Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://er.chdtu.edu.ua/handle/ChSTU/4081
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorGrygor, Oleg-
dc.contributor.authorFedorov, Eugene-
dc.contributor.authorNechyporenko, Olga-
dc.contributor.authorGrygorian, Mykola-
dc.contributor.authorГригор, Олег Олександрович-
dc.contributor.authorФедоров, Євген Євгенович-
dc.contributor.authorНечипоренко, Ольга Володимирівна-
dc.contributor.authorГригор'ян, Микола Борисович-
dc.date.accessioned2022-06-10T09:07:44Z-
dc.date.available2022-06-10T09:07:44Z-
dc.date.issued2022-
dc.identifier.issn1613-0073-
dc.identifier.urihttps://er.chdtu.edu.ua/handle/ChSTU/4081-
dc.description.abstractDetermining the optimal level of inventory comes down to the timeliness of the procurement and replenishment procedures, which ensure the minimum total costs associated with procurement and storage. The problem of insufficient prediction accuracy for inventory management arising in supply chains is considered. A neural network prediction model based on a Time-Delay Restricted Boltzmann Machine with unit delays cascades in the output and input layers is proposed. During the structural identification of this model, the neurons count in the hidden layer was calculated, and the parametric identification was performed based on the CUDA parallel processing technology. This improves the prediction efficiency by increasing the prediction accuracy and decreasing the computational complexity. Software has been developed by the Matlab package that realizes the offered method. The created software is used to implement the prediction in the supply chain management problem.uk_UA
dc.language.isoenuk_UA
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectprediction accuracyuk_UA
dc.subjectsupply chain management problemuk_UA
dc.subjectneural network prediction modeluk_UA
dc.subjectRestricted Boltzmann Machineuk_UA
dc.subjectstochastic learninguk_UA
dc.titleNeural Network Forecasting Method for Inventory Management in the Supply Chainuk_UA
dc.typeArticleuk_UA
dc.citation.volume3137uk_UA
dc.citation.spage14uk_UA
dc.citation.epage27uk_UA
Розташовується у зібраннях:Наукові публікації викладачів (ФЕУ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Grygor_neural network.pdf584.2 kBAdobe PDFЕскіз
Переглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищено авторським правом, усі права збережено.