC and MP profiles is performed by numerical calculations based on the ECP measurement
data. The algorithm for solving the inverse measurement problem involves the use of an
electrodynamic model of the eddy-current testing process. To simplify it, the subsurface TO
zone with certain structural differences caused, for example, by technological operations
of surface hardening, is considered as conditionally multilayer. Each conditional layer is
characterized by different constant values of material properties. The simulation of the
continuity of the EC and MP profiles is ensured by a large number of conditional layers.
The electromagnetic field is excited by the ECP excitation coil with a sinusoidal current I
varying with a certain angular frequency ω. The model takes into account that this coil
has a rectangular cross-section of finite dimensions, is characterized by a uniform current
density across the cross-section and a certain number of turns W. Under these assumptions,
the Uzal-Cheng-Dodd-Deeds [35–38] electrodynamic model of the eddy current test process
was built in an analytical form modified by Theodoulidis [21].

The magnetic vector potential A in the thickness of the material TO is considered first
for the case of excitation by a point source in the regions of the subsurface layer, which are
given by L conditional layers, in particular, 0 < z < −d1 for the first layer; −dt−1 < z < −dt

for the t-th layer; −dt < z < −dt+1 for the t+1-th layer; −dt+1 < z < −dL−1 for the L-th layer.
In this case, the thickness of the material of the TO is infinite, that is, −dL−1 < z < ∞. The
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surface of the TO is taken as the origin of the regions in the cylindrical coordinate system
(Figure 1).
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Figure 1. Geometric model of the profile measuring task.

In all these areas, the magnetic vector potential A is described by the Helmholtz partial
differential equation:

∂2 A
∂r2 +

1
r
· ∂A

∂r
− A

r2 +
∂2 A
∂z2 = k̃2 · A − µ0 · I · δ(r − r0) · δ(z − z0), (1)

where k̃2 = j · ω · µr · µ0 · σ; j =
√
−1;

δ is the Dirac delta function; r0, z0 are the coordinates of the location of the point
source of the electromagnetic field; µ0 = 4·π·10−7 H/m is the magnetic constant in vacuum;
µr is relative magnetic permeability of the material; σ is the electrical conductivity of the
material, S/m.

The general solution of Equation (1) is as follows:

A(r, z) =
∞∫

0

[A(κ) · J1(κr) + B(κ) · Y1(κr)] · [C(κ) · eλz + D(κ) · e−λz]dκ, (2)

where λ =
√

κ2 + k̃2; J1(), Y1() is the first-order Bessel functions of the first kinds.
In turn, the unknown coefficients in (2) are determined from the system of equations

written for each media interface based on the fulfillment of the boundary conditions for the
vector potential:[

A0 = A1
∂A0
∂z = 1

µr1
· ∂A1

∂z

]
z=0

and

[
At+1 = At

1
µt+1

· ∂At+1
∂z = 1

µt
· ∂At

∂z

]
z=−dt

(3)

In this case, an electromagnetic field is formed in the air environment in the area below
the probe excitation coil as a superposition of its two components. The first component is
the field of the coil in free space without a conductor A(s), and the second one is the field
created by the eddy currents induced in the TO A(ec).
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Finally, the magnetic vector potential of the subsurface ECP, taking into account the
cross-section of the excitation coil, is as follows:

A(rδ, zδ) = A(s) + A(ec) =

∞∫
0

J1(κrδ) · [Cs · eκzδ + Dec · e−κzδ ]dκ, (4)

where:

Cs =
µ0 · i0

2
· χ(κr1, κr2)

κ3 · (e−κz1 − e−κz2);

Dec =
(κ · µt+1 − λ1) · V11(1) + (κ · µt+1 + λ1) · V21(1)
(κ · µt+1 + λ1) · V11(1) + (κ · µt+1 − λ1) · V21(1)

· Cs;

i0 = W · I(r2 − r1)
−1 · (z2 − z1)

−1;

χ(x1, x2) =

{
x1 · J0(x1)− 2 ·

∞
∑

m=0
J2m+1(x1)

}
−

{
x2 · J0(x2)− 2 ·

∞
∑

m=0
J2m+1(x2)

}
;

V(1) = T(1, 2) · T(2, 3) · · · T(L − 2, L − 1) · T(L − 1, L);

T11(t, t + 1) =
1
2
· e(−λt+1+λt)dt ·

(
1 +

µt

µt+1
· λt+1

λt

)
;

