## УДК 519.6

И. О. Горошко\*, канд. физ.-мат. наук, С. Ю. Протасов\*\*, ассистент, А. А. Ситник\*\*, канд. техн. наук

\*Институт проблем моделирования в энергетике имени Г. Е. Пухова НАН Украины, г. Киев, \*\*Черкасский государственный технологический университет, г. Черкассы

## ФОРМИРОВАНИЕ НЕПАРАМЕТРИЧЕСКИХ ИНТЕГРАЛЬНЫХ ДИНАМИЧЕСКИХ МОДЕЛЕЙ ДАТЧИКОВ В СИСТЕМАХ ИЗМЕРЕНИЯ ИСПЫТАТЕЛЬНОГО ОБОРУДОВАНИЯ

В статье рассмотрены вопросы формирования непараметрических интегральных динамических моделей для датчиков физических величин различного типа. Данные модели могут быть использованы как для определения по известным входным воздействиям сигналов на выходе датчиков, так и для решения задач восстановления неизвестных входных воздействий по наблюдаемым выходным сигналам.

Ключевые слова: интегральные динамические модели, датчики физических величин, аппроксимация, переходные функции, прямые и обратные задачи, восстановление сигналов.

Введение. Одной из серьезных проблем, возникающих при экспериментальном исследовании быстропротекающих процессов разного рода — механических, тепловых, электромагнитных, которые происходят в узлах и системах современного энергетического оборудования, а также при контроле и управлении, является наличие динамических искажений значений измеряемых физических величин, обусловленных прежде всего инерционностью измерительных датчиков [1; 2]. Результатом этого является динамическая погрешность — несоответствие, и зачастую весьма значительное, значения сигнала, наблюдаемого на выходе измерительной системы, реальному значению измеряемой величины. Поэтому за последние десятилетия для решения комплекса вопросов, связанных с проведением динамических измерений, в современной метрологии сформировалось новое направление, в котором находят успешное применение научные методы и подходы, развивающиеся в рамках теории динамических систем, теории решения обратных задач, идентификации систем и т.д. [1-3].

Во многих случаях математические модели переходных процессов в датчиках (измерительных преобразователях) являются линейными и эффективно формулируются в виде интегральных уравнений Вольтерра I рода, которые в случае стационарности (т.е. неизменяемой во времени) измерительной системы имеет разностное ядро [1—3]:

© И. О. Горошко, С. Ю. Протасов, А. А. Ситник, 2012

$$y(t) = \int_{0}^{t} k(t-s)x(s)ds .$$
 (1)

Ядро интегрального оператора при этом представляет собой импульсную переходную функцию (ИПФ) датчика. Модели данного вида позволяют решать как прямые задачи определения по известному входному воздействию x(t) сигнала на выходе датчика y(t), так и обратные задачи — нахождения (восстановления) неизвестного входного воздействия по наблюдаемому выходному сигналу. Следует отметить, что обратные задачи в общем случае являются некорректными, и при их решении необходимо использовать специальные методы регуляризации [1—3]. Однако, в случае уравнений Вольтерра I рода влияние некорректности часто оказывается незначительным, и для их решения могут не потребоваться классические методы регуляризации [2; 3].

При наличии достаточно детальной математической модели динамических процессов в датчике, которая в реальности может иметь различную сложность (от системы обыкновенных дифференциальных уравнений до систем двух — или трехмерных уравнений в частных производных, описывающих связанные поля различной физической природы), ИПФ можно было бы получить аналитически либо при помощи численных методов. Однако, в большинстве случаев это не представляется возможным (модельное описание датчика, получаемое из физических законов, не обладает достаточной детальностью, либо оказывается чрезмерно сложным, либо вообше отсутствует). При этом во многих случаях ИПФ датчика можно получить с достаточной точностью непосредственно экспериментальным путем, регистрируя сигнал, получаемый при подаче на вход измерительной системы дельтаобразных импульсных воздействий, а затем производя его нормировку, либо при подаче ступенчатого воздействия — в последнем случае на выходе получается отклик, пропорциональный переходной функции, которую для получения импульсной переходной функции необходимо продифференцировать по времени [1-3]. Кроме того, существуют и непрямые (косвенные) методы определения импульсных динамических характеристик, основанные на идентификации динамических моделей по данным, получаемым при использовании входных воздействий, отличающихся от импульсных или ступенчатых. Решаемые при этом задачи во многом подобны задачам восстановления сигналов и в общем случае являются некорректными, что также требует для их решения применения тех или иных методов регуляризации.

