Please use this identifier to cite or link to this item:
https://er.chdtu.edu.ua/handle/ChSTU/3002
Title: | Method for Parametric Identification of Gaussian Mixture Model Based on Clonal Selection Algorithm |
Authors: | Fedorov, Eugene Lukashenko, Valentyna Utkina, Tetiana Lukashenko, Andriy Rudakov, Kostiantyn Федоров, Євген Євгенович Лукашенко, Валентина Максимівна Уткіна, Тетяна Юріївна Лукашенко, Андрій Германович Рудаков, Костянтин Сергійович |
Keywords: | quasi-periodic signal;speaker recognition;gaussian mixture model;learning set formation;parametric identification;clonal selection algorithm |
Issue Date: | 2019 |
Publisher: | CEUR Workshop Proceedings |
Abstract: | The problem of increasing the efficiency of parametric identification of Gaussian mixture model (GMM) is considered. A method for identifying GMM parameters based on clonal selection algorithm with preliminary formation of a learning set taking into account the structure of vocal sounds, which increases the likelihood of speaker recognition, is proposed. The parameter identification method is intended for software implementation on the GPU using the CUDA technology, which speeds up the process of parametric identification. This method has been studied on the TIMIT database and serves for intelligent systems of biometric personal identification. |
URI: | https://er.chdtu.edu.ua/handle/ChSTU/3002 |
ISSN: | 1613-0073 |
Volume: | 2353 |
First Page: | 41 |
End Page: | 55 |
Appears in Collections: | Наукові публікації викладачів (ФІТІС) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Method for Parametric Identification of Gaussian Mixture Model Based on Clonal Selection Algorithm.pdf | 819.11 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.