T12(t, t + 1) =
1
2
· e(λt+1+λt)dt ·

(
1 − µt

µt+1
· λt+1

λt

)
;

T21(t, t + 1) =
1
2
· e(−λt+1−λt)dt ·

(
1 − µt

µt+1
· λt+1

λt

)
; 1

T22(t, t + 1) =
1
2
· e(λt+1−λt)dt ·

(
1 +

µt

µt+1
· λt+1

λt

)
;

λt =
(
κ2 + j · ω · µ0 · µt · σt

)1
2 ;

A(rδ, zδ) is the azimuthal component of the vector potential, Wb/m; V(1) is a matrix
with elements V11, V21; T() is a matrix with elements T11(), T12(), T21(), T22(); µ0 = 4·π·10−7

is the magnetic constant in vacuum, H/m; µt, σt are the relative magnetic permeability and
electrical conductivity of the conditional layer t, respectively; Jm() are cylindrical Bessel
functions of the first kind of m-order; rδ, zδ are the coordinates of the observation point
P on the contour of the pick-up coil Lc in the cylindrical coordinate system, m; (r2–r1) is
the width of the cross-section of the ECP excitation coil, m; (z2–z1) is the height of the
cross-section of the ECP excitation coil, m; i0 is the current density across the cross-section
of the ECP excitation coil, A/m2.

Thus, an output signal is generated in the pick-up coil of the ECP, which is calculated
by the formula:

emod = −j · ω · wmes ·
∮
Lc

A(rδ, zδ)dlp = −j · ω · wmes · 2 · π · rδ · A(rδ, zδ), (5)

where wmes is the number of turns of the pick-up coil.
Based on the electrodynamic Model (5), the authors created and thoroughly tested a

software product capable of calculating the output signal of a surface ECP under various
measurement conditions. The verification of this product was carried out by comparing the
results with both calculations based on analytical models obtained for one- and two-layer
TOs [39] and numerical calculations by the finite element method in the COMSOL Multi-
physics environment (AC/DC module) for a three-layer object [40], where the maximum
relative error of amplitude and phase in determining the vector potential did not exceed
0.3% and 0.5%, respectively. Figure 2 shows a graphical illustration of the distributions of
relative errors in calculating the amplitude and phase of the magnetic vector potential in
the ECP measurement zone.
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Insignificant differences in calculations for electromagnetic computations are caused
by errors inherent in each method. In particular, the analytical calculation is characterized
by errors of truncation of the upper bound of the non-proprietary integral of the first
kind, errors of approximate calculation of special Bessel functions and integrals of them,
and error of the quadrature formula for calculating the non-proprietary integral. For the
finite element method, the main errors are discretization ones and the dependence of the
calculation results on the mesh construction, errors of shape functions of a given type,
errors in solving systems of equations, etc.

It was believed that during the procedure of measuring the ECP over a planar object,
the signal amplitude and phase are fixed in accordance with one of the classical schemes.
The mathematically measured complex-valued signal emes can be represented in an alge-
braic form as the following expression: emes = Cmes + j·Dmes, where Cmes and Dmes are its
real and imaginary parts, respectively. Such a mathematical form of signal representation
allows for more efficient construction of the target function F, which is used to determine
the optimal values of the desired profile parameters.

In the mathematical form, the optimization problem is formulated as finding the
minimum of a functional on the domain Rn: F∗ = argmin

σ,µ
{F(σ,µ, f , z) : σ,µ ∈ Rn},

n = 2 · L + 2, where Rn is an n-dimensional Euclidean space, i.e., a domain of vectors
(σ1, . . . , σL, µ1, . . . , µL)

T , all components of which are real values.
Then the task of identifying EC and MP profiles is minimized to the following

quadratic function:

F(σ,µ, f , z) = (Cmes − Gmetamod(σ,µ, f , z))2 + (Dmes − Zmetamod(σ,µ, f , z))2 → minin (6)

where: emetamod = Gmetamod + j·Zmetamod is the value of the ECP signal obtained using
a surrogate model (metamodel, i.e., a model for an electrodynamic model); σ, µ are the
corresponding vectors of material properties of the TO determining the desired profiles; f
is the frequency of the excitation field; z is the lift-off. Then the desired parameters in the
optimization algorithm are the components of the EC and MP vectors, the numbers of which
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determine the value of the right-hand side of the target Function (6) Gmetamod(σ,µ, f , z)
and Zmetamod(σ,µ, f , z).