Формирование математических моделей. В настоящей работе мы остановимся на получении интегральных динамических моделей (по существу, макромоделей) измерительных преобразователей по данным физических экспериментов. Исследование охватывает несколько типовых датчиков различного вида, которые находят применение в системах испытания энергетического оборудования, а также в других отраслях, вплоть до медицины и биологии. Исходные данные для конкретных датчиков, полученные для случая подачи на вход измерительных систем ступенчатых тестовых сигналов, взяты из [1]. Данные модели построены в предположении малости нелинейных эффектов и представляются в интегральном виде. При их построении использованы средства аппроксимации, входящих в состав Curve Fitting Toolbox пакета MATLAB.

*Модель анализатора содержания углекислого газа в газовой смеси* построена на основе использования экспериментального отклика газоанализатора на ступенчатое воздействие (импульсную подачу газовой смеси с 2,3% CO<sub>2</sub> путем быстрого открытия вентиля).

Путем аппроксимации, входящих в состав Curve Fitting Toolbox пакета MATLAB, было получено следующее приближение этой зависимости: 1) на отрезке  $0 \le t \le 1,2$  использована аппроксимация сглаживающими сплайнами, построенная при отбрасывании точек входных данных для t > 1,5; 2) при t > 1,2 использована экспоненциальная аппроксимация вида

$$\tilde{h}(t) = ae^{bt} + c , \qquad (2)$$

для которой получены следующие значения параметров: a = -4,259, b = -1,511, c = 2,367 (значение *c* очень близко к 2,3% — концентрации CO<sub>2</sub> в смеси, используемой в тесте). На рис. 1 представлены графики, показывающие полученное таким образом приближение переходной функции рассматриваемой системы.

Для приближенного нахождения импульсной переходной функции k(t) полученная таким образом аппроксимирующая зависимость переходной функции дифференцируется по времени. В табл. 1 приведены значения ИПФ k(t) газоанализатора (пронормированной к однопроцентной концентрации углекислого газа), вычисленные с шагом  $\Delta t = 0,025$  с на отрезке  $0 \le t < 3,5$  с.



Рис. 1. Приближение переходной функции газоанализатора: 1 — сплайн-аппроксимация, 2 — экспоненциальная аппроксимация, точки — экспериментальные данные

