Please use this identifier to cite or link to this item: https://er.chdtu.edu.ua/handle/ChSTU/5397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFedorov, Eugene-
dc.contributor.authorUtkina, Tetiana-
dc.contributor.authorLeshchenko, Marina-
dc.contributor.authorNechyporenko, Olga-
dc.contributor.authorRudakov, Kostiantyn-
dc.contributor.authorФедоров, Євген Євгенович-
dc.contributor.authorУткіна, Тетяна Юріївна-
dc.contributor.authorЛещенко, Марина Миколаївна-
dc.contributor.authorНечипоренко, Ольга Володимирівна-
dc.contributor.authorРудаков, Костянтин Сергійович-
dc.date.accessioned2025-02-18T11:18:25Z-
dc.date.available2025-02-18T11:18:25Z-
dc.date.issued2022-
dc.identifier.issn1613-0073-
dc.identifier.urihttps://er.chdtu.edu.ua/handle/ChSTU/5397-
dc.description.abstractThe method for intelligent diagnosis of COVID-19 based on the LeNet-ViT deep neural network was proposed. The LeNet-ViT model was created, it has the following advantages: the input image is not square, which expands the scope; the input image is pre-compressed and the new size depends on the original image size, and it is empirically determined, which increases the model training speed and the model identification accuracy; the number of pairs “convolutional layer - downsampling layer” depends on the image’s size, and it is automatically determined, which increases the model classification accuracy; the number of layer planes is automatically determined, which speeds up the definition of the model structure; the patch size depends on the image size, and it is empirically determined, which increases the model identification accuracy; the number of encoder blocks is empirically determined, which increases the model learning speed; the use of a convolutional neural network allows to efficiently extract features, and the use of a visual transformer allows to effectively analyze these features. The proposed method for intelligent diagnosis of COVID-19 can be used in various intelligent computer systems for medical diagnostics.uk_UA
dc.language.isoenuk_UA
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectintelligent diagnosticsuk_UA
dc.subjectCOVID-19uk_UA
dc.subjectdeep neural networkuk_UA
dc.subjectconvolutional neural networkuk_UA
dc.subjectvisual transformeruk_UA
dc.titleThe Intelligent Diagnosis Method of Covid-19 Based on the Lenet-Vit Deep Neural Networkuk_UA
dc.typeArticleuk_UA
dc.citation.volume3302uk_UA
dc.citation.spage146uk_UA
dc.citation.epage159uk_UA
Appears in Collections:Наукові публікації викладачів (ФЕУ)

Files in This Item:
File Description SizeFormat 
paper8.pdf511.81 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.