The modeling was based on the research methodology, which is discussed in detail
by the authors and illustrated by examples in [22–25,27] and involves the following main
steps “exact” solution of the direct electrodynamic problem of interaction of the quasi-
stationary electromagnetic field generated by the surface ECP with a conductive planar
TO with piecewise constant profiles of material properties and calculation of the ECP
signal; designing computational experiments [41] and building proxy models (metamodels)
based on deep fully connected MLP-neural networks with a priori information about the
TO; solving the inverse problem of determining profiles by an optimization population
metaheuristic algorithm for finding a global extremum using a surrogate model. The
general scheme of the proposed method is illustrated in Figure 3.
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In this research, the final stage has certain peculiarities. The design of computational
experiments includes all the main factors determining the formation of the output signal
of the surface ECP, in particular, the material properties of the TO, the frequency of the
electromagnetic field of sensing, and the lift-off [42]. This allows of accumulating additional
information about the TO at the stage preceding the optimization solution, using the
unique generalizing capabilities of deep neural networks used to create a surrogate model.
Surrogate optimization is performed not in the full design space, the dimension of which is
determined by the double number of conditional layers of the subsurface zone of the TO,
but in a reduced space of reduced dimensionality, which retains almost all the properties of
the full space with a slight loss of information. Such a compact representation of the search
space was made possible by using the PCA method. The aim of PCA is to find a space that
represents the direction of maximum variance of the data in the design of experiment (DOE)
matrix. The PCA-space is defined by the addition of orthogonal principal components,
i.e., vectors. The principal components are calculated using the SVD-decomposition of
the Gram matrix by singular values. In this case, the left and right singular matrices
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constitute orthonormal bases that correspond to the sorted eigenvalues associated with
the singular numbers of the matrix. The selected part of the left singular matrix is used as
eigenvectors to construct the PCA-space. The dimensionality of this space can be adjusted
by selecting a larger or smaller part of the eigenvectors, taking into account the values of
the corresponding eigenvalues of the matrix.

Thus, when performing optimization, a compromise can be found between the compu-
tational complexity of the problem and the accuracy of its solution by testing and choosing
the dimension of the reduced search space. After applying the optimization algorithm, the
back-projection is performed to return to the original design space to determine the desired
EC and MP profiles.

3. Results
One of the stages of the proposed methodology is the creation of a computerized

homogeneous DOE on Sobol’s quasi-sequences, which has low discrepancy rates both
for the volumetric case and for two-dimensional projections. This is necessary for the
construction of surrogate models. The task of reconstructing the EC and MP profiles
is carried out using a metamodel with consideration of the four factors σ, µ, and f, z,
which are the most influential in eddy-current measurements by surface ECP. Then, the
implementation of a multidimensional homogeneous quasi-design is performed on the
following combinations of Sobol’s LPτ-sequences ξ1, ξ6, ξ14, ξ17 [41]. The numerical
values of the coordinates of the points of such a DOE Nprofile = 8191 with improved two-
dimensional projections on a unit scale are shown in Table 1.

Table 1. Design of experiment on Sobol’s quasi-sequences in unit hyperspace.

Number of
the Sequence

Number of the DOE Point

1 2 . . . 4000 4001 4002 4003 4004 . . .

ξ1 0.5 0.25 . . . 0.023193 0.523193 0.273193 0.773193 0.148193 . . .
ξ6 0.5 0.75 . . . 0.318115 0.818115 0.568115 0.068115 0.443115 . . .
ξ14 0.5 0.75 . . . 0.08374 0.58374 0.83374 0.33374 0.20874 . . .
ξ17 0.5 0.25 . . . 0.631104 0.131104 0.881104 0.381104 0.256104 . . .

