Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://er.chdtu.edu.ua/handle/ChSTU/5286
Название: The Wind Generator’ Power Effective Forecast Method Based on Modified One-Dimensional Convolutional Neural Network and metaheuristics
Авторы: Fedorov, Eugene
Leshchenko, Marina
Rudnytskyi, Serhii
Duduk, Vitalii
Lada, Nataliia
Дата публикации: 2022
Издательство: Springer, Cham
Краткий осмотр (реферат): The method for predicting of wind generator’ power based on a modified one-dimensional convolutional neural network was proposed in the article. The model of a modified one-dimensional convolutional neural network was created; it allows to extract the most significant features and increase the forecast accuracy due to the automatic calculation of the convolution, pooling and dense (fully connected) layers’ number and sizes. The method for neural network model parametric identification based on local search was developed; according to the absence of recurrent connections it allows to use a batch learning mode for the learning rate’ increase. The method for the neural network model parametric identification was created; according to the swarm of cats’ adaptive optimization and using of simulated annealing it makes possible to make the search global at the first iterations, and to make the search local at the last iterations; it increases of the forecast accuracy too. The method for predicting the wind generator’ power based on a modified one-dimensional convolutional neural network and metaheuristics increases the forecast efficiency and can be used in various intelligent systems for analyzing the characteristics of technical objects with high dynamics.
URI (Унифицированный идентификатор ресурса): https://link.springer.com/chapter/10.1007/978-3-031-03877-8_7
https://er.chdtu.edu.ua/handle/ChSTU/5286
ISBN: 978-3-031-03876-1 (print)
978-3-031-03877-8 (online)
DOI: https://doi.org/10.1007/978-3-031-03877-8_7
Первая страница: 69
Последняя страница: 83
Название книги: Hu, Z., Petoukhov, S., Yanovsky, F., He, M. (eds) Advances in Computer Science for Engineering and Manufacturing. ISEM 2021. Lecture Notes in Networks and Systems, volume 463
Располагается в коллекциях:Наукові публікації викладачів (ФЕУ)

Файлы этого ресурса:
Нет файлов, ассоциированных с этим ресурсом.


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.