Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://er.chdtu.edu.ua/handle/ChSTU/4695
Название: | Models of dynamic objects with significant nonlinearity based on time-delay neural networks |
Другие названия: | Моделі динамічних об’єктів зі значною нелінійністю на основі нейронних мереж із часовими затримками |
Авторы: | Fomin, Oleksandr Speranskyy, Viktor Krykun, Valentyn Tataryn, Oleksii Litynskyi, Vladyslav |
Ключевые слова: | identification;nonlinear objects;substantial nonlinearities;dynamic neural networks;simulation modeling;ідентифікація;нелінійні об’єкти;суттєві нелінійності;динамічні нейронні мережі;імітаційне моделювання |
Дата публикации: | 2023 |
Издательство: | Вісник Черкаського державного технологічного університету. Технічні науки |
Краткий осмотр (реферат): | The paper is devoted to the problem of nonlinear modeling of objects based on dynamic
neural networks. The aim of the work is to improve the accuracy of modeling dynamic objects with
significant nonlinearities using neural network models and to determine the scope of effective
application of these models. This aim is achieved using time-delay neural networks. To assess the
applicability of the proposed neural network models, the study considers simulation objects with two
types of nonlinearities: smooth and piecewise linear (saturation). The investigation of suggested models
accuracy in nonlinear dynamic object modeling involves two experiments: the study of the models'
scalability with different input signals; the study of their extrapolation capabilities. The results of both
experiments are compared with the modeling results using the compensatory method of deterministic
identification based on functional series. The results of the experiments reveal that the suggested neural
network models are not invariant concerning the input signal. However, when trained on a sufficient
amount of data generated from input signals of the same type as in the test data set, these models can
effectively represent the properties of nonlinear dynamic objects. The extrapolation properties of timedelayed neural networks deteriorate as the input signal amplitudes exceed the range covered by the used
training set. The scientific novelty consists in determining a clear relationship between the types of input
signals, their amplitudes, and the accuracy of the proposed models. The practical significance of
investigation delineates the areas in which time-delay neural networks can be used to address the realworld challenges associated with significantly non-linear objects; demonstrates the increase in accuracy
of identifying nonlinear objects compared to functional series models. Робота присвячена проблемі нелінійного моделювання об’єктів на основі динамічних нейронних мереж. Метою роботи є підвищення точності моделювання динамічних об’єктів зі значними нелінійностями за допомогою нейромережевих моделей та визначення області ефективного застосування цих моделей. Ця мета досягається шляхом застосування нелінійних динамічних моделей у вигляді нейронних мереж із часовою затримкою. Для дослідження області ефективного застосування запропонованих нейромережевих моделей розглядаються тестові об’єкти з нелінійностями двох типів: гладкою та кусково-лінійною (насиченням). Для дослідження точності нейронних мереж із часовою затримкою при моделюванні нелінійних динамічних об’єктів проведено два експерименти: дослідження масштабованості моделей до різних вхідних сигналів; дослідження екстраполяційних властивостей моделей. Результати обох експериментів порівнюються з результатами моделювання за допомогою компенсаційного методу детермінованої ідентифікації у вигляді функціональних рядів на основі багатовимірних вагових функцій. Отримані результати моделювання свідчать, що запропоновані нейромережеві моделі не є інваріантними щодо вхідного сигналу. Однак ці моделі можуть адекватно відображати властивості нелінійних динамічних об’єктів в разі навчання на достатньому обсязі даних, що формується на основі вхідних сигналів того ж типу, що й у тестовому наборі даних. Екстраполяційні властивості нейронних мереж із часовою затримкою погіршуються зі збільшенням амплітуд вхідних сигналів, що виходять за межі діапазону амплітуд вхідних сигналів навчальної вибірки. Наукова новизна роботи полягає у визначенні залежності між типами сигналів та їх амплітудами, що діють на вході моделі, і точністю запропонованих моделей. Практична користь роботи полягає у визначенні області ефективного застосування нейронних мереж із часовою затримкою під час розв’язування прикладних задач ідентифікації об’єктів зі значно нелінійними характеристиками; підвищенні точності ідентифікації нелінійних об’єктів порівняно з моделями у вигляді функціональних рядів на основі багатовимірних вагових функцій. |
URI (Унифицированный идентификатор ресурса): | https://er.chdtu.edu.ua/handle/ChSTU/4695 |
ISSN: | 2306-4412 (print) 2708-6070 (online) |
DOI: | 10.24025/2306-4412.3.2023.288284 |
Выпуск: | 3 |
Первая страница: | 97 |
Последняя страница: | 112 |
Располагается в коллекциях: | №3/2023 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.pdf | 2.63 MB | Adobe PDF | ![]() Просмотреть/Открыть | |
зміст.pdf | 382.52 kB | Adobe PDF | ![]() Просмотреть/Открыть | |
титул.pdf | 844.68 kB | Adobe PDF | ![]() Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.