Number of
the Sequence

Number of the DOE Point

. . . 6500 6501 6502 . . . 8189 8190 8191

ξ1 . . . 0.150757 0.650757 0.400757 . . . 0.749878 0.499878 0.999878
ξ6 . . . 0.847046 0.347046 0.097046 . . . 0.879761 0.629761 0.129761
ξ14 . . . 0.198608 0.698608 0.948608 . . . 0.997925 0.747925 0.247925
ξ17 . . . 0.341187 0.841187 0.091187 . . . 0.634644 0.384644 0.884644

The transition from the unit hyperspace to the real factor space was made by scaling.
It is taken into account that the change in the microstructure in the subsurface zone of the
TO is characterized by the initial values of the EC σdeep and the MP µdeep, which remain
unchanged at a certain depth of the subsurface zone, and the influence of any of the physical
factors (temperature, strain, etc.) on the TO leads to the fact that the values of the EC and
MP, i.e., σsurf and µsurf, change as much as possible on their surface. We will assume that
the profiles of material properties vary within ±15% relative to the values of EC and MP on
the surface of the TO. It is within these limits, which can be adjusted if necessary, that the
profiles are reconstructed. The EC profile is characterized by the values σdeep = 2·106 S/m,
σsurf = 9.2·106 S/m, and the MP profile is characterized by µdeep = 10, µsurf = 29.78 (Table 2,
point 1). Then, taking into account the specified limits, the ranges of change in the EC



Electronics 2025, 14, 212 10 of 22

parameters on the surface of the TO will be 7.82·106 ≤ σsurf ≤ 10.1·106 S/m, and the MP
will be 24.531 ≤ µsurf ≤ 35.028 [25].

Table 2. Total training sample of size 8191 × 122 for creating metamodels.

№ Profile Re(emod) Im(emod) µ1 . . . µ60 σ1, S/m . . . σ60,
S/m f, kHz z·10−3, m

1 −2.618 −4.049 29.750 . . . 10.096 8,834,221 . . . 2,073,403 10.5 1.5
2 −3.344 −4.34 27.129 . . . 10.083 9,490,569 . . . 2,107,756 15.25 1
3 −1.651 −3.074 32.371 . . . 10.109 8,177,872 . . . 2,039,050 5.75 2
4 −1.082 −2.156 25.819 . . . 10.077 7,849,698 . . . 2,021,873 3.375 2.25
5 −3.021 −4.392 31.061 . . . 10.102 9,162,395 . . . 2,090,580 12.875 1.25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4000 −0.588 −1.372 32.123 . . . 10.107 8,233,531 . . . 2,041,963 1.7 2.106
4001 −1.976 −2.886 29.502 . . . 10.095 7,577,287 . . . 2,007,615 6.451 0.6059
4002 −3.438 −5.526 34.744 . . . 10.120 8,889,879 . . . 2,076,316 15.951 1.606
4003 −0.903 −1.749 24.751 . . . 10.071 8,356,662 . . . 2,048,408 2.591 1.7622
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6500 −2.007 −3.224 32.642 . . . 10.110 9,417,058 . . . 2,103,909 7.148 1.4324
6501 −1.534 −2.355 26.089 . . . 10.078 9,745,232 . . . 2,121,085 4.773 1.1824
6502 −3.093 −5.503 31.331 . . . 10.103 8,432,536 . . . 2,052,379 14.273 2.1824
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8188 −2.721 −3.575 27.128 . . . 10.083 8,518,648 . . . 2,056,886 10.4601 0.7692
8189 −3.82 −6.145 32.370 . . . 10.109 9,831,345 . . . 2,125,592 19.9601 1.7692
8190 −3.338 −4.77 29.749 . . . 10.096 9,174,997 . . . 2,091,239 15.2101 1.2692
8191 −1.602 −3.195 34.991 . . . 10.121 7,862,300 . . . 2,022,533 5.7101 2.2692

For example, the model piecewise steady-state representation of profiles is carried
out according to the law of distribution of the “exponent” for the EC and the “gaussian”
for the MP, referring to the typical dependencies determined experimentally in [38] for
various technological operations. Within the specified boundary limits of changes in the
material properties of the TO in the real design space, we calculated the distributions of EC
and MP for all points of the DOE, which corresponds to the number of profiles in the total
sample Nprofile with a sampling of the subsurface zone D = 3 · 10−4 m by L = 60 conditional
layers. Table 2 shows the numerical values of the material properties µsurf, σsurf on the
surface of the TO and at the depth of the subsurface zone µdeep, σdeep at the DOE points in
real hyperspace. In addition, the creation of the DOE requires setting the frequency of the
electromagnetic excitation field, which is determined by the range of 1 ≤ f ≤ 20 kHz and is
informative for observing the response of the probe signal at different sensing depths of
the TO and the lift-off, which varies in the range of 0.5 ≤ z ≤ 2.5 mm.

Using the electrodynamic Model (5), we calculated the output signals of the ECP,
taking into account the most influential factors, the results of which are shown in Table 2.

