Please use this identifier to cite or link to this item:
https://er.chdtu.edu.ua/handle/ChSTU/5397
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fedorov, Eugene | - |
dc.contributor.author | Utkina, Tetiana | - |
dc.contributor.author | Leshchenko, Marina | - |
dc.contributor.author | Nechyporenko, Olga | - |
dc.contributor.author | Rudakov, Kostiantyn | - |
dc.contributor.author | Федоров, Євген Євгенович | - |
dc.contributor.author | Уткіна, Тетяна Юріївна | - |
dc.contributor.author | Лещенко, Марина Миколаївна | - |
dc.contributor.author | Нечипоренко, Ольга Володимирівна | - |
dc.contributor.author | Рудаков, Костянтин Сергійович | - |
dc.date.accessioned | 2025-02-18T11:18:25Z | - |
dc.date.available | 2025-02-18T11:18:25Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | https://er.chdtu.edu.ua/handle/ChSTU/5397 | - |
dc.description.abstract | The method for intelligent diagnosis of COVID-19 based on the LeNet-ViT deep neural network was proposed. The LeNet-ViT model was created, it has the following advantages: the input image is not square, which expands the scope; the input image is pre-compressed and the new size depends on the original image size, and it is empirically determined, which increases the model training speed and the model identification accuracy; the number of pairs “convolutional layer - downsampling layer” depends on the image’s size, and it is automatically determined, which increases the model classification accuracy; the number of layer planes is automatically determined, which speeds up the definition of the model structure; the patch size depends on the image size, and it is empirically determined, which increases the model identification accuracy; the number of encoder blocks is empirically determined, which increases the model learning speed; the use of a convolutional neural network allows to efficiently extract features, and the use of a visual transformer allows to effectively analyze these features. The proposed method for intelligent diagnosis of COVID-19 can be used in various intelligent computer systems for medical diagnostics. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | CEUR Workshop Proceedings | uk_UA |
dc.subject | intelligent diagnostics | uk_UA |
dc.subject | COVID-19 | uk_UA |
dc.subject | deep neural network | uk_UA |
dc.subject | convolutional neural network | uk_UA |
dc.subject | visual transformer | uk_UA |
dc.title | The Intelligent Diagnosis Method of Covid-19 Based on the Lenet-Vit Deep Neural Network | uk_UA |
dc.type | Article | uk_UA |
dc.citation.volume | 3302 | uk_UA |
dc.citation.spage | 146 | uk_UA |
dc.citation.epage | 159 | uk_UA |
Appears in Collections: | Наукові публікації викладачів (ФЕУ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
paper8.pdf | 511.81 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.