Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://er.chdtu.edu.ua/handle/ChSTU/3083
Название: | Processing Methods and ECG Signal Recognition Model |
Авторы: | Fedorov, Eugene Utkina, Tetiana Rudakov, Kostiantyn Lukashenko Zubko, Ihor Greguš, Michal Федоров, Євген Євгенович Уткіна, Тетяна Юріївна Рудаков, Костянтин Сергійович Лукашенко, Андрій Германович Зубко, Ігор Анатолійович |
Ключевые слова: | ECG diagnostics;ECG signal structuring;calculation of length of RR interval;determination of boundaries of RR intervals;geometric transformation of RR intervals;adaptive probabilistic neural network;identification of structure and parameters of model for recognizing ECG signal patterns |
Дата публикации: | 2020 |
Издательство: | CEUR Workshop Proceedings |
Краткий осмотр (реферат): | In the work for processing the ECG signal, methods for determining the length of RR interval of ECG signal and calculating on its basis the boundaries of RR interval of ECG signal, geometric converting of RR intervals of ECG signal have been proposed. The proposed definition of the length of RR interval of ECG signal uses statistical estimation of local maximum and band-pass filtering, which decreases the computational complexity, and decreases the dependence on noise and permit to use dynamic threshold, which increases the accuracy of calculating the length and boundaries of RR intervals of ECG signal. The proposed geometric converting of RR intervals of ECG signal makes it possible to convert RR intervals to a unified amplitude-time window, which permits to form samples of ECG signal on basis its structure. The proposed model of ECG signal recognition is based on adaptive probabilistic neural network that allows identification of the structure and parameters, which increases the recognition probability. The proposed method for identifying the structure and parameters of the model for recognizing ECG signal samples is based on adaptive clustering, which provides a high degree of compression and clustering of ECG signal samples. To evaluate the proposed methods and model, quality criteria are determined. Numerical studies, which allow to evaluate the proposed methods and model, have been carried out. The proposed methods and model make it possible to formulate and solve the problems of structuring, transforming and recognizing the ECG signal, which is used for ECG diagnostics. |
URI (Унифицированный идентификатор ресурса): | https://er.chdtu.edu.ua/handle/ChSTU/3083 |
ISSN: | 1613-0073 |
Выпуск: | 2753 |
Первая страница: | 82 |
Последняя страница: | 93 |
Располагается в коллекциях: | Наукові публікації викладачів (ФІТІС) |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Processing Methods and ECG Signal Recognition Model.pdf | 1.38 MB | Adobe PDF | ![]() Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.