To visualize the presentation of sample profiles of the training sample, let us illustrate
them with graphs for some of their cases (Figures 4 and 5).

In the full factor space, we obtained a dataset of size Nprofile × (2L + 2). For this case,
the dimension of the factor space is quite significant, as it is 122. Therefore, building a
metamodel in such a space is cumbersome. This created sample is used for the next stage
of the research, namely, the transition to the reduced dimensionality space using the PCA
method based on the SVD-decomposition of the Gram matrix, which makes it possible to
obtain the data matrix G obtained by projection.
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Thus, to determine the effectiveness of the proposed optimization method for recon-
structing profiles in PCA-space in terms of accuracy, we varied its dimension based on the
values of the eigenvalues of the Gramm’s matrix. Neural network surrogate models were
created in PCA-space. For all cases of deep learning of neural networks, the matrix G in the
reduced space has the size Nprofile × nred, where nred is the number of basis vectors g in the
new space, which, in the experiments, were taken to be 51, 55, 62, 63, 66, 70. For example,
Tables 3 and 4 show the matrices G for nred = 66 and nred = 70, respectively. The number
of profiles in the training sample was distributed in the following ratio: Ntraine = 4211 for
training, Ntest = 903 for testing, and NCV = 903 for cross-validation. However, later on, the
profiles that did not participate in neural network training were used as synthesized profiles
to verify the reliability of the solution to the inverse problem of profile reconstruction.

The metamodels were built using deep learning neural networks, for which the inputs
are a matrix of g-parameters, and the outputs of each of the two networks are, respectively,
the real and imaginary parts of the EMF of ECP. It should be noted that instead of a single
complex-valued neural networks model, two truly significant ones were created, separately
for each part of the EMF [23].
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Table 3. Matrix G of size 8191 × 66 for creating a metamodel in reduced space.

№ Point g1 g2 . . . g63·10−3 g64·10−6 g65·10−5 g66·10−6

1 −34,344,006 −40,876.45 . . . 1.1182417 −4.3655575 −2.7324841 −9.9903449
2 −36,406,779 469,672.51 . . . 1.3578367 1.0050861 4.8739237 −9.5527309
3 −32,281,232 −551,426.58 . . . −0.84519701 1.8541591 2.6137071 1.4317285
4 −31,249,845 −806,701.24 . . . 0.81916363 −3.4961978 2.5458931 -16.278854
5 −35,375,392 214,397.8 . . . −0.72947157 1.8999668 2.4602704 7.8984196

. . . . . . . . . . . . . . . . . . . . . . . .
4000 −32,456,154 −508,125.92 . . . 0.40719932 −4.3855376 1.4012109 −13.124172
4001 −30,393,713 −1,018,605.3 . . . −0.3012072 0.92514422 0.69598148 12.750525
4002 −34,518,930 2411.1632 . . . -0.04193999 −0.3775342 0.49929265 −2.8554507
4003 −32,843,130 −412,346.93 . . . 0.17409037 −0.21069551 −4.7533737 0.37582572
. . . . . . . . . . . . . . . . . . . . . . . .

6500 −36,175,746 412,500.31 . . . −1.9820983 −0.91582073 3.028646 17.003993
6501 −37,207,131 667,781.07 . . . −0.22798476 −1.4959489 −1.3101498 8.1150943
6502 −33,081,590 −353,341.45 . . . −1.5273564 0.10773142 1.2167706 8.5331139
. . . . . . . . . . . . . . . . . . . . . . . .

8188 −33,352,224 −286,351.94 . . . −0.50085944 1.2109117 6.7995709 8.1435655
8189 −37,477,772 734,747.26 . . . 0.94150458 −2.7386983 1.5916526 −14.582567
8190 −35,414,998 224,197.78 . . . −0.5216811 −2.8553455 0.63959491 8.9033673
8191 −31,289,451 −796,901.49 . . . −0.94330238 −0.73879451 −2.1224067 2.6894707

Table 4. Matrix G of size 8191 × 70 for creating a metamodel in reduced space.