Математичне та комп'ютерне моделювання

|       |        |       |        |       |        |       | • • •  |
|-------|--------|-------|--------|-------|--------|-------|--------|
| t     | k(t)   | t     | k(t)   | t     | k(t)   | t     | k(t)   |
| 0.000 | 0.1360 | 0.875 | 0.6367 | 1.750 | 0.1989 | 2.625 | 0.0530 |
| 0.025 | 0.1392 | 0.900 | 0.6182 | 1.775 | 0.1915 | 2.650 | 0.0511 |
| 0.050 | 0.1486 | 0.925 | 0.6035 | 1.800 | 0.1844 | 2.675 | 0.0492 |
| 0.075 | 0.1644 | 0.950 | 0.5877 | 1.825 | 0.1776 | 2.700 | 0.0473 |
| 0.100 | 0.1864 | 0.975 | 0.5697 | 1.850 | 0.1710 | 2.725 | 0.0456 |
| 0.125 | 0.2129 | 1.000 | 0.5495 | 1.875 | 0.1646 | 2.750 | 0.0439 |
| 0.150 | 0.2413 | 1.025 | 0.5303 | 1.900 | 0.1585 | 2.775 | 0.0423 |
| 0.175 | 0.2716 | 1.050 | 0.5135 | 1.925 | 0.1527 | 2.800 | 0.0407 |
| 0.200 | 0.3037 | 1.075 | 0.4992 | 1.950 | 0.1470 | 2.825 | 0.0392 |
| 0.225 | 0.3378 | 1.100 | 0.4872 | 1.975 | 0.1416 | 2.850 | 0.0377 |
| 0.250 | 0.3744 | 1.125 | 0.4777 | 2.000 | 0.1363 | 2.875 | 0.0363 |
| 0.275 | 0.4137 | 1.150 | 0.4683 | 2.025 | 0.1313 | 2.900 | 0.0350 |
| 0.300 | 0.4556 | 1.175 | 0.4573 | 2.050 | 0.1264 | 2.925 | 0.0337 |
| 0.325 | 0.5010 | 1.200 | 0.4565 | 2.075 | 0.1217 | 2.950 | 0.0324 |
| 0.350 | 0.5547 | 1.225 | 0.4396 | 2.100 | 0.1172 | 2.975 | 0.0312 |
| 0.375 | 0.6174 | 1.250 | 0.4233 | 2.125 | 0.1128 | 3.000 | 0.0301 |
| 0.400 | 0.6891 | 1.275 | 0.4076 | 2.150 | 0.1087 | 3.025 | 0.0290 |
| 0.425 | 0.7700 | 1.300 | 0.3925 | 2.175 | 0.1046 | 3.050 | 0.0279 |
| 0.450 | 0.8622 | 1.325 | 0.3779 | 2.200 | 0.1008 | 3.075 | 0.0269 |
| 0.475 | 0.9666 | 1.350 | 0.3639 | 2.225 | 0.0970 | 3.100 | 0.0259 |
| 0.500 | 1.0700 | 1.375 | 0.3504 | 2.250 | 0.0934 | 3.125 | 0.0249 |
| 0.525 | 1.1352 | 1.400 | 0.3374 | 2.275 | 0.0900 | 3.150 | 0.0240 |
| 0.550 | 1.1593 | 1.425 | 0.3249 | 2.300 | 0.0866 | 3.175 | 0.0231 |
| 0.575 | 1.1273 | 1.450 | 0.3129 | 2.325 | 0.0834 | 3.200 | 0.0222 |
| 0.600 | 1.0532 | 1.475 | 0.3013 | 2.350 | 0.0803 | 3.225 | 0.0214 |
| 0.625 | 0.9908 | 1.500 | 0.2901 | 2.375 | 0.0773 | 3.250 | 0.0206 |
| 0.650 | 0.9360 | 1.525 | 0.2794 | 2.400 | 0.0745 | 3.275 | 0.0199 |
| 0.675 | 0.8874 | 1.550 | 0.2690 | 2.425 | 0.0717 | 3.300 | 0.0191 |
| 0.700 | 0.8443 | 1.575 | 0.2590 | 2.450 | 0.0691 | 3.325 | 0.0184 |
| 0.725 | 0.8060 | 1.600 | 0.2494 | 2.475 | 0.0665 | 3.350 | 0.0177 |
| 0.750 | 0.7727 | 1.625 | 0.2402 | 2.500 | 0.0640 | 3.375 | 0.0171 |
| 0.775 | 0.7426 | 1.650 | 0.2313 | 2.525 | 0.0617 | 3.400 | 0.0164 |
| 0.800 | 0.7137 | 1.675 | 0.2227 | 2.550 | 0.0594 | 3.425 | 0.0158 |
| 0.825 | 0.6859 | 1.700 | 0.2145 | 2.575 | 0.0572 | 3.450 | 0.0152 |
| 0.850 | 0.6594 | 1.725 | 0.2065 | 2.600 | 0.0551 | 3.475 | 0.0147 |

Таблица 1

Вычисление свертки приближения k(t) со ступенчатой функцией 2,3H(t) (2,3% — концентрация CO<sub>2</sub> в использованной в эксперименте газовой смеси)

$$c(t) = 2, 3 \int_{0}^{t} k(t-s)H(s)ds$$
(3)

дало в результате кривую, практически совпадающую с исходной экспериментальной зависимостью (рис. 2).



