Please use this identifier to cite or link to this item: https://er.chdtu.edu.ua/handle/ChSTU/5538
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHalchenko, Volodymyr-
dc.contributor.authorTrembovetska, Ruslana-
dc.contributor.authorTychkov, Volodymyr-
dc.contributor.authorKovtun, Viacheslav-
dc.contributor.authorTychkova, Natalіia-
dc.contributor.authorГальченко, Володимир Якович-
dc.contributor.authorТрембовецька, Руслана Володимирівна-
dc.contributor.authorТичков, Володимир Володимирович-
dc.contributor.authorКовтун, Вячеслав Васильович-
dc.contributor.authorТичкова, Наталія Борисівна-
dc.date.accessioned2025-03-27T13:58:33Z-
dc.date.available2025-03-27T13:58:33Z-
dc.date.issued2025-
dc.identifier.issn2079-9292-
dc.identifier.urihttps://er.chdtu.edu.ua/handle/ChSTU/5538-
dc.description.abstractA number of computer experiments have investigated the effectiveness in terms of accuracy of the method for simultaneously determining the distributions of electrical conductivity and magnetic permeability in the subsurface zone of planar conductive objects when modeling the process of eddy-current measurement testing by surface probes. The method is based on the use of surrogate optimization, which involves the use of a high-performance neural network proxy-model of probe by means of a deep learning as part of the target quadratic function. The surrogate model acts as a carrier and storage of a priori information about the object and takes into account the influence of all the main factors essential in the formation of the probe output signal. The problems of the surrogate model’s cumbersomeness and mitigation of the “curse of dimensionality” effect are solved by applying techniques for reducing the dimensionality of the design space based on the PCA algorithm. We investigated options for compromise solutions regarding the dimensionality of the PCA-space and the accuracy of obtaining the desired material properties profiles by the optimization method. The results of modeling the inverse measurement problem indicate a fairly high accuracy of profile reconstruction.uk_UA
dc.language.isoenuk_UA
dc.publisherElectronicsuk_UA
dc.subjectmaterial propertiesuk_UA
dc.subjecteddy current measurementsuk_UA
dc.subjectsurrogate optimizationuk_UA
dc.subjectreduced order metamodeluk_UA
dc.subjecta priori informationuk_UA
dc.subjectPCA spaceuk_UA
dc.subjectdeep neural networksuk_UA
dc.titleApplication of reduced order surrogate models in compatible determination of material properties profiles by eddy current methoduk_UA
dc.typeArticleuk_UA
dc.citation.volume14uk_UA
dc.citation.issue1uk_UA
dc.citation.spage212-1uk_UA
dc.citation.epage212-22uk_UA
dc.identifier.doihttps://doi.org/10.3390/electronics14010212-
Appears in Collections:Наукові публікації викладачів (ФЕТР)

Files in This Item:
File Description SizeFormat 
electronics-14-00212-v2.pdf9.41 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.