№ Point g1 g2 . . . g67·10−6 g68·10−6 g69·10−6 g70·10−6

1 −34,344,006 −40,876.45 . . . −1.7857154 −2.6970985 1.3360738 8.9565972
2 −36,406,779 469,672.51 . . . −1.8613386 −6.5017436 −2.0646505 −0.22363006
3 −32,281,232 −551,426.58 . . . −0.99542366 −1.1564342 2.0872159 1.7184009
4 −31,249,845 −806,701.24 . . . −6.4539495 −4.7595708 −2.1812924 4.3448066
5 −35,375,392 214,397.8 . . . 3.6382894 −0.26527532 1.0888234 2.6050557

. . . . . . . . . . . . . . . . . . . . . . . .
4000 −32,456,154 −508,125.92 . . . −5.7883783 0.50156034 2.4373703 -0.1625042
4001 −30,393,713 −1,018,605.3 . . . 1.471846 0.14645352 3.5148004 1.0478703
4002 −34,518,930 2411.1632 . . . −0.54317705 1.7661484 −2.8734536 −1.2151284
4003 −32,843,130 −412,346.93 . . . 2.9292836 −0.26367515 −1.3622012 −3.8984309
. . . . . . . . . . . . . . . . . . . . . . . .

6500 −36,175,746 412,500.31 . . . 0.03427952 2.2194627 1.2633268 1.9746877
6501 −37,207,131 667,781.07 . . . 2.3673397 2.3233701 6.2805614 3.1002567
6502 −33,081,590 −353,341.45 . . . −2.1026837 3.2496936 −0.11656799 −1.1680763
. . . . . . . . . . . . . . . . . . . . . . . .

8188 −33,352,224 −286,351.94 . . . 0.89647088 −0.43069366 0.23573517 0.83320714
8189 −37,477,772 734,747.26 . . . −0.42935363 4.1352578 0.64174154 −1.1018135
8190 −35,414,998 224,197.78 . . . 0.23375807 1.2310493 3.6886197 2.8839691
8191 −31,289,451 −796,901.49 . . . 3.6561543 1.7678272 −1.8595518 0.27479352

To design neural networks, we made an approximate choice of their architecture
with up to five hidden layers, a variable number of neurons in them, and one output.
Various learning rules were applied, including Levenberg–Marquardt, Conjugate Gradient,
Quickprop, Delta-Bar-Delta, etc. and activation functions such as sigmoid, tanh, RELU.
The neural network variants were evaluated by RMSE (Root Mean Square Error), MAE
(Mean Absolute Error), and R2 (Coefficient of Determination). As a result, for this task, it
turned out to be appropriate to choose an architecture with four hidden layers, a hyperbolic
tangent activation function for each of them, and a Levenberg–Marquardt learning rule.
The encoding of the general structure of the neural networks is presented in the form:
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rMLP-n1-n2-n3-n4-1, where n1, n2, n3, n4 is the number of neurons in each hidden layer for
the real part of the EMF and iMLP-n1-n2-n3-n4-1, respectively, for the imaginary part. This
is the notation used in the tables. Since the inputs to the neural networks are samples of
training data with a large difference in values (Tables 3 and 4), standardization was used to
normalize the feed on the inputs of the neural network values comparable in size.

We obtained neural networks with four hidden layers for the real and imaginary
parts of the EMF, respectively, taking into account a different number of basis vectors g,
the training efficiency of which was evaluated by the values of the mean square errors
MSE (Table 5). The efficiency of neural networks with the PCA-space dimension less than
63 is not sufficiently acceptable (MSE of the order of 10−4), so for further analysis and
construction of neural networks, only cases of dimensions 63, 66, 70 were selected, for
which the MSE is much smaller than the specified one.

Table 5. Mean square error of the metamodels.

Eigenvalues of the
Gram Matrix

Dimensionality
PCA-Space

Mean Square Error MSE

Re(emetamod) Im(emetamod)

433.166 51 5.2·10−4 1.17·10−3

359.081 55 3·10−4 5.9·10−4

24.699 62 3.4·10−4 6.95·10−4

0.057 63 1.24·10−6 1.043·10−6

9.341·10−8 66 3.48·10−7 2.19·10−6

2.276·10−8 70 5.206·10−7 1.461·10−6

As a result, for nred = 66, we obtained the deep neural networks rMLP-16-17-15-11-1
and iMLP-16-17-16-13-1 with four hidden layers for the real and imaginary parts of the
EMF, respectively. The validity of the obtained metamodels was evaluated by the er-
rors RMAEmetamod, % (Relative Mean Absolute Error) separately for the training, cross-
validation, and test samples, the results of which are shown in Table 6, and by analyzing
scatter plots (Figures 6 and 7) and residual histograms (Figures 8 and 9).