Рис. 2. Расчетная реакция газоанализатора на ступенчатое воздействие (точки — экспериментальные данные)

Модель пьезоэлектрического датчика переменных давлений, используемого для исследования процессов в цилиндрах двигателей внутреннего сгорания, строится на основе данных, полученных в результате эксперимента с использованием ударной трубы, при проведении которого на датчик воздействовал ступенчатый перепад давления, равный 5,07 МПа.

Приближение экспериментальной зависимости было получено в виде

$$h(t) = a_0 + a_1 \cos wt + b_1 \sin wt + \dots + a_8 \cos wt + b_8 \sin wt$$
(4)

при следующих значениях параметров:  $a_0 = 4,005 \cdot 10^4$ ;  $a_1 = -7302$ ;  $b_1 = -7,287 \cdot 10^4$ ;  $a_2 = -5,478 \cdot 10^4$ ;  $b_2 = 1,085 \cdot 10^4$ ;  $a_3 = 9774$ ;  $b_3 = 3,377 \cdot 10^4$ ;  $a_4 = 1,684 \cdot 10^4$ ;  $b_4 = -6176$ ;  $a_5 = -2756$ ;  $b_5 = -6647$ ;  $a_6 = -2000$ ;  $b_6 = 807,5$ ;  $a_7 = 120,4$ ;  $b_7 = 425,7$ ;  $a_8 = 50,71$ ;  $b_8 = 2,29$ ;  $w = 3,405 \cdot 10^4$ .

Для получения приближения импульсной переходной функции k(t) аппроксимирующая переходную функцию зависимость (4) дифференцируются по времени. Ниже в табл. 2 приведены вычисленные с шагом  $\Delta t = 10^{-6}$  с на отрезке  $0 \le t < 8 \cdot 10^{-5}$  с значения ИПФ k(t), пронормированной к значению давления 1 МПа.

| Т | аб. | лиг | ta | 2 |
|---|-----|-----|----|---|
|   |     |     |    |   |

| <i>t</i> ·10 <sup>6</sup> | $k(t) \cdot 10^{-5}$ | t  | $k(t) \cdot 10^{-5}$ | t  | $k(t) \cdot 10^{-5}$ | t  | $k(t) \cdot 10^{-5}$ |
|---------------------------|----------------------|----|----------------------|----|----------------------|----|----------------------|
| 0                         | 1.509                | 20 | -0.954               | 40 | -0.720               | 60 | -0.063               |
| 1                         | 2.610                | 21 | -0.343               | 41 | -0.255               | 61 | 0.151                |
| 2                         | 2.895                | 22 | 0.296                | 42 | 0.204                | 62 | 0.317                |

Математичне та комп'ютерне моделювання

|    | предолжение таблиц |    |        |    |        |    |        |
|----|--------------------|----|--------|----|--------|----|--------|
| 3  | 2.871              | 23 | 0.892  | 43 | 0.613  | 63 | 0.419  |
| 4  | 2.789              | 24 | 1.382  | 44 | 0.936  | 64 | 0.448  |
| 5  | 2.733              | 25 | 1.716  | 45 | 1.145  | 65 | 0.405  |
| 6  | 2.689              | 26 | 1.862  | 46 | 1.227  | 66 | 0.301  |
| 7  | 2.601              | 27 | 1.810  | 47 | 1.181  | 67 | 0.154  |
| 8  | 2.406              | 28 | 1.570  | 48 | 1.018  | 68 | -0.013 |
| 9  | 2.067              | 29 | 1.173  | 49 | 0.761  | 69 | -0.174 |
| 10 | 1.573              | 30 | 0.663  | 50 | 0.442  | 70 | -0.304 |
| 11 | 0.950              | 31 | 0.095  | 51 | 0.097  | 71 | -0.386 |
| 12 | 0.251              | 32 | -0.472 | 52 | -0.239 | 72 | -0.409 |
| 13 | -0.454             | 33 | -0.982 | 53 | -0.532 | 73 | -0.373 |
| 14 | -1.089             | 34 | -1.388 | 54 | -0.755 | 74 | -0.289 |
| 15 | -1.584             | 35 | -1.652 | 55 | -0.888 | 75 | -0.176 |
| 16 | -1.887             | 36 | -1.755 | 56 | -0.925 | 76 | -0.052 |
| 17 | -1.966             | 37 | -1.694 | 57 | -0.868 | 77 | 0.068  |
| 18 | -1.818             | 38 | -1.481 | 58 | -0.730 | 78 | 0.194  |
| 19 | -1.466             | 39 | -1.143 | 59 | -0.532 | 79 | -0.063 |

