Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://er.chdtu.edu.ua/handle/ChSTU/3460
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorNeskorodieva, Tatiana-
dc.contributor.authorFedorov, Eugene-
dc.contributor.authorФедоров, Євген Євгенович-
dc.date.accessioned2022-01-24T08:42:12Z-
dc.date.available2022-01-24T08:42:12Z-
dc.date.issued2021-
dc.identifier.issn1613-0073-
dc.identifier.urihttps://er.chdtu.edu.ua/handle/ChSTU/3460-
dc.description.abstractCurrently, the analytical procedures used during the audit are based on data mining techniques. The work solves the problem of increasing the efficiency and effectiveness of analytical audit procedures by automating data comparison by bidirectional neural network mapping. The object of the research is the process of the content auditing of the receipt of raw materials for production and the manufactured products. The aim of the work is to increase the effectiveness and efficiency of audit due to mapping by full (bidirectional) counterpropagating neural network of content of the receipt of raw materials for production and the manufactured products while automating procedures for checking their compliance. The vectors of feature for the objects of the sequences of the receipt of raw materials for production and the manufactured products are generated, which are then used in the proposed method. The created method, in contrast to the traditional one, provides for a batch mode, which allows the method to increase the learning rate by an amount equal to the product of the number of neurons in the hidden layer and the power of the training set, which is critically important in the audit system for the implementation of multivariate intelligent analysis, which involves enumerating various methods of forming subsets analysis. The urgent task of increasing the audit efficiency was solved by automating the mapping of audit indicators by full (bidirectional) counterpropagating neural network. A learning algorithm based on 𝑘-means has been created, intended for implementation on a GPU using CUDA technology, which increases the speed of identifying parameters of a neural network model. The neural network with the proposed training method based on the 𝑘-means rule can be used to intellectualize the DSS audit. The prospects for further research are the application of the proposed method by neural network mapping for a wide class of artificial intelligence tasks, in particular, for creating a method for bidirectional mapping indicators of audit tasksuk_UA
dc.language.isoenuk_UA
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectaudituk_UA
dc.subjectmapping by neural networkuk_UA
dc.subjectfull (bidirectional) counterpropagating neural networkuk_UA
dc.subjectcontent of the receipt of raw materials for production and the manufactured productsuk_UA
dc.titleMethod for automatic processing of audit content based on bidirectional neural network mappinguk_UA
dc.typeArticleuk_UA
dc.citation.volume2853uk_UA
dc.citation.spage178uk_UA
dc.citation.epage189uk_UA
Розташовується у зібраннях:Наукові публікації викладачів (ФІТІС)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Method for automatic processing of audit content based on bidirectional neural network mapping.pdf402.35 kBAdobe PDFЕскіз
Переглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищено авторським правом, усі права збережено.