Please use this identifier to cite or link to this item:
https://er.chdtu.edu.ua/handle/ChSTU/3444
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fedorov, Eugene | - |
dc.contributor.author | Nechyporenko, Olga | - |
dc.contributor.author | Федоров, Євген Євгенович | - |
dc.contributor.author | Нечипоренко, Ольга Володимирівна | - |
dc.date.accessioned | 2022-01-18T10:06:53Z | - |
dc.date.available | 2022-01-18T10:06:53Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | https://er.chdtu.edu.ua/handle/ChSTU/3444 | - |
dc.description.abstract | The problem of increasing the efficiency of long-term forecasting in the supply chain is examined. Neural network forecasting methods that are based on reservoir calculations, which increases the forecast accuracy, are proposed. Methods for identifying parameters of forecast models based on the metaheuristics are proposed for the methods mentioned above. These methods were researched on the basis of the data from the logistics company Ekol Ukraine and are intended for intelligent computer-based supply chain management systems. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | CEUR Workshop Proceedings | uk_UA |
dc.subject | long-term forecast | uk_UA |
dc.subject | supply chain | uk_UA |
dc.subject | metaheuristics | uk_UA |
dc.subject | metaheuristics | uk_UA |
dc.subject | forecast neural network model | uk_UA |
dc.title | Long‐Term Forecasting Method in the Supply Chain Based on an Artificial Neural Network with Multi‐Agent Metaheuristic Training | uk_UA |
dc.type | Article | uk_UA |
dc.citation.issue | 2864 | uk_UA |
dc.citation.spage | 1 | uk_UA |
dc.citation.epage | 11 | uk_UA |
Appears in Collections: | Наукові публікації викладачів (ФІТІС) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
paper1.pdf | 419.9 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.