Продолжение таблицы 2

Результат вычисления свертки приближения k(t) со ступенчатой функцией 5,07 H(t), соответствующей скачку давления 5,07 МПа в эксперименте,

$$p(t) = 5,07 \int_{0}^{t} k(t-s)H(s)ds, \qquad (5)$$

представлен на рис. 3. Вычисленная кривая (пунктирная линия) близка к экспериментальной зависимости (сплошная линия).



**Рис. 3.** Расчетная реакция датчика переменных давлений на ступенчатое воздействие (пунктирная линия; эксперимент — сплошная линия)

**Модель пленочного термоприемника** построена на основе отклика измерительного преобразователя на ступенчатое температурное воздействие. Приближение экспериментальной зависимости осуществлялось следующим образом: 1) на отрезке  $0 \le t \le 1,1$  использована аппроксимация сглаживающими сплайнами, построенная при отбрасывании точек входных данных для t > 2; 2) при t > 1,1 использована экспоненциальная аппроксимация вида

$$\tilde{h}(t) = ae^{bt} + c , \qquad (6)$$

для которой получены следующие значения параметров: a = -20,79; b = -0,371; c = 96,32. На рис. 4 представлены графики, показывающие полученное таким образом приближения переходной функции.

Для нахождения приближения импульсной переходной функции k(t) полученная аппроксимирующая зависимость переходной функции дифференцируются по времени. В табл. 3 приведены вычисленные с шагом  $\Delta t = 0.05$  с значения k(t) на отрезке  $0 \le t < 5.5$  с.



**Рис. 4.** Приближение переходной функции термоприемника: 1 — сплайнаппроксимация, 2 —экспоненциальная аппроксимация, точки — эксперимент

|      |        |      |      |      |      |      | I dominique o |
|------|--------|------|------|------|------|------|---------------|
| t    | k(t)   | t    | k(t) | t    | k(t) | t    | k(t)          |
| 0.00 | 849.96 | 1.40 | 4.59 | 2.80 | 2.73 | 4.20 | 1.62          |
| 0.05 | 550.62 | 1.45 | 4.50 | 2.85 | 2.68 | 4.25 | 1.59          |
| 0.10 | 267.16 | 1.50 | 4.42 | 2.90 | 2.63 | 4.30 | 1.56          |
| 0.15 | 91.48  | 1.55 | 4.34 | 2.95 | 2.58 | 4.35 | 1.54          |
| 0.20 | 35.79  | 1.60 | 4.26 | 3.00 | 2.53 | 4.40 | 1.51          |
| 0.25 | 29.51  | 1.65 | 4.18 | 3.05 | 2.49 | 4.45 | 1.48          |
| 0.30 | 26.97  | 1.70 | 4.10 | 3.10 | 2.44 | 4.50 | 1.45          |
| 0.35 | 24.68  | 1.75 | 4.03 | 3.15 | 2.40 | 4.55 | 1.43          |
| 0.40 | 22.35  | 1.80 | 3.95 | 3.20 | 2.35 | 4.60 | 1.40          |
| 0.45 | 20.07  | 1.85 | 3.88 | 3.25 | 2.31 | 4.65 | 1.37          |