Table 6. Error of the approximation RMAEmetamod, % of obtained metamodels for dimension 66
of PCA-space.

Metamodels rMLP-16-17-15-11-1 iMLP-16-17-16-13-1

Training sample, Ntraine = 4211 0.0232 0.0305
Cross-validation sample, NCV = 903 0.0307 0.0389

Test sample, Ntest = 903 0.0287 0.0395
The total sample for training, N = 6017 0.0251 0.0333

Neural networks of a similar architecture were obtained for nred = 70—rMLP-16-17-
16-14-1 and iMLP-16-16-15-12-1. The validity of these metamodels was evaluated as in
the previous case using the same indicators: RMAEmetamod, % (Table 7), scatter diagrams
(Figures 10 and 11), histograms of residuals (Figures 12 and 13).

Table 7. Error of the approximation RMAEmetamod, % of obtained metamodels for the dimensionality
of 70 PCA-space.

Metamodels rMLP-16-17-16-14-1 iMLP-16-16-15-12-1

Training sample, Ntraine = 4211 0.0272 0.0262
Cross-validation sample, NCV = 903 0.0352 0.0367

Test sample, Ntest = 903 0.0369 0.0345
The total sample for training, N = 6017 0.0299 0.029
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In addition, we tested the informativeness and adequacy of the created metamodels at
the level of significance of 5% by the numerical indicators of the coefficient of determination
and Fisher’s F-ratio [43,44], the results of which are presented in Table 8.

Table 8. Checking the adequacy and informativeness of metamodels.

nred Metamodels Statistical Parameters Adequacy Informativeness

66
rMLP-16-17-15-11-1 α = 5%,

vD = 66, vR = 5950
Ftable

0.05;66;5950 = 1.305

Ftotal
66;5950 = 2.48 · 108 R2= 0.9999; Ftotal

66;5950 = 3.26 · 109

iMLP-16-17-16-13-1 Ftotal
66;5950 = 8.11 · 107 R2= 0.999999; Ftotal

66;5950 = 7.01 · 106

70
rMLP-16-17-16-14-1 α = 5%,

vD = 70, vR = 5946
Ftable

0.05;70;5946 = 1.296

Ftotal
70;5946 = 1.56 · 108 R2= 0.99999; Ftotal

70;5946 = 2.45 · 109

iMLP-16-16-15-12-1 Ftotal
70;5946 = 1.14 · 108 R2= 0.999988; Ftotal

70;5946 = 7.09 · 106
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All the created metamodels are adequate, since the calculated values of Fisher’s
criterion for them significantly exceed their critical values. The acceptable informativeness
of the created metamodels is also indicated by the high coefficient of determination, which
is significantly reliable according to Fisher’s criterion at the level of 5%.

The inverse problem was solved using a metaheuristic stochastic global optimization
algorithm [45,46]. For this purpose, a hybrid multi-agent particle swarm optimization
algorithm with evolutionary formation of the swarm composition was used, the effective-
ness of which was previously proven by the authors. Improving the accuracy of solutions
in the study was achieved by using a multi-start technique. By a series of starts of the
optimization algorithm, twenty-three solutions were obtained and inverse transformations
were performed from the PCA-space of the principal components to the primary space,
and the actual MP and EC profiles were found for two test measurements of the EMF at
different space dimensions. Figure 14 shows examples of the obtained profiles for the PCA
space dimension of 63.
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Figure 14. Examples of the obtained profiles for the PCA space dimension equal to 63.

The limits of the obtained errors in determining of the profiles RMAE, %, are given in
Table 9, and the graphs of the distributions of the absolute error modules of the profiles for
test 1, as an example, are shown in Figures 15 and 16.

Table 9. Ranges of change in reconstruction profile variants errors of RMAE.

Number of
the Test

Measurement

Results and Measurement
Conditions

RMAEµ, % RMAEσ, %

nred = 63 nred = 66 nred = 70 nred = 63 nred = 66 nred = 70

Test 1

Re (emes) = −0.58
Im (emes) = −1.236

f = 1533.52 Hz
z = 1.065 mm

0.324–8.483 0.27–5.579 0.042–4.884 0.17–4.824 0.22–2.062 0.137–3.14

Test 2

Re (emes)= −2.557
Im (emes) = −3.827

f = 9599.4 Hz
z = 1.0068 mm

0.208–4.933 0.341–4.135 0.278–3.643 0.602–5.105 0.177–2.166 0.197–3.093

Finally, we obtained the EC and MP profiles for each test measurement by the probe
by averaging over the starts. Figures 17 and 18 show the error values RMAE, % of recon-
structed profiles for these measurements, taking into account the different dimensions of
the PCA-spaces.
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dimensions of PCA-spaces.

Similar numerical experiments were conducted for other PCA-space dimensions, in
particular 51, 55, 62, 63.

4. Discussions and Conclusions
Significant advantages of the PCA method compared to some other methods of reduc-

ing the dimensions of the design space are: the ability to extract the principal components
that contain the largest part of the variance of the data in them; effectively reducing the
dimensionality of the data while retaining a significant part of the information contained in
the original data set; simple and efficient computational procedures performed by linear
algebraic transformations; easy backward transformation to the original factor space after
the optimization algorithm is executed in reduced space factors. Therefore, it is the most
effective for overcoming high-dimensional problems, combined with the use of surrogate
optimization techniques to determine the profiles of material characteristics of the TO.

Similar research in terms of methodology was previously conducted by the authors
with the a priori consideration of a limited number of influential factors in the metamodels,
namely, two factors—µ and σ [23], three—µ, σ, f [24]; four—µ, σ, f, z [25]. Numerical
experiments were performed in all cases according to the same scheme. With the increase
in the amount of a priori information about the TO, there was a tendency to improve the
accuracy of the results of determining the profiles.

Therefore, to improve the accuracy of profile reconstruction, it is necessary to take
into account information on all the most influential factors considerably influencing the
formation of the surface ECP signal. This study took into account all the important factors
as in [25]. In addition, the accuracy of solving the inverse problem of reconstructing the
profiles of the MP and EC is affected by a number of components, one of which is the
accuracy of the created metamodels. This study shows that, with an excessive reduction
in the dimensionality of the PCA-space, which is a consequence of the exclusion of basis
vectors corresponding to significant eigenvalues, the problem of constructing metamodels
with satisfactory MSE performance arises. At the same time, when more information
is taken into account in the metamodel due to an increase in the dimensionality of the
PCA-space, it is possible to obtain metamodels of high accuracy.

A slight change in the dimensions of PCA-spaces, due to the values of eigenvalues,
that were no more than the order of 10−3, resulted in insignificant improvement in the
accuracy of reconstructing material properties profiles. A slight increase in the dimen-
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sionality of the search space obviously somewhat complicates the conditions for finding
an extremum in PCA-space, but the accuracy of its finding is slightly improved, while
a considerable increase in its dimensionality leads to a more severe manifestation of the
“curse of dimensionality” effect. In this case, the accuracy of profile search is lost. However,
it makes sense to choose the smallest possible dimension of PCA-spaces, which ensures the
uncomplicatedness and accuracy of surrogate models, and favorable conditions for finding
an extremum during optimization.

As a result of numerical experiments, it was possible to find a certain compromise
regarding the dimensionality of the reduced space based on the analysis of the accuracy
of determining the near-surface distributions of the electrophysical material properties
and the dimensionality of PCA-reduced surrogate models, which is observed at the level
of 63 and at which the accuracy of profile identification by the RMAE indicator does not
exceed 0.178% for MP and 0.204% for EC. At the same time, the maximum relative errors of
profile measurement were 0.24% and 0.27%, respectively. It is interesting to note that the
authors of the study obtained a solution to a similar inverse problem in the full factor space
and showed the results of reconstructing the profiles of the MP and EC at the level of 5%
error [23].

Thus, the computer experiments have convincingly demonstrated the capabilities of
the proposed method for determining the profiles of material properties of planar TOs
using surrogate optimization techniques in a reduced PCA-space and accumulating the
most important a priori information about objects during eddy-current testing of their
microstructural features.

The method of determining material property profiles proposed by the authors has
prospects for its improvement. The use of inversion-capable neural networks, namely
Invertible Neural Networks, looks quite attractive, as it makes it possible to avoid the
application of the optimization iterative procedure to find profiles. Their use automati-
cally solves the complex problem of a one-to-many relationship to form an unambiguous
mapping in the original design space, which is characteristic of the entire class of inverse
problems when overcoming any non-uniqueness of inverse solutions. In addition, it can be
noted that the method is quite versatile, which, with minor modifications, can be used to
solve inverse design problems in many fields of technology.
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