Таблица 3

| продолжение таблиці |       |      |      |      |      |      | uominubi . |
|---------------------|-------|------|------|------|------|------|------------|
| 0.50                | 17.99 | 1.90 | 3.81 | 3.30 | 2.27 | 4.70 | 1.35       |
| 0.55                | 16.11 | 1.95 | 3.74 | 3.35 | 2.23 | 4.75 | 1.32       |
| 0.60                | 14.42 | 2.00 | 3.67 | 3.40 | 2.18 | 4.80 | 1.30       |
| 0.65                | 12.93 | 2.05 | 3.60 | 3.45 | 2.14 | 4.85 | 1.28       |
| 0.70                | 11.63 | 2.10 | 3.54 | 3.50 | 2.10 | 4.90 | 1.25       |
| 0.75                | 10.45 | 2.15 | 3.47 | 3.55 | 2.07 | 4.95 | 1.23       |
| 0.80                | 9.37  | 2.20 | 3.41 | 3.60 | 2.03 | 5.00 | 1.21       |
| 0.85                | 8.39  | 2.25 | 3.35 | 3.65 | 1.99 | 5.05 | 1.18       |
| 0.90                | 7.50  | 2.30 | 3.29 | 3.70 | 1.95 | 5.10 | 1.16       |
| 0.95                | 6.72  | 2.35 | 3.22 | 3.75 | 1.92 | 5.15 | 1.14       |
| 1.00                | 6.03  | 2.40 | 3.17 | 3.80 | 1.88 | 5.20 | 1.12       |
| 1.05                | 5.43  | 2.45 | 3.11 | 3.85 | 1.85 | 5.25 | 1.10       |
| 1.10                | 5.24  | 2.50 | 3.05 | 3.90 | 1.81 | 5.30 | 1.08       |
| 1.15                | 5.03  | 2.55 | 2.99 | 3.95 | 1.78 | 5.35 | 1.06       |
| 1.20                | 4.94  | 2.60 | 2.94 | 4.00 | 1.75 | 5.40 | 1.04       |
| 1.25                | 4.85  | 2.65 | 2.89 | 4.05 | 1.72 | 5.45 | 1.02       |
| 1.30                | 4.76  | 2.70 | 2.83 | 4.10 | 1.68 | 5.50 | 1.00       |
| 1.35                | 4.67  | 2.75 | 2.78 | 4.15 | 1.65 | 5.55 | 0.98       |

Продолжение таблицы 3

Вычисление свертки приближения k(t) с единичной ступенчатой функцией

$$\Delta T(t) = \int_{0}^{t} k(t-s)H(s)ds$$
<sup>(7)</sup>

представлено на рис. 5. Вычисленная кривая практически совпадает с экспериментальной зависимостью.



**Рис. 5.** Расчетная реакция термоприемника на ступенчатое воздействие (точки — экспериментальные данные)

**Выводы.** В работе для получения непараметрических интегральных динамических моделей измерительных преобразователей различного типа использована методика определения приближений импульсных переходных функций, являющихся ядрами интегральных операторов, основанная на аппроксимации экспериментальных зависимостей, полученных при ступенчатых входных воздействиях с последующим их дифференцированием и нормировкой. Данная методика была использована для формирования моделей для нескольких типов измерительных преобразователей. Полученные таким образом модели показали свою высокую эффективность с точки зрения точности представления динамических характеристик рассмотренных датчиков и могут быть использованы как для предсказания по известным входным воздействиям сигналов на выходе измерительных преобразователей, так и для решения обратных задач восстановления неизвестных входных воздействий по наблюдаемым выходным сигналам.

## Список использованной литературы:

- Грановский В. А. Динамические измерения : основы метрологического обеспечения / В. А. Грановский. — Л. : Энергоатомиздат. Ленингр. отдние, 1984. — 224 с.
- Методы и устройства интерпретации экспериментальных зависимостей при исследовании и контроле энергетических процессов / А. Ф. Верлань, Б. Б. Абдусатаров, А. А. Игнатченко, Н. А. Максимович. — К. : Наукова думка, 1993. — 208 с.
- Верлань А. Ф. Интегральные уравнения: методы, алгоритмы, программы / А. Ф. Верлань, В. С. Сизиков. — К. : Наукова думка, 1986. — 544 с.

In the article the questions of non-parametric integral dynamical models forming for physical sensors of different types are considered. These models can be used to determine the output signals of sensors by known actions at their input, and for solving problems of input action restoration by observed output signals.

**Key words:** *integral dynamical models, physical sensors, approximation, response functions, direct and inverse problems, signal restoration.* 

Отримано: